
Journal of Logic, Language and Information
https://doi.org/10.1007/s10849-021-09334-x

Dynamic Syntax

The Dynamics of Incremental Processing: Constraints on
Underspecification

Christine Howes1 · Hannah Gibson2

Accepted: 28 April 2021
© The Author(s) 2021

Abstract
Dynamic Syntax (DS: Kempson et al. 2001; Cann et al. 2005) is an action-based
grammar formalism which models the process of natural language understanding as
monotonic tree growth. This paper presents an introduction to the notions of incre-
mentality and underspecification and update, drawing on the assumptions made by
DS. It lays out the tools of the theoretical framework that are necessary to understand
the accounts developed in the other contributions to the Special Issue. It also repre-
sents an up-to-date account of the framework, combining the developments that have
previously remained distributed in a diverse body of literature.

Keywords Dynamic Syntax · Incrementality · Underspecification

1 Introduction

Dynamic Syntax (DS: Kempson et al. 2001; Cann et al. 2005) is an action-based
grammar formalism which models the process of natural language understanding as
monotonic tree growth. The foundations of DS are based in the recognition of the fact
that what are usually considered independent features of language; syntax, semantics
and pragmatics, are in fact mutually dependent features of human communication.

B Christine Howes
christine.howes@gu.se

Hannah Gibson
h.gibson@essex.ac.uk

1 Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg,
Gothenburg, Sweden

2 Department of Language and Linguistics, University of Essex, Colchester, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-021-09334-x&domain=pdf
http://orcid.org/0000-0002-2794-1586
http://orcid.org/0000-0003-2324-3147


C. Howes, H. Gibson

Words are analysed in the order inwhich they are uttered in a string in a context, thus
taking how an interpretation is built up to have a central role, including factors usually
considered to be outside the remit of a grammar, such as pragmatic enrichment from
context. Complete trees in DS have no representation of word order, instead they are
binary branching semantic trees representing the argument structure of the utterance
being parsed or produced.DSpostulates that phenomena usually described as syntactic
can be explained and described by the dynamics of the growth of a (potentially partial)
parse tree.

This paper constitutes an overview of the Dynamic Syntax framework and an intro-
duction to the current Special Issue which explores the notion of parsing/production
incrementality, drawing particularly on the concepts of underspecification and update.
The theoretical notions upon which the framework depends are outlined below, with
the formal tools laid out in more detail in Sect. 2. Section 3 provides an introduction
to the papers of the Special Issue.

1.1 Incrementality

In DS, trees are built up incrementally on a word-by-word basis via a combination
of generally applicable computational rules, specific lexical actions and pragmatic
actions.Any string encountered is grammatical if there is a licit sequence of stepswhich
can lead to a completed tree (with no unresolved requirements—see Sect. 2.1) by the
time all the words in the string have been parsed. Importantly (particularly for analyses
of dialogue) at any point in an ongoing parse we can also distinguish potentially
grammatical sequences from ungrammatical ones (Cann et al. 2007). In the case of
potentially grammatical sequences, there is a successful sequence of steps up to a given
point, although the tree is not yet complete and theremay be outstanding requirements.
In contrast, if there is no possible sequence of steps which allows development up to
a given point, the sequence is ungrammatical and the process aborted.

Crucially then, a grammatical string from the DS perspective depends on the abil-
ity for one partial tree to unfold into another partial tree. This contrasts with other
theoretical approaches in which the ‘final’ tree state is the determining factor in gram-
maticality. Another key feature of the Dynamic Syntax approach is that alternative
parsing routes may be possible for any given sentence, and this will not be recoverable
from the final tree, only by looking at the actions taken to reach it.

1.2 Underspecification

Key to theway that interpretations are built up inDS is the notion of underspecification.
This can be structural, in the form of unfixed nodes (see Sect. 2.4.1), semantic e.g.
in anaphora where pronouns are taken to project place-holding metavariables (see
Sect. 2.4.3) or pragmatic, where e.g. interpretations may need to be resolved by access
to non-linguistic context. Underspecification is a key concept in the DS formalism and
is the feature which unites the contributions in this Special Issue.

123



Dynamic Syntax

2 Mechanisms

Many grammar formalisms characterise properties of strings of words. In DS, what
is ultimately characterised is propositional structure. This propositional structure is
represented using binary logical trees. The establishment of propositional structure is
further built up step-by-step on a left-to-right basis and is modelled as tree growth, and
this is taken to constitute syntax. Knowledge of syntax is therefore characterised as
the knowledge to construct semantic representations from words encountered in con-
text. DS is crucially concerned with characterising the growth of such representations
through strings uttered in context.

We next describe the formal tools used in DS, then take the reader step-by-step
through a simple parse.

2.1 Trees

Decorations Propositions are ultimately modelled using (binary) semantic trees. Each
tree node is annotated with decorations which provide different types of information.
Tree nodes must contain information in terms of both type and formula values.1

1. The type of node, e.g. propositions Ty(t) and entities Ty(e)—with complex types
built up from the basic types, e.g., intransitive verb phrases are functions from
entities to truth values Ty(e → t) etc;

2. A formula value (the semantic content)—these are traditionally expressed in terms
such as Fo(John′), which, by the rules of the grammar can be combined to form
complex expressions such as Fo(Love′(Mary′)(John′)), where X’ corresponds
to the concept which X expresses. Current formulations of DS (see e.g. Eshghi
et al. 2015, a.o.) use records and record types from type theory with records
(TTR; Cooper 2005) or distributional semantic vectors for the semantic content
(Sadrzadeh et al. 2018). While there is a stipulation that each node has a semantic
value, DS itself is agnostic as to the precise semantic representation.

3. The tree node address—using the logic of finite trees (LOFT; Blackburn and
Meyer-Viol 1994) this is either based on the root node of the tree under con-
struction being Tn(0), with each daughter node being assigned an additional one
for a functor daughter or zero for an argument daughter, or by its relation to any
other tree node. For example, 〈↓0〉X means that X holds at the current node’s
argument daughter, whilst 〈↓∗〉X means X holds somewhere below or at the cur-
rent node in the local tree. By convention predicates appear on the right-branching
nodes and arguments appear on left-branching nodes.

4. The pointer (♦) marks the node currently under development.

RequirementsAll these labels (except the pointer) can show information aboutwhat has
already been parsed, or be requirements, indicating what else is needed to complete
the current partial tree. Unlike complete descriptive decorations, requirements are
preceded by a question mark(?); ?Ty(t) is a requirement for a proposition, ?∃x .Tn(x)

is a requirement for a fixed tree node address. Crucially, this is only one way in

1 Note that decorations are often suppressed in trees in the interests of readability.

123



C. Howes, H. Gibson

which underspecification is modelled in DS. For a successful parse, there must be no
outstanding requirements on the tree by the time the parse is complete.2

2.2 Tree Update

There are a finite set of tree actions that can be applied in DS. These include actions
for inducing tree growth (make()); decorating tree nodes (put()); and moving the
pointer within an existing tree structure (go()). These procedures are applied in the
parse in generally applicable computational actions, or triggered by words.

Lexical actions Like Head-driven Phrase Structure Grammar (HPSG; see e.g. Sag
et al. 2003) and Combinatory Categorial Grammar (CCG; see e.g. Steedman 2000),
DS is a lexicalised grammatical framework, acknowledging the fact that complexity in
language relies to a large extent on information stored in the lexicon, and is therefore
language specific. In DS, what is stored in the lexicon is a set of procedures, known
as lexical actions.

The lexical action for ‘John’, shown in Example 1, will be accessed when the
word John is encountered, and states: if there is a requirement for Ty(e) at the current
node (determined by the position of the pointer ♦), then put the decorations for the
type Ty(e), and formula Fo(John′) at the current node, otherwise abort the parsing
process.3

Example 1 John
IF ?Ty(e)
THEN put(Ty(e), Fo(John′), [↓]⊥)

ELSE ABORT

Lexical actions can also account for some aspects of syntactic predictability. For
example, in the lexical entry for the transitive verb loves, nodes for the verb and its
object are created with the pointer left at the object node with the expectation that the
next lexical item will be of Ty(e).4

Example 2

loves

IF ?Ty(e → t)
THEN go(〈↑1〉);put(P RE S);go(〈↓1〉);make(〈↓1〉);go(〈↓1〉);

put(Ty(e → (e → t)), Fo(Love′), [↓]⊥);
go(〈↑1〉);make(〈↓0〉);go(〈↓0〉);
put(?Ty(e))

ELSE ABORT

2 Though recall the distinction between potential grammaticality versus ungrammaticality discussed in
Sect. 1.1.
3 The last decoration in this lexical entry [↓]⊥, is the bottom restriction, which means that the node may
not have daughter nodes.
4 Note that the decoration put(PRES) is a shorthand notation for tense information. This has been more
formally represented using the notion of “situation nodes” and “event variables” (see Gregoromichelaki
2006, a.o.). We do not go into the details here.

123



Dynamic Syntax

Fig. 1 Tree following Introduction and Prediction

Computational actions Computational rules apply optionally whenever their precon-
ditions are met (DS does not give us a strategy for choosing a rule at any given point,
although of course there are restrictions on when they can apply). These form a small
fixed set of macros, which can be expressed in the same way as lexical actions. Some
encode the properties of LOFT, the Language of Finite Trees (such as usingAnticipa-
tion to move the pointer to a node with unsatisfied requirements, or tree growth using
e.g. *Adjunction as in Fig. 5); others encode semantic actions (e.g. β-reduction; see
Example 3). Broadly speaking, these computational rules are considered to be avail-
able cross-linguistically and can apply whenever the necessary triggering conditions
are present. This contrasts with lexical input, for example, which is language-specific.

Pragmatic actions In addition to themechanisms of computational and lexical actions,
in order to complete a parse it may be necessary to perform pragmatic actions, such
as finding an appropriate antecedent for a metavariable from context (see the case of
pronouns discussed in Sect. 2.4.3, where successful processing involves a pragmatic
process of Substitution). This may mean incorporating non-linguistic information,
such as when he refers to someone being gestured towards, and the machinery of DS
itself does not provide constraints on this process. Crucially then, context from the DS
perspective can be seen to refer to both the broader discourse context and the context
provided by the tree at a given point in the parsing process, as well as the sequence of
actions used thus far (see also Sect. 2.7).

2.3 Step-through ‘John Loves Mary’

TheAxiom states that we begin a parse with a single node consisting of a requirement
for a proposition, and with the pointer at that node. This reflects the expectation on the
part of the parser that the speaker will provide some propositional content—namely,
an utterance that is truth-evaluable. Using the computational actions Introduction
and Prediction creates a partial tree waiting for a subject and predicate,5 as shown
in Fig. 1.

5 Note that these particular computational rules are considered to be routinised instantiations of common
parsing actions. As such, they are language specific, and are appropriate for English as it has subject-verb-
object (SVO) word order. As discussed in Cann et al. (2005), these rules do not generalise to free word order
and prodrop languages (e.g. Japanese, Spanish). For more discussion of routinisation in DS, see Bouzouita
(2009); Bouzouita and Chatzikyriakidis (2009). Bouzouita (2009) approaches language change through
adopting the notion of routinisation in the sense of Pickering and Garrod (2004) under which language
change over time is explained through progressive changes in lexical specifications, with each state being
a reflex of general properties of tree growth which standardly dictate the limits on permissible variation
(Bouzouita 2009, p20).

123



C. Howes, H. Gibson

Fig. 2 Parsing John

Fig. 3 Parsing …loves…

Given a simple example John loves Mary using the lexical entries shown in Exam-
ples 1 and 2, the next step would be to parse the word John, as per the lexical actions
discussed above, leaving the resulting tree, as in Fig. 2.

Further rules allow us to update the tree such that the pointer is at the node with
a requirement ?Ty(e → t), where we can parse the word loves. They are Thinning,
which removes a requirement from a node if the completed form is also present,Com-
pletion, which moves the pointer to a mother node if no requirements are outstanding
at the current node, and Anticipation, which moves the pointer to any daughter node
with outstanding requirements.

The application of the lexical actions for loves in Example 2 results in the tree shown
inFig. 3. This leaves the pointer at the object node,where the trigger condition forMary
(?Ty(e)) is met, and the tree can then be completed using Thinning, Completion and
Elimination (Example 3), which derives the value of a mother node’s content and
type from those of its daughters (using β-reduction), resulting in the tree shown in
Fig. 4.

Example 3

Elimination

IF ?Ty(X), 〈↓0〉(Fo(α), Ty(Y )), 〈↓1〉(Fo(β), Ty(Y → X)

THEN put(Fo(β(α)), Ty(X));
ELSE ABORT

2.4 Underspecification

Central to DS is the notion of underspecification. At every non-final point in the parse,
the partial tree may be underspecified, with each type of tree decoration (Fo(), Ty(),
Tn()) a potential source of underspecification.

123



Dynamic Syntax

Fig. 4 Parsing …Mary

Fig. 5 Using *Adjunction

Fig. 6 Parsing Mary, …, after *Adjunction

2.4.1 Unfixed Nodes

Unfixed nodes are nodes whose position (Tn(x)) in a tree is initially underspecified,
with a requirement to be fixed at a later point in the parse. This means that a parse
tree can unfold with certain elements not yet in the positions they will occupy in
the final tree, without having to resort to the notion of movement of already fixed
elements in a syntactic tree. A canonical example of this is left topic dislocation, as in
Mary, John loves, in which, although it is the first item encountered in the string, Mary
is the object of loves, not the subject. In a transformational account, it is assumed that
Mary is moved from its usual object position, as a focus effect, but, in DS, a parse may
proceed using the weak structural relation rule of *Adjunction (Fig. 5) from where
the trigger requirement for parsing Mary is met, as in Fig. 6.6

Thinning and Completion leave the pointer at the ?Ty(t) node, from where John
and loves can be parsed as before, with the results shown in Fig. 7.

However, the parse is not yet complete, as the pointer is at a nodewith an outstanding
requirement (?Ty(e)) and there is a requirement for a fixed position in the tree on the
unfixed node. These can both be satisfactorily resolved by merging the two nodes

6 For an account of Generalised Adjunction as an available strategy whereby a node can be introduced
from any node to another of the same type across any arbitrary relation, see Cann et al. (2005, p. 206).

123



C. Howes, H. Gibson

Fig. 7 Parsing Mary, John loves …

(using Merge), resulting in the same tree shown in Fig. 4, with the only difference
being in the steps used to get there.

2.4.2 Multiple Unfixed Nodes

An additional constraint is operative on underspecification: No two unfixed nodes
of the same modality can co-exist. Rather than being an arbitrary stipulation within
DS, this follows as a natural result of the tree logic. Two unfixed nodes of the same
modality (i.e. two locally unfixed nodes or two generally unfixed nodes) have the
same tree node address and as a result can not be kept distinct. Therefore, any point
in the parse in which two putative unfixed nodes co-exist will automatically result
in the collapse of these nodes on to each other. Rather than being a challenge for
the theoretical approach, this observation has been used to model a number of unre-
lated phenomena in unrelated languages (i.e. clitic placement in Romance and Greek
(Bouzouita and Chatzikyriakidis 2009), focus constructions in Japanese (Seraku and
Gibson 2016), scrambling in Korean and Japanese (Kempson and Kiaer 2010), and
word order alternations in the Bantu language Rangi (Gibson 2016)).

2.4.3 Metavariables

Underspecification of content (Fo(U)) is achieved inDS throughmetavariables,which
formalise one way in which we use context to interpret strings in, for example, pro-
nouns, anaphora and ellipsis.

In DS, a sentence such as He loves cakes would not be well-formed if there were
no contextual indication of how to interpret he. This underspecification is impor-
tant in that it assumes that, as processors, we constantly update our interpretations
of utterances based on what we know about the world, previous discourse, or other
perceptual indicators (e.g. pointing). Parsing a string with a pronoun in it involves
a pragmatic process of Substitution; for example, if the string He loves cakes fol-
lows John ate all the meringues, we would be able to substitute the formula value
Fo(John′) for he in the second string, resulting in the parse leading to the complete
formula Fo(Love′(Cake′)(John′)).

123



Dynamic Syntax

The lexical entry for he (see Example 4) contains a formula value that is under-
specified; this is in the form of a metavariable, Fo(UMale′), with a requirement for a
fixed formula value (?∃x .Fo(x)), which must be filled for the parse to be complete.7

Example 4 he

IF ?Ty(e)
THEN put(Ty(e), Fo(UMale′)),

?〈↑0〉(Ty(t) ∧ ∃x .T ns(x))

?∃x .Fo(x), [↓]⊥)

ELSE ABORT

Pronouns can thus be seen as place-holders for some other information to be
assigned from context. First (and second) person pronouns would have similar lexical
entries, except that the metavariable is further restricted as to what value it can take
according to who is the currently speaker (or hearer) Fo(USpkr ′), which enables DS to
account easily for mid-utterance speaker switches in dialogue which involve a change
of pronoun (Purver et al. 2010; Kempson et al. 2016, a.o.).

The same is true of other information that might be conveyed by pronouns and
pronominal elements such as gender. In languages with grammatical gender, metavari-
ables serve to further restrict possible substituents while fully-specified information
is not provided by the form itself. In the Bantu languages for example, subject (and
object) markers convey information pertaining to noun classes (which function as
grammatical genders). Within the DS approach, these markers can be analysed as
introducing a metavariable which is restricted in terms of noun class (which also
encodes a singular versus plural distinction). Thus, the class 10 subject marker zi- in
Swahili conveys that the possible interpretation and annotation of the node can only
be an nominal of class 10. As was seen with the English pronoun he, this is encoded
in the lexical entry of the marker as can be seen in (5).

Example 5 zi-

IF ?Ty(e)
THEN put(Ty(e), Fo(UClass10)),

?∃x .Fo(x), [↓]⊥)

ELSE ABORT

2.5 Linked Trees

As can be seen in earlier examples in which a formula value from one tree can be
pragmatically substituted into another, trees are not constructed in isolation. This
has implications for many different types of construction, including coordination and
relative clauses and adjunction in general. The way these are dealt with in the DS
framework is through the building of separate, but linked semantic trees, in tandem.
The rule of Link Adjunction allows us to construct a new tree, linked to the tree
currently under construction, and carrying the requirement for a copy of the formula
value from the node at which Link Adjunction is applied. The shared term ensures
the flow of information between the two trees.

7 Note that “?〈↑0〉(Ty(t) ∧ ∃x .T ns(x))” is a case constraint to prevent strings such as Mary liked he being
licensed.

123



C. Howes, H. Gibson

Fig. 8 Parsing John …(ready to parse who), using LINK Adjunction and *Adjunction

Fig. 9 Parsing John, who smokes, loves Mary—Completed parse

2.5.1 Relative Clauses

In combination, the rules of Link Adjunction and *Adjunction allow us to project
a linked tree (using the modal operators 〈L〉 and 〈L−1〉) which must contain a copy
of the node it is linked to, so that sentences such as John, who smokes, loves Mary
can be parsed as shown in Fig. 8. Later in the parse, shown in Fig. 9, the unfixed
node is merged to a fixed node position, carrying the copy of the node the linked tree
is from. This can then be evaluated using the rule of Link Evaluation, giving the
correct interpretation that it is John who both smokes and loves Mary. Notice that, as
with the pronoun he, above, there is no trace of the word who on the final tree; the
lexical actions merely provide a metavariable which is then updated by the copy of
Fo(John′).

123



Dynamic Syntax

2.6 Dialogue

Due to the (inter)action-based nature of the machinery of DS, it is uniquely placed
such that it can also be viewed as a grammar of dialogue rather than of sentences
in isolation. In DS, generation (production) uses the same tree representations and
actions as parsing (comprehension), with the addition of a goal tree which is subject
to a subsumption check of the partial tree under construction at every step. Note that
the goal tree can itself be partial; the only stipulation is that it is more advanced than
the current parse state. And that the current parse state is more enriched than the
preceding tree state (if there was one). This means that DS directly models dialogue
phenomena such as backchannels and clarification requests (Eshghi et al. 2015; Howes
and Eshghi 2017), self-repair (Hough 2014) and split utterances (Kempson et al. 2016,
a.o.), without recourse to a competence/performance distinction and without requiring
any additional level of representation. In the case of co-construction of utterances, for
example, a hearer can simply take over from the initial speaker on the basis of the
partial tree they themselves have so far been constructing as a parse tree.

2.7 Context

Our discussion so far has largely been on the basis of taking uttered sentences as though
in isolation, but, as themodelling of pronoun resolution and the interactive dynamics of
dialoguemake clear, processing of language,whether production or parsing, invariably
requires incremental access to previous states—node contents, partial trees, and even
sequences of actions—so the process of tree growth is never in isolation but always
against context of some sort, here modelled, just like the building up of content, in
tree growth terms.

2.8 Summary

This introductory paper has provided an overview of Dynamic Syntax and the tools
and mechanisms adopted by the framework. After introducing the main conceptual
foundations upon which the approach is based (Sect. 1), it introduced the mechanisms
which constitute the formal means of representation —semantic trees, tree update (or
tree growth), underspecification and link structures (Sect. 2).

For a more in-depth presentation of the formal tools of the framework, including
the specific details of the lexical rules see Cann et al. (2005). Kempson et al. (2011)
provides an up-to-date account of a range of phenomena modelled from the DS per-
spective.

Additional discussion of the constraint which allows only one fixed node at a time
can be found in Bouzouita (2009), Bouzouita and Chatzikyriakidis (2009), Chatzikyr-
iakidis (2010), Chatzikyriakidis and Kempson (2011), Gibson (2012, 2016), Seraku
(2013) and Seraku and Gibson (2016).

123



C. Howes, H. Gibson

3 The Papers in this Collection

The papers in this collection are all unified by an exploration of the concepts of parsing
incrementality and underspecification, and the adoption of a DS-inspired approach to
modelling natural language. Five of the papers present analyses of specific phenom-
ena in specific languages, all from the perspective of a incremental parsing/production
approach (Seraku, Kiaer, Chatzikyriakidis, Yang and Wu, Christopher). In addition
to this, the papers by Purver et al. and Howes and Eshghi couple DS with differ-
ent semantic models (Vector Space Semantics; Purver et al. and Type Theory with
Records in Howes and Eshghi) to explore how far DS can account for the incremental
compositionality of (shared) semantic representations.

Chatzikyriakidis investigates the historical development of three different clitic
systems of Standard Modern, Cypriot and Pontic Greek from a common linguistic
ancestor. He argues that the transition from Koine Greek to the Medieval varieties
and from the Medieval varieties to the respective modern ones can be explained by
processes of routinization and parsing/hearer asymmetries as two of the driving factors
behind syntactic change.

The paper by Christopher presents a Dynamic Syntax analysis of the phenomenon
of differential object marking in Kazakh. The difference in the pragmatics associ-
ated with marked and unmarked direct objects, as well as the syntactic restrictions
on the positioning of unmarked direct objects, are explained through the differential
application of the processing options which can use either fixed or unfixed nodes.

Howes and Eshghi present a corpus study of feedback in dialogues and describe
how a low-level, semantic processing model in Dynamic Syntax, using the predictive,
incremental and interactive nature of the formalism, accounts for this feedback, and
where it occurs. This model shows how feedback serves to continually realign pro-
cessing contexts and thus manage the characteristic divergence and convergence that
is key to moving dialogue forward.

The contribution by Kiaer aims to explain Korean speakers’ strong preference
for incremental, left-to-right structure building, showing how a range of phenomena
reflect the dynamics of structural growth in Korean. She argues that these phenomena
necessitate adopting a grammar formalism with left-to-right incrementality as a core
property of the syntactic architecture.

The Purver et al paper presents a version of DS which, rather than relying on sym-
bolic representations of meaning, is assigned a compositional distributional semantics
which enables incremental judgements of similarity or disambiguation. The model is
implemented and evaluated on real data.

Seraku examines case marking in Japanese and adopts a DS-style approach to the
notion of grammatical relations. While the nominative marker -ga is most commonly
thought of as a subject marker, Seraku analyses data where -ga marks an object or a
single clause exhibits a co-occurence of ga. He accounts for these data by assuming
that a case marker maximally excludes potential landing sites of an unfixed node
(rather than uniquely identifying a landing site).

The paper by Yang and Wu examines minimisers in Mandarin Chinese, with a
focus on the lian...dou construction. They argue that, contrary to previous accounts,
the distribution and interpretation of the lian…dou construction can only accurately

123



Dynamic Syntax

be captured through the development of an account which incorporates semantic,
syntactic and pragmatic elements—in line with the DS approach to natural language.

We believe that together, this Special Issue presents an up-to-date account of the
Dynamic Syntax framework, including the tools and machinery made available by the
formalism alongside the latest application of this approach to a range of phenomena
across unrelated languages. The Special Issue both contributes to the development of
the framework, aswell as presenting cutting-edge research in a number of distinct fields
of linguistics and the study of language. The papers are unified by the emphasis placed
on the dynamic nature of the parsing/production process, thereby foregrounding the
incremental nature of structure building and the establishment of meaning in context.

Acknowledgements We would like to thank the attendees of the First Dynamic Syntax conference (held
at SOAS University of London) where a number of the papers presented in this Special Issue were initially
presented. Thanks go also to the broader Dynamic Syntax community who have contributed to this volume,
either directly or through ongoing thought-provoking and inspiring conversations. Finally, thanks to the
anonymous reviewers who read and commented on the submissions, as well as the JLLI editorial team
whose invitation and subsequent support led to this Special Issue. Howes was supported by two grants
from the Swedish Research Council (VR); 2016-0116—Incremental Reasoning in Dialogue (IncReD) and
2014-39 for the establishment of the Centre for Linguistic Theory and Studies in Probability (CLASP) at
the University of Gothenburg.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Blackburn, P., & Meyer-Viol, W. (1994). Linguistics, logic and finite trees. Logic Journal of the Interest
Group of Pure and Applied Logics, 2(1), 3–29.

Bouzouita, M. (2009). Modelling syntactic variation. Diálogo de la Lengua, 1, 1–25.
Bouzouita,M., &Chatzikyriakidis, S. (2009). Clitics as calcified processing strategies. In 14th International

Lexical Functional Grammar (LFG-2009) (pp. 188–207). CSLI Publications.
Cann, R., Kempson, R., & Marten, L. (2005). The dynamics of language. Oxford: Elsevier.
Cann, R., Kempson, R., & Purver, M. (2007). Context and well-formedness: The dynamics of ellipsis.

Research on Language and Computation, 5(3), 333–358.
Chatzikyriakidis, S. (2010). Clitics in four dialects of Modern Greek: A dynamic account. Ph.D. thesis,

King’s College London
Chatzikyriakidis, S., & Kempson, R. (2011). Standard Modern and Pontic Greek person restrictions: A

feature-free dynamic account. Journal of Greek Linguistics, 11, 127–166.
Cooper, R. (2005). Records and record types in semantic theory. Journal of Logic and Computation, 15(2),

99–112.
Eshghi, A., Howes, C., Hough, J., Gregoromichelaki, E., & Purver, M. (2015). Feedback in conversation as

incremental semantic update. In Proceedings of the 11th international conference on computational
semantics (IWCS).

Gibson, H. (2016). A unified dynamic account of auxiliary placement in Rangi. Lingua, 184, 79–103.
Gibson, H. C. (2012). Auxiliary placement in Rangi: A Dynamic Syntax perspective. Ph.D. thesis, SOAS,

University of London.

123

http://creativecommons.org/licenses/by/4.0/


C. Howes, H. Gibson

Gregoromichelaki, E. (2006). Conditionals: A Dynamic Syntax account. Ph.D. thesis, King’s College Lon-
don.

Hough, J. (2014). Modelling incremental self-repair processing in dialogue. Ph.D. thesis, Queen Mary
University of London.

Howes, C., & Eshghi, A. (2017). Feedback Relevance Spaces: The organisation of increments in conversa-
tion. In Proceedings of the 12th international conference on computational semantics (IWCS).

Kempson, R., Cann, R., Gregoromichelaki, E., & Chatzikiriakidis, S. (2016). Language as mechanisms for
interaction. Theoretical Linguistics, 42(3–4), 203–275.

Kempson, R., Gregoromichelaki, E., Meyer-Viol, W., Purver, M., White, G., & Cann, R. (2011). Natural-
language syntax as procedures for interpretation: The dynamics of ellipsis construal. In A. Lecomte &
S. Tronçon (Eds.), Ludics, Dialogue and Interaction, no. 6505 in Lecture Notes in Computer Science
(pp. 114–133). Berlin, Heidelberg: Springer.

Kempson, R., & Kiaer, J. (2010). Multiple long-distance scrambling: Syntax as reflections of processing.
Journal of Linguistics, 46(01), 127–192.

Kempson, R., Meyer-Viol, W., &Gabbay, D. (2001). Dynamic Syntax: The flow of language understanding.
Oxford: Blackwell.

Pickering, M., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and Brain
Sciences, 27, 169–226.

Purver, M., Gregoromichelaki, E., Meyer-Viol, W., & Cann, R. (2010). Splitting the ‘I’s and crossing the
‘you’s: Context, speech acts and grammar. In Proceedings of the 14th SemDial Workshop on the
Semantics and Pragmatics of Dialogue, Poznań (pp. 43–50).

Sadrzadeh, M., Purver, M., Hough, J., & Kempson, R. (2018). Exploring semantic incrementality with
Dynamic Syntax and Vector Space Semantics. In Proceedings of the 22nd SemDial workshop on the
Semantics and Pragmatics of Dialogue (pp. 122–132).

Sag, I. A., Wasow, T., & Bender, E. M. (2003). Syntactic theory: A formal introduction. Stanford: CSLI
Publications.

Seraku, T. (2013). Multiple foci in Japanese clefts revisited: A semantic incrementality account. Lingua,
137, 145–171.

Seraku, T., & Gibson, H. (2016). A Dynamic Syntax modelling of Japanese and Rangi clefts: Parsing
incrementality and the growth of interpretation. Language Sciences, 56, 45–67.

Steedman, M. (2000). The syntactic process. Cambridge, MA: MIT Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Dynamic Syntax
	The Dynamics of Incremental Processing: Constraints on Underspecification
	Abstract
	1 Introduction
	1.1 Incrementality
	1.2 Underspecification

	2 Mechanisms
	2.1 Trees
	2.2 Tree Update
	2.3 Step-through `John Loves Mary'
	2.4 Underspecification
	2.4.1 Unfixed Nodes
	2.4.2 Multiple Unfixed Nodes
	2.4.3 Metavariables

	2.5 Linked Trees
	2.5.1 Relative Clauses

	2.6 Dialogue
	2.7 Context
	2.8 Summary

	3 The Papers in this Collection
	Acknowledgements
	References





