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Abstract—Cloud computing is becoming a popular model of computing. Due to the increasing complexity of the cloud service request,
it often exploits heterogeneous architecture. Moreover, some service requests (SRs)/tasks exhibit real-time features, which are
required to be handled within a specified duration. Along with the stipulated temporal management, the strategy should also be energy
efficient, as energy consumption in cloud computing is challenging. In this paper, we have proposed a strategy, called “Efficient
Resource Allocation of Service Request” (ERASER) for energy efficient allocation and scheduling of periodic real-time SRs on cloud
platform. The cloud platform is consists of Field Programmable Gate Arrays (FPGAs) as Processing Elements (PEs) along with the
General Purpose Processors (GPP). We have further proposed, an SR migration technique to reduce the tasks rejection by serving
maximum SRs. Simulation based experimental results demonstrate that the proposed methodology is capable to achieve upto 90%
resource utilization with only 26% SR rejection rate over different experimental scenarios. Comparison results with other
state-of-the-art techniques reveal that the proposed strategy outperforms the existing technique with 17% reduction in SR rejection rate
and 21% reduction in energy consumption. Further, the simulation outcomes have been validated on real FPGA test-bed based on
Xilinx Zynq SoC with standard benchmark tasks.

Index Terms—Field Programmable Gate Arrays (FPGAs), service request, real-time scheduling, resource management, energy,
heterogeneous cloud.
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1 INTRODUCTION

C Loud computing nowadays has became a popular pro-
cessing paradigm for distributed computing devices,

which are inter-connected through the public or private
networks [1]. A user can choose particular hardware, stor-
age and processing platforms in a cloud, based on the
performance requirements through a service request (SR).
Such SRs may often exhibit real-time characteristic. Real-
time cloud applications can be visible in Internet of Things
(IoT) where large scale of sensing and control activities are
combined with the real-time data analytics [2]. In another
example, real-time cloud service requests are widely used
in “intelligent transport systems” [3]. In this scenario, data
centers collect data from the road side cameras of fixed
objects or obstacles and conduct real time analysis, trans-
port of information is then relayed to the drivers. In such
scenario, each SR has a predefined life-time (Lt), within
which the request has to be completed. These SRs may
be periodic/aperiodic in nature [4]. Periodic SRs appear
periodically, after a specific time interval. On the other hand,
aperiodic SRs appear at an arbitrary instance of time. It is
the responsibility of the cloud service architecture to assign
the request to an appropriate processing element, so that
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the service request can be completed within the specified
life-time [5].

Due to the wide variety of performance demands from
the users, cloud service providers often need to be very
flexible in terms of service delivery. Hence, the primary
focus of recent cloud computing architecture is to exploit the
heterogeneous processing architecture in order to achieve
higher computing performances [6], [7]. In recent past, ex-
isting scheduling strategies for real-time service requests on
cloud mainly focused on the optimization of computation
time to meet the deadlines and to enhance the throughput
[8]. However, with the increase in complexity level of the
cloud infrastructure, such cloud computing environment
consumes high energy [9]. Thus, the recent heterogeneous
cloud architectures are employing FPGAs along with CPUs
and GPUs to overcome the existing limitations [10]. Ac-
celeration in execution of a service request on such het-
erogeneous architecture is a challenging issue in cloud.
The performance and efficiency of the homogeneous CPU
based cloud is insufficient to match the requirements of
modern cloud servers [11]. Hence, cloud infrastructure with
reconfigurable hardware, FPGA, is an emerging choice.

In cloud computing, users initiated SRs are physically
mapped into the processing elements via a virtualization
technique [12]. Virtualization helps to partition the physical
resources into multiple virtual machines (VMs), where each
VM works independently. At the core level, a “server”
contains the physical resources/machines and the service
requests are allocated to an appropriate server through VMs.
Recently, real-time energy efficient scheduling strategies are
developed for heterogeneous cloud platforms [13]. Due to
the variety of processing requirements, best task-to-resource
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mapping at runtime ensures the high performance gain
in terms of throughput and helps to optimize the energy
consumption [14]. To reduce the energy consumption of the
servers, such strategy may allow the migration of the VMs
from one server to another [15] server. Migrations not only
help to reduce the number of SR’s rejection by proper load
balancing but also manage the processing resources effi-
ciently. Thus, migrations enhance the overall throughput. In
a cloud platform, real-time schedulers can be incorporated
by devising a real-time hypervisor, for example, RT-Xen [16].

In this paper, we have proposed a novel real-time tasks
allocation and scheduling strategy for FPGA-based hetero-
geneous cloud platform. Specifically, we answer the follow-
ing question: Given a set of real-time periodic SRs/tasks and
heterogeneous processing elements, how do we ensure that those
SRs will be energy-efficiently scheduled on physical platform by
choosing the appropriate VMs, while satisfying the life-time of
each SR and resource constraints. In order to achieve the afore-
mentioned objectives, we have coined the idea of “time-
partitioned” task scheduling where we have partitioned the
execution time into multiple time windows based on the
life-time of SRs. The main technical contributions of this
paper are:

• We have proposed a “time-partitioned” based
scheduling strategy, “Efficient Resource Allocation
of Service Request” (ERASER), which efficiently ex-
ecutes periodic real-time cloud SRs within the given
deadline, with minimum energy consumption. (Dis-
cussed in “Section 3”).

• ERASER employs an Integer Linear Programming
(ILP) based technique for SRs allocation on an FPGA
and CPU based heterogeneous cloud platform. In
order to increase the throughput, ERASER also ex-
ploits the migration functionality of VMs between
the servers. (Discussed in “Section 3.4” and “Section
4”).

• Simulation based experiments reveal the efficiency of
the proposed approach. ERASER can achieve up to
90% resource utilization with only 26% SR rejection
rate over different experimental scenarios. Compar-
ison results reveal that ERASER consumes 21% less
energy and reduces the SR rejection rate by 17% than
the existing techniques. Further, the simulation out-
comes have been validated on a real FPGA platform,
Xilinx Zynq SoC, with benchmark tasks (Discussed
in “Section 5” and “Section 6”).

The organization of the paper is as follows: the related
work is described in Section 2. Adopted system model and
the proposed scheduling strategy are described in Section 3.
The Migration scheme is proposed and illustrated with an
example in Section 4. Experiments and results are discussed
in Section 5. Physical implementation of the ERASER on
ZYNQ FPGA SoC is demonstrated in Section 6. Finally,
Section 7 concludes the paper with a discussion on the
future work.

2 RELATED WORK

Real-time based SR execution has drawn considerable re-
search interest in recent past. Handling of real-time SRs in

cloud computing either i. employs homogeneous PEs i.e.
each PE has similar processing characteristics like speed,
power rating etc or, ii. employs heterogeneous PEs i.e.
processing elements may have different computation ca-
pabilities. Majority of the homogeneous PE based cloud
scheduling strategies focus on energy and deadline man-
agement. For example, Tian et al. [18] proposed an energy
efficient scheduling mechanism for homogeneous cloud
data center. The authors argued that the Longest Load
Interval First (LLIF) strategy outperforms popular First-Fit
Decreasing (FFD) strategy. Results were verified on Amazon
EC2 platform by intensive simulations, using trace-driven
and synthetically generated data sets. Similarly, an attempt
for energy efficient real-time cloud SR scheduling based on
time partitioning algorithm (TPA) has been proposed by Hu
et al. [25]. Here, based on the task dependency and real-
time requirements, SR mapping and resource allocation are
re-adjusted (start time adjustment (STA)) to make a trade-off
between energy consumption and makespan time.

Dynamic server provisioning technique is widely used
for reducing energy consumption by turning off the idle
servers of the cloud data centers. However, this strategy can
lead to server queues instability. To overcome this situation,
Safavi et al. [19], proposed an integer programming (IP)
based algorithm, which makes a trade-off in between the
server queue stability (S) and energy (E) optimization using
a proper load (L) balancing technique (known as SEL). But,
in some typical cases, the dynamic load (overload) of the
cloud data center can affect the servers queue stability.
Thus, energy consumption of the cloud data servers can
be affected, which may lead to poor performances of the
system. Xu et al. [21] presented a brownout technique
to handle the overload situation. The technique ensures
the minimization of energy consumption by deactivating
the unnecessary applications. Three types of brownout-
based scheduling policies are described known as Lowest
Utilization Container First (LUCF), Minimum Number of
Components First Policy (MNCF) and Random Selection
Container Policy (RSC), where LUCF exhibits the better
performance than others. Nowadays, cloudlets1 techniques
are deployed to manage the cloud based infrastructure and
provide a powerful computing resource platform to the
mobile devices with lower latency. Gai et al. [22] proposed
an advanced energy-aware cloudlet-based mobile cloud
computing model (DECM) for achieving green computing
by avoiding the energy wastage in an unstable networking
environment.

In order to address the diverse requirements of users,
heterogeneous computation resources are introduced. Re-
cently, heterogeneous cloud incorporates Graphics Process-
ing Unit (GPU) and Field programmable Gate Array (FPGA)
as processing elements. A few existing scheduling strategies
focuses either on load balancing to distribute the comput-
ing workloads uniformly across various processing units
or on makespan minimization, by considering the power
consumption of the heterogeneous cloud servers. A power-
aware task scheduling (PATS) strategy for heterogeneous
CPU based cloud platform has been proposed in [24]. The

1. Small-scale cloud datacenters, which provide cloud computing
services to mobile devices.
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TABLE 1: Comparison of focal points of existing works with ERASER

Approach Scheduling mechanism Scheduling objective Processing elements (PEs) Evaluation platform
Workload Migration Energy Success Homogeneous Heterogeneous Simulation Real
Balancing incorporated Minimization ratio PEs PEs setup testbed

Proposed X X X X × X X X

Zhou et al. [17] × × × X X × X ×
Tian et al. [18] × X X X × X X ×

Safavi et al. [19] X × X X × X X ×
Liu et al. [20] × × X × × X X ×
Xu et al. [21] X × X X X × × X

Gai et al. [22] × X X × X × X ×
Auluck et al. [23] × × X X × X X ×
Zhao et al. [24] X × X × × X X ×
Hu et al. [25] × X X X × X X ×

main objective of the work remains to minimize the power
consumption. The proposed strategy considered the types of
PE and makespan time as the main scheduling parameters
and it was also capable to predict the busy and idle power
consumption of the physical machines (PMs) by analyzing
the state of VMs in real-time. Integer Linear Programming
(ILP) based real-time task mapping and scheduling are
discussed in [23]. Here, the authors employed a hybrid
“embedded-fog-cloud” based heterogeneous architecture.
Fog nodes were used for executing tasks that have early
deadlines. On the other hand, soft real-time tasks were
executed on cloud. Mobile Embedded Systems (MES) with
Cyber-Enabled Applications (CEA) has become an emerging
technology in cloud domain for mobile computing [26]. A
novel approach “Energy-Aware Heterogeneous Cloud Man-
agement (EA-HCM)” is proposed by the authors to reduce
the energy consumption for such heterogeneous MES with
higher performances.

As the target applications require fast responses upon
arrival, low latency is one of the most important features
for real-time cloud. Acceleration of task processing in cloud
plays an important role for faster response. FPGAs pro-
vide the support of accelerator for modern high perfor-
mance cloud computing platforms. FPGA-based heteroge-
neous architecture has grabbed an considerable attention
on real-time cloud computing. With the increasing com-
plexity of cloud architecture, energy consumption also in-
creases. Hence, the authors in [27], proposed an energy-
aware scheduling technique for CPU-FPGA based heteroge-
neous cloud platform. Proposed strategy first maps the VM
applications to the custom hardware accelerators through a
fine-grained hardware aware scheduler, which reduces the
power consumption by optimal usages of FPGAs. While
reducing the power consumption, the algorithm ensures the
fulfillment of targeted performance within their assigned
deadlines by CPU frequency scaling and dynamic VM al-
location. Similarly, the authors in [20], implemented a real-
time energy optimization strategy to minimize the energy
cost while satisfying the QoS and time constraint of DVFS
capable CPU/GPU/FPGA heterogeneous cloud platform.

However, majority of the existing works have focused
on real-time energy efficient scheduling for general purpose
processors (GPPs) but energy-aware real-time scheduling
for FPGAs is still in its infancy. Thus, in this work, We
propose a “time-partitioned” based energy-aware schedul-

ing strategy ERASER, to execute periodic real-time SRs
on FPGA-based heterogeneous cloud. Table 1 categorise
and compares the features of the existing work with the
ERASER.

3 SYSTEM MODEL & ERASER
The adopted system model of this paper resembles a mod-
ern cloud architecture [28], [29]. In [29], the authors have
shown how the FPGAs can be utilised on cloud comput-
ing architecture. A VM can exclusively access the FPGA
devices through a series of OpenStack based virtualization
techniques. In such architecture, a particular SR is physi-
cally mapped into a PE via VM. VMs are responsible for
executing SRs on physical PEs of a server, by providing
an abstraction to the users. On the arrival of τ number
of SRs, the ERASER attempts to allocate them based on
the energy consumption and temporal parameters. Within a
server, a particular type of PE will be responsible to carry
out the execution of an SR. Hypervisor will assume the
responsibility for efficient resource sharing and integrates
the VMs into the scheduling framework. Without loss of
generality, we are assuming that,

• Each VM is capable of running on a particular server
and the initial distributions of the possible upcoming
SRs are known at design time.

• A VM cannot simultaneously execute on two distinct
PEs of a server at the same instant of time.

An energy efficient SRs allocation scheme, (ERASER), is
defined to allocate the VMs systemically on two different
types of PEs. Typically, FPGAs and CPUs have different
energy and performance characteristics for the same ser-
vice request. Hence, ERASER aggregates all the arriving
requests and schedules these SRs in such a way that each
SR completes its execution within its life-time with mini-
mal energy consumption. A pictorial representation of our
system model is shown in Figure 1.

3.1 ERASER Strategy

In this section, we will discuss about the proposed ERASER
strategy. ERASER will attempt to satisfy the timing require-
ments of all SRs by completing them within their respective
life-times. Along with this, ERASER will also ensure that
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Fig. 1: Heterogeneous Cloud Service Architecture

TABLE 2: Symbols and their significance

Symbols Explanations
M Number of PEs per server
N Number of servers
SDi Service Duration of the ith SR
Lti Life-time of the ith SR
TGj Time-gap
WLj

i Workload of the ith SR for jth time-gap
TCj Total system processing capacity for jth time-gap
τ Number of periodic real-time SR

PWFn,max Maximum power consumption by FPGAs
PWCm,max Maximum power consumption by CPU cores
PWk,max Maximum power consumption limit by kth server
PWk,idle Minimum power consumption at server idle mode
HPFk1 Power required for hosting a VM by FPGA
HPCk2 Power required for hosting a VM by CPU
UPFi Power/Unit of workload for serving an SR by FPGA
UPCi Power/unit of workload for serving an SR by CPU
FXPi Power consumption for an SR execution on FPGA
CXPi Power consumption for an SR execution on CPU

PWi,execution Power required to serve an SR for a time-gap
PWi,migrate Power consumption for an SR migration
PWkl,DT Data transferring power from server k to l
MGT,pow Total energy required to migrate the SRs
DTi Data transferring delay

the entire scheduling consumes minimum energy. Schedul-
ing and mapping of SRs to appropriate PEs are obtained
through an ILP based technique. Table 2 represents all the
mathematical notations and their significance used in this
paper.

3.2 Temporal Management

ERASER will attempt to execute the SRs by employing
a “time-partitioned” based approach [30]. Our scheduling
approach will partition the scheduling duration (based on
the SRs life-time) into some time-gaps (TGs). It has to be

ensured that each SR completes the assigned workload (por-
tion of work to be executed) within that time-gap. SRs will
be allocated to appropriate PEs using Higher Workload First
(HWF) policy. Each SR has different service duration and
life-time hence, workload will be different for a particular
time-gap. According to the HWF policy, SR with the highest
amount of workload will be allocated first in the server for
a time-gap. Let us assume, service duration or computation
time of ith SR is represented as SDi and its life-time by Lti.
Let us also assume that there are N number of servers and
each server has M = (M1 + M2) number of PEs, working
in parallel. Here, M1 represents number of FPGAs and M2

represents number of CPU cores.
In each time-gap, each SR will be assigned a certain

amount of workload to execute. The workload WLji of ith

SR in jth time-gap is defined as:

WLji = TGj ×
SDi

Lti
(1)

We termed SDi

Lti
as the individual weight of an ith SR. The

time-gap is defined by the intermediate difference between
two consecutive SR’s life-times(Lt). TGj is the jth time-gap,
which denotes the difference between ith and (i− 1)th SR’s
life-times. The total system level capacity TCj for the time-
gap TGj among all servers can be defined as:

TCj = TGj ×M×N (2)

All SRs will be able to complete their workload within
the particular time-gap, if the following equation 3 is satis-
fied.

τ∑
i=1

WLji ≤ TCj (3)

3.2.1 Time-partitioned based approach versus Greedy ap-
proach
The “time-partitioned” approach actually partitions the time
into small slices. Each SR is assigned with a ”workload” for
each time-gap. Greedy scheduling techniques are efficient
but not suitable for many complex cases. SRs scheduling
on multi-processor systems within a specific life-time has
a higher scheduling overhead and can become infeasible.
We have shown an example where greedy scheduling
approaches like Earliest Deadline First (EDF) and Least
Laxity First (LLF) fail to schedule SRs within its life-time.
We have considered an SR set whose details are as follows:

SR(Service duration, Life-time)=SR1(8, 10), SR2(9, 10),
SR3(6, 20)

We have two processors and need to schedule the given
SRs. The LLF strategy is not sufficient to handle this type
of scenario. SR1 and SR2 have laxity of 1, 2, respectively.
Hence, service request SR1 and SR2 have the priority to
execute first. In case of EDF, SR1 and SR2 are prioritized
to run for completion as it has earliest life-time compare to
SR3. SR1 and will finish at time t = 8. SR2 will finish at
t = 9. After completing SR1 and SR2, both the processors
will remain idle until t = 10 and SR3 still remains to be
scheduled in a processor. After t = 10, SR1 and SR2 will
start its execution as they are periodic in nature and have
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earlier life-time and lower laxity. Thus, it is not possible for
the greedy scheduler to start SR3 before t = 8. Hence, SR3

cannot be completed within the life-time and this scenario
is pictorially shown in Figure 2(a).
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8 180

2010
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SR1SR1

SR2 SR2

(a) Greedy Scheduling Failure
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(b) Time-Partitioned Solution

Fig. 2: Advantages of Time-Partitioned Approach

This limitation of the greedy strategy can be overcome by
the “time partitioned” strategy as shown in Figure 2(b). In
the proposed technique, time is partitioned into time-gaps.
Here we have illustrated for only one time-gap i.e. is TG =
10. Each SR’s workload needs to be completed within the
time-gap. Now for each service request, SR1, SR2 and SR3

the workload2 will be 8, 9 and 3, respectively. SR1 executes
on processor P1 and finishes by t = 8. Thus, P1 has a slack
time of 2. SR2 executes on P1 for 2 time units and the rest
of the workload (9-2) = 7 will be completed in P2. SR3 has
a workload of 3, which can be scheduled on P2, as it has 3
units of remaining slack. Hence, it can be observed that all
the SRs have completed within their respective lifetimes.

3.3 Power Management (PMG)

The VMs will be allocated to the PEs within a time-gap ac-
cording to the allocation strategy discussed in next section.
Each SR has different requirements of power for execution
on a server. Servers need a constant power to operate in the
idle state.

Let us consider that within a server, PWFn,max and
PWCm,max represent the maximum power consumption
for M1 number of FPGAs and M2 number of CPU cores,
respectively. PWk,max is the maximum limit of power con-
sumption by the kth server, which is constant for a particular
time-gap, shown in equation 4.

PWk,max =
M1∑
n=1

PWFn,max +
M2∑
m=1

PWCm,max (4)

Let us assume, PWk,idle is the minimum power con-
sumption, required for the kth server in the idle mode.
HPFK1 and HPCK2 are the power requirements for host-
ing VMs by FPGA and CPU processing cores, respectively. It
has to be noted that when no SR is mapped on these VMs, a
certain amount of power is still required for accommodating
idle VMs. The required power by the kth server before
serving any request is measured as:

PWk,const = PWk,idle +
K1∑
i=1

HPFi +
K2∑
j=1

HPCj (5)

where PWk,const 6= 0 and K1 and K2 denotes the number
of VMs.

2. ( 8
10
× 10) = 8 is the workload of SR1 for time slice TG = 10

UPFi and UPCi are the unit amount of power required
to serve the ith SR by the FPGA and CPU, respectively. Unit
power varies with the size or workload of each requested
SR. Equation 6 exhibits the energy consumption by an FPGA
to execute a requested SR for a particular time-gap as:

FXPi = {WLji} × UPFi (6)

Similarly, equation 7 reflects the energy consumption by
a CPU to execute the same SR as:

CXPi = {WLji} × UPCi (7)

The energy consumption for executing SRs for a partic-
ular time-gap can be defined as:
τ∑
i=1

PWi,execution =
τ∑
i=1

(FXPi×XFi+CXPi×XCi) (8)

where, XFi and XCi are the binary variables and indi-
cate the assignment of an SR into an FPGA or a CPU core
and denoted as follow:

XFi =

{
1, when ith SR is assigned to any of the FPGA
0, otherwise

}

XCi =

{
1, when ith SR is assigned to any of the CPU cores
0, otherwise

}
An SR can not run simultaneously on multiple PEs.

Hence, if XFi = 1 then XCi = 0, or vice-versa.

3.4 ILP-based SR Mapping and Scheduling

Let us assume that at the time instance t, τ be the number
of real-time SRs arrive for possible allotment on the cloud
servers. There are M1 number of FPGAs and M2 number
of CPU cores3 available on each of N number of servers.
Hence, at a time instance t, we can accommodate at most
(M1 +M2) number of SRs for parallel execution on a server.

In each time-gap TG, our objective will remain to min-
imize the overall energy consumption of the cloud servers
by allocating the SRs to the appropriate PEs.

Objective Function:

minimize(
τ∑
i=1

PWi,execution) (9)

Constraints:
1. Parallelism Constraint:
This constraint enforces that parallel execution of an

SR on two distinct PEs (FPGA & CPU) at a same time is
restricted. An SR will be executed on a single PE i.e. .

XFi +XCi = 1 (10)

2. Real-time Constraint
All SRs will be able to complete its workload within each

particular time-gap, if the following equation is fulfilled.
τ∑
i=1

WLji ≤ TCj ∀i ∈ τ (11)

3. Power Constraint:

3. “core” refers the individual programming units for each type of PE
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Equation 12 refers that at each time-gap power required
for hosting VMs and serving SRs cannot exceed the maxi-
mum power limit.

τ∑
i=1

PWi,execution +
N∑
k=1

PWk,const ≤
N∑
k=1

PWk,max (12)

3.5 Circular Linked-list Framework (CLF)

ERASER stores the scheduling information (obtained from
Algorithm 1) with the corresponding PEs for each time-gap
(upto the Hyper-period) in a Circular Linked-list Frame-
work (CLF). A node of the linked-list will denote a time-gap.
The rth node is denoted as GTGr .

The information is stored corresponding to the rth node
GTGr of the circular linked list is as follows: 1) Pointer
PTRr to the Linked-List of Schedulers (LL− SCH). LL−
SCH is composed for N number of servers. Each server of
LL− SCH contains the following information:

• Minimum power needed for execution: Min-PW.
• SR to PE mapping: MAP
• Link to next node: NN.

2) Pointer to next node of GTGr : LINKr .

GTG1 GTG2 GTGr GTGs

PTRr LINKr

LL-SCH1 LL-SCH2 LL-SCHN

MAP Min-PW  NN

Circular Linked-list Framework (CLF)

Fig. 3: ERASER working module

A pictorial representation of the linked-list structure is
shown in Figure 3.

The pseudo-code for the ERASER scheduling strategy is
shown in Algorithm 1 and 2. The ERASER has two parts.
First part ensures the temporal requirements of the schedul-
ing and the second part, power management (PMG) func-
tion maps the SRs to the PEs, energy efficiently. Scheduling
framework for a hyper-period H is generated by consider-
ing the both parts of the algorithm. The ERASER scheduling
strategy is depicted with an example in the next section.

3.6 ERASER : Illustration with an Example

Let us assume 12 periodic SRs {SR1, SR2, ..., SR12}, arrive
for possible allotment over N = 2 number of servers.
Further, we assume that each server contains one FPGA
and one CPU core, respectively. Hence, M = 2 for each
server. SRs can run in parallel by utilizing the PEs. Each
SR has a different service duration for different types of
PEs and each SR should be completed within its life-time
(Lt). The characteristic (service duration, life-time and unit

Algorithm 1: ERASER Scheduling Strategy
Input: τ number of SRs, N number of servers each

containingM number of PEs, SR parameters
SDi, Lti, Hyper-period H

Output: Circular Linked-list Framework (CLF )
1 Initialize Node = 1;
2 Let us assume that a H is composed of s number of

time-gaps;
3 Calculate the Time-Gap (TGj) up-to the

hyper-period H;
4 for (Each TGj ∈ H) do
5 for (Each SR ∈ τ ) do
6 Calculate the workload WLji using the

equation 1;

7 Calculate the TCj by using the equation 2;

8 if (
∑τ
i=1WLji ≤ TCj) then

9 Execute the SRs using HWF policy;
10 if (List node GTGr NOT already created) then
11 Create a new CLF node GTGr ;
12 Call the function PMG();
13 Go to the next node;

14 else
15 Discard the SR set τ ;

Algorithm 2: Function PMG()
Input: Unit power (UPFi & UPCi) required by

each SR, Idle power PWk,const, Maximum
power consumption by the Server PWk,max

Output: SR to PE mapping : MAP
1 Calculate the energy consumption for executing SRs
PWi,execution using the equation 8;

2 if (M > 0) && (Required PEs are available) then
3 Solve the ILP ;

4 if (List node LL− SCHi NOT already created) then
5 Create a new GTGr node LL− SCHi;
6 Insert Values of MAP and Min-PW into

LL− SCHi for each SR;
7 Return SR to PE mapping (MAP) and Min-PW;

power consumption) of each SR on these distinct types of
PEs are shown in Table 3.

We assume that a server has a maximum power capacity
of PWk,max = 150 watts 4. In idle state, the power consump-
tion of a server is assumed as 75 watts. We further assume
that to host a VM on FPGA and CPU, power consumption
is 3 watts and 2 watts, respectively. These are the hypo-
thetical values used for this example only. However, the
experiments have conducted with the actual values. Now,
According to the Equation 5, PWk,const will be 80 watts.
For two operational servers PWk,const is 160 watts.

ERASER will allocate the service requests to the PEs and
executes the portion of workload for each time-gap. The
length of the first time-gap, TG1 is 45. Using equation 1,
we obtain the workload (with min service duration) of each

4. In [31], authors experimentally showed such typical max power
consumption
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SRi (WLi) for each time-gap as shown in Table 4. The
overall system capacity (TC1) for the first time-gap (TG1)
using Equation 2 becomes (45 × 4) = 180 units. We can
observe the feasibility criteria as described in Equation 3,
is satisfied. Hence, all the SRs complete their respective
workloads within the first time-gap and similarly, it can
be observed that this condition will be true for subsequent
time-gaps. Within a time-gap, in order to map an SR to an
appropriate PE, the ILP based technique will be applied.

Energy consumption of SRs on FPGA and CPU ac-
cording to the Equations 6 and 7, are shown in the Ta-
ble 5. The ILP is formulated and solved using the IBM
CPLEX tool [32] with the parameters given in Table 5. As
an output, we obtain the overall energy consumption as
(
∑12
i=1 PWi,execution) = 112.3 units for the first time-gap,

TG1. The corresponding allocation of each SR for each PE
(Whether FPGA or CPU) is also obtained from the ILP and
shown in Figure 4.

TABLE 3: SRs PARAMETERS

SR No. Lt SDF SDC UPF UPC
SR1 45 13 14 0.6 0.7
SR2 60 18 22 0.7 0.6
SR3 90 26 28 0.7 0.9
SR4 120 37 37 0.8 0.6
SR5 90 21 25 0.8 0.6
SR6 120 39 37 0.7 0.9
SR7 180 60 77 1.0 0.8
SR8 90 27 29 0.6 0.8
SR9 45 13 16 0.6 0.5
SR10 60 19 13 0.5 0.7
SR11 60 19 21 0.8 0.8
SR12 90 26 28 0.7 0.9
SR13 45 8 10 0.9 0.8
SR14 60 15 14 0.8 0.7

SDF ;SDC : Service Duration units on FPGA & CPU, respectively
UPF ;UPC: Power units of FPGA & CPU, respectively

TABLE 4: Workload Of SRs

SR No. WL1 WL2 WL3 WL4 WL5

SR1 13 4 8 8 17
SR2 16 5 11 11 22
SR3 13 4 8 8 17
SR4 13 4 9 9 18
SR5 12 4 8 8 16
SR6 14 4 9 9 19
SR7 15 5 10 10 20
SR8 14 4 9 9 19
SR9 13 4 8 8 17
SR10 9 3 6 6 13
SR11 14 4 9 9 19
SR12 14 4 9 9 18
Sum 160 49 104 104 215
SR13 7 3 5 5 11
SR14 9 3 6 6 14
WLj : Workload of SRs in jth time-gap

4 ERASER WITH MIGRATION SCHEME

In case of dynamically arriving tasks, the SR migration
may be useful when the required PE of a server is not
available to fulfil the requested SR’s execution. Migration
technique enhances the utilization of the resources and helps
to maximize the throughput.

TABLE 5: Power Consumption Of SRs

SR No. PW 1
R PW 1

C PW 2
R PW 2

C PW 3
R PW 3

C PW 5
R PW 5

C

SR1 7.8 9.8 2.4 3.6 5.2 6.5 10.4 13.0
SR2 10.5 9.9 3.5 3.0 7.0 6.6 14.0 13.2
SR3 9.1 12.6 3.0 4.2 6.0 8.4 12.1 16.8
SR4 11.1 8.3 3.7 2.7 7.4 5.5 14.8 11.1
SR5 8.4 7.5 2.8 2.7 5.6 5.0 11.2 10.0
SR6 10.2 12.4 3.4 4.1 6.8 8.3 13.6 16.6
SR7 15.0 15.4 5.0 5.1 10.0 10.2 20.0 20.5
SR8 10.8 8.7 3.6 2.9 7.2 5.8 14.4 11.6
SR9 7.8 8.0 2.6 2.6 5.2 5.3 10.4 10.6
SR10 7.1 6.8 2.3 2.2 4.7 4.5 9.5 9.1
SR11 11.4 12.6 3.8 4.2 7.6 8.4 15.2 16.8
SR12 11.7 9.8 3.9 3.2 7.8 6.5 15.6 13.0
SR13 6.3 6.4 2.7 3.2 4.5 4.8 9.9 10.4
SR14 7.2 5.6 2.4 2.1 5.6 4.9 12.0 9.8

PW j
R; PW j

C : Power consumption units of SRs on FPGA and CPU,
respectively for jth time-gap

4.0.1 Effectiveness of the Migration Scheme
To illustrate the benefits of the migration scheme, let us
consider an example. We have considered the same tasks
set as discussed in the previous example however, we have
also considered two additional periodic SRs i.e. SR13 and
SR14. Let us assume that both the tasks have arrived at t
= 10. Detailed information of the SRs are provided in Table
3. The length of the first time-gap is 45 and SRs arrived
at t = 10. Hence, the workload and energy consumption of
the newly arrived SRs are calculated for both the PEs and
provided in Table 4 and Table 5, respectively. Now according
to the HWF policy the scheduling of SR14 and SR13 will
be performed for TG1. SR14 has to complete 9 units of
workload and according to the Algorithm 1 it can execute
on the second server within the remaining slack time. But in
case of SR13, it cannot be allocated to any of the servers, as
required remaining slack is not sufficient. In such scenario,
migration could be a promising solution. We have discussed
the detailed migration strategy in the next section.

4.1 ILP Based Migration
A migration should be performed from server k (source)
to server l (destination). In order to migrate a task, we
need to measure three parameters: (i) The portion of WLji ,
executed at the current server. (ii) Find the server(s) having
the maximum slack times. (iii) The expected completion
time of the remaining workload at the destination server,
including the delay for transferring the data.

Let us assume that an SR migration is initiated after
completing the Θ unit of its allocated workload. Hence, for
the destination server l, the new workload will be WLji −Θ.
This denotes the remaining portion of the SR’s workload to
be executed and TGj−Θ is the updated life-time for the SR
on the lth server. Slack time of a server for a particular time-
gap is calculated as (TGj ×M)−

∑τ
i=1WLji . Transferring

the SR from one server, k to another server l, consumes DTi
amount of delay. Hence, the power required for migrating
an SR will be:

PWi,migrate = PWkl,DT + PWi,execution (13)

where, PWkl,DT represents the power consumption for the
SR to transfer the data from kth server to lth server.
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Fig. 5: ERASER with migration

The required power due to SRs migrations can be de-
fined as:

MGT,pow =
N∑
k=1

τ∑
i=1

(PWi,migrate × Zkli) (14)

where, Zkli is a trivalent variable expressing the migration
of ith SR from kth server to lth server.

Zkli =

{
1, when ith SR migrated from kth to lth server.
0, otherwise

}
4.1.1 ILP Formulation

The objective is to optimize the power consumption due to
migration by conducting minimum number of migrations
of SRs.

Objective Function:

minimize(MGT,pow) (15)

Constraints:
1. Migration Constraint: When migrating an SR, we

need to ensure that the SR is only migrated from the kth

server to the lth server. Thus, it needs to be ensured that
the migration should be between CPU-to-CPU or FPGA-to-
FPGA. The equation which enforces the constraint can be
denoted as follows:

Zkli + Zkqi ≤ 1 (16)

2. Power Constraint: Let us assume kth server has max-
imum power consumption limit of PWk,Max and servers
should not exceeding their power limits while migrating the
SRs between the servers, which can be enforced as:
τ∑
i=1

PWi,execution+
N∑
k=1

PWk,const+MGTpow ≤
N∑
k=1

PWk,max

(17)
ERASER with migration capability is presented in the

Algorithm 3. Migration process comes into play only when
the required PEs of a server are not capable to ensure the
completion of dynamic SRs executions within their life-
times. According to the example described above, SR13 has
workload of 7 units, but the second server does not have
enough slack to accommodate it. Hence, when a migration
process is initiated, the portion of the workload which has
already been completed, should be calculated in the source
server and similarly, the remaining workload needs to be
completed in the destination server. SR13 completes 6 units
of workload in second server and 1 unit of workload needs
to be migrated to another server. Migration of an SR should
be carried out to the server which has the maximum remain-
ing slack time. It needs to be ensured that the remaining
portion of the workload (considering the transfer delay) of
the migrated SR should be completed within the life-time. In
some typical scenario, frequency scale up might be required
to satisfy the life-time by speeding up the execution. PEs
operate at frequency (default) f and clock tuning factor β
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is set to 1 by default. We can tune the clock to regulate the
frequency as per requirement. After solving the migration
ILP scheduling outcome of the example, is shown in the
Figure 5.

Algorithm 3: ERASER with Migration

Input: Data transferring delay DT , Workload WLji ,
Number of servers N , Completed workload
Θ units, Operational frequency f

Output: Migrated SRs mapping to PEs with
minimum power

1 Default operational frequency of PE = f ;
2 Clock tuning factor denoted by β, where β range

varies from 1,2,...,R;
3 Initialize β = 1;
4 for (Each Migrated SR ∈ τ ) do
5 Calculate the remaining execution requirement

workload WLji of SR;
6 Calculate the slack time of each server;
7 Calculate the remaining time-gap TGj for

destination server to complete the execution;
8 if (TGj ≥WLji +DTi) then
9 SR migrated from server k to server l;

10 Solve the migration ILP;

11 else
12 if (β < R) then
13 Increment β value by 1;
14 WLji = 1

β×f ×WLji ;
15 Go to the step 7;

16 else
17 Insufficient time for migration;

5 EXPERIMENTS AND RESULTS

We have evaluated the proposed ERASER through software
simulations followed by a physical FPGA-based implemen-
tation. In order to incorporate heterogeneity, VM contains
either a CPU or an FPGA, where the CPU performs at a rate
of 1,500 MIPS and FPGA at 2,000 MIPS, respectively. The
peak power consumption rate of these two types of VMs are
considered as 250 and 400 watts, respectively [33]. Similarly,
we have considered idle power consumption as 85 and 95
watts, respectively [18].

Service Rejection Rate (SRR) and Energy Consumption
are the principal metrics based on which the evaluation has
been performed. SRR can be defined as the percentage
of the total number of SRs rejected by the system5 over
the entire schedule length out of total number of appeared
services. Mathematically, SRR can be formulated as:

SRR =
Total number of SRs rejected

Total number of SRsarrived
× 100% (18)

Normalized energy consumption (NEC): The NEC is
measured for different set of accepted SRs.

5. i.e.by the admission controller of ERASER. ERASER successfully
schedules all the SRs it accepts

Experimental Setup: Each data set consists of randomly
generated hypothetical SRs obtained from distinct distribu-
tions. In order to make, our simulation realistic, we have
considered the example SR sets given in [33]. The weights
(wti = SDi

Lti
) of the SRs have been taken from normal

distribution with standard deviation σwt = 0.1 and varying
different values of mean (µwt) from 0.1 to 0.4. 6 Similarly,
SRs deadlines have also been generated from a normal
distribution with a standard deviation. Given the service
weights, we can obtain the total utilization of the system
(U ) by summing up the weights of all the SRs. Given the
system utilization the total system load (L) can be derived
by:

L =
U

M × 100% (19)

where M denotes the number of PEs.
It may be noted that for a given the system load (L), the

average number of SRs (ρ) in the system can be achieved as:

ρ =
L×M

100× µwt
(20)

The total schedule length is 100000 time-slots and all the
requested SRs follow a poisson arrival process.

After considering real-life parameters (in order to make
our simulation studies more fruitful and realistic), we have
generated various types of data sets by setting different
values for the following parameters:

1) Average individual SR weight: The average individual
SR weight is given by the mean of the distribution
from which task weights have been generated. The
values of µwt, 0.1 to 0.4 have been considered.

2) System Load L: We have varied the system load L
value from 50% to 90% .

3) Number of PEsM: A total of 50 cores of two different
types of PEs have been used for the simulation. We
have considered equal number of FPGAs and CPU
cores (25 of each type) in the server.

All results are generated by running 40 different in-
stances of each data set type and then taking the average
over these 40 distinct runs.

5.1 Implementation and Outcomes
5.1.1 Performance of ERASER
Figure 6(a) exhibits the SRR suffered by ERASER, while
varying the system load. It is evident from the figure that
obtained SRR for SR sets with average individual weight
µwt = 0.1 is comparable to that for SR sets having µwt =
0.2. It may be observed that for a given U , the average
number of SRs (ρ, refer equation 20) with µwt = 0.1 will
be nearly double compared to those having µwt = 0.2 . This
result therefore indicates the fact that the system performs
robustly against variations in the number of SRs.

From Figure 6(b) it can be observed that SRR increases
with the increase in system load L. This is because higher
values of L result in a correspondingly larger number of
SRs (ρ), resulting in the LHS of equation 3 to become
larger. Due to this, the probability of failure of the condition

6. The reconfiguration overhead has been included in the SR execu-
tion time.
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Fig. 6: Performance of ERASER

(equation 3) increases. Increase in system load results in
high rejection rate however, it also increases the energy
consumption. This can be attributed to the fact that higher
be the load, host will remain activated for longer duration
(as the length of accepted SR increases) in order to satisfy the
huge workloads of SRs and thus, energy consumption will
also be high. Energy consumption of the system at different
system load is shown in the Figure 6(c).

5.1.2 Comparison Results

We have compared the proposed ERASER strategy with
state-of-the-art techniques like TPA-STA [25], FFD, LLIF [18]
and SEL-IP [19] with respect to SRR(%), energy consump-
tion. The comparative results are shown in Figure 6(b) and
Figure 6(c). We have measured the performance of these

algorithms at different levels of L, where µwt remains fixed
as (0.2).

It can be observed from Figure 6(c) that SEL-IP suffers
higher rejections than ERASER as the system load increases.
This is mainly due to the fact that SEL-IP attempts to
minimize the energy comparisons by turning off some set
of servers and thus, if the load increases (i.e. number of
arriving SR increases) SEL-IP rejects higher number of SRs
due to resource unavailability. However, this approach be-
come beneficial in terms of energy consumption. Hence, we
can argue that SEL-IP may achieve fair energy consumption
but only at the cost of higher rejection rate. On the other
hand, being an “time-partitioned” based approach, ERASER
can achieve 70% resource utilisation with 14% less rejection.
However, the energy consumption only increases by less
than 5%.

We also compared ERASER with TPA-STA strategy [25].
It can be observed that TPA-STA performance is poor than
ERASER in terms of rejection rate as well as the energy
consumption, as the L increases. It can be attributed to
the fact that TPA-STA focuses to optimize the SR execution
time by keeping a good balance in energy consumption.
However, as SRs counts go high, schedule a large number of
SRs based on dependency and real-time constraint becomes
challenging and it causes higher rejection rate and energy
consumption. ERASER depicts better performance in terms
of SRR by 11% and also consumes 10.2% less energy.

A scheduling strategy called LLIF was proposed in [18].
However, being a greedy based strategy, LLIF schedules SR
with longest load interval first and hence, suffers higher
rejection than ERASER as evident from Figure 6(c). But, as
this strategy in offline decides the minimum number (lower
bound) of machines to execute a set of SRs. Such usages of
machines with limited number of migration help to reduce
the energy consumption. LLIF consumes 7% less energy but
exhibits the increase in SRR by 12%. We have also compared
ERASER with FFD [18]. FFD arranges SRs in descending
order of processing time or energy consumption and allo-
cates to the PEs. Without proper load balancing support FFD
exhibits poor SRR and high energy consumption even at low
system utilization. ERASER suffers 17% less SRR than FFD
and ERASE is energy efficient by 21%.

6 PHYSICAL IMPLEMENTATION ON ZYNQ SOC
TESTBED

6.1 Testbed development
We validated the performance of ERASER on a het-
erogeneous system i.e. Xilinx Zynq-7000 (ZC-702) All-
Programmable SoC [34]. Figure 8 shows the diagrammatic
representation of the proposed architecture. The architecture
contains two types of PEs i.e. Processing System (PS), which
consists of Dual ARM core for software based execution
and Programmable logic (PL) utilised for hardware based
execution. The region inside the PL termed as hardware
accelerator is the place holder of the hardware version of
SR. AXI bus creates an interface in between the DDR mem-
ory, PS and PL with other modules. In addition, Mailbox
and Mutex are coordinating communication and signalling
between PS and PL. Resource utilization for configuration
of each hardware accelerator has been shown in Table 6.
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TABLE 6: Resource Utilization of PL Components

Resources Utilization (%)
Component Flip-Flops LUTS Flip-Flops LUTs

Hardware Accelerator 9646 14884 9.01 29.17
Mutex 90 78 0.09 0.16

Mailbox 220 274 0.21 0.54
Total 9956 15240 9.31 29.87

We have connected two Zynq boards with a PC (acting as
host computer) through the PCI-express bus (3.0 standard)
[35]. The pictorial representation of the connection is shown
in Figure 7. The proposed algorithm is running at the host
PC. Open computing language (OpenCL) based framework
has been used with Xilinx software development kit (SDK).
OpenCL helps to manage the data transfer between host
and Zynq, allocating memory and invoking parallel code
executed on Zynq etc. In PL section, the PL region is
marked as “hardware accelerator” for SR execution, which
is ensured by maintaining the UCF constraints [34]. SRs are
allocated to the FPGAs through ICAP ports. The FPGAs
are operated with PL clock (FCCLK) frequency of 50 MHz.
Operating clock frequency of the ARMs (PS) is 667 MHz.
Zynq SDK supports system C language, which is used to
implement software version fo SR and similarly, VHDL is
used for creating the hardware version. We have computed
the power consumption for executing the proposed strategy
through Xpower tool [34].

6.2 SR Creation Framework
We have constructed and profiled two types of SRs for
the validation purpose. A well-known ’EPFL‘ benchmark
[36] is considered. This benchmark consists of numerous
applications such as “Router”, “Priority”, “Integer to Float
conversion” etc. The power consumption of these bench-
marks on PL part is measured by X-power tool and Intel
platform power estimation tool (IPPET) logic is used to

TABLE 7: Benchmark SRs power (Watt)

PEs Router Priority Dec Add I2F Lg2 Sqrt Calvc
FPGA (PL) 0.691 0.874 1.257 0.818 0.949 1.342 0.828 1.245
ARM (PS) 0.873 1.237 0.981 1.170 0.603 1.491 0.653 1.284

EPFL

Hardware Version Software Version

VHDL System C

.bit .elf

FPGA Logic (PL) ARM (PS)

X power IPPET

PGT

Fig. 9: PMF model

TABLE 8: Parameters of Zynq ZC702 Platform

ARM FPGA
PWidle(W) PWidle(W) PWreconf.(W)

0.673 0.053 0.072

TABLE 9: Performance of ERASER with Various µwt at
different utilization level

µ = 0.2 µ = 0.1
PEs L(%) Energy(J) SRR(%) Energy(J) SRR(%)

50 486.3 3.98 344.5 3.07
60 563.7 7.99 413.3 5.49

6 70 610.2 16.51 481.4 15.61
80 688.4 22.39 551.6 19.79
90 744.7 28.41 620.1 26.07

measure the power consumption of the SR’s executed on
PS. Calculated data are stored in Table 7, which is known as
power generation table (PGT). The pictorial representation
of the Power Measurement Framework (PMF) is shown in
the Figure 9. Based on the power report generated by the
Xilinx 14.4 tool, idle power for both PS and PL regions are
depicted in Table 8.

6.3 Performance of ERASER on ZYNQ SoC

We have shown the performance of the ERASER strategy
in terms of SRR% and energy consumption with migration
technique for heterogeneous platform where system load L
and average SR weight (µ) are the variable parameters. Per-
formance results are depicted in Table 9. We executed SRs,
(i) by keeping µ constant and L is varied (ii) L is constant,
while µ is varied. Table 9 shows the power consumption
(measured in Joule) and rejection rate of ERASER allocation
strategy over a different number of parameter combinations.
Software simulation result and real implementation result
on Zynq platform concludes that ERASER strategy is effi-
cient in performances and able to fulfill our objectives.
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7 CONCLUSIONS

This paper proposes, ERASER, an energy-aware real-time
task allocation and scheduling strategy for heterogeneous
cloud platforms. Heterogeneous cloud servers are equipped
with two distinct types of PEs i.e. FPGAs and GPPs. Firstly,
an ILP based technique is employed with timing constraint,
to map the real-time SRs on the appropriate PEs such
that energy is minimised. Further, To improve the resource
utilization we have also incorporated an SR migration tech-
nique, which allows to serve maximum number of SRs
by considering the dynamic request arrival scenario. We
have evaluated our proposed strategy via simulation based
experiments followed by the physical implementation on
ZYNQ FPGA testbed with benchmark taskset. Experimental
results reveal that ERASER achieves upto 90% resource
utilization with only 26% SR rejection rate over different
experimental scenarios. Comparison results exhibit that the
ERASER outperforms state-of-the-art techniques.

Recently green cloud computing has attracted increasing
attention from both the academia and the industry. The
major challenge for such cloud computing is to deliver a
high level of Quality of Service (QoS) by considering the
factors like i. cost effectiveness for the end users and ii.
energy efficiency for the cloud providers. Towards this end,
in future, we would like to work on developing an energy-
efficient, QoS-aware and cost-effective real-time scheduling
strategy for heterogeneous cloud computing systems.
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