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Abstract. This paper investigates the cross-sectional asset pricing for intra-day return

curves. By introducing a functional Fama-MacBeth regression approach, the validation

of the intra-day risk premium associated with the Fama-French Carhart factors is ex-

amined. The empirical evidence reveals that these common risk factors show weak

explainability to the entire cross-sectional intra-day returns, despite significant risk pre-

miums that are discovered in specific half-hour time-spans in bullish sentiment.
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1. Introduction

Due to the availability of large datasets, the systemic comovement in individual stocks

has been studied in a finer resolution. Consequently, finding an appropriate multi-factor

model has become one of the most controversial topics in empirical asset pricing. Related

works are recently discussed from two aspects: dealing with the explosion of risk factors

(Harvey et al., 2016) and tackling the challenges of presenting high-frequency information

(Pelger, 2020). In this paper, we focus on the latter topic and verify systemic risk factors

in cross-sectional intra-day returns.

The exposures derived from factor models can change during the observation period.

This is well known for studying the risk premium of cross-sectional returns at a daily or

lower frequency, while it is also shown to be the case at an intra-day high-frequency level.

High-frequency information has been considered in this scope of literature, for example,

incorporating intra-day systemic trading and institutional fund flows to better understand

the predictability of daily cross-sectional stock returns (Heston et al., 2010), or calibrat-

ing more efficient daily estimators by aggregating risk exposures obtained at intra-day
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intervals (Li et al., 2017). However, studying the time-varying feature of intra-day factor

exposures itself receives less attention. Andersen et al. (2020) empirically evidenced sig-

nificant intra-day variation in market risk exposures, i.e., betas. This systematic variation

can be explained under their conjecture by different responses of intra-day stock returns

on market shocks. Thus, estimating time-varying intra-day risk exposures is crucial to

identify the source of shocks. Traditionally, we could use rolling-window and filter-type

approaches to obtain time-varying betas, e.g., Adrian and Franzoni (2009). Extending

these methods to develop time-varying exposures at a high-frequency level is challenging,

though, so the demand of practitioners who mainly work with such data cannot meet.

This difficulty is easily overcome by analysing curve data, as modelling intra-day return

curves automatically produces time-varying coefficients at an intra-day level. Different

from discrete observations, the intra-day return curves well preserve the intra-day move-

ment patterns. Studying the cross-sectional risk premium of these curves provides the

implications of the systemic risk factors at an intra-day level. Moreover, the methodology

of curve data modelling is firmly grounded in the theory of functional data analysis (FDA)

(Ramsay and Silverman, 2005; Horváth and Kokoszka 2012). Proliferations can be seen

to use this statistical tool in several recent studies in finance for finding curve-type risk

factors and deriving time-varying risk exposures, e.g., Kokoszka et al. (2018), Cao et al.

(2020), Horváth et al. (2020), and Nadler and Sancetta (2020).

Such a method allow us to obtain time-vary factor exposures in a high-frequency context,

but the controversial question remains and is now transplanted to finding “right” curve-

type risk factors. We, therefore, try to fulfil these gaps and study the validation of the

risk premium for curve-type common risk factors, providing a way to identify the source

of systemic variation of cross-sectional intra-day stock returns.

This paper considers cross-sectional asset pricing in an FDA-preferred high-frequency en-

vironment. Our model framework provides time-varying (or curve-type) factor exposures

and risk premiums over the intra-day interval. A functional Fama-MacBeth regression

is introduced to investigate validities of curve-type common risk factors. Based on a

high-dimensional intra-day return data set ranged from 2004 to 2016, we test the validity

of intra-day risk premiums associated with the Fama-French and Carhart factors (Fama
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and French, 1993; Carhart 1997). Estimating the model in annual sub-samples, we find

weak evidence that these factors explain cross-sectional intra-day return curves over the

entire intra-day window, despite some explanations indicated in specific trading hours of

intra-day intervals in the bull market. Our contributions can be summarised two-fold: 1)

we propose a novel method to test the significance of risk premium at an intra-day level,

and the results indicate the effectiveness or refusal of the corresponding risk factor; 2) we

identify the weak explanatory ability of Fama-French Carhart factors to cross-sectional

intra-day return curves, which bridges works to search robust risk factors in both bullish

and bearish sentiment.

The remaining part is structured as follows. Section 2 describes the data. The method and

empirical analysis are presented in Section3. Section 4 concludes remarks and discusses

possible future work.

2. high-dimensional Intra-day return curves

Our paper uses a high-frequency return dataset at a 5-minute frequency, including the

S&P 500 composites from January 2004 to December 2016, collected from the WRDS

TAQ Millisecond trades database by Pelger (2020). The dataset forms a balanced panel

with N = 332 assets over 3, 273 trading days. On each trading day, the return starts at

9:35 am and delivers 77 discrete observations. For a notational convenience, we denote

the discrete high-frequency return data observed at a regular spaced grid as uj at day t

by rt(uj), j ∈ [1, J = 77].

To treat these dense observed data as curves, the discrete high-frequency returns rt(uj)

are smoothed into a continuous intra-day return (IDR) curve rt(u), u ∈ [0, 1] using

suitable smoothing techniques (Ramsay and Silverman, 2005). In order to account for

a changing market status, we separate the entire sample into annual sub-samples, and

similar treatment is also adopted in Pelger (2020) and Andersen et al. (2020). Figure 1

shows an example of stacked plots of IDR curves in 2016 for four representative assets from

the energy, financial, information technology and consumer staples sectors, respectively.

The figure exhibits the intra-day movements of the assets: Chevron and Bank of America

experience larger intra-day variations, followed by IBM; the IDR curves of Coca-Cola

display relatively less intra-day variations.
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Insert Figure [1] about here.

Table 1 shows the summary statistics of the IDR curves of sample years from 2004 to

2016. We observe sensible results such as that the standard derivations of intra-day return

curves are high during the financial crisis period of 2008-2009. The definition of related

statistics can be referred to Appendix A. Moreover, we test the property for each of

IDR curves by using a series of recently developed hypothesis tests (Horváth et al., 2014;

Kokoszka et al., 2017; Górecki et al., 2018; Rice et al., 2020a). The results indicate that

most IDR curves exhibit stationary, serially uncorrelated, conditional heteroscedastic,

and non-Gaussian distributed sequences, which roughly satisfy the condition of market

efficient hypothesis. We skip the P-values for each of the tests on each asset to save some

space.

Insert Table [1] about here.

In addition, the dataset extends market excess return, size (smb), value (hml), momentum

factors (Fama and French, 1993; Carhart, 1997), and the risk-free rate into a high-

frequency context, with a time window matching the S&P 500 composites. Although

these factors have been extensively discussed in the literature, we are the first to consider

them as intra-day curve-type risk factors. The correlations among these risk factors

are analysed by calculating their sample correlation operators (Ramsay and Silverman,

2005). Figure 2 exhibits the correlation operators between the intra-day market beta and

momentum, and the size and value factors. The plots show that both pairs are barely or

low correlated across the intra-day trading intervals, and this pattern remains the same

for other pairs of risk factors that have not been reported. Hence, the intra-day risk

factors are suitable to fit a linear regression model without concern of multicollinearity.

Insert Figure [2] about here.

3. Functional Fama-MacBeth regression and empirical findings

The Fama-MacBeth (F-M) regression (Fama and MacBeth, 1973) has become a corner-

stone in testing and verifying the risk premium. Their two-step regression approach

provides an empirical framework to test the validation of the implication of the Capital

Asset Pricing Model, and it has been extensively used in investigating other multi-factor
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models. Considering a scalar return panel rit, i ∈ [1, N ], t ∈ [1, T ], the first step is to

regress cross-sectional returns on M common risk factors {F1,t, . . . , FM,t}, and the time

series regression is estimated for each asset i,

rit = βi0 + βi1F1,t + · · ·+ βiMFM,t + εit.

This results in a sequence of factor loadings or exposures β̂im for corresponding risk factors

Fm,t, m ∈ [1,M ]. In the second step, the F-M regression gets the risk premium coefficient

γtm for common factor Fm,t by regressing the cross-section of asset returns rti on the factor

exposures at each time point t,

rti = γt0 + γt1β̂
i
1 + · · ·+ γtM β̂

i
M + εti.

The risk premium coefficients should statistically deviate from zero using the Newey-West

corrected t statistic if the corresponding common risk factor has adequate explanatory

capability.

We now adapt F-M regression into a functional data context so that the risk premium

can be derived and assessed at an intra-day level. The functional F-M regression retains a

two-step approach that is carried out with functional linear regression models. Although

the response is the IDR curves, the risk factors as explanatory variables, do not necessarily

have to be the same type of curve data; they can also be scalar observations at a daily

frequency. This generalisation is useful because the information on risk factors is rarely

observed at a finer intra-day level, resulting in an intractable issue for many empirical

studies. As a result, we consider two versions of functional linear regression models in

the first step: a concurrent function-to-function and a function-to-scalar regression. In

the former case, we regress the IDR curves of ith asset on intra-day curve-type common

factors Fm,t(u), m ∈ [1,M ]:

rit(u) = βi0(u) + βi1(u)F1,t(u) + · · ·+ βiM(u)FM,t(u) + εit(u). (1)

Alternatively, we run the regression on daily common factors Fm,t in the first step,

rit(u) = βi0(u) + βi1(u)F1,t + · · ·+ βiM(u)FM,t + εit(u), (2)
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where βim(u) describe how the IDR curves are exposed to the corresponding risk factor

over the intra-day trading hours. Thus, for each risk factor, we obtain N factor exposures

as the regression is estimated with each asset from i = 1 to N .

The second step is to regress the cross-sectional IDR curves on the factor exposures at

each time step. Because either model from step one produces curve-type factor exposures

βim(u), here we use a function-to-function linear regression model:

rti(u) = γt0(u) + γt1(u)βi1(u) + · · ·+ γt1(u)βiM(u) + εti(u). (3)

where the curve loading γtm(u) represents the risk premium on the intra-day interval at

time point t. Thus, for each risk factor, we obtain a sequence of {γ1m(u), . . . , γTm(u)} by

estimating the regression across the testing period from t = 1 to T .

The averaged risk premium curve γm,T (u) = 1/T
∑T

t=1 γ
t
m(u), that is generated from a

valid common risk factor Fm,t or Fm,t(u), should be significant, or statistically deviated

from zero. In the hypothesis testing, we therefore aim to test the null hypothesis H0 :

E[γtm(u)] = 0. This can be detected by using the norm-based test ΛT = T ||γm,T (u)||

proposed by Rice et al. (2020b). Under H0, the statistic converges to a limit distribution

of
∑∞

`=1 ξ`N 2
` , where N`, ` > 1 are independent and identically distributed Gaussian

random variables, and ξ`, ` > 1 are the eigenvalues of the covariance operator with kernel

C(u, v) = cov(γ0(u), γ0(v)). The null hypothesis is rejected if the statistic ΛT is larger

than the computed critical values.

An immediate application with our dataset investigates the explanatory ability of Fama-

French Carhart risk factors on cross-sectional IDR curves. Considering that the risk

factors can perform variously under different market sentiments, we use the monthly

S&P 500 index and detect the market status through the method proposed by Pagan and

Sossounov (2003). The results indicate that the years include 2004, 2005, 2006, 2010,

2012, 2013, 2014, 2016 fall into bull markets, and only the year of 2008 fall into the bear

market. This result is not surprising as Pagan and Sossounov (2003) showed that their

test could detect the bearish duration about two times less than the bullish duration.

The remaining annual sub-samples, i.e., 2007, 2009, 2011, and 2015 are composed of
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months mixed with bearish and bullish sentiments. We thereby do not consider these

sub-samples in analysing the effect of the market status.

Figure 3 shows an example of the curve-type factor exposure and risk premium for the

market excess return factor estimated by Model (1) and (3) with a sub-sample of 2013.

This annual sub-sample is chosen as a representative because it is relatively recent and

in bullish sentiment. We thus expect to observe estimated risk exposures under such

a market status. From the left-hand subplot, we observe time-varying factor exposures

during the intra-day interval, and their values are generally above one for all cross-

sectional stocks. Also, we find from the right-hand subplot that this factor generates

positive risk premiums during midday trading hours. This effect becomes rather manifest

when the market is booming, i.e., in May and November 2013.

Insert Figure [3] about here.

Table 2 exhibits the P-values of the test ΛT for factor exposures and risk premiums

estimated by using intra-day and daily risk factors. The daily Fama-French Carhart

factors are collected for the same sample period from the Kenneth French data library.

Although most of the risk exposures in step one are significant, the results indicate that

none of the considered common risk factors generate a valid risk premium to account

for the cross-sectional IDR curves over the entire intra-day interval. The finding implies

that unlike the cross-sections of scalar returns that can be explained by Fama-French

Carhart factors, the systemic comovement of cross-sectional IDR curves is more difficult

to explain or predict given the involvement of rich intra-day variations. The economic

rationale behind this variation can be potentially attributed to high-frequency traders,

whose activities accelerate the intra-day information reflection speed, generating a more

efficient and less-predictable market.

Insert Table [2] about here.

The above test assesses the validity of risk premium over the entire intra-day interval,

while some market participants working with high-frequency information may pay more

attention to the systemic comovement in the intra-day time-spans. To tackle with this,

we project the curve loadings γtm(u) onto a finite number of B-spline basis functions

φj(u), 1 ≤ j ≤ K that γtm(u) ≈
∑K

k=1 ζ
t
m,kφk(u). The variation of the loading curve
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γtm(u) is then approximated by K number of score vectors. Since the B-spline bases are

linearly independent and uniform across the grids on the interval [0, 1], the scores ζtm,k

implicate the risk premium for factor Fm,t or Fm,t(u) at the kth time-span of the intra-

day interval on date t. Suppose we project an intra-day risk premium curve γtm(u) onto

13 B-spline bases and obtain 13 scalar scores. Each of these scores represents the risk

premium over a half-hour time-span across the intra-day interval from 9:30am to 4:00pm,

as shown in Figure 4. For instance, the score by projecting onto the first B-spline basis

stands for the risk premium in the time-span of 9:30am–10:00am. Thus, the significance

of risk premium at the kth intra-day time-span can be tested through the Newey-West

corrected t statistic
ζm,T,k

σζm,T,k/
√
T

, k ∈ [1, 13], where ζm,T,k and σζm,T,j are the sample average

and heteroskedasticity and autocorrelation consistent standard deviation of the sequence

{ζ1m,k, . . . , ζTm,k}, respectively.

Insert Figure [4] about here.

In the application, we test the validation of Fama-French Carhart risk factors over half-

hour time-spans in the annual samples from 2004 to 2016. Figure 5 shows the proportions

of the 13 annual samples that the risk factors generate valid risk premiums over intra-day

time-spans. By fitting models (1) and (3), the upper subplot shows some validities of

the intra-day risk factors in specific half-hour intervals. Comparatively, the lower subplot

shows the results by regressing models (2) and (3) with daily risk factors, indicating that,

except for the market excess return showing slight explanatory power in afternoon trading

hours, the remaining factors seldom add interpretation to cross-sectional IDR curves. The

benefit of using more informative curve-type factors are clear: 1) in concordance with

Figure 3, the market excess return explains the cross-sections of IDR curves during the

midday trading hours; 2) the hml value risk factor adds explanatory power to cross-

sectional IDR curves in late-day trading hours; 3) though smb size and momentum are

still weak in interpretability, the risk premiums derived from these risk factors account

for the cross-sectional variation of IDR curves in one or two samples. To enhance our

understanding, Figure 6 exhibits the proportions of valid risk premiums associated with

intra-day risk factors in bull and bear annual sub-samples. We find these risk premiums

are more inclined to be valid in a bull market, particularly during mid-day trading hours,
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while they become invalid in bearish sentiment. This result is consistent with conventional

findings that the risk premiums generated by the market anomalies of cross-sectional stock

returns often vanish during the market turmoil.

Insert Figure [5] and [6] about here.

4. Conclusions

This paper considers a classic problem of cross-sectional asset pricing but on a high-

frequency data type – intra-day return curves. The intra-day risk premiums associated

with Fama-French Carhart risk factors are derived and assessed under a functional Fama-

MacBeth regression approach. The results indicate that these common risk factors show

weak explainability to the entire cross-sectional intra-day returns, despite significant risk

premiums that are discovered in half-hour time-spans in bull markets. Future work

avenues include testing the common risk factors according to the industry or firm char-

acteristics. Also, since the observed risk factors may potentially be miss-specified, one

can decompose latent common risk factors through high-dimensional functional principal

component analysis. Meanwhile, the function-to-function regression models can be re-

placed by the fully functional linear regression model described in Chapter 8 of Horváth

and Kokoszka (2012), which allows us to derive an intra-day risk premium surface show-

ing a cross intra-day effect. However, testing the significance of a surface sequence still

remains an open question.

Appendix A. Definition of basic statistics for intra-day return curves

Following the standard assumptions in functional data analysis, we let the IDR curves

rt(u) to be squared integrable functions drawn from a separable L2[0, 1] Hilbert space.

The L2[0, 1] space is equipped by an inner product 〈r1, r2〉 =
∫
r1(u)r2(u)du for r1, r2 ∈

L2[0, 1], which leads to a norm of ||r(u)|| = [
∫
r2(u)du]1/2, for

∫
=

∫ 1

0
. We now can define

the mean and standard deviation of IDR curves on the ith asset as follows:

µi,T (u) =
1

T

T∑
t=1

ri,t(u), 1 ≤ t ≤ T, 1 ≤ i ≤ N ;
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σi,T (u) = [
1

T

T∑
t=1

(ri,t(u)− µi,T (u))2]1/2.

Let rft (u) be the intra-day risk-free rate. The Sharpe ratio of IDR curves from the asset

i can be derived over the intra-day interval:

SRi,T (u) =
1
T

∑T
t=1(ri,t(u)− rft (u))

[ 1
T

∑T
t=1(ri,t(u)− rft (u))2]1/2

. (4)

As a preliminary analysis of the samples, we take the norm of averaged mean, standard

deviation and Sharpe ratios of cross-sectional IDR curves:

µN,T = || 1
N

N∑
i=1

µi,T (u)||, σN,T = || 1
N

N∑
i=1

σi,T (u)||, SRN,T = || 1
N

N∑
i=1

SRi,T (u)||.
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Tables

Table 1. Summary statistics of the cross-sectional IDR curves, with µmax
and µmin presenting the maximum and minimum expected return across N
assets.
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

µN,T 1.16e-04 1.10e-04 1.08e-04 1.22e-04 2.55e-04 2.15e-04 1.22e-04 1.32e-04 1.04e-04 9.70e-05 9.29e-05 1.06e-04 1.12e-04
µmax 3.46e-04 3.06e-04 2.51e-04 5.14e-04 8.23e-04 8.17e-04 3.21e-04 3.86e-04 3.89e-04 2.84e-04 2.46e-04 1.21e-03 4.89e-04
µmin 4.90e-05 5.19e-05 4.60e-05 5.94e-05 1.14e-04 7.53e-05 5.62e-05 5.78e-05 4.68e-05 4.76e-05 4.45e-05 5.16e-05 5.00e-05
σN,T 1.71e-03 1.61e-03 1.60e-03 1.87e-03 3.91e-03 3.13e-03 1.90e-03 2.02e-03 1.56e-03 1.37e-03 1.36e-03 1.66e-03 1.71e-03
SRN,T 2.92e-02 3.24e-02 3.38e-02 3.35e-02 4.25e-02 4.52e-02 3.99e-02 4.52e-02 3.81e-02 3.88e-02 4.00e-02 3.50e-02 3.74e-02

Table 2. P-values of ΛT test of factor exposures and risk premiums esti-
mated by using models (1), (2) and (3) with daily and intra-day risk factors,
respectively.

Panel A: Intra-day Risk Factor Fm,t(u)
Step 1: βim(u) in Model (1)

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Market return 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SMB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HML 0.00 0.00 0.18 0.48 0.00 0.00 0.05 0.31 0.00 0.00 0.00 0.00 0.00

Momentum 0.00 0.05 0.47 0.00 0.00 0.43 0.00 0.21 0.15 0.00 0.00 0.49 0.00
Step 2: γtm(u) in Model (3)

Market return 0.39 0.45 0.47 0.45 0.50 0.51 0.51 0.47 0.49 0.49 0.47 0.49 0.50
SMB 0.50 0.52 0.52 0.50 0.42 0.43 0.49 0.50 0.48 0.49 0.50 0.47 0.50
HML 0.47 0.46 0.50 0.47 0.50 0.49 0.49 0.42 0.49 0.59 0.59 0.59 0.60

Momentum 0.48 0.47 0.29 0.23 0.26 0.47 0.51 0.49 0.61 0.46 0.50 0.49 0.43
Panel B: Daily Risk Factor Fm,t

Step 1: βim(u) in Model (2)
Market return 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SMB 0.39 0.09 0.00 0.00 0.00 0.00 0.11 0.00 0.05 0.00 0.00 0.02 0.00
HML 0.48 0.50 0.29 0.45 0.09 0.00 0.00 0.48 0.00 0.40 0.47 0.03 0.47

Momentum 0.15 0.45 0.42 0.07 0.26 0.28 0.00 0.49 0.10 0.28 0.50 0.00 0.33
Step 2: γtm(u) in Model (3)

Market return 0.43 0.48 0.50 0.50 0.50 0.51 0.50 0.49 0.47 0.50 0.41 0.39 0.50
SMB 0.44 0.49 0.47 0.43 0.51 0.50 0.50 0.50 0.47 0.42 0.49 0.46 0.49
HML 0.51 0.47 0.49 0.50 0.49 0.49 0.52 0.52 0.49 0.47 0.49 0.41 0.46

Momentum 0.27 0.48 0.47 0.36 0.47 0.40 0.49 0.50 0.50 0.49 0.49 0.45 0.45
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Figures

Figure 1. Plots of IDR curves of four representative assets in 2016.

Figure 2. Correlation operators between market excess return and mo-
mentum, and between SMB and HML intra-day factors, with x/y-axis rep-
resenting intra-day interval from 9:30 am to 4:00 pm.
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Figure 3. Intra-day factor exposure and risk premium of Market excess
return estimated from models (1) and (3) with a sample of 2013.

Figure 4. B-spline bases functions for projecting intra-day risk premium
onto intervals.
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Figure 5. Percentage of the valid risk premium over intra-day trading
hours in 13 annual samples that are tested using the Newey-West corrected
t statistics at a 95% significance level, with the upper subplot showing
the results using intra-day risk factors (models (1) and (3)) and the lower
subplot showing the results using daily risk factors (models (2) and (3)).
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Figure 6. Percentage of the valid risk premium over intra-day trading
hours in bull and bear markets that are tested through the Newey-West
corrected t statistics at a 95% significance level, with both subplots showing
the results using intra-day risk factors (models (1) and (3)). The bull
and bear markets are detected via the algorithm proposed by Pagan and
Sossounov (2003). Since the bull and bear may across our sample period,
we eliminate the sample years mixed with bull and bear market sentiments.
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