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Abstract

We study a revenue maximization problem in the context of social networks. Namely,
we consider a model introduced by [2] that captures inequity aversion, i.e., prices offered to
neighboring vertices should not be significantly different. We first provide approximation
algorithms for a natural class of instances, referred to as the class of single-value revenue
functions. Our results improve on the current state of the art, especially when the number of
distinct prices is small. This applies, for example, to settings where the seller will only consider
a fixed number of discount types or special offers. We then resolve one of the open questions
posed in [2], by establishing APX-hardness for the problem. Surprisingly, we further show
that the problem is NP-complete even when the price differences are allowed to be large, or
even when the number of allowed distinct prices is as small as three. Finally, we provide some
extensions of the model, regarding either the allowed set of prices, or the demand type of the
clients.

1 Introduction

We study a differential pricing optimization problem in the presence of network effects. Differ-
ential pricing is a well known practice in everyday life and refers to offering a different price to
potential customers for the same service or good. Examples include offering cheaper prices when
launching a new product, making special offers to gold and silver members of an airline miles
program, offering discounts at stores during selected periods, and several others.

We are interested in studying differential pricing in the context of a social network. Imagine
a network connecting individuals (who are seen as potential clients here) with their friends,
family, colleagues, or other people who can exert some influence on them. One can have in
mind other forms of abstract networks as well, e.g., a node could represent a geographic region, a
neighborhood within a city, a type of profession, a social class, and edges can represent interactions
or proximity. The presence of such a network creates externality effects, meaning that the decision
of a node to acquire a new product or a new service is affected by the fact that some other nodes
within her social circle (her neighborhood in the graph) already did so. A typical example of
positive externalities is when someone becomes more likely to buy a new product due to the
positive reviews by a friend who already bought it in the past. Modeling positive externalities

*A preliminary conference version appeared in MFCS 2016 [3].
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has led to a series of works that study marketing strategies for maximizing the diffusion of a new
product, [10, 17], or the total revenue achieved, [16] (see also the Related Work section).

However, there also exist negative externality effects that can arise in a network. One example
is the purchase of a product with the intention to show off and be a locally unique owner, e.g.,
a new type of expensive car, or clothes (also referred to as invidious consumption, see [6]). In
such a case, a node may be deterred from buying the same product, if a neighboring node already
did so. A second example of negative externalities, which is the focus of our work, and arises
from differential pricing, is inequity aversion, see e.g., [5] and [11]. This simply means that a
customer may experience dissatisfaction if she realizes that other people within her social circle,
were offered a better deal for the same service. Hence, significant price differences, can create a
negative response of some customers towards a product. Inequity aversion can also arise under a
different, but equally applicable, interpretation: nodes may correspond to retail stores and an edge
can signify proximity, so that clients could choose among these stores. Again, having significantly
different prices to the same products is not desirable.

To capture the need for avoiding such phenomena, the relatively recent work of [2] introduced
a model for pricing nodes over a social network. The main idea is to impose constraints on each
edge, specifying that the price difference between two neighbors should be bounded by some
(endogenous) parameter, determined by the two neighbors. On top of this, the seller is also
allowed to not make a price offer to some nodes (referred to as introducing discontinuities, see the
related discussion in Section 2), in which case the difference constraints do not apply for the edges
incident to these nodes. Another way to interpret the model of discontinuities can be as follows:
instead of discontinuities, we could allow price offers that would violate some edge constraints. In
that case, if there is a node who has been offered a very high price, and there is such a violation, he
would feel envious of some neighbor, and would choose not to buy the product. Hence, the seller
would essentially not hope to extract any revenue from such nodes.

Assuming a finite set of available prices, unit-demand users, and digital goods (i.e., the supply
can cover all the demand) the problem is to find a feasible price vector that satisfies the edge
constraints and maximizes the total revenue. In its more general form the problem was shown
to be NP-complete, and exact or approximation algorithms were derived for some interesting
cases in [2]. However, several questions remained open regarding the approximability status of
the problem.

Contribution: We revisit the model introduced by [2] (namely Model II in their work, which is
the more general one), and study the approximability of the underlying revenue maximization
problem. We resolve one of the open questions posed in [2], regarding the complexity of the
problem under the natural class of the so-called single-value revenue functions. Simply put,
this means that the revenue extracted by each node is exactly the price offered to her, as long as
the price does not exceed her valuation for the product (the usual assumption made in auction
settings as well). We first establish APX-hardness for this class answering one of the open questions
of [2], and we also show that the problem is NP-complete even when the price differences are
allowed to be relatively large (a case that could be thought easier to handle). Furthermore, we
also show NP-hardness when we have only three distinct prices allowed, in contrast to the case
of two distinct price offers, which is polynomial time solvable. We then provide approximation
algorithms that improve some of the currently known results. Our improvement is stronger when
the number of distinct prices is small. This applies for example to many settings where the seller
will only consider a fixed number of discount types or special offers to selected customers. As
the number of available price offers becomes large, the performance of our algorithm degrades
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to a logarithmic approximation. Finally, we also provide two extensions of these results; the
first concerns a more general model where the allowed prices come from a set of k arbitrary
integers, instead of using price sets of the form {1,2, . . . ,k}, as done in [2], and the second concerns
a multi-unit demand setting (see Sections 5 and 7).

Related Work: Price discrimination is well studied in various domains in economics and is also
being applied to numerous real life scenarios. The algorithmic problem of differential pricing over
social networks is a more recent topic, initiated by [16]. The work of [16] studied a model with
positive externalities, where the valuation of a player may increase as more friends acquire a good,
and analyzed the performance of a very intuitive class of pricing strategies. Further improvements
on the performance of such strategies were obtained later on by [12]. The work of [1] also considers
a pricing problem but in an iterative fashion, where the seller is allowed to reprice a good in future
rounds. Revenue maximization under a mechanism design approach was also taken in [15] under
positive network externalities. Finally, positive externalities have been used to model the diffusion
of products on a network, see, among others, the exposition in [19].

Negative externalities within networks, as we focus on here, are less studied in the literature.
For the concept of inequity aversion, see e.g., [5, 11]. The work most closely related to ours is [2],
which introduced the model considered here. Efficient algorithms were obtained for the case
where discontinuities are not allowed (even for more general revenue functions), and also for
networks with bounded treewidth. An approximation ratio of 1/(∆+1) was also provided, where ∆
is the maximum degree. Similar results were shown for a stochastic version of the model. Finally,
other types of negative externalities have been considered e.g., in [4, 6] which study the effects of
invidious consumption.

2 Definitions and Preliminaries

As usual, the social network in the model we study is represented as an undirected graph G = (V ,E ),
with |V | = n. The nodes depict the potential customers, and we consider a provider of some good
or service, who has a finite set P of available prices that he could offer to the nodes. In most of
our presentation, we assume, as in [2], that the available prices are given by P = {1,2, . . . ,k}. In
Section 5, we show how to extend the analysis when P is an arbitrary set of k positive integers, i.e.,
P = {p1, p2, . . . , pk }.

We further assume that every node has a unit-demand for the same product and that the
supply of the seller is enough to cover the demand of all nodes. For every node v ∈V , we associate
a revenue function Rv : {1,2, . . . ,k} 7→ N, that maps an offered price pv to the revenue that the
provider gains from this offer. In this work, we focus on a simple and intuitive class of revenue
functions, also studied in [2]. In particular, for a node v ∈ V , Rv is called a single value revenue
function, if there exists a value val(v) such that when offered a price pv :

Rv (pv ) =
{

pv if val(v) Ê pv

0 if val(v) < pv

We assume from now on that every node has a single value revenue function. For the problem
we study, we can also assume, without loss of generality, that val(v) ∈ P , for every v ∈V . To see
this, note that for revenue maximization, that we are interested in, nodes with val(v) > k can only
yield a revenue of k and could be replaced by val(v) = k, i.e., the highest possible price. Also for
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values that are less than k but not integers, we can again extract only an integer revenue, given
the form of P , so we could round them to the next integer that is smaller than val(v). Finally, any
node v with val(v) < 1 can be deleted without affecting the optimal revenue (see the concept of
discontinuity defined below), so we can completely ignore such nodes to begin with. Thus, we
consider only instances with val(v) ∈ {1,2, . . . ,k},∀v ∈ V (or with val(v) ∈ {p1, p2, . . . , pk }, for the
generalized results of Section 5).

Given a vector p = (pv )v∈V of prices offered to the nodes, we use R(p) to denote the total
revenue, i.e., R(p) = ∑

v∈V Rv (pv ). Our goal is to find a price vector that maximizes the total
revenue. At the same time, however, we want to capture the effect of inequity aversion [5, 11] in
social networks. This means that a node may experience dissatisfaction if she sees that other
nodes within her social circle, were offered a better deal for the same service. Hence, significant
price differences, create negative externalities among users.

To avoid such situations the model introduced in [2] has constraints on each edge, stating
that the price difference between two neighbors u, v is bounded, i.e., pu − pv É α(u, v) and
pv −pu Éα(v,u), for every (u, v) ∈ E . Here, α(·, ·) Ê 0 is integer-valued (given that the prices are
also integers), and it can be non-symmetric. Furthermore, the seller is also allowed not to make
an offer to certain nodes. Formally, this is captured by having one more price option, which we
denote by ⊥, with Rv (⊥) = 0. Setting pv =⊥ to a node means that the provider does not make any
offer to v and there is no price restriction on the edges that are incident to v . We can essentially
think about this as deleting these vertices from the graph. We will refer to setting pv =⊥ to a node
v ∈V , as introducing a discontinuity on v . Avoiding making an offer can be thought of as choosing
not to promote a product or service within a certain region or within a certain social group. In
terms of optimization, discontinuities can help the seller in producing much higher revenue, than
without discontinuities, as Proposition 3.3 in Section 3 states.

There is another way to interpret the notion of discontinuities: Suppose we had no discontinu-
ities, but at the same time we were allowed to make offers that could violate some price constraints
along edges. In that case, suppose there is a node who has been offered a high price; this price
may or may not be higher than the maximum price the node is willing to pay. In the presence of
an edge violation, however, he would feel envious of some neighbor, and being dissatisfied he
would choose not to buy the product. Hence, the seller does not hope to extract any revenue from
such nodes. This is equivalent to our model of just setting a discontinuity and only caring for the
remaining edge constraints, not involving this node. For convenience, we will stick to allowing
discontinuities, rather than making price offers that could violate the constraints.

Given this model, the set of feasible price vectors is then: F = {p : ∀ v ∈ V , pv ∈ P ∪ {⊥},
and ∀ (u, v) ∈ E , pu 6= ⊥ ∧ pv 6= ⊥ ⇒ pu − pv É α(u, v) ∧ pv − pu É α(v,u)}. Therefore, the
problem we study is:

Inequity Aversion Pricing: Given a graph with edge constraints, and a single-value revenue
function for each node, find a feasible price vector that maximizes the total revenue, i.e., find
q ∈ argmaxp∈F

∑
v∈V Rv (pv ).

Some cases of this problem, as well as the variant where no discontinuities are allowed, are
already known to be polynomial time solvable [2]. Regarding hardness, although the problem
is NP-hard for more general revenue functions, it was posed as an open question whether NP-
hardness still holds for single value revenue functions (the hardness result in [2] requires instances
with revenue functions that cannot be captured by single value ones).
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3 Warmup: Basic Facts and Single-price Solutions

In this section, we present a simple algorithm and some basic observations, which we use later on,
in Section 4.

Let vmax = maxv∈V val(v) É k, and MAX =∑
v∈V val(v). Given an instance of the problem, we

denote by OPT the revenue of an optimal solution. The quantity MAX is clearly an upper bound
on the optimal revenue, hence OPT É MAX.

We will refer to a solution as being a single-price solution, if it charges the same price to every
node without introducing discontinuities. This is always a feasible solution since all the edge
constraints are satisfied. The revenue extracted by a single-price algorithm that uses the price of p
for all nodes is equal to p · |{v ∈V : val(v) Ê p}|.

To understand whether a single-price solution can be of any help for our setting, we can
examine the performance of the best possible single price. The following observation suggests
that we do not need to try too many values, even if vmax is very large.

Lemma 3.1. In order to find the optimal single-price solution, it suffices to check at most min
{
n,

vmax
}

possible prices.

Proof. There are at most mi n{n, vmax} different values in the set {val(v) : v ∈V }. It is never optimal
to use any price p ∉ {val(v) : v ∈V }. Indeed, if p ∈ (val(v1),val(v2)), where val(v1) and val(v2) are
two consecutive distinct values for some nodes v1, v2 ∈V , then it is strictly better to set the price
to val(v2). For the same reason, it is suboptimal to set a price that is less than the minimum value
across nodes, while if we use a price p > vmax then we gain no revenue.

Hence in O(min{n, vmax}) steps, we can select the best single-price solution. Let us denote by
RSP the revenue raised by this solution. The performance of RSP has been analyzed in a different
context1 by [14], where it was shown that it achieves a Θ(lnn)-approximation. Here we give a
slightly tighter statement, which we utilize in later sections for small values of vmax .

Theorem 3.2. For any number n of agents, the optimal single-price solution achieves a 1/Hr -
approximation, where r = min{n, vmax}, and H` is the `-th harmonic number, i.e.,

RSP Ê MAX

Hr
Ê OPT

Hr
.

Furthermore, the approximation guarantee is tight.

The proof follows from the proof of Theorem 5.1 in Section 5, which provides a more general
result. One interesting point here is that single-price solutions do not use any discontinuities.
If RND is the optimal revenue without using any discontinuities, clearly RND Ê RSP. And as we
mentioned in Section 2, it is possible to find the optimal solution that does not use discontinuities
in polynomial time [2]; so why use something worse instead of using directly RND? Actually, for
our purposes, besides being harder to argue about, RND turns out to be as bad an approximation
as RSP in the worst case, when allowing discontinuities.

The proposition below provides some further justification for the model with discontinuities,
under the seller’s point of view. In particular, it reveals that introducing discontinuities can cause
a significant increase in the optimal revenue achievable by the seller, compared to what can be
achieved without discontinuities.

1The work of [14] studied an auction pricing problem without the presence of social networks.
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Proposition 3.3. The optimal solution with no discontinuities achieves a 1/Hr -approximation,
where r = min{n, vmax}, and this approximation guarantee is tight.

The approximation guarantee follows from the fact that single-price solutions do not use any
discontinuities. To see that without using any discontinuities one cannot always do better, we can
modify slightly the examples that give tightness within the proof of Theorem 5.1 (see Remark 1
after the proof of Theorem 5.1).

4 Approximation Algorithms for Inequity Aversion Pricing

In this section we present new approximation algorithms for the problem by exploiting ways in
which setting discontinuities in certain nodes can help. Our main result is an approximation
algorithm, with a ratio of (Hk − 0.5)−1. Even though asymptotically this is no better than the
optimal single-price algorithm, it does yield better ratios for instances where k is a small constant.
The motivation for studying cases where the set of available prices is small is that a seller may
be willing to offer only specific types of discount to selected customers, e.g., 20% or 30% off the
regular price and so on, rather than using an arbitrary set of prices.

We will begin with an exact algorithm for the case of P = {1,2}, before we move to having
P = {1,2, . . . ,k}. As we will see in Section 6, we can hope for an exact algorithm only for k = 2, since
the problem becomes hard for higher values of k. In fact, since our proposed algorithm also works
for an arbitrary set of two integer prices, we will directly present the case of P = {p1, p2}, for two
positive integers, p1, p2.

4.1 An Exact Algorithm when P = {p1, p2}

In this subsection, we assume the available prices are p1, p2, and ⊥. Without loss of generality,
we assume that p1 < p2. Given the discussion in Section 2, we will also assume that for every
node v ∈ V , val(v) ∈ {p1, p2}. Even when p1 = 1 and p2 = 2, the problem still remains non-
trivial. For such instances we already have a 2

3 -approximation by Theorem 3.2, that does not use
discontinuities. The difficulty in improving this factor is in finding a way of selecting appropriate
nodes to set to ⊥.

Before we formally state our algorithm, let us illustrate the main idea. Consider an instance
of the problem on a graph G = (V ,E). We construct an appropriate bipartite graph H such that
feasible price vectors for G correspond to independent sets of H . Hence, the problem reduces
to finding a maximum weighted independent set in bipartite graphs, which is well known to be
solvable in polynomial time. To be more specific, denote by A,B ⊆V the partition of the vertices
of G into vertices with val(v) = p1 and val(v) = p2 respectively. To construct the bipartite graph
H = (V1 ∪V2,E ′), we will be using a superscript for every node, to clarify whether it belongs to
V1 or V2. For each a ∈ A, the graph H will have a vertex a1 ∈ V1; for each b ∈ B , H will have two
vertices b1 ∈V1, and b2 ∈V2 connected with an edge. Additionally, we include an edge between x2

and y1 for every x ∈ B , y ∈V for which (x, y) ∈ E(G) and α(x, y) < p2 −p1. Note that H is bipartite,
since there is no edge between vertices of the same superscript.

Now consider any independent set S of H . We interpret u1 ∈ S as offering price p1 to vertex u
in the original instance and u2 ∈ S as offering price p2; note that it cannot be the case that both u1

and u2 belong to S. If none of u1,u2 belong to S, we interpret this as introducing a discontinuity
on u. To see that this is a feasible price vector, we only have to worry about edges (x, y) in the graph
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G , for which α(x, y) < p2−p1, since all other constraints are trivially satisfied. But by construction,
the grah H has an edge (x2, y1) whenever α(x, y) < p2 −p1. Hence, we cannot include both x2 and
y1 in S, and this ensures that either we offer the same price to such nodes, or one of them will
have a discontinuity, implying that the resulting price vector is feasible. Conversely, it is easy to
see that any feasible price vector corresponds to an independent set of H ; given such a vector for
the vertices of G , if price pi ∈ {p1, p2} is offered to v , we include the vertex v i in the independent
set of H .

We can now make H weighted by setting weight pi ∈ {p1, p2} to each vertex v i , for i = 1,2.
Then, the total weight of an independent set equals the total revenue of the corresponding price
vector and vice versa. Thus, in order to solve the Inequity Aversion Pricing on the original instance,
it suffices to find a maximum weight independent set of H .

Algorithm 1: An exact algorithm when P = {p1, p2}

1 Given the graph G = (V ,E), construct the bipartite graph H with V (H) =
{v1 | v ∈V (G)}∪ {v2 | v ∈V (G) and val(v) = p2} and E(H) = E1 ∪E2, where
E1 = {(v1, v2) | v ∈V (G) and val(v) = p2} and E2 = {(u1, v2) | (u, v) ∈ E(G),
val(v) = p2 and α(v,u) < p2 −p1}

2 Find a maximum weight independent set on H , say S ⊆V (H)
3 For every ui ∈ S, offer a price of pi to the corresponding vertex u of V (G)
4 Set ⊥ to all the remaining vertices of V (G)
5 Return the resulting price vector

The next theorem summarizes the above discussion.

Theorem 4.1. Algorithm 1 solves optimally the Inequity Aversion Pricing problem when P = {p1, p2}
in polynomial time.

4.2 An Approximation Algorithm for k > 2

We now consider the case where there are more than two available prices. In order to improve the
approximation guarantee of Theorem 3.2, we reduce the problem to the case of k = 2, and use the
results of the previous subsection.

Consider an instance of the problem, with available prices in {⊥,1,2, . . . ,k}. As discussed in
Section 2, we may assume that val(v) ∈ {1,2, . . . ,k} for every v ∈V . We create now another instance,
where we set the value of every node with val(v) > 1 to be equal to 2. We can then run Algorithm
1 from Subsection 4.1 on this new instance. At the same time, we can also compute the optimal
single-price solution for the original instance, and pick the best among these two solutions. This
yields Algorithm 2, described below.

Clearly, Algorithm 2 runs in polynomial time. Note that the solution returned by the algorithm
is feasible. Any single-price solution is always feasible, while Algorithm 1 will produce a price
vector that is feasible for I ′, and therefore for I since the edge restrictions in the two instances
are the same. Even though asymptotically, this is still a logarithmic approximation, the algorithm
achieves significantly better results for small values of k.

Theorem 4.2. Algorithm 2 achieves a 1
Hvmax−0.5 -approximation ratio for Inequity Aversion Pricing

when the available prices are {⊥,1,2, · · · ,k}, with k Ê 2.
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Algorithm 2: An algorithm for k > 2

1 Given an instance I , construct a new instance I ′, where for every v ∈V , val′(v) = min{val(v),2};
everything else remains unchanged

2 Run Algorithm 1 from Subsection 4.1 on instance I ′, and let R∗ be the revenue obtained
3 Compute the optimal single-price solution without discontinuities, on the original instance I , as

described in Section 3, with revenue RSP

4 Return the solution that achieves max{R∗,RSP}

Proof. The proof is by induction on vmax. For vmax = 2 the result follows from Theorem 4.1 since
1 = 1

H2−0.5 .
Now assume we have an instance I where vmax = j > 2. As usual, let OPT denote the optimal

revenue for I and ALG the revenue returned by Algorithm 2. Also, let R j be the revenue extracted
by setting price j at every node, and V j = {v ∈V : val(v) = j }. We consider two cases.

Case (i): |V j | Ê 1
(H j−0.5) j

·OPT. Then, ALG
OPT Ê R j

OPT = j ·|V j |
OPT Ê

1
H j −0.5 ·OPT

OPT = 1
H j−0.5 .

Case (ii): |V j | < 1
(H j−0.5) j

·OPT. Let I∗ be an instance derived from I by setting val∗(v) = min{val(v),

j −1}, i.e., we only reduce the valuation of the nodes with val(v) = vmax by 1. Let OPT∗ and ALG∗

denote the optimal revenue and the revenue returned by Algorithm 2 respectively, given I∗. By the
inductive hypothesis we have ALG∗ Ê 1

H j−1−0.5 ·OPT∗.

Furthermore, notice that the set of vertices with valuation greater than 1 is the same in both
instances. So, Algorithm 2 on input I∗ considers exactly the same price vectors as it does on
input I , with the exception of the single-price solution that universally uses j . We conclude that
ALG∗ É ALG. Next, we prove the following useful claim.

Claim 4.3. OPT∗ Ê OPT−|V j |.
Proof of Claim Let p be an optimal price vector for I . Construct the price vector p∗ by decreasing
any price that is at least j to j −1. It is straightforward to see that in instance I we have R(p∗) Ê
R(p)−|V j | = OPT−|V j |, while in both instances R(p∗) is the same. What is left to show is that p∗ is
feasible for I∗. Observe, however, that the two instances have exactly the same edge restrictions
and that p∗ did not increase the price difference between any two vertices compared to p. Thus,
OPT∗ Ê R(p∗) Ê OPT−|V j |.
Now, we can write

ALG

OPT
Ê ALG∗

OPT
Ê

1
H j−1−0.5 ·OPT∗

OPT
Ê

1
H j−1−0.5 · (OPT−|V j |)

OPT

Ê 1

H j−1 −0.5

1−
1

j (H j−0.5) ·OPT

OPT

= 1

H j−1 −0.5
· j H j −0.5 j −1

j (H j −0.5)

= 1

H j−1 −0.5
· j (H j−1 −0.5)

j (H j −0.5)
= 1

H j −0.5
,

which concludes the proof.
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5 Approximation Algorithms for General Price Sets

In this section we extend our results when P is an arbitrary set of k positive integers, i.e., P =
{p1, p2, . . . , pk }. This can be seen as a more realistic model, especially for small values of k. In such
a case, one could try to directly apply Theorems 3.2, 4.1, or 4.2 for P ′ = {1,2,3,4, . . . , pk }. However,
this may produce a very poor approximation when k is small but pk is large, and feasibility is not
guaranteed either.

In what follows, P j denotes
∑ j

i=1
pi−pi−1

pi
, where p0 = 0. We begin with a generalization of

Theorem 3.2.

Theorem 5.1. For any number n of agents and possible prices p1 < p2 < . . . < pk , the optimal
single-price algorithm achieves a ρ-approximation, where ρ = 1/min{Hn ,Pk }, i.e.,

RSP Ê MAX

min{Hn ,Pk }
Ê OPT

min{Hn ,Pk }
,

and this approximation guarantee is tight.

Proof. As in Lemma 3.1, we know that we only need to consider at most mi n{n,k} possible prices
that correspond to the distinct values of the nodes. Let a j be the number of vertices with value p j

and Ri be the revenue obtained by setting the price of all nodes equal to pi , i.e.,

a j =
∣∣{v ∈V : val(v) = p j }

∣∣ and Ri =
∑

v∈V
Rv (i ) = pi ·

n∑
j=i

a j .

Recall that Pk = ∑k
i=1

pi−pi−1
pi

, where p0 = 0. Let RSP be the revenue achieved by the optimal
one-price algorithm. Then Ri É RSP, and we have

MAX = ∑
v∈V

val(v) =
k∑

i=1

(
(pi −pi−1) ·

n∑
j=i

a j

)
=

k∑
i=1

(pi −pi−1) ·Ri

pi
É RSP ·Pk .

So, we obtain

RSP Ê MAX

Pk
Ê OPT

Pk
. (1)

Let us now sort the vertices from V with respect to val(v) in ascending order, say v1, . . . , vn . Let
R(i ) be the revenue obtained from the vertices {vi , vi+1, . . . , vn} by setting to all of them the price
val(vi ), i.e.,

R(i ) =
∑

v∈{vi ,vi+1,...,vn }
Rv (val(vi )) = (n − i +1) ·val(vi ) .

Clearly, R(i ) É RSP and we have

MAX =
n∑

i=1
val(vi ) =

n∑
i=1

R(i )

n − i +1
É RSP ·

n∑
i=1

1

n − i +1
= RSP ·Hn .

Hence, we obtain

RSP Ê MAX

Hn
Ê OPT

Hn
. (2)

Putting inequalities (1) and (2) together completes the proof.
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To see that this is tight, consider the following family of graphs. For any n take G(n) to be a
clique on {v1, v2, . . . , vn} and let val(vi ) = n!

i and α(u, v) = k = n! for every edge. Then

OPT = MAX =
n∑

i=1

n!

i
= n!Hn and R n!

i
=

i∑
j=1

n!

i
= n! , ∀i ∈ {1,2, . . . ,n}.

Therefore
RSP

OPT
=

maxi∈{1,2,...,n} R n!
i

n!Hn
= 1

Hn
.

In fact, tightness holds even when Pk É Hn . Consider an instance where pi = i ,∀i ∈ k and
n = k !. Define G(k) to be a clique on

⋃k
i=1 Vi , where Vi = {v ∈G(k) : val(v) = i } and

∀i ∈ {1,2, . . . ,k −1}, |Vi | = k !

i (i +1)
, and |Vk | =

k !

k
.

Like before, α(u, v) = k for every edge. It is easy to verify that
∑k

i=1 |Vi | = n. Then

OPT = MAX =
k∑

i=1
i · |Vi | = k · n

k
+

k−1∑
i=1

i · n

i (i +1)
= n ·Hk = n ·Pk ,

while

∀i ∈ {1,2, . . . ,k}, Ri =
k∑

j=i
i · |V j | = i ·n ·

(
1

k
+

k−1∑
j=i

1

j ( j +1)

)

= i ·n ·
(

1

k
+

k−1∑
j=i

(
1

j
− 1

j +1

))
= i ·n · 1

i
= n .

Therefore,
RSP

OPT
= maxi∈{1,2,...,k} Ri

n ·Pk
= 1

Pk
.

Remark 1. By slightly modifying the tightness examples from the proof of Theorem 5.1 we can
show that one cannot achieve a better guarantee than the one suggested by Proposition 3.3 without
using discontinuities. In each case, we connect a new vertex v with value 1 to every vertex u and
set α(u, v) = α(v,u) = 0. The optimal solution is to put a discontinuity on v and maximize the
revenue of every other vertex. When discontinuities are not allowed though, a solution cannot do
better than RSP , since all prices have to be equal in such a solution. It is easy to see that we still get
the same ratios, namely 1

Hn
and n+1

n·Hvmax
.

We are now ready to state the generalization of Theorem 4.2 for arbitrary price sets.

Theorem 5.2. Let P = {p1, p2, · · · , pk }. There exists a polynomial time 1
Pk+ p1

p2
−1

-approximation

algorithm for the Inequity Aversion Pricing problem.

Proof. The algorithm is very similar to Algorithm 2. The only difference is in the definition of the
instance I ′ (step 1 of Alg. 2). Namely, given an instance I , let I ′ be the new instance where for
every v ∈V , val′(v) = min{val(v), p2}, for all v ∈V , while the constraints remain the same.
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The proof is by induction on k. For k = 2 the algorithm is equivalent to Algorithm 1 that gives
an exact solution (see Theorem 4.1). We have

1

Pk + p1
p2

−1
= 1

p1−p0
p1

+ p2−p1
p2

+ p1
p2

−1
= 1.

Now assume we have an instance I where k > 2. We use the notation of the proof of Theorem
4.2, but now Rk is the revenue extracted by setting price pk at every node, and Vk = {v ∈V : val(v) =
pk }.
Case (i): |Vk | Ê 1(

Pk+ p1
p2

−1
)
pk

·OPT. Then, ALG
OPT Ê Rk

OPT = pk ·|Vk |
OPT Ê 1

Pk+ p1
p2

−1
.

Case (ii): |Vk | < 1(
Pk+ p1

p2
−1

)
·p j

·OPT. Let I∗ be an instance derived from I by setting val∗(v) =
min{val(v), pk−1}. By the inductive hypothesis we have ALG∗ Ê 1

Pk−1+ p1
p2

−1
·OPT∗. It is easy to see

that ALG∗ É ALG. Also, we can prove an analog of Claim 4.3, namely OPT∗ Ê OPT−(pk −pk−1)|Vk |.
Putting everything together we have

ALG

OPT
Ê ALG∗

OPT
Ê

1
Pk−1+ p1

p2
−1

·OPT∗

OPT
Ê

1
Pk−1+ p1

p2
−1

· (OPT− (pk −pk−1)|Vk |)
OPT

> 1

Pk−1 + p1
p2

−1

1−
pk−pk−1

pk (Pk+ p1
p2

−1)
·OPT

OPT


= 1

Pk−1 + p1
p2

−1
·

pk
pk−pk−1

Pk + pk
pk−pk−1

( p1
p2

−1)−1
pk

pk−pk−1
(Pk + p1

p2
−1)

= 1

Pk−1 + p1
p2

−1
·

pk
pk−pk−1

(Pk−1 + p1
p2

−1)
pk

pk−pk−1
(Pk + p1

p2
−1)

= 1

Pk + p1
p2

−1
,

which concludes the proof.

Table 1 summarizes the approximation ratios obtained by three algorithms: the optimal single
price solution, Algorithm 2, as well as the algorithm implied by Theorem 5.2 for different sets
of prices. The positive news is that Theorem 5.2 is resistant to price scaling. For example, the
price set {10,20,30} can be seen as simply {1,2,3} scaled up, and Theorem 5.2 yields the same ratio
as Algorithm 2 does for P = {1,2,3}. On the other hand, the 1/Hk -factor algorithm gives a much
worse approximation when P = {10,20,30}.

P {1, 2} {1, 2, 3} {1, . . . , 100} {10, 20, 30} {70, 80, 90, 100}
1/Hk 0.666 0.545 0.192 0.286 0.192
Alg. 2 1 0.750 0.213 – –

Thm. 5.2 1 0.750 0.213 0.750 0.825

Table 1: Examples of obtained approximation ratios.
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6 Hardness for Single Value Revenue Functions

In [2] there is an n1−ε inapproximability result for Inequity Aversion Pricing, but for general
revenue functions and α(u, v) = 1 for every edge. An NP-hardness proof is also given for these
edge constraints when single value and constant revenue functions are allowed. The NP-hardness
of Inequity Aversion Pricing as we study it here, i.e., allowing only single value revenue functions,
was left as an open question. We resolve this question by proving that the problem remains
NP-complete even if we restrict the revenue functions to be single value. Our reduction implies
that the result holds even when the price differences are allowed to be quite large and close to the
maximum possible price k (which could presumably make the problem easier). Further, when
α(u, v) = 0 for every edge, we are able to show APX-hardness, as well as NP-hardness even for
k = 3, in contrast to the case of k = 2.

The reduction, below, is from the decision version of 3-Terminal Node Cut: Given a graph
G(V ,E ), a set S = {v1, v2, v3} ⊆V , and an integer q , is there a subset of q vertices that can be deleted,
so that any two vertices of S are in different connected components of the resulting graph? The
NP-completeness of the weighted version of 3-Terminal Node Cut is discussed in [8], while the
APX-hardness of the unweighted version we use here is discussed in [13]. The NP-completeness
result we need follows from Theorem 6.4 as well (see the discussion before the statement of
Theorem 6.4).

Theorem 6.1. Let ε> 0 be any small constant. The decision version of Inequity Aversion Pricing
for single value revenue functions is NP-complete, even when α(u, v) is as large as k1−ε for all
(u, v) ∈ E(G), where k is the maximum possible price.

Proof. It is immediate that the problem is in NP. To facilitate the presentation, we prove the
NP-hardness when α(·, ·) is upper bounded by k1/3/3. As discussed at the end of the proof, the
reduction can be easily adjusted when the upper bound of α(·, ·) is k1−ε, for constant ε.

Let us consider an instance of 3-Terminal Node Cut, i.e., a graph G(V ,E), with |V (G)| = n, a
set S = {v1, v2, v3} of non adjacent vertices of G , and an integer q . We may assume that q É n −3,
otherwise the question is trivial. Next we give a construction of an appropriate instance for
Inequity Aversion Pricing.

Let H be the graph obtained from G as follows. We replace every vertex v ∈ S by n3 vertices,
where each such vertex has the same neighbors as v , i.e., if uv is a vertex in the bundle of vertices
replacing v , then for every edge (v, x) ∈ E (G) we add the edge (uv , x) to E (H ). For any v ∈ S, we call
such a set of vertices in H a v-bundle. The set of prices is {⊥,1,2, . . . ,k}, where k = n3 +n2. Finally,
for any (u, v) ∈ E(H) we set α(u, v) and α(v,u) arbitrarily, as long as they are at most k1/3/3. Note
that |V (H)| = n −3+3n3, and |E(H)| É |E(G)|+3(n −1)n3 É 3n4.

Next we define the single value revenue functions for the vertices of H . For every v ∈V (G) \ S,
let val(v) = n3 +n2, and for every vi ∈ S, let val(uvi ) = n3 + i−1

2 n2 for all uvi in the vi -bundle. We
show below that G has a subset of at most q vertices that separate all the vertices of S, if and only
if there is a feasible choice of prices for the vertices of H that gives revenue at least Rq , where
Rq = (

n −3−q
)

n3 +∑3
i=1 n3

(
n3 + i−1

2 n2
)
.

One direction is easy. Let A be a subset of at most q vertices of G that separate the three vertices
of S. For all v ∈ A we put a discontinuity on the corresponding v in H . If we think of these vertices
as removed from H , this creates several connected components. For any other vertex u ∈V (H ), if u
is in the same component as some vi -bundle (or itself is one of the vertices of the vi -bundle), set its
price to n3+ i−1

2 n2, otherwise set its price to n3+n2. Notice that any vertex without a discontinuity

12



produces revenue at least n3, while any vertex uvi in a vi -bundle with vi ∈ S produces revenue
exactly n3 + i−1

2 n2. Now, it is straightforward to check that this price vector p is feasible and gives

enough revenue: R(p) =∑
u∈V (H) R(u) Ê (

n −3−q
)

n3 +∑3
i=1 n3

(
n3 + i−1

2 n2
)= Rq .

For the opposite direction we begin with a couple of observations. Assume that there is a price
vector p∗ that gives revenue at least Rq . We claim that p∗ can have only a few discontinuities.

Claim 6.2. There is no feasible price vector p with R(p) Ê Rq and more than q discontinuities.

Proof of Claim Let p be a feasible price vector with at least q +1 discontinuities. Notice that any
vertex without a discontinuity produces revenue at most n3 +n2 and, in particular, any vertex uvi

in a vi -bundle with vi ∈ S produces revenue at most n3 + i−1
2 n2. The maximum possible revenue

for p is

R(p) É (n −3)
(
n3 +n2)+ 3∑

i=1
n3

(
n3 + i −1

2
n2

)
− (q +1)n3

= Rq + (n −3)n2 −n3 < Rq ,

thus proving the claim.

One immediate implication of Claim 6.2 is that for any v ∈ S not every vertex in the v-bundle
has price ⊥. This holds because the v-bundle has n3 vertices and only q É n −3 of them can
get ⊥. This is crucial, because if we think of the vertices with price ⊥ as removed from H , then
no two vertices are separated because of discontinuities in the v-bundles. In particular, we can
completely ignore those discontinuities with respect to connectivity.

Let Dp = {v ∈ V (G) \ S | pv =⊥}, i.e., Dp is the set of non terminal vertices in G that their
corresponding vertices in H have discontinuities in p. So far, by Claim 6.2, we have that |Dp∗ | É q .
What is left to be shown is that these discontinuities separate the v-bundles, for any v ∈ S.

Claim 6.3. There is no feasible price vector p such that R(p) Ê Rq , and for some vi , v j ∈ S vertices
from both the vi -bundle and the v j -bundle are in the same connected component of the graph
H ′ = H − {v ∈V (H) | v is not in abundle and pv =⊥}.

Proof of Claim Let p be a feasible price vector and assume that there exist vi , v j ∈ S such that
vertices from both the vi -bundle and the v j -bundle are in the same component of H ′. First
notice that all the vertices in the vi -bundle and the v j -bundle are in the same component, since
vertices in a bundle share the same neighbors. We are going to upper bound the maximum
possible revenue for such a price vector. W.l.o.g., assume i < j . If all the vertices in the vi -bundle
are assigned prices in {⊥,n3 + i−1

2 n2 +1, . . . ,k}, then they contribute 0 to the total revenue. On
the other hand, if there is some vertex in the vi -bundle with price at most n3 + i−1

2 n2, then by
the feasibility of p we have that any vertex in the v j -bundle has its revenue upper bounded by

n3 + i−1
2 n2 + k1/3

3 n. To see the latter, notice that if any two vertices from two distinct bundles are
connected by a path, then this path has length at most n (like it would in G) and therefore their
prices can differ by k1/3

3 n at most. We conclude that the loss, compared to the sum of the maximum

revenues per vertex, is lower bounded by either n3
(
n3 + i−1

2 n2
)

or n3
(

j−i
2 n2 − k1/3

3 n
)

and therefore

by n3
(

1
2 n2 − k1/3

3 n
)
. For n Ê 10, we have

n3

(
n2

2
−

(
n3 +n2

)1/3
n

3

)
Ê n3

(
n2

2
− 1.11/3n2

3

)
> 0.15n2n3
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> (n −2)n3 Ê (q +1)n3

and we get R(p) < Rq in exactly the same way as in the proof of Claim 6.2.

We conclude that Dp∗ is a set of at most q vertices of G that separate all the vertices of S. This
completes the proof for the case where α(·, ·) is upper bounded by k1/3/3.

The above reduction, however, generalizes for α(·, ·) upper bounded by k1−ε for any positive
constant ε. Let c ∈Nwith c > 4/ε. If we multiply by nc all the relevant quantities, i.e., the size of
the bundles, k, Rq , and val(v) for all v ∈V (H), then the reduction is identical up to the last part of
the proof of Claim 6.3. Now, the loss is lower bounded by nc+3

(
nc+2/2−nk1−ε) and it suffices for

this quantity to be at least (q +1)nc+3 for things to work out. So, we need nc+2/2−nk1−ε Ê n −2
(since n −2 Ê q +1), and it is only a matter of simple calculations to check that this holds.

For the special case where all the differences are 0, we show that the problem is APX-hard.
In doing so, we prove that 3-Terminal Node Cut is MAX SNP-hard, and thus APX-hard. As noted
already, MAX SNP-hardness of 3-Terminal Node Cut is discussed —but not explicitly proved— in
[13]. Here, having this reduction is crucial, and we have therefore obtained an explicit construction,
since eventually we need to show that 3-Terminal Node Cut restricted in a specific set of instances
is MAX SNP-hard (Corollary 6.5).

Theorem 6.4. Multi-Terminal Node Cut is MAX SNP-hard even for 3 terminals and all the weights
equal to 1.

Proof. We prove the result for 3 terminals. The extension to more follows immediately. Proofs of
MAX SNP-hardness involve linear reductions. Let A and B be two optimization problems. We say
that A linearly reduces to B if there are two polynomial time computable functions f and g and
constants cα,cβ > 0 such that

• Given an instance a of A, f produces an instance b = f (a) of B such that OPTB (b) É
cαOPTA(a), and

• Given a, b = f (a), and any solution y of b, g produces a solution x of a such that |costA(x)−
OPTA(a)| É cβ|costB (y)−OPTB (b)|.

The reduction is from the unweighted version of 3-Terminal Cut: Given a graph G(V ,E) and a
set S = {v1, v2, v3} ⊆ V , find a minimum cardinality set of edges that can be deleted, so that any
two vertices of S are in different connected components of the resulting graph. 3-Terminal Cut
was shown to be MAX SNP-hard in [9] even when all the weights equal to 1, which is essentially
the unweighted version defined above.

Consider an instance of 3-Terminal Cut, i.e., a graph G(V ,E) with |V (G)| = n and a set of non
adjacent terminals S = {v1, v2, v3}. We first describe the function f in the definition of the linear
reduction. Let H be the graph obtained from G as follows:

1. Replace each edge e by a path of length two, the middle vertex of which we denote by ve .

2. Replace every “old” vertex v by a v-bundle of degG (v)+1 vertices (see also the proof of
Theorem 6.1), where each such vertex has the same neighbors as v in the graph constructed
at step 1. That is, put an edge between uv and ve if uv is a vertex in the v-bundle and e is
incident to v .
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Also, let S′ = {u1,u2,u3}, where ui is an arbitrarily chosen vertex from the vi -bundle. Define
f ((G ,S)) = (

H ,S′). Clearly, f is polynomial time computable.
Next we define the function g in the definition of the linear reduction. Given a vertex cut Y

in H that separates the vertices in S′, first we transform it to an appropriate vertex cut Y ′ that
separates the vertices in S′ and contains no vertices from any v-bundle.

1. While there is a whole v-bundle contained in the vertex cut, remove those vertices from the
cut and add all of their neighbors instead.

2. While there is some vertex from a v-bundle in the cut, just remove this vertex from the cut.

Notice that in one iteration of step 1 the connectivity is not improved and the size of the vertex cut
is reduced. The latter holds because degG (v)+1 vertices were removed from the cut and at most
degG (v) were added. Similarly, in one iteration of step 2 the connectivity is not improved and the
size of the vertex cut is reduced. Now the latter is obvious, but to see that the connectivity is not
improved, notice that the removal of vertices in some v-bundle has an effect in connectivity only
if the whole v-bundle is removed. Since in step 2 there are no v-bundles completely contained in
the vertex cut (this was fixed in step 1), the vertices removed from the cut were not disconnecting
anything to begin with. We conclude that Y ′ is indeed a vertex cut that separates the vertices in S′

and moreover |Y ′| É |Y |.
Now, that Y ′ contains only vertices outside the v-bundles, i.e., only vertices that correspond

to edges of G , it is straightforward to define an edge cut in G that separates the vertices in S.
Let X = {e ∈ E(G) | ve ∈ Y ′}, i.e., X is the set of edges in G that their corresponding vertices in H
are in the vertex cut. Define g

(
(G ,S),

(
H ,S′) ,Y

)
to be equal to X ; clearly, g is polynomial time

computable. It remains to be shown that X separates the vertices in S. Assume not; then there
exists some vi − v j path p = (vi , x1, x2, . . . , xk , v j ) in G −X for vi , v j ∈ S, with i 6= j . This, however,
directly transforms to a ui −u j path p ′ = (ui , v(vi ,x1), x ′

1, v(x1,x2), x ′
2, . . . , x ′

k , v(xk ,v j ),u j ) in H −Y ′,
where x ′

`
is an arbitrary vertex in the x`-bundle. This is a contradiction. Thus, X is a cut that

separates the vertices in S.
Next, we prove that OPT3T NC (H ) É OPT3T C (G) (to improve readability we drop the subscripts).

Notice that any cut A in G that separates the vertices of S gives the vertex cut B = {ve ∈V (H ) | e ∈ A}
in H that separates the vertices of S′. Since |B | = |A|, and by taking |A| to be an optimal cut, we
have OPT(H) É OPT(G). This also implies that cα = 1 works.

Finally, since |X | = |Y ′|, we have |X |−OPT(G) É |Y ′|−OPT(H ) É |Y |−OPT(H ), i.e., cβ = 1 works.
We conclude that the unweighted version of 3-Terminal Node Cut is MAX SNP-hard.

As proved in [18], APX is the closure of MAX SNP under PTAS reductions (introduced by
[7]). Therefore, any MAX SNP-hard problem is also APX-hard. Let I be the set of instances of
3-Terminal Node Cut that can be the result of the composition of the reduction of Theorem 6.4
with the linear reduction from Max Cut to 3-Terminal Cut, presented in [9]. The next corollary
follows directly.

Corollary 6.5. 3-Terminal Node Cut is MAX SNP-hard, and thus APX-hard, even when restricted
on instances in I .

Corollary 6.5 is a crucial step towards our goal, since instances in I are guaranteed to have
only “large” vertex cuts that separate the terminals.

Lemma 6.6. Let (G ,S, q) ∈I . Then, any feasible 3-Terminal Node Cut solution for (G ,S, q) has size
greater than 1

14 |V (G)|.
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Proof. Let G0 be a graph with n0 vertices and m0 edges. The reduction of [9] adds 3 terminals and,
furthermore, for each edge adds 4 new vertices and 102 new edges. In fact, each edge is replaced
with the gadget shown in Figure 1 (Figure 11 of [9]), where s1, s2, s3 are identified with the terminals
and x, y with the endpoints of the edge. Then, each of the 12 edges with weight 4 is replaced by 4
paths of length 2. The resulting graph G1, has n1 = n0 +3+52m0 vertices and m1 = 102m0 edges.

Our reduction adds 1 new vertex for each edge, and then replaces each one of the old
vertices with degG1

(v) + 1 new vertices. The number of vertices of the resulting graph G2 is
n2 =∑

v∈V (G1)
(
degG1

(v)+1
)+m1 = n1 +3m1 = n0 +3+358m0 < 378m0.

By the proof of Theorem 3 in [9], we have that any cut in G1 that separates the 3 terminals
has size at least 27m0. Using g from our reduction, however, we can transform a vertex cut that
separates the 3 terminals in G2 into a cut of the same cardinality that separates the 3 terminals in
G1. Thus, any vertex cut that separates the 3 terminals in G2 has size at least 27m0. To complete
the proof, notice that 27m0 > 27n2/378 = n2/14.

- 25 -

graphs), we could solve the 3-Terminal Cut problem in polynomial time.

4
s1

s3

s2

x

y

4

4

4 4

44

4

4 4

4

4

FIGURE 11. Graph C: Submodularity counterexample and NP-completeness gadget.

Unfortunately, this is not the case. Consider the 9-vertex graph C depicted in Figure 11.
Note that in addition to the three terminals s 1 ,s 2 ,s 3 , the graph contains two specified vertices x
and y. The 12 edges incident on the terminals have weight 4, as indicated in the figure. The other
6 edges, unlabeled in the figure, have weight 1. Let c * be the cost of an optimal 3-terminal cut
for C. For each i , j, 1 ≤ i , j ≤ 3, let an i , j-cut be a 3-terminal cut that leaves vertex x connected to
s i and vertex y connected to s j , and let c(i , j) be the cost of a minimum i , j-cut. The sets X and Y
that cause f to violate submodularity are defined as follows:

Let X be the set of vertices connected to s 1 in an optimal 1 , 2 cut. (Note that by definition
of i , j-cut, x is in X and y is not.) Let Y be the set of vertices connected to s 1 in an optimal 2 , 1
cut. (Note that y is in Y and x is not.) By definition, we have f (X) = c( 1 , 2 ) and f (Y) = c( 2 , 1 ).
We also must have f (X ∪ Y) ≥ c( 1 , 1 ) and f (X ∩ Y) ≥ min{ c( 2 , 3 ) ,c( 3 , 2 ) ,c( 2 , 2 ) ,c( 3 , 3 ) }.
Thus if f were to be submodular, we would need to have c( 1 , 2 ) + c( 2 , 1 ) ≥ c( 1 , 1 ) +
min{ c( 2 , 3 ) ,c( 3 , 2 ) ,c( 2 , 2 ) ,c( 3 , 3 ) }. In light of the following lemma, however, this claim is
false.

Lemma 4.1. For the graph C of Figure 11, the following properties hold:

(a) c( 1 , 2 ) = c( 2 , 1 ) = c *,

(b) c(i , j) ≥ c * + 1 for all other pairs i , j, and

(c) c( 1 , 1 ) = c( 2 , 2 ) = c * + 1.

Proof. As depicted in Figure 11, graph C has its vertices located at the nodes of a 3 × 3 grid. As
an alternative naming convention for the vertices, let v i j denote the vertex in the row i, column j,
1 ≤ i , j ≤ 3. Thus the terminals are s 1 = v 11 , s 2 = v 22 , and s 3 = v 33 , and the distinguished ver-
tices x and y are v 12 and v 21 , respectively.

Figure 1: The gadget that “replaces” every edge in the linear reduction of from Max Cut to 3-
Terminal Cut [9].

Theorem 6.7. Inequity Aversion Pricing for single value revenue functions is APX-hard when
α(e) = 0 for all e ∈ E(G).

Proof. We use a PTAS reduction to prove the APX-hardness. Let A and B be two NPO problems.
Here assume that A is a minimization and B is a maximization problem. We say that A is PTAS-
reducible to B if there exist three computable functions f , g , and c such that

• For any instance x of A and any r > 1, f (x,r ) is an instance of B computable in time
polynomial in |x|.

• For any instance x of A, any r > 1, and any feasible solution y of f (x,r ), g (x, y,r ) is a feasible
solution of A computable in time polynomial in both |x| and |y |.

• c : (1,∞) → (0,1)

• For any instance x of A, any r > 1, and any feasible solution y of f (x,r ),

costB (y) Ê c(r ) ·OPTB
(

f (x,r )
)

implies costA
(
g (x, y,r )

)É r ·OPTA (x).
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The reduction is from the restriction of 3-Terminal Node Cut on I . It is similar to the reduction in
the proof of Theorem 6.1, but here all the parameters are carefully tuned. Consider an instance
of 3-Terminal Node Cut, i.e., a graph G(V ,E) with |V (G)| = n, a set of non adjacent terminals S =
{v1, v2, v3}, and an integer q , such that (G ,S, q) ∈I . We describe the function f in the definition
of a PTAS reduction.

For r > 1, let ε= min{0.5,r −1} and t = ⌈42
ε

⌉
. Also, let H = f (G ,r ) be the graph obtained from

G by replacing every vertex v ∈ S by a v-bundle of 4tn vertices, each such vertex having the same
neighbors as v . The set of prices is {⊥,1,2, . . . , t }. To define the single value revenue functions,
for every v ∈V (G) \ S, let val(v) = t , and for every vi ∈ S, let val(uvi ) = t + i −3 for all uvi in the vi -
bundle. We define f

(
(G ,S, q),r

)
to be the above instance. Clearly, f is computable in polynomial

time in n.
Next we define the function g in the definition of a PTAS reduction. Given a feasible price

vector p for H , first we transform it to an appropriate feasible price vector p′.

1. While there is a whole v-bundle only with discontinuities, set price val(uv ) to all the vertices
uv in this v-bundle and ⊥ to all of their neighbors.

2. Consider the graph after we remove all the vertices with price ⊥. While there are i , j (as-
sume i < j ) such that vertices from both the vi -bundle and the v j -bundle are in the same
connected component:

– If all the vertices in the vi -bundle are assigned prices in {⊥,val(uvi )+1, . . . , t }, then set
price val(uvi ) to all the vertices in the vi -bundle and ⊥ to all of their neighbors.

– Otherwise, set price val(uv j ) to all the vertices in the v j -bundle and ⊥ to all of their
neighbors.

Then, we use this price vector p′ in order to define a solution D to the 3-Terminal Node Cut
instance. Let D = {v ∈V (G) \ S | p′

v =⊥}, i.e., D is the set of non terminal vertices in G that their
corresponding vertices in H have discontinuities. Again, it is straightforward to see that computing
g

(
(G ,S, q),p,r

)
takes polynomial time in n.

It remains to determine the function c in the definition of the reduction; for any r ∈ (1,∞) let
c(r ) = 1− 1

20t 2 . We need to show that

R(p) Ê c(r ) ·OPT(H) =⇒ cost (D) É r ·OPT(G) .

Claim 6.8. If R(p) Ê c(r )OPT(H), then p′ = p, i.e., there is no v-bundle only with discontinuities,
and every v-bundle is in a different connected component.

Proof of Claim For the first part, assume that there is a v-bundle, where every single vertex gets
price ⊥. We get the following upper bound for R(p):

R(p) É (n −3) t +
3∑

i=2
4tn (t + i −3) É 8t 2n −3tn −3t < 8t 2n .

On the other hand, there is a feasible price vector that sets all the prices equal to t −2, and this
way we get a lower bound on OPT(H).

OPT(H) Ê (3 ·4tn +n −3)(t −2) = 12t 2n −23tn −2n −3t +6 > 12t 2n −28tn .
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Notice that, since εÉ 0.5, we have t Ê 84, and therefore c(r ) > 0.99. So, we have R(p)
OPT(H) < 8t

12t−28 <
0.8 < c(r ), which is a contradiction.

For the second part, assume that there are two v-bundles in the same component. To arrive
at a contradiction, it suffices to show that there exists a feasible price vector p′′, such that R(p) <
c(r )R(p′′) and therefore R(p) < c(r )OPT(H). Let p′′ be the price vector obtained after just one
iteration of step 2 in the description of g . Assuming that we are talking about the vi -bundle and
the v j -bundle, with i < j , the gain in revenue is at least 4tn

(
val(uv j )−val(uvi )

)Ê 4tn (see also the
proof of Claim 6.3 in the proof of Theorem 6.1). On the other hand, the loss in revenue is upper
bounded by (n −3)(t + i −3) É tn. So, R(p′′) Ê R(p)+3tn. Suppose R(p) Ê c(r )R(p′′). Then it is a
matter of simple calculations to see that

R(p) Ê c(r )(R(p)+3tn) =⇒ R(p) Ê 60t 3n −3tn > 57t 3n .

An obvious upper bound for R(p) however, is to say that each vertex produces revenue at most t ,
i.e., R(p) É (12tn +n −3)t < 13tn. Combining the two, we get the contradiction R(p) > 57t 3n >
13tn > R(p). We conclude that R(p) < c(r )R(p′′), that leads to the contradiction R(p) < c(r )OPT(H ).
Hence, in the graph defined by removing the discontinuities of p from H , every v-bundle is in a
different connected component.

Claim 6.9. If R(p) Ê c(r )OPT(H), then p has less than (1+ε)OPT(G) discontinuities.

Proof of Claim Let p be a feasible price vector with R(p) Ê c(r )OPT(H) and assume that p has
at least (1+ε)OPT(G) discontinuities. Also, consider the feasible price vector p∗ induced by an
optimal cut in G , i.e., the price vector that sets ⊥ in every vertex that has a corresponding vertex
removed by the cut in G and then uses optimal single price in each “connected component”. To
get a contradiction, we show that R(p) < c(r )R(p∗) and therefore R(p) < c(r )OPT(H). To obtain a
lower bound on R(p∗), notice that any vertex without a discontinuity produces revenue at least
t −2, while any vertex uvi in a vi -bundle produces revenue exactly t + i −3. So,

R(p∗) Ê (n −3−OPT(G)) (t −2)+
3∑

i=1
4tn (t + i −3) .

To get an upper bound for R(p), notice that each vertex without a discontinuity produces revenue
at least t −2 and at most t , while any vertex uvi in a vi -bundle produces revenue exactly t + i −3,
i.e,

R(p) É (n −3) t − (1+ε)OPT(G)(t −2)+
3∑

i=1
4tn (t + i −3) .

We consider the difference R(p)−c(r )R(p∗), and show it is negative. Recall that Lemma 6.6 implies
that OPT(G) Ê n/14.

R(p)− c(r )R(p∗) É 1

20t 2

(
(n −3−OPT(G)) (t −2)+

3∑
i=1

4tn (t + i −3)
)

+2(n −3)−εOPT(G)(t −2)

< 1

20t 2

(
nt +12t 2n

)+2n −ε 1

14
n

(
42

ε
−2

)
< 13n

20
+2n −2.9n <−0.25n < 0,

which leads to contradiction. Thus, p has less than (1+ε)OPT(G) discontinuities.
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By combining Claim 6.8, Claim 6.9, and the fact that 1+ ε É r , we directly get that a c(r )-
approximate solution for H gives an r -approximate solution for G , thus concluding the proof.

Remark 2. The maximum price k in the instance constructed in the proof of Theorem 6.7 does not
depend on the size of the problem. Given that there is some constant ρ beyond which it is hard
to approximate 3-Terminal Node Cut, this means that there exists some constant k∗ for which
Inequity Aversion Pricing does not have a PTAS. Note that for such a k∗ we do have a constant
factor approximation, with factor H−1

k∗ .

6.1 Hardness when k = 3

We close this section by showing that Inequity Aversion Pricing remains hard even when we only
have three possible prices and α(e) = 0 for all edges. This identifies the transition from polynomial
time solvability, which we have when k = 2, to NP-hardness as soon as we have a higher number
of available prices.

Theorem 6.10. Inequity Aversion Pricing for single value revenue functions is NP-complete when
α(e) = 0 for all e ∈ E(G), even if the price set is P = {1,2,3}.

The theorem follows from the fact that the problem is trivially in NP and the next three lemmas,
each consisting of a simple reduction. We begin with the definition of two intermediate problems
used in those reductions.

Definition 6.11. The Tripartite Independent Set problem is the restriction of Independent Set on
tripartite graphs. In particular, given a tripartite graph, a tripartition of its vertices, and an integer
q, is there an independent set of size at least q?

The next problem is a stricter version of our problem, regarding the price that we are allowed
to offer to each node.

Definition 6.12. The Strict Inequity Aversion Pricing problem is a variant of Inequity Aversion
Pricing in which α(e) = 0 for all e ∈ E(G) and the seller is disallowed to offer a customer a price
different from the customer’s valuation, i.e. pv ∈ {val(v),⊥} for each node v.

Lemma 6.13. Tripartite Independent Set is NP-hard.

Proof. We reduce the general Independent Set problem to Tripartite Independent Set using a
construction from [20].

Given a graph G with n vertices and m edges, we 2-subdivide its edges, i.e., replace each edge
with a path of length 3, to obtain a graph H , which is clearly tripartite. We call the vertices added
by 2-subdivisions new as opposed to the old vertices coming from G . Now G has an independent
set of size q if and only if H has an independent set of size q +m: Starting from an independent
set of G , we can add to it one of the two new vertices on each 2-subdivided edge. Conversely, every
independent set of H can be transformed into one that is not smaller and contains precisely m
new vertices (one for each 2-subdivided edge); the old vertices of this independent set then form
an independent set of G .

Lemma 6.14. Strict Inequity Aversion Pricing with price set P = {1,2,3} is NP-hard.
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Proof. We give a reduction from Tripartite Independent Set. Given a tripartite graph G , a triparti-
tion V1,V2,V3 of its vertices, and an integer q , we construct an instance of Strict Inequity Aversion
Pricing as follows: For each vertex v ∈ Vi , we have a bundle of 6/i nodes v ′ with val(v ′) = i , for
i = 1,2,3. For each edge (u, v) of G , we add constraints between all pairs (u′, v ′) of nodes associ-
ated with u and v respectively, setting α(u′, v ′) =α(v ′,u′) = 0. Call H the resulting graph and let
Rq = 6q .

We claim that G has an independent set of size q if and only if there is a feasible price vector for
the above instance that guarantees revenue Rq . One direction is straightforward. For every vertex
v in an independent set of size q in G , we set price val(v ′) to every vertex v ′ of the corresponding
bundle in H . This way no constraint is violated, since we started with an independent set, and
each bundle contributes to the total revenue either a value of 6, if it corresponds to a vertex in the
independent set, or 0, for a total of 6q .

Conversely, suppose that there is a feasible price vector p for H that guarantees revenue Rq ,
for the strict version of Inequity Aversion Pricing. Because all nodes v ′ in a bundle of H have the
same neighborhood, they may be given the same offer (i.e., val(v ′) or ⊥). If this is not already
the case for p, we can find such a feasible price vector p′ by using in each bundle the maximum
price that p uses on any vertex of this bundle. Since the new prices only go up (without affecting
feasibility), p′ guarantees revenue R ′ ≥ Rq . Moreover, under p′, a bundle of nodes contributes to
the total revenue either 6 or 0, regardless of which part Vi their associated vertex v belongs to.
Let us denote by S the set of vertices of G such that their associated nodes were not assigned ⊥;
from the construction it follows that S is an independent set in G , since we have that α(e) = 0 for
every edge e, and therefore, for an edge (u, v) in G , it cannot be the case that the associated nodes
for both u and v in H were not assigned ⊥. The size of S is R ′/6 ≥ Rq /6 = q , which concludes the
proof.

Lemma 6.15. Inequity Aversion Pricing with price set P = {1,2,3} is NP-hard.

Proof. We give a reduction from Strict Inequity Aversion Pricing with price set {1,2,3}. Consider
an instance of the decision version of the problem, i.e., a graph G with edge constraints (α(·, ·) = 0),
and a single-value revenue function for each node, along with a positive integer t . Let ni =
|{v ∈ V (G) | val(v) = i }| for i ∈ {1,2,3}. We construct an instance of Inequity Aversion Pricing
as follows: For each node v ∈ G , we add val(v) new nodes v ′ with val(v ′) = val(v) and impose
constraints α(v, v ′) =α(v ′, v) = 0, forming a star with v at its center. Call H the resulting graph and
let t ′ = t +n1 +4n2 +9n3.

We first observe that if there is a feasible price vector p for G that produces revenue t , then
we can use it to set the price on the old nodes of H , while for each new node v ′ we set its price to
val(v ′), and the resulting price vector p′ is still feasible. The feasibility of p′ follows from the fact
that for every old node v , p sets a price of val(v) or ⊥. By the construction of H , it is straightforward
to see that this way we extract revenue t ′.

Conversely, suppose that there is a feasible price vector p′ for H that produces revenue t ′ ≥
t +n1 +4n2 +9n3. We will construct a feasible price vector p for G as follows. For each v ∈ G ,
pv =⊥ if p′

v 6= val(v), and pv = p′
v otherwise. Feasibility follows from the feasibility of p′ for H (we

have only introduced more ⊥s). We next show that p gives revenue at least t .
To do so, we construct a feasible price vector p′′ for H that produces revenue t ′′ ≥ t ′ and agrees

with p on all old nodes. For each old node v ∈ H such that p′
v 6= val(v), we set p′′

v = ⊥, and for
all new nodes v ′ that are in a star with v we set p′′

v ′ = val(v ′) = val(v). This way we increase the
revenue by at least 1 without sacrificing feasibility. Now the revenue extracted using p′′ on H is at
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least t ′ but a total of at most n1 +4n2 +9n3 is due to new nodes. That is, the revenue extracted
from old nodes in H using p′′ is at least t ′− (n1 +4n2 +9n3) = t . Since p′′ agrees with p on all old
nodes, the revenue extracted using p on G is is at least t as well.

7 A Generalization to Multi-Demand Users

So far, we have always assumed that each node has demand for only one copy of the product.
A natural generalization is to consider multi-demand users who are interested in receiving a
certain number of copies if the price is affordable. For example, someone might want to buy
either a certain number of licenses of a video game (because she wants to play the game with her
friends) or no license at all. This would correspond to a type of inelastic multi-unit demand in
the terminology of auctions. Assume again that there is enough supply of copies to satisfy all the
demand, if necessary. Then, there is a natural way to generalize single value revenue functions to
capture such simple scenarios.

A revenue function Rv (·) is called a multi-demand single value revenue function if there exist
an integer sv (the number of copies demanded) and a value val(v) such that:

Rv (pv ) =
{

sv pv if val(v) Ê pv

0 if val(v) < pv
.

The intuition here is the same as for the single value revenue functions.
The objective now is again the same. Given a multi-demand single value revenue function for

each node, find a feasible price vector p that maximizes the total revenue. We call this problem
Multi-Demand Inequity Aversion Pricing. As this is a generalization of Inequity Aversion Pricing, it
is immediate that any negative result for the latter yields the same negative result for the former.
In particular, by Theorems 6.1 and 6.7, Multi-Demand Inequity Aversion Pricing is NP-hard and
APX-hard for the corresponding edge constraints.

Quite surprisingly, we also prove that when for each user the number of demanded copies is
polynomially bounded, there is a strict reduction from Multi-Demand Inequity Aversion Pricing
to Inequity Aversion Pricing. This directly implies that any approximation factor achieved for the
latter is also achieved for the former. Therefore, we establish that the two problems are equivalent
in terms of approximability. Note that the theorem holds for general edge constraints.

Theorem 7.1. Let q be any polynomial. There exists a strict reduction from Multi-Demand Inequity
Aversion Pricing with demands bounded by q(n) to Inequity Aversion Pricing.

Proof. Suppose we are given an instance I of Multi-Demand Inequity Aversion Pricing, i.e., a
graph G(V ,E), an edge restriction function α(·, ·), and for each node v her valuation val(v) and
her demand sv . We are going to construct an equivalent instance I ′ of Inequity Aversion Pricing.
The reduction creates sv copies of v for each v ∈V and connects them to each other to create a
clique Ksv . Edges inside such a clique have α= 0. For every edge (u, v) ∈ E all the edges between
the vertices of the u-clique and the v-clique are added with the same restrictions as the original
edge. Let G ′ = (V ′,E ′) be the resulting graph. If smax = maxv∈V sv then we have |V ′| É nsmax and
|E ′| É (n +m)s2

max.
We use OPT′ and OPT to denote the optimal revenue of this instance and of the original,

respectively. Our goal is to show that for any price vector p′ for I ′ we can efficiently find a feasible

price vector p for I with such that R(p)
OPT Ê R ′(p′)

OPT′ . We begin by proving that OPT = OPT′.
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Claim 7.2. An optimal price vector p′ for I ′ sets the same price for all vertices inside each v-clique.

Proof of Claim Note that α= 0 inside each v-clique, so all these vertices have the same common
price p ′

v or ⊥. If there are x, y in a v-clique such that p ′
x 6= ⊥∧p ′

y =⊥ then by setting p ′
y = p ′

x we
obtain a new feasible price vector for I ′ that gives greater revenue than p′, which contradicts its
optimality.

By Claim 7.2, we directly obtain a feasible solution for I with revenue OPT by setting pv equal
to the common price from the v-clique. Therefore, OPT Ê OPT′.

On the other hand, each feasible price vector p for I can be adopted as a feasible price vector
p′ for I ′ with the same revenue. To see that, just set the same price p ′

uv
= pv for each copy uv of v

in the v-clique of G ′. All edge constraints are satisfied, so the solution is feasible, and it clearly
gives the same revenue. By taking p to be an optimal price vector for I , the above implies that
OPT′ Ê OPT. We conclude that OPT = OPT′.

Finally, we need the following.

Claim 7.3. Each feasible price vector p′ for I ′ can be transformed into a feasible price vector p for I
with at least the same revenue.

Proof of Claim For each u ∈ V , if Vu is the set of vertices in the u-clique of G ′, define u∗ =
argmaxx∈Vu

p ′
x . Then, set pu = p ′

u∗ . Such a p is feasible for I because ∀(u, v) ∈ E , α(u, v) =
α(u∗, v∗), where v∗ is any vertex in Vv , and the constraint α(u∗, v∗) is already satisfied by p′. It is
straightforward that R(p) Ê R ′(p′).

For the price vector described in the proof of Claim 7.3, we have

R(p)

OPT
Ê R ′(p′)

OPT
= R ′(p′)

OPT′ ,

which completes the proof.

It would be interesting to determine whether the hardness of the problem changes when the
demands are not polynomially bounded, although such functions are not very realistic in our
setting. Notice, however, that even in that case it is not hard to obtain a 1

Hk
-approximation in

polynomial time by using the best single-price solution. In fact, we still have a 1
Hr

-approximation,
where r = min{n, vmax}.

Concluding remarks

We studied a revenue maximization problem under inequity aversion for the natural class of
single-value revenue functions. Apart from establishing the first hardness results for this class,
we also derived approximation algorithms based on combinatorial and graph-theoretic tools,
which improve the state of the art when the set of available prices is small. We find this to be a
realistic setting as special price offers are usually small in number, derived by specific discount and
promotion policies. Clearly, the most interesting open problem is to resolve the approximability
for general k, i.e., can we have a better than O(1/Hk )-approximation for large k? Exploring further
models of negative externalities is another attractive direction that has not been given as much
attention as the case of positive externalities.
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