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With very few exceptions, recent research in fair division has mostly focused on deterministic allocations.

Deviating from this trend, we study the fairness notion of interim envy-freeness (iEF) for lotteries over
allocations, which serves as a sweet spot between the too stringent notion of ex-post envy-freeness and

the very weak notion of ex-ante envy-freeness. iEF is a natural generalization of envy-freeness to random

allocations in the sense that a deterministic envy-free allocation is iEF (when viewed as a degenerate lottery). It

is also certainly meaningful as it allows for a richer solution space, which includes solutions that are provably

better than envy-freeness according to several criteria. Our analysis relates iEF to other fairness notions as

well, and reveals tradeo�s between iEF and e�ciency. Even though several of our results apply to general

fair division problems, we are particularly interested in instances with equal numbers of agents and items

where allocations are perfect matchings of the items to the agents. Envy-freeness can be trivially decided

and (when it can be achieved, it) implies full e�ciency in this setting. Although computing iEF allocations in

matching allocation instances is considerably more challenging, we show how to compute them in polynomial

time, while also maximizing several e�ciency objectives. Our algorithms use the ellipsoid method for linear

programming and e�cient solutions to a novel variant of the bipartite matching problem as a separation

oracle. We also study the extension of interim envy-freeness notion when payments to or from the agents

are allowed. We present a series of results on two optimization problems, including a generalization of the

classical rent division problem to random allocations using interim envy-freeness as the solution concept.
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1 INTRODUCTION
Plenty of situations arise in the real world every day, where assets need to be distributed among

individuals. Making sure that everyone gets what they are entitled to is an imperative, yet vague,

aspiration that is open to interpretation. Fair division is a research area that deals with problems of

distributing assets in a way that is considered fair. Fair allocation problems, that focus on indivisible

items, have received considerable attention from the EconCS community recently.

Among the fairness notions that have been proposed to capture the necessity for impartiality

and justice, envy-freeness [21, 36] is, without doubt, the prevailing one. Envy-freeness requires
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that each individual, or agent, prefers their own share to anyone else’s. However natural and

intuitive, though, envy-freeness may not be possible to achieve. In addition, the universality of fair

division disputes justi�es many di�erent de�nitions of fairness. Some popular fairness notions in

the literature include proportionality and max-min fair share, among others.

The vast majority of the related literature focuses on deterministic allocations. The few recent

exceptions (e.g., [3, 7, 22]) that consider random allocations (lotteries or probability distributions

over allocations) are either too liberal or too conservative in the fairness concepts they consider.

For example, ex-ante envy-freeness compares the random bundle allocated to an agent, in terms of

expected valuation, to the random bundle allocated to any other agent. Ex-ante envy-freeness is very

weak as a fairness guarantee. Indeed, a lottery that allocates all items to an agent selected uniformly

at random is ex-ante envy-free; clearly, such a lottery can hardly be considered fair. On the other

extreme, the notion of ex-post envy-freeness requires that every outcome of a random allocation

is envy-free. Ex-post envy-freeness is very strict and essentially invalidates the advantages of

randomness.

The notion of interim envy-freeness [31] serves as middle ground between ex-post and ex-ante

envy-freeness, balancing between the stringency of the constraint and the substance of the fairness

guarantee. In particular, consider an instance where a set of indivisible items are to be allocated to

a set of agents, and a �xed, publicly known, lottery over allocations. Let an outcome of the lottery

be realized and each agent observe only their own allocation. Each agent, then, compares their

wealth to the random bundle allocated to any other agent, conditioned upon their own realized

allocation. Let, for example, the lottery have many possible outcomes (allocations in its support),

but only two of which allocate the bundle 0 of items to agent 1; let agent 2 obtain bundle 1 in the

�rst of these outcomes and bundle 2 in the second one. The interim envy-freeness constraint for

agent 1 with respect to agent 2 and bundle 0, is satis�ed if the value that agent 1 has for 0 is at

least as high as her average value for 1 and 2 , according to the probability that agent 2 receives

them (the relative probability of the two outcomes in the lottery). If such a constraint is satis�ed for

every agent, with respect to every other agent and any possible bundle, i.e., everyone’s allocated

bundle is always worth to them at least what they can estimate anyone else is receiving, then the

lottery is said to be interim envy-free.

Interim envy-freeness can be naturally extended to accommodate for payments, similarly to the

recent fair allocation literature [24, 27]. It is a known fact that payments can help eliminate envy

in the deterministic allocation case, both in the form of subsidies paid to the agents to compensate

for an unsatisfactory bundle, and in the form of rent payments paid by the agents to make their

allocation look less desirable to others. Rent division [2] is a fundamental fair allocation problem

involving payments, where the input consists of a total rent amount, a set of agents, and an equal

number of rooms on which the preferences of agents are expressed. The goal is to assign a price to

each room so that the room prices sum up to the total rent, and to match agents to rooms so that

everyone prefers their own allocation and rent share. Using the interim envy-freeness concept, we

consider natural extensions of problems with payments to the random allocation case, both in the

rent division and in the subsidy distribution context.

Matching allocation instances, as in the rent division setting just discussed, are relevant in many

applications; hence, we partially focus on this case. An important technical advantage is that such

instances allow for an easy computation of (deterministic) envy-free allocations, as opposed to

general allocation instances, for which relevant problems are typically NP-hard. However, allowing

randomization seems to make the situation considerably more complex. Interestingly, as we will see,

the added complication still allows for positive computational results related to interim envy-free

lotteries.



1.1 Overview and Significance of Our Contribution
To the best of our knowledge, interim envy-freeness (iEF) has not received any attention by the

EconCS community. We justify its importance as a fairness notion for lotteries of allocations,

by demonstrating a rich menu of interesting properties it enjoys. First, we relate it to the most

important fairness properties for deterministic allocations and lotteries. In terms of strength as a

fairness property, iEF is proved to lie between proportionality and envy-freeness in the following

way. Clearly, when viewed as a degenerate lottery, any envy-free allocation is iEF. Also, every

iEF lottery is de�ned over proportional allocations. These implications are shown to be strict in a

strong sense. We show that there are allocation instances that admit proportional allocations but no

iEF lottery, and instances that admit iEF lotteries but no envy-free allocation. Compared to fairness

properties for lotteries, iEF lies between ex-ante envy-freeness (which can be always attained

trivially) and ex-post envy-freeness (which is too restrictive). These �ndings and observations

appear in Section 3.

Our next goal is to explore the trade-o�s between iEF and economic e�ciency (Section 4). We pay

special attention to matching allocation instances where envy-freeness implies Pareto-e�ciency

and optimal utilitarian, egalitarian, and average Nash social welfare. A careful interpretation of

these facts reveals that envy-freeness is a very restrictive fairness property. In contrast, as less

restrictive, iEF lotteries may not be Pareto-e�cient and can furthermore produce allocations of

suboptimal social welfare. We provide tight or almost tight bounds on the price of iEF with respect

to the utilitarian, egalitarian, and average Nash social welfare. These bounds suggest that iEF

allocations can have social welfare that is up to Θ(=) times far from optimal, where = is the number

of agents.

Bounds on the price of iEF give only rough estimates of the best social welfare of iEF lotteries.

We present polynomial-time algorithms for computing iEF lotteries that maximize the utilitarian,

egalitarian, and log-Nash social welfare. Our algorithms follow a general template that can be

brie�y described as follows. The problem of computing an iEF lottery of maximum social welfare is

formulated as a linear program. This linear program has exponentially many variables; to solve

it, we exploit the execution of the ellipsoid method to its dual. As the dual linear program has

exponentially many constraints, the ellipsoid method needs access to polynomial-time separation

oracles that check whether the dual variables violate the dual constraints or not. We design such

separation oracles by exploiting connections to maximum edge-pair-weighted bipartite perfect

matching (2EBM), a novel (to the best of our knowledge) combinatorial optimization problem

that involves perfect matchings in bipartite graphs. We show how to solve 2EBM in polynomial

time by exploiting an elegant lemma by Cruse [19] on decompositions of doubly-stochastic centro-

symmetric matrices. We believe that 2EBM is a natural combinatorial optimization problem of

independent interest and with applications in other contexts. These computational results appear

in Section 5 and constitute the most technically intriguing results in the paper.

Finally, we extend the de�nition of interim envy-freeness to accommodate for settings where

monetary transfers (payments) are allowed. We de�ne and study two related optimization problems.

In subsidy minimization, which is motivated by a similar problem for deterministic allocations that

was studied recently, we seek iEF pairs of lotteries and payments to the agents so that the total

expected amount of payments is minimized. In utility maximization, which extends the well-known

rent division problem, we seek iEF pairs of lotteries and payments that are collected from the agents

and contribute to a �xed rent; the objective is to maximize the minimum expected agent utility. We

consider di�erent types of payments depending on whether the payments are agent-speci�c, bundle-

speci�c, or unconstrained (i.e., speci�c to agents and allocations). iEF is proved to be considerably

more powerful than envy-freeness, allowing for much better solutions to the two optimization



problems compared to their deterministic counterparts. We also showcase the importance of both

agent-speci�c and bundle-speci�c payments by showing that they are incomparable to each other,

in the context of the two optimization problems. By applying our computational template, we

present e�cient algorithms that compute optimal solutions to subsidy minimization and utility

maximization using unconstrained payments, violating the iEF condition only marginally. These

results are presented in Section 6. We believe that they attest to the signi�cance of interim envy-

freeness too and will motivate further study.

Due to lack of space, several proofs and intermediate statements have been omitted. They will

appear in the �nal version of the paper.

1.2 Further Related Work
Previous work on randomness in allocation problems is clearly related to ours. Aziz [6] discusses the

bene�ts of randomization in social choice settings, including fair division, thus supporting relevant

studies despite the related challenges. Gajdos and Tallon [23] study ex-ante and ex-post notions

of fairness in a setting with an inherent uncertainty imposed by the environment. More recently,

Aleksandrov et al. [3] analyze the ex-post and ex-ante envy-freeness guarantees of particular

algorithms for online fair division. Freeman et al. [22] study the possibility of achieving ex-ante

and ex-post fairness guarantees simultaneously in the classical fair allocation setting. For example,

they show that there always exists an ex-ante envy-free lottery, with all allocations in its support

satisfying a relaxed fairness property known as envy-freeness up to one item (EF1; see [13]). They

furthermore show that such lotteries can be computed e�ciently. In very recent work, Aziz [7]

strengthens some of these results.

Interim envy-freeness was �rst de�ned by Palfrey and Srivastava [31] (see also [20, 37]). Even

though the intuition behind the iEF notion in those papers coincides with ours, their settings are

di�erent. They are more complex in the sense that the value of an agent for a bundle may depend

on the allocation, but they are more restrictive as the lottery probabilities are �xed in advance. Our

setting is more suitable to formulate and study existence and computational questions.

Randomness is an important design tool for mechanisms that compute solutions in matching

allocation instances. In a slightly di�erent context than ours (e.g., see [28]), agents are assumed

to have ordinal preferences on the items. Mechanisms such as the probabilistic serial rule [11]

introduce randomness to avoid the discrimination between agents, and achieve ex-ante fairness

guarantees for all cardinal valuations that are compatible to the ordinal preferences. Other rules in

this line of research include random priority [1], vigilant eating [8], and several extensions of the

probabilistic serial rule [14].

Previous work on subsidy minimization has focused on envy-freeness as the solution concept.

The objective is to compute an allocation and appropriate payments to the agents so that agents

are non-envious for the combinations of payments and bundles of items they receive. The work

of Maskin [30] seems to be the �rst treatment of the problem, without optimizing subsidies

though. The notion of envy-freeability refers to an allocation that can become envy-free when

paired with appropriate payments. Halpern and Shah [27] present a characterization that indicates

that envy-freeability is strongly connected to a no-positive-cycle property in an appropriately

de�ned envy graph. Alternatively, envy-freeable allocations maximize the utilitarian social welfare

with respect to all bundle redistributions among the agents. Among other results, Halpern and

Shah [27] aim to bound the amount of subsidies assuming that all agent valuations are in [0, 1].
They conjecture that subsidies of = − 1 su�ce; an even stronger version of the conjecture is proved

by Brustle et al. [12]. Complexity results for subsidy minimization are presented by Caragiannis

and Ioannidis [15]. Another study that blends fairness (including envy-freeness) with payments is

the work of Chevaleyre et al. [18] on distributed allocations of items.



Rent division had attracted attention much before subsidy minimization [5, 33, 34]. A very similar

characterization of envy-freeable allocations [4, 35] like the one mentioned above, has allowed for

a simple solution in [24] to the problems of maximizing the minimum agent utility and minimizing

the disparity between agent utilities. Earlier, the papers [2, 26, 29] present algorithms for computing

envy-free rent divisions without considering optimization criteria.

2 PRELIMINARIES
An instance of an allocation problem consists of a set N of = agents and a set I of< items. Agent

8 ∈ N has valuation E8 ( 9) for item 9 ∈ I. By abusing notation, we use E8 (() to denote the valuation
of agent 8 for the set (or bundle) of items ( . We assume that valuations are non-negative and additive,

i.e., E8 (() =
∑

9 ∈( E8 ( 9). We remark, though, that several of our results (including the concept of

interim envy-freeness, which we de�ne later in this section) carry over to more general valuations.

Furthermore, even though this is rarely required for our positive statements, in our examples we

use normalized valuations satisfying

∑
9 ∈I E8 ( 9) = 1 for every agent 8 ∈ N .

An allocation � = (�1, �2, ..., �=) of the items in I to the agents of N is simply a partition of

the items of I into = bundles �1, �2, ..., �= , with the understanding that agent 8 ∈ N gets the

bundle of items �8 . An allocation � = (�1, �2, ..., �=) is envy-free (EF) if E8 (�8 ) ≥ E8 (�: ) for every
pair of agents 8 and : . In words, the allocation � is envy-free if no agent prefers the bundle of

items that has been allocated to some other agent to her own. The allocation � is proportional if
E8 (�8 ) ≥ 1

=
E8 (I). An instance may not admit any envy-free or proportional allocation; to see why,

consider an instance in which all agents have a positive valuation of 1 for a single item (and zero

value for any other item). It is well-known that, due to additivity, an envy-free allocation is always

proportional.

Envy-freeness is de�ned accordingly if monetary transfers are allowed. In particular, a pair of

an allocation � and a vector p consisting of a payment ?8 to each agent 8 ∈ N is envy-free with

payments if E8 (�8 ) + ?8 ≥ E8 (�: ) + ?: for every pair of agents 8 and : . The term envy-freeable refers
to an allocation that can become envy-free with an appropriate payment vector. Depending on the

setting, payments can be restricted to be non-negative (e.g., representing subsidies that are given

to the agents [12, 15, 27]) or non-positive (e.g., when payments are collected from the agents, like

in the rent division problem [24]).

In addition to their fairness properties, allocations are typically assessed in terms of their e�ciency.

We say that an allocation � = (�1, �2, ..., �=) is Pareto-e�cient if there is no other allocation

�′ = (�′
1
, �′

2
, ..., �′

=) with E8 (�′
8 ) ≥ E8 (�8 ) for every agent 8 ∈ N , with the inequality being strict

for at least one agent of N . The term social welfare is typically used to assign a cardinal score

that characterizes the e�ciency of an allocation. Among the several social welfare notions, the

utilitarian, egalitarian, and Nash social welfare are the three most prominent. We use the notation

U(�), E(�), avN(�), and lgN(�) to refer to the utilitarian, egalitarian, average Nash, and log-Nash

social welfare, respectively, of an allocation � = (�1, ..., �=); the corresponding e�ciency scores

are de�ned as follows:

U(�) =
∑
8∈N

E8 (�8 ), E(�) = min

8∈N
E8 (�8 ), avN(�) =

(∏
8∈N

E8 (�8 )
)
1/=

, lgN(�) =
∑
8∈N

ln E8 (�8 ).

The price of fairness, introduced independently in [9] and [16], refers to a class of notions that

aim to quantify trade-o�s between fairness and e�ciency. For example, the price of envy-freeness

with respect to the utilitarian social welfare for an allocation instance (that admits at least one

envy-free allocation) is the ratio of the optimal utilitarian social welfare of the instance over the



utilitarian social welfare of the best envy-free allocation. Di�erent price of fairness notions follow

by selecting di�erent fairness concepts and social welfare de�nitions.

We are particularly interested in matching allocation instances, in which the number of agents

is equal to the number of items. Our assumptions (e.g., for non-negative valuations) imply that

the only reasonably fair (e.g., proportional) allocations should then assign (or match) exactly one

item to each agent. We refer to such allocations as matchings.1 Notice that, an envy-free matching

must allocate to each agent her most-valued item. As such, whenever an envy-free allocation exists

in a matching instance, it is Pareto-e�cient and maximizes the social welfare, according to all

de�nitions of social welfare mentioned above. Hence, the price of envy-freeness is trivially 1 in

this case (with respect to all the social welfare de�nitions given above).

Random allocations and interim envy-freeness
We consider random allocations that are produced according to lotteries (or probability distribu-

tions). The lottery Q over allocations of the items of I to the agents of N is ex-ante envy-free

if E�∼Q [E8 (�8 )] ≥ E�∼Q [E8 (�: )] for every pair of agents 8, : ∈ N . Q is ex-post envy-free if any

allocation it produces with positive probability is envy-free (or, in other words, if all allocations in

the support of Q are envy-free).

We now provide the formal de�nition of the central concept of this paper. We say that a lottery

Q over allocations is interim envy-free (iEF) if for any pair of agents 8, : ∈ N and any possible

bundle of items ( that agent 8 can get in a random allocation produced by Q, it holds

E8 (() ≥ E�∼Q [E8 (�: ) |�8 = (] .

The de�nition of iEF requires that the value agent 8 has when she gets a bundle ( is at least as high

as the average value she has for the bundle that agent : gets, conditioned on 8’s allocation.

We extend the notion of interim envy-freeness to pairs of lotteries over allocations and payments

to/from the agents, in an analogous way that recent work has de�ned envy-freeness with payments.

In fact, we di�erentiate between di�erent payment schemes with respect to whether payments are

per agent (A-payments), per bundle (B-payments), or per allocation and agent (C-payments). We

similarly extend the notion of price of fairness and envy-freeability to the case of iEF. We postpone

providing formal de�nitions for the corresponding sections that these notions are being examined.

3 INTERIM ENVY-FREENESS VS. OTHER FAIRNESS NOTIONS
In this section we compare interim envy-freeness with other fairness notions, with the aim to

identify possible fairness implications. The �rst implication follows easily by the de�nitions and

has been observed before in more general contexts than ours (e.g., see [37]).

Lemma 3.1. Any iEF lottery Q is ex-ante envy-free.

Proof. Indeed, using the de�nitions of iEF, ex-ante envy-freeness and well-known properties of

random variables, we have

E�∼Q [E8 (�8 )] =
∑
(⊆I

E8 (() · Pr�∼Q [�8 = (] ≥
∑
(⊆I
E�∼Q [E8 (�: ) |�8 = (] · Pr�∼Q [�8 = (]

= E�∼Q [E8 (�: )],

for every pair of agents 8 and : . �

1
We typically use the small letter 1 to denote a matching, instead of the usual notation of � for allocations in general

instances.



An even simpler observation is that any lottery that deterministically produces an envy-free

allocation � is trivially iEF. Indeed, �8 is the only bundle that can be given to agent 8 , who weakly

prefers it to the bundle �: that is allocated to agent : . Trivially, E�∼Q [E8 (�: ) |�8 = (] = E8 (�: )
and the iEF condition is identical to the envy-freeness condition E8 (�8 ) ≥ E8 (�: ). We can slightly

extend this argument to obtain the following implication.

Lemma 3.2. Any ex-post envy-free lottery Q is iEF.

However, the opposite is not true; we show below that the existence of an iEF allocation does

not imply the existence of an EF allocation. This is important as it indicates that the set of iEF

allocations is larger than those of EF ones.

Lemma 3.3. There exist allocation instances with an iEF lottery but with no EF allocation.

Proof. Consider the matching allocation instance at the left of Table 1 and the lottery Q which

returns matchings 0-1-2 and 0-2-1, with probability 1/2 each. As agents 2 and 3 have maximum

possible value in each of the two matchings produced by Q, EF and, consequently, iEF conditions
for them are satis�ed. To see that the iEF condition is satis�ed for agent 1, observe that she is

allocated item 0 in both matchings in the support of Q, for which she has a value of 1/3. Agent 2
(and, similarly, agent 3) gets item 1 with probability 1/2 and item 2 with probability 1/2. Agent
1’s average value for the item agent 2 (or agent 3) gets is 2/3 · 1/2 + 0 · 1/2 = 1/3. Hence, the
iEF condition for agent 1 with respect to agent 2 (and, similarly, for agent 1 with respect to 3) is

satis�ed. The proof that the lottery Q is iEF is complete.

0 1 2

1 1/3 2/3 0

2 0 1/2 1/2
3 0 1/2 1/2

0 1 2

1 1/3 2/3 0

2 0 2/3 1/3
3 1/4 1/2 1/4

Table 1. The two matching instances that are used in the proofs of Lemmas 3.3 and 3.5 to distinguish between
iEF, EF, and proportionality. Throughout the paper, we consider several examples with three agents and items
0, 1, and 2 . A concise notation like 0-2-1 is used to represent the matching in which agents 1, 2, and 3 get
items 0, 2 , and 1, respectively.

In the same example, it can be easily seen that there is no EF allocation. Indeed, as the only agent

who has positive value for item 0 is agent 1, agent 1 should get this item and be envious of the

agent who gets item 1. The proof of the lemma is complete. �

Our next lemma relates iEF to proportionality and is used extensively in our proofs.

Lemma 3.4. Any allocation in the support of an iEF lottery is proportional.

Proof. Consider an iEF lottery Q and any agent 8 ∈ N . By the de�nition of iEF, we have that

for any allocation in the support of Q where agent 8 gets the bundle of items ( , it holds that

E8 (() ≥ E�∼Q [E8 (�: ) |�8 = (] for each other agent : . By summing up over all other agents we get

(= − 1)E8 (() ≥
∑
:≠8

E�∼Q [E8 (�: ) |�8 = (] = E�∼Q [
∑
:≠8

E8 (�: ) |�8 = (] = E8 (I \ ().

By adding E8 (() to both sides of the above inequality and rearranging, we get E8 (() ≥ 1

=
E8 (I),

implying that any allocation in the support of Q is proportional. �

However, iEF is a stronger property than proportionality as the next lemma shows.



Lemma 3.5. There exist allocation instances with a proportional allocation but with no iEF lottery.

Proof. Consider the instance at the right of Table 1. In this instance, allocation 0-2-1 is the

only proportional allocation. Hence, by Lemma 3.4, to show that no iEF lottery exists, it su�ces to

consider only the (lottery that deterministically returns) allocation 0-2-1. In this allocation, agents

1 and 2 are envious of agent 3, contradicting the iEF requirement. �

Our next lemma quanti�es the disparity between envy-freeness and interim envy-freeness; the

proof exploits Lemma 3.5.

Lemma 3.6. The maximum envy at any allocation in the support of an iEF lottery, when the agent
valuations are normalized, can be as high as 1 − 2

=
and this is tight.

4 INTERIM ENVY-FREENESS VS. EFFICIENCY
We now explore tradeo�s between interim envy-freeness and e�ciency. Two well-studied re�ne-

ments of Pareto-e�ciency are relevant for lotteries of allocations: ex-ante and ex-post Pareto-

e�ciency. A lottery Q over allocations is ex-ante Pareto-e�cient if there exists no other lottery

Q′
such that E�∼Q′ [E8 (�8 )] ≥ E�∼Q [E8 (�8 )] for every agent 8 ∈ N , with the inequality being strict

for at least one agent of N . A lottery is ex-post Pareto-e�cient if all allocations in its support are

Pareto-e�cient. It is well-known that ex-ante Pareto-e�ciency implies ex-post Pareto-e�ciency.

For allocation instances with two agents, the allocations in the support of an iEF lottery are

envy-free and, thus (as observed in Section 2), Pareto-e�cient. This is due to the fact that any

allocation in the support of an iEF lottery is proportional (by Lemma 3.4) and hence envy-free, since

there are only two agents. This implies that an iEF lottery is ex-post and ex-ante Pareto-e�cient.
2

In the following, we show that this may not be the case in instances with more agents.

Theorem 4.1. There exist matching instances with = ≥ 3 agents in which no iEF lottery is ex-post
(and, consequently, ex-ante) Pareto-e�cient.

To assess the impact of fairness in random allocations to social welfare, we need to extend the

price of fairness de�nition to lotteries. We do so implicitly here by de�ning the price of iEF (one

can similarly de�ne, e.g., the price of ex-ante envy-freeness). We say that the price of iEF with

respect to a social welfare measure is the worst-case ratio over all allocation instances with at least

one iEF lottery, of the optimal social welfare in the instance over the expected social welfare of the

best iEF lottery (where “best” is de�ned with respect to this social welfare measure).

In our next theorems, we bound the price of iEF with respect to di�erent social welfare notions.

In the proof of our upper bounds, we consider normalized valuations. This is a typical assumption

in the related literature as well, e.g., see [16]. This assumption is not necessary for average Nash

social welfare.

Theorem 4.2. The price of iEF with respect to the utilitarian, egalitarian, and average Nash social
welfare is at most =, when the agent valuations are normalized.

Proof. The proof follows by Lemma 3.4, which implies that the valuation of each agent in any

allocation in the support of an iEF lottery is at least 1/=. Then, the utilitarian, egalitarian, and
average Nash social welfare is at least 1, 1/=, and 1/=, respectively, while the corresponding optimal

values are at most =, 1, and 1, respectively. �

The next two statements indicate that our price of iEF upper bounds with respect to utilitarian

and egalitarian social welfare are asymptotically tight.

2
It can be easily seen that ex-post and ex-ante Pareto-e�ciency coincide for matching allocation instances with two agents.

This is not true in general.



Theorem 4.3. The price of iEF with respect to the utilitarian social welfare is at least Ω(=).

Proof. Let n > 0 be negligibly small and : ≥ 2 be an integer. We use the following matching

instance with = = 2: agents and items. For 8 = 1, 2, ..., : , agent 8 has value :
:+1 for item 8 , value 1

:+1
for item 8 + : , and value 0 for any other item. For 8 = : + 1, : + 2, ..., 2: , agent 8 has value 1

2:
+ n for

items 1, 2, ..., : and value
1

2:
− n for items : + 1, ..., 2: .

An optimal allocation has utilitarian social welfare (at least)
:2

:+1 +
1

2
− :n . To see why, consider

the allocation in which agent 8 gets item 8 for 8 = 1, 2, ..., 2: . We now claim that no iEF lotteryQ over

allocations has welfare higher than
:

:+1 +
1

2
+:n . The lower bound on the price of iEF will follow by

the relation between = and : (and by taking n to be su�ciently small). Indeed, by Lemma 3.4, the

support of Q should consist of allocations in which agents : + 1, : + 2, ..., 2: get items 1, 2, ..., : for a

total value of
1

2
+ :n . Then, the maximum value each of the agents 1, 2, ..., : gets from the items

: + 1, ..., 2: is
1

:+1 .
It remains to present such a lottery Q. It su�ces to assign item 8 +: to agent 8 for 8 = 1, 2, ..., : and

assign uniformly at random the items 1, 2, ..., : to the agents : + 1, ..., 2: . Clearly, agents : + 1, ..., 2:

are not envious. For 8 = 1, ..., : , agent 8 has value 1

:+1 . Her expected value for the item of another

agent ℓ is 0 if ℓ is one of the : �rst agents besides 8 and 1

:+1 if ℓ is one of the : last agents. Notice

that in the latter case, agent ℓ gets item 8 (for which agent 8 has value :
:+1 ) with probability 1/: ,

while she gets items for which agent 8 has no value otherwise. �

Theorem 4.4. The price of iEF with respect to the egalitarian social welfare is at least Ω(=).

A very similar proof to the one of Theorem 4.3 yields our best (albeit not known to be tight)

lower bound for the price of iEF with respect to the average Nash social welfare.

Theorem 4.5. The price of iEF with respect to the average Nash social welfare is at least Ω
(√
=
)
.

5 COMPUTING EFFICIENT INTERIM ENVY-FREE ALLOCATIONS
We devote this section to proving Theorem 5.1 and show how we can compute an iEF lottery of

maximum expected social welfare e�ciently in the case of matching instances. We remark that,

in the case of non-matching instances (where the number of items is larger than the number of

agents), deciding whether an iEF lottery exists is an NP-hard problem.
3

Theorem 5.1. For matching instances, an iEF lottery of maximum expected utilitarian, egalitarian,
or log-Nash social welfare (if one exists) can be computed in polynomial time in terms of the number
of agents.

Our algorithms use linear programming. Let M be the set of all possible perfect matchings

between the agents inN and the items in I (more formally,M is the set of all perfect matchings in

the complete bipartite graph � = (N ,I,N × I)). For agent 8 ∈ N and item 9 ∈ I, denote by M8 9

the set of matchings fromM in which item 9 is assigned to agent 8 . Also, for a matching 1 ∈ M
and an agent : ∈ N , 1 (:) denotes the item of I to which agent : is matched in 1. Then, an iEF

3
To see this, consider the case of two agents and recall that (i) an iEF lottery is a lottery over proportional allocations

(Lemma 3.4), and (ii) a proportional allocation is envy-free and (trivially) iEF. Hence, the existence of an iEF lottery is

equivalent to the existence of a proportional/EF allocation in the case of two agents. Now, if we consider instances with

identical valuations (in which both agents have value E (6) for item 6), deciding whether an iEF lottery exists is equivalent

to deciding Partition, a well-known NP-hard problem.



lottery can be computed as the solution to the following linear program.

maximize

∑
1∈M

G (1) · SW(1)

subject to

∑
1∈M8 9

G (1) · (E8 ( 9) − E8 (1 (:))) ≥ 0, 8 ∈ N , 9 ∈ I, : ∈ N \ {8}∑
1∈M

G (1) = 1

G (1) ≥ 0, 1 ∈ M

(1)

The variables of the linear program are the probabilities G (1), for every matching 1 ∈ M, with

which the lottery produces matching 1. Together with the non-negativity constraints on x, the
second constraint

∑
1∈M G (1) = 1 requires that the vector of probabilities x = (G (1))1∈M de�nes a

lottery over all matchings ofM. The notation SW(1) is used here to refer generally to the social

welfare of matching 1. We will speci�cally replace SW by U, E, and lgN later. The objective of

the linear program is to maximize the expected social welfare E1∼x [SW(1)] or, equivalently, the
quantity

∑
1∈M G (1) · SW(1).

The �rst set of constraints represent the iEF conditions. Indeed, the constraint is clearly true

for every agent 8 ∈ N and item 9 ∈ I that is never assigned to agent 8 under x (i.e., when

Pr1∼x [1 (8) = 9] = 0). We will also show that this is the case when Pr1∼x [1 (8) = 9] > 0 as well. For

agent : ∈ N \ {8}, interim envy-freeness requires that

E8 ( 9) ≥ E1∼x [E8 (1 (:)) |1 (8) = 9] . (2)

By multiplying the left-hand-side of (2) with Pr1∼x [1 (8) = 9], we get

E8 ( 9) · Pr1∼x [1 (8) = 9] =
∑

1∈M8 9

G (1) · E8 ( 9),

and by doing the same with the right-hand-side, we have

E1∼x [E8 (1 (:)) |1 (8) = 9] · Pr1∼x [1 (8) = 9] =
∑

1∈M8 9

G (1) · E8 (1 (:)) .

Hence, inequality (2) is equivalent to the �rst constraint of the linear program (1).

The linear program (1) has exponentially many variables, i.e., one variable for each of the =!

di�erent matchings of M. To solve it e�ciently, we will resort to its dual linear program

maximize I

subject to I + ∑
(8, 9) ∈1

:∈N\{8 }

(E8 ( 9) − E8 (1 (:))) · ~ (8, 9, :) + SW(1) ≤ 0, 1 ∈ M

~ (8, 9, :) ≥ 0, 8 ∈ N , 9 ∈ I, : ∈ N \ {8}

(3)

The dual linear program (3) has polynomially many variables and exponentially many constraints.

Fortunately, we will be able to solve it using the ellipsoid method [25, 32]. To do so, all we need

is a polynomial-time separation oracle, which takes as input values for the dual variables I and

~ (8, 9, :) for all triplets (8, 9, :) consisting of agent 8 ∈ N , item 9 ∈ I, and agent : ∈ N \ {8}, and
either computes a matching 1∗ for which a particular constraint is violated, or correctly concludes

that no constraint of the dual linear program (3) is violated.

Let us brie�y remind the reader how solving the dual linear program using the ellipsoid method

can give us an e�cient solution to the primal linear program as well; a more detailed discussion

can be found in [25, 32]. To solve the dual linear program, the ellipsoid method will make only

polynomiallymany calls to the separation oracle. This is due to the fact that, among the exponentially

many constraints, the ones that really constrain the variables of the dual linear program are very



few; the rest are just redundant. Then, after having kept track of the execution of the ellipsoid

method on the dual linear program, the primal linear program can be simpli�ed by setting implicitly

to 0 all variables that correspond to dual constraints that were not returned as violated ones by

the calls of the separation oracle during the execution of the ellipsoid method. As a �nal step, the

solution of the simpli�ed primal linear program (which is now of polynomial size) will give us the

solution x; this will have only polynomially-many matchings in its support.

In the rest of this section, we will show how to design such separation oracles for the dual linear

program (3) when we use the utilitarian, egalitarian, or log-Nash de�nition of the social welfare.

Our separation oracles essentially solve instances of a novel variation of the maximum bipartite

matching problem. We believe that this can be of independent interest, with applications in many

di�erent contexts.

The maximum edge-pair-weighted perfect bipartite matching
Instances of the maximum edge-pair-weighted perfect bipartite matching problem (or, 2EBM, for

short) consist of the complete bipartite graph � = (N ,I,N × I) with a weighting functionk that

assigns weight k (41, 42) to every ordered pair of non-incident edges 41 and 42 from N × I. The
objective is to compute a perfect matching 1 ∈ M so that the total weight over all edge-pairs of 1,

denoted by

Ψ(1) =
∑

(8, 9) ∈1

∑
(:,ℓ) ∈1:
:≠8

k ( (8, 9), (:, ℓ)), (4)

is maximized.
4

Let X be the set of quadruples (8, 9, :, ℓ) where 8, : ∈ N and 9, ℓ ∈ I, with 8 ≠ : and 9 ≠ ℓ .

We can view such a quadruple as the ordered pair of edges (8, 9) and (:, ℓ) in the input graph � .

Essentially, the quadruples of X correspond to all possible ordered pairs of di�erent edges in the

input graph. To compute a perfect matching 1 ∈ M of maximum total edge-pair weight, we will use

the following integer linear program with Θ(=4) variables and constraints (where = is the number

of agents and items). We remark that, from now on, we simplify the notationk ((8, 9), (:, ℓ)) and
usek (8, 9, :, ℓ) instead.

maximize

∑
(8, 9,:,ℓ) ∈X

C (8, 9, :, ℓ) ·k (8, 9, :, ℓ)

subject to

∑
9,ℓ∈I:

(8, 9,:,ℓ) ∈X

C (8, 9, :, ℓ) = 1, 8 ∈ N , : ∈ N \ {8}∑
8,:∈N:

(8, 9,:,ℓ) ∈X

C (8, 9, :, ℓ) = 1, 9 ∈ I, ℓ ∈ I \ { 9}

C (8, 9, :, ℓ) = C (:, ℓ, 8, 9), (8, 9, :, ℓ) ∈ X
C (8, 9, :, ℓ) ∈ {0, 1}, (8, 9, :, ℓ) ∈ X

(5)

For a quadruple (8, 9, :, ℓ) ∈ X, the variable C (8, 9, :, ℓ) indicates whether both edges (8, 9) and (:, ℓ)
belong to the perfect matching (C (8, 9, :, ℓ) = 1) or not (C (8, 9, :, ℓ) = 0). The �rst constraint indicates

that among all edge pairs with endpoints at agent nodes 8 and : , exactly one has both its edges in

the matching. Similarly, the second constraint indicates that among all edge pairs with endpoints

at item nodes 9 and ℓ , exactly one has both its edges in the matching. The third constraint ensures

symmetry of the variables so that they are consistent to our interpretation.

4
We remark that the problem of computing a perfect matching of maximum total edge weight in an edge-weighted complete

bipartite graph with edge weight F (4) for each edge 4 , is equivalent to 2EBM by de�ning the edge-pair weights of the

latter ask (4, 4′) = F (4 )
=−1 for every ordered pair of edges 4 and 4′.



We relax the integrality constraint of (5) and replace it by

C (8, 9, :, ℓ) ≥ 0, (8, 9, :, ℓ) ∈ X. (6)

Then, we compute an extreme solution of the resulting linear program (e.g., again, using the ellipsoid

method [25, 32]). We claim (in Lemma 5.4) that this solution is integral, i.e., all variables have values

either 0 or 1, and are, hence, solutions to the integer linear program (5) and, consequently, to our

maximum edge-pair-weighted perfect bipartite matching problem.

To prove this, we can view the solution t of the relaxation of the linear program (5) as a square

matrix ) . In this matrix, each row corresponds to a pair of di�erent agents and each column to a

pair of di�erent items. Then, the �rst and the second set of constraints indicate that ) is doubly
stochastic. Here, ideally, we would like to use the famous Birkho�-von Neumann theorem [10],

which states that any doubly stochastic matrix is a convex combination of permutation matrices

(i.e., square binary matrices with exactly one 1 at each row and each column) and conclude that the

extreme solutions of the relaxation of the linear program (5) are integral and, hence, correspond to

perfect matchings. Unfortunately, the linear program (5) has the additional symmetry constraint

that does not allow for such a use of the Birkho�-von Neumann theorem.

Fortunately, we can use an extension due to Cruse [19] which applies to centro-symmetric

matrices.

De�nition 5.2. An # × # matrix ) = ()D,E)D,E∈[# ] is called centro-symmetric if it satis�es

)D,E = )#+1−D,#+1−E for all D, E ∈ [# ].

Theorem 5.3 (Cruse [19]). If # is even, then any # ×# centro-symmetric doubly stochastic matrix
is the convex combination of centro-symmetric permutation matrices.

We use Theorem 5.3 in the proof of the next lemma.

Lemma 5.4. Any extreme solution of the relaxation of the linear program (5) is integral.

Proof. We will de�ne an alternative representation of a feasible solution t of the relaxation of

the linear program (5) as a doubly stochastic matrix ) with # = =(= − 1) rows and columns. To do

so, we will use a particular mapping of each pair of di�erent agents (respectively, of each pair of

di�erent items) to particular rows (respectively, columns) of the matrix ) . This particular mapping

will allow us to argue that the matrix ) is centro-symmetric. As # is even, Theorem 5.3 will give

us that ) is a convex combination of centro-symmetric permutation matrices, which correspond to

integral solutions.

As both sets N and I contain = elements each, we may view them as integers from [=]. We

de�ne the bijection c from ordered pairs of di�erent integers from [=] to integers of [# ] as follows.
For every ordered pair (8, :) of di�erent integers from [=], let

c (8, :) =
8−1∑
ℎ=1

(= − ℎ) + : − 8

if 8 < : , and

c (8, :) = =(= − 1) + 1 − c (:, 8)
otherwise. By this de�nition, we have

c (8, :) + c (:, 8) = =(= − 1) + 1. (7)

Note that, for 8 = 1, 2, ..., = − 1 and : = 8 + 1, ..., =, c (8, :) takes all distinct integer values from 1

to =(= − 1)/2. Then, for the remaining pairs (8, :) with 8 = 2, ..., = and : = 1, ..., 8 − 1, c (8, :) takes
all distinct integer values from =(= − 1) down to =(= − 1)/2 + 1. Hence, since # = =(= − 1), each



distinct ordered pair of di�erent integers from [=] is mapped to a di�erent integer of [# ] under
c . Hence, c is indeed a bijection. Now, for every quadruple (8, 9, :, ℓ) ∈ X, we store the value of

C (8, 9, :, ℓ) in the entry )c (8,:),c ( 9,ℓ) of matrix ) . By the properties of c , the matrix ) is well-de�ned.

We will complete the proof by showing that ) is centro-symmetric. Indeed, let D and E be any

integers in [# ] and assume that D = c (8, :) and E = c ( 9, ℓ) for pairs of distinct integers (8, :) and
( 9, ℓ). We have

)D,E = )c (8,:),c ( 9,ℓ) = C (8, 9, :, ℓ) = C (:, ℓ, 8, 9)
= )c (:,8),c (ℓ, 9) = )#+1−c (8,:),#+1−c ( 9,ℓ) = )#+1−D,#+1−E,

i.e., ) is indeed centro-symmetric. The �rst and sixth equalities follow by the de�nition of D and

E . The second and fourth equalities follow by the de�nition of the entries of matrix ) . The third

equality is the symmetry constraint of linear program (5). The �fth equality follows by (7). �

Hence, the execution of the ellipsoid algorithm on the relaxation of the linear program (5) will

return an integral solution that corresponds to a solution of 2EBM. The next statement summarizes

the above discussion.

Theorem 5.5. 2EBM can be solved in polynomial time.

We are ready to show how solutions to appropriately de�ned instances of 2EBM can be used

as separation oracles for solving the linear program (3) when SW is the utilitarian (Section 5.1),

egalitarian (Section 5.2), and log-Nash (Section 5.3) social welfare.

5.1 Utilitarian Social Welfare
By the de�nition of the utilitarian social welfare, we have

U(1) =
∑

(8, 9) ∈1
E8 ( 9) =

∑
(8, 9) ∈1

∑
(:,ℓ) ∈1:
:≠8

E8 ( 9) + E: (ℓ)
2(= − 1) ,

and, using SW(1) = U(1), the constraint of the dual linear program (3) corresponding to a matching

1 ∈ M is equivalent to∑
(8, 9) ∈1

∑
(:,ℓ) ∈1:
:≠8

(
(E8 ( 9) − E8 (ℓ)) · ~ (8, 9, :) +

E8 ( 9) + E: (ℓ)
2(= − 1) + I

=(= − 1)

)
≤ 0. (8)

So, consider the instance of 2EBM with edge weights de�ned as

k (8, 9, :, ℓ) = (E8 ( 9) − E8 (ℓ)) · ~ (8, 9, :) +
E8 ( 9) + E: (ℓ)
2(= − 1) + I

=(= − 1) .

Then, for a matching 1 ∈ M, we have that the objective function of 2EBM, Ψ(1), shown in (4), is

equal to the left-hand-side of inequality (8) and, consequently, to the left-hand-side of the constraint

of the dual linear program (3), when the utilitarian de�nition of the social welfare is used.

Now, the separation oracle for the dual linear program (3) works as follows. It solves the instance

of 2EBM just described and computes a matching 1∗ ∈ M that maximizes the quantity Ψ(1), i.e.,
1∗ ∈ argmax1∈M Ψ(1). If Ψ(1∗) > 0, the constraint corresponding to the matching 1∗ in the dual

linear program (3) is returned as a violating constraint. Otherwise, it must be Ψ(1) ≤ 0 for every

matching 1 ∈ M and the separation oracle correctly returns that no such violating constraint

exists.



5.2 Egalitarian Social Welfare
Let ! denote the di�erent values the valuations E8 ( 9) of an agent 8 for item 9 can get, i.e., ! = {E8 ( 9) :
8 ∈ N , 9 ∈ I}. For 4 ∈ !, denote by M4 the set of perfect matchings so that for any agent 8 that is

assigned to item 9 , it holds that E8 ( 9) ≥ 4 . Observe that the perfect matching 1 ∈ M belongs to

set M4 for every 4 ≤ E(1). Then, the constraints of the dual linear program (3) for the egalitarian

de�nition of the social welfare are captured by the following set of constraints:∑
(8, 9) ∈1

∑
(:,ℓ) ∈1:
:≠8

(
(E8 ( 9) − E8 (ℓ)) · ~ (8, 9, :) +

4 + I

=(= − 1)

)
≤ 0, 4 ∈ !,1 ∈ M4 (9)

Indeed, for every matching 1 ∈ M, the set of constraints (9) contains the constraint corresponding

to 1 in the dual linear program (3) with SW = E and, possibly, the redundant constraints

I +
∑

(8, 9) ∈1
:∈N\{8 }

(E8 ( 9) − E8 (1 (:))) · ~ (8, 9, :) + 4 ≤ 0,

for 4 ∈ ! with 4 < E(1) (if any). So, to design the separation oracle for the dual linear program (3),

it su�ces to design a separation oracle for the set of constraints (9), for each of the O(=2) di�erent
values of 4 ∈ !. We now show how to do so.

For 4 ∈ !, let X4 be the subset of X such that E8 ( 9) ≥ 4 and E: (ℓ) ≥ 4 . Essentially, the quadruples

of X4 correspond to all possible (ordered) pairs of di�erent edges in a perfect matching ofM4 . Now,

for every 4 ∈ !, consider the instance of 2EBM with weights

k (8, 9, :, ℓ) = (E8 ( 9) − E8 (ℓ)) · ~ (8, 9, :) +
4 + I

=(= − 1)
for quadruple (8, 9, :, ℓ) ∈ X4 . Then, for a matching 1 ∈ M4 , the objective function of 2EBM, Ψ(1),
shown in (4), is equal to the left-hand-side of inequality (9). Now, for each 4 ∈ !, the separation

oracle computes the matching 1∗4 that maximizes the quantity Ψ(1) among all matchings ofM4 .

A violating constraint (corresponding to matching 1∗4 ) is then found if Ψ(1∗4 ) > 0 for some 4 ∈ !.

Otherwise, the separation oracle concludes that no constraint is violated.

5.3 Log-Nash Social Welfare
Observe that the de�nition of the log-Nash social welfare implies

lgN(1) =
∑

(8, 9) ∈1
ln E8 ( 9) =

∑
(8, 9) ∈1

∑
(:,ℓ) ∈1:
:≠8

ln E8 ( 9) + ln E: (ℓ)
2(= − 1) .

Hence, the only modi�cation that is required in the approach we followed for the utilitarian social

welfare is to replace the term
E8 ( 9)+E: (ℓ)
2(=−1) by

ln E8 ( 9)+ln E: (ℓ)
2(=−1) in the de�nition ofk .

6 INTERIM ENVY-FREE ALLOCATIONS WITH PAYMENTS
In this section, we extend the notion of interim envy-freeness by accompanying lotteries over

allocations with payments to/from the agents. In this case, the de�nition of iEF uses both the value

an agent has for item bundles and the payment she receives or contributes. We distinguish between

three di�erent types of payments. A vector of agent-dependent payments or A-payments consists of
a payment ?8 for each agent 8 ∈ N . More re�ned payments are de�ned using additional information

for an allocation instance. We say that the agents receive bundle-dependent payments or B-payments
when each agent is associated with a payment of ? (() when she receives the bundle of items ( .



Finally, we say that the agents get allocation-dependent payments or C-payments when each agent 8

is associated with payment ?8 (�) in allocation �.

We now extend the notion of interim envy-freeness to pairs of lotteries and payments by

distinguishing between the three payment types.

Definition 6.1. We say that a pair of a lottery Q and a vector of A-payments p is iEF if for every
pair of agents 8, : ∈ N and every bundle of items ( agent 8 can get under Q, it holds E8 (() + ?8 ≥
E�∼Q [E8 (�: ) |�8 = (] + ?: .

Definition 6.2. We say that a pair of a lottery Q and a vector of B-payments p per bundle of items
is iEF if for every pair of agents 8, : ∈ N and every bundle of items ( agent 8 can get under Q, it holds
E8 (() + ? (() ≥ E�∼Q [E8 (�: ) + ? (�: ) |�8 = (].

For C-payments, we give a more general de�nition that allows for marginal violations of iEF.

The notion of n-iEF will be useful later in Section 6.3.

Definition 6.3. Let n ≥ 0. We say that a pair of a lottery Q and a vector of C-payments p per
agent and allocation is n-iEF if for every pair of agents 8, : ∈ N and every bundle of items ( agent 8
can get under Q, it holds E8 (() + E�∼Q [?8 (�) |�8 = (] ≥ E�∼Q [E8 (�: ) + ?: (�) |�8 = (] − n .

The term iEF with C-payments is used alternatively to 0-iEF. We remark that the payments are

added to the value agents have for bundles in the above de�nitions. So, in general, the payments

are assumed to be received by the agents. To represent payments that are contributed by the agents,

we can allow negative entries in the payment vectors. We also remark that the de�nitions refer

to general allocation instances. Indeed, the result we present in Section 6.1 applies to general

instances. Then, in Sections 6.2 and 6.3, we restrict our attention to matching instances and adapt

the de�nitions accordingly.

Our technical contribution regarding iEF allocations with payments is many-fold. First, we

characterize in Section 6.1 those lotteries Q that can be complemented with vectors of A-payments

p, so that the pairQ, p is iEF with A-payments. There, our focus is on the existence of payments, with

no additional restrictions on them. In Sections 6.2 and 6.3, we speci�cally consider two particular

optimization problems that involve iEF allocations with payments; we de�ne these problems in the

following.

In both optimization problems, we are given an allocation instance and the objective is to compute

a lottery Q over allocations and a payment vector p so that the pair Q, p is iEF with payments. In

subsidy minimization, the payments are subsidies given to the agents by an external authority. So,

the corresponding entries in the payment vector p are constrained to be non-negative. The goal of

subsidy minimization is to �nd an iEF allocation and accompanying payments, such that the total

expected amount of subsidies is minimized; the objective is equal to

∑
8∈N ?8 , E�∼Q [

∑
8∈N ? (�8 )],

or E�∼Q [
∑

8∈N ?8 (�)], depending on whether p is an A-, B-, or C-payment vector, respectively.

Subsidyminimization is the generalization of the problem that was recently studied for deterministic

allocations and envy-freeness in [12, 15, 27].

Our second optimization problem is called utility maximization and can be thought of as an

extension of rent division [24] to lotteries and iEF. There is a rent ' and the payments are contri-

butions from the agents that, in expectation, should sum up to '. So, the entries in the payment

vector p are constrained to be non-positive. The goal is to �nd an iEF allocation and accompanying

payments, such that the minimum expected utility over all agents is maximized. Depending on

whether the problem asks for A-, B-, or C-payments, the utility of agent 8 ∈ N from allocation � is

E8 (�8 ) + ?8 , E8 (�8 ) + ? (�8 ), and E8 (�8 ) + ?8 (�), respectively.
As we will see in Section 6.2, both subsidy minimization and utility maximization admit much

better solutions compared to their versions with deterministic allocations and envy-freeness that



had been previously studied in the literature. In addition, the quality of solutions depends on the

type of payments. We demonstrate that there is no general advantage of A- or B-payments against

each other; this justi�es the importance of both types of payments. Clearly, C-payments allow for

the best possible solutions as they generalize both A- and B-payments. In Section 6.3, we restrict our

focus on matching instances and show how to solve subsidy minimization and utility maximization

e�ciently, by exploiting the machinery we developed in Section 5.

6.1 A Characterization for A-Payments
We now extend the notion of envy-freeability from recent works focusing on the use of subsidies in

fair division settings (e.g., see [12, 15, 27]), and earlier studies in rent division (e.g., see [4, 35]). Given

an allocation instance and a lottery Q over allocations, we say that Q is iEF-able with A-payments

if there is a vector p of A-payments so that the pair Q, p is iEF. Even though we will not need these

terms here, we can de�ne the term iEF-ability with B- or C-payments analogously.

Our main result in this section (Theorem 6.5) will be a characterization of the lotteries that are

iEF-able with A-payments. The notion of the interim envy graph will be very useful; it extends the

notion of the envy-graph that is central in the characterization of envy-freeable allocations (see,

e.g., [27]).

Definition 6.4. Given a lottery Q over allocations of the items in set I to the agents in set N ,
the interim envy graph iEG(Q,N ,I) is a complete directed graph with = nodes corresponding to the
agents of N , and edge weights de�ned as

F (8, :) = max

(⊆I:
Pr�∼Q [�8=( ]>0

{
E�∼Q [E8 (�: ) |�8 = (] − E8 (()

}
for every directed edge (8, :).

Our characterization follows; it extends well-known characterizations for deterministic envy-

freeable allocations, e.g., see [24, 27]. A quick comparison reveals that the second condition in

Theorem 6.5 is much less restrictive than an analogous condition for envy-freeability, which asserts

that envy-freeable allocations locally maximize the utilitarian social welfare among all possible

redistributions of the bundles to the agents. This justi�es our claim that the space of iEF-able

lotteries is quite rich.

Theorem 6.5. For a lottery Q over allocations, the following statements are equivalent:

(i) Q is iEF-able with A-payments.
(ii) For every agent 8 ∈ N , let (8 be any bundle of items that is allocated to agent 8 with positive

probability according to Q. Also, let f : N → N be any permutation of agents. Then,∑
8∈N

E8 ((8 ) ≥
∑
8∈N
E�∼Q [E8 (�f (8) ) |�8 = (8 ] .

(iii) The interim envy graph iEG(Q,N ,I) has no cycle of positive weight.

6.2 Contrasting A-Payments with B-Payments
We now attempt a comparison between di�erent types of payments. First, we remark that iEF

lotteries with A-payments (or B-payments) can yield much lower total expected subsidies and

much higher minimum expected utility for utility maximization instances, compared to envy-free

allocations with payments. This should be clear given Lemma 3.3; we give explicit bounds on

subsidy minimization and utility maximization with the next example.



Example 6.6. Consider the instance at the left of Table 2. By the characterization of Halpern

and Shah [27], we know that in matching instances only the most e�cient allocation of items to

agents is envy-freeable. Therefore, 0-1-2 and 0-2-1 are the only envy-freeable allocations and this is

possible with a payment of 1/3 to agent 1 (or, to item 0) and no payments to the other two agents

(or, to the other two items). In contrast, the lottery that has both allocations in its support with

equal probability is iEF without any payments.

0 1 2

1 1/3 2/3 0

2 0 1/2 1/2
3 0 1/2 1/2

0 1 2

1 1/4 3/4 0

2 0 1/2 1/2
3 0 1/2 1/2

Table 2. An instance of subsidy minimization (le�) and utility maximization (right) with three agents where
envy-freeness is inferior to iEF with A- and B-payments.

Now, consider the matching instance at the right of Table 2 and let ' = 1. Again, 0-1-2 and 0-2-1

are the only envy-freeable allocations. The rent shares that make each of them EF are 0, 1/2, and
1/2 to agents 1, 2, and 3, respectively. Note that agents 2 and 3 obtain utility 0 under these payments.

In contrast, the lottery that has both allocations in its support with equal probability is iEF with

payments 1/6, 5/12, and 5/12 by agents 1, 2, and 3, (or, to items 0, 1, 2) which sum up to 1. The

(expected) utility of each agent is then 1/12. �

We now compare A-payments to B-payments in terms of the quality of the solutions they yield

the two optimization problems. In particular, the proof of Theorem 6.7 presents instances where

B-payments are superior to A-payments.

Theorem 6.7. The solution of subsidy minimization and utility maximization with B-payments
can be strictly better than the solution of the corresponding problems with A-payments.

The proof of Theorem 6.7 shows two instances, of subsidy minimization and utility maximization,

respectively. For subsidy minimization, the expected amount of subsidies achieved with B-payments

is arbitrarily close to 0, while A-payments need a constant amount of subsidies. Similarly, in the

utility maximization instance, the minimum expected agent utility is arbitrarily close to 0 with

A-payments and considerably higher with B-payments.

Perhaps surprisingly, there are also instances where A-payments are preferable to B-payments.

Theorem 6.8. The solution of subsidy minimization and utility maximization with A-payments
can be strictly better than the solution of the corresponding problems with B-payments.

6.3 Computing n-iEF Allocations with C-Payments
In this section, we show how to solve e�ciently subsidy minimization and utility maximization

when we are allowed to use C-payments (and sharp approximations of iEF). Our algorithms

use linear programming and the machinery we developed in Section 5. Our result for subsidy

minimization is the following.

Theorem 6.9. Let n > 0. Consider an instance of subsidy minimization with C-payments and let
OPT be the value of its optimal solution. Our algorithm computes a lottery Q and a C-payment vector
p of expected value OPT, so that the pair Q, p is n-iEF with C-payments.



We begin by de�ning a linear program for computing an iEF pair of lottery and C-payment

vector. We use the variable vector x to denote the lottery. By De�nition 6.3, the iEF constraint for

agent 8 ∈ N who is assigned item 9 ∈ I with positive probability under lottery x and another agent

: ∈ N \ {8} is
E8 ( 9) + E1∼x [?8 (1) |1 (8) = 9] ≥ E1∼x [E8 (1 (:)) + ?: (1) |1 (8) = 9] . (10)

By multiplying the left-hand-side of (10) with the positive probability Pr1∼x [1 (8) = 9], we get
E8 ( 9) · Pr1∼x [1 (8) = 9] + E1∼x [?8 (1) |1 (8) = 9] · Pr1∼x [1 (8) = 9]

=
∑

1∈M8 9

G (1) · E8 ( 9) +
∑

1∈M8 9

G (1) · ?8 (1). (11)

By multiplying the right-hand-side of (10) again with Pr1∼x [1 (8) = 9], we obtain
E1∼x [E8 (1 (:)) + ?: (1) |1 (8) = 9] · Pr1∼x [1 (8) = 9]

=
∑

1∈M8 9

G (1) · E8 (1 (:)) +
∑

1∈M8 9

G (1) · ?: (1). (12)

Hence, using (11) and (12), (10) yields∑
1∈M8 9

(G (1) · (E8 ( 9) − E8 (1 (:))) + G (1) · ?8 (1) − G (1) · ?: (1)) ≥ 0. (13)

Notice the products G (1) ·?8 (1) and G (1) ·?: (1) in the above expression. In such terms, both factors

are unknowns that we have to compute. As ?8 (1) always appears multiplied with G (1) in the above

expressions, we can avoid non-linearities by introducing the variable C8 (1) for every agent 8 ∈ N
and matching 1 ∈ M to be thought of as equal to G (1) · ?8 (1). With this interpretation in mind,

equation (13) becomes ∑
1∈M8 9

(G (1) · (E8 ( 9) − E8 (1 (:))) + C8 (1) − C: (1)) ≥ 0.

Furthermore, our objective is to minimize

∑
1∈"

∑
8∈N C8 (1) since∑

1∈M

∑
8∈N

C8 (1) =
∑
1∈M

∑
8∈N

G (1) · ?8 (1) = E1∼x

[∑
8∈N

?8 (1)
]
.

Summarizing, our linear program for subsidy minimization is

minimize

∑
1∈M

∑
8∈N

C8 (1)

subject to

∑
1∈M8 9

(G (1) · (E8 ( 9) − E8 (1 (:))) + C8 (1) − C: (1)) ≥ 0,8 ∈ N , 9 ∈ I, : ∈ N \ {8}∑
1∈M

G (1) = 1

G (1) ≥ 0, 1 ∈ M
C8 (1) ≥ 0, 1 ∈ M, 8 ∈ N

(14)

Lemma 6.10. The linear program (14) can be solved in polynomial time.

The proof of Lemma 6.10 follows along similar lines to the approach we followed in Section 5. A

solution of the linear program (14) naturally gives an iEF pair of lottery x and C-payments vector p
when G (1) = 0 for a matching 1 ∈ M implies that C8 (1) = 0 for every agent 8 ∈ N . Unfortunately,

we have not excluded the case that G (1) = 0 and C8 (1) > 0 in the solution of the linear program



(14). We take care of such cases by modifying the solution returned by our algorithm and violating

the iEF condition marginally. The next lemma completes the proof of Theorem 6.9.

Lemma 6.11. For every n > 0, given any extreme solution to the linear program (14) of objective
value OPT, an n-iEF lottery x′ with C-payments p′ of total expected value OPT can be computed in
polynomial time.

Our result for utility maximization is the following.

Theorem 6.12. Let n > 0. Consider an instance of utility maximization with C-payments and let
OPT be the value of its optimal solution. Our algorithm computes a lottery Q and a C-payment vector
p of expected value at least OPT − n , so that the pair Q, p is n-iEF with C-payments.

7 OPEN PROBLEMS
We believe that interim envy-freeness can be a very in�uential fairness notion and can play for

lotteries of allocations the role that envy-freeness has played for deterministic allocations. Our

work aims to reinvigorate the study of this notion; we hope this will further intensify the study of

fairness in random allocations overall. At the conceptual level, iEF can inspire new fairness notions,

analogous to known relaxations of envy-freeness, such as envy-freeness up to one (EF1; see [13])

and up to any item (EFX; see [17]), that have become very popular recently. Even though it is very

tempting, we refrain from proposing additional de�nitions here.

An appealing feature of iEF lotteries is that they are e�ciently computable in matching allocation

instances. Of course, besides the importance of the ellipsoid algorithm in theory (see, e.g., [25, 32]),

our methods have apparent limitations. Combinatorial algorithms for solving the computational

problems addressed in Sections 5 and 6.3 are undoubtedly desirable. An intermediate �rst step

would be to design a combinatorial algorithm for the maximum edge-pair-weighted perfect bipartite

matching problem (2EBM). This could be useful elsewhere, as 2EBM is a very natural problem with

possible applications in other contexts.

At the technical level, there is room for several improvements of our results. Our bounds on the

price of iEF with respect to the average Nash social welfare have a gap between Ω(
√
=) (Theorem 4.5)

and O(=) (Theorem 4.2). Also, in Section 5, we show how to compute iEF lotteries that maximize the

expected log-Nash social welfare. Although maximizing log-Nash and average Nash social welfare

are equivalent goals for deterministic allocations, this is not the case for lotteries. Computing iEF

lotteries of maximum expected average Nash welfare is elusive at this point.

We left for the end the many open problems that are related to iEF with payments. Our charac-

terization in Section 6.1 has been used only in the proof of Theorem 6.7. It would be interesting to

see whether it has wider applicability and, in particular, whether it can lead to e�cient algorithms

for computing iEF pairs of lotteries with A-payments. This is not clear to us, as our characteriza-

tion seems to be much less restrictive than existing ones for envy-freeability (which, e.g., have

given rise to transforming the rent division problem to a bipartite matching computation [24]).

Furthermore, characterizations of iEF-ability with B- or C-payments are currently elusive. Our

results in Section 6.2 reveal gaps on the quality of solutions for the two optimization problems that

the di�erent types of payments allow. Our analysis in the proofs of Theorems 6.7 and 6.8 is not

tight; determining the maximum gap between A-, B, and C-payments on the quality of solutions

for subsidy minimization and utility maximization is open. Finally, from the computational point

of view, our solutions to subsidy minimization and utility maximization yield pairs of lotteries and

C-payments that are only approximately iEF. Can these problems be solved exactly? Also, solving

both subsidy minimization and utility maximization with A- or B-payments will be of practical

importance. What is the complexity of these problems?
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