
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1

Fast Multi-Resolution and Multi-Rate Encoding for HTTP Adaptive
Streaming Using Machine Learning

Ekrem Çetinkaya, Hadi Amirpour, Student Member, IEEE, Christian Timmerer, Senior Member, IEEE,
and Mohammad Ghanbari, Life Fellow, IEEE

Video streaming applications keep getting more attention over the years, and HTTP Adaptive Streaming (HAS) became the
de-facto solution for video delivery over the Internet. In HAS, each video is encoded at multiple quality levels and resolutions (i.e.,
representations) to enable adaptation of the streaming session to viewing and network conditions of the client. This requirement
brings encoding challenges along with it, e.g., a video source should be encoded efficiently at multiple bitrates and resolutions. Fast
multi-rate encoding approaches aim to address this challenge of encoding multiple representations from a single video by re-using
information from already encoded representations. In this paper, a convolutional neural network is used to speed up both multi-rate
and multi-resolution encoding for HAS. For multi-rate encoding, the lowest bitrate representation is chosen as the reference. For
multi-resolution encoding, the highest bitrate from the lowest resolution representation is chosen as the reference. Pixel values from
the target resolution and encoding information from the reference representation are used to predict Coding Tree Unit (CTU)
split decisions in High-Efficiency Video Coding (HEVC) for dependent representations. Experimental results show that the proposed
method for multi-rate encoding can reduce the overall encoding time by 15.08% and parallel encoding time by 41.26%, with a 0.89%
bitrate increase compared to the HEVC reference software. Simultaneously, the proposed method for multi-resolution encoding can
reduce the encoding time by 46.27% for the overall encoding and 27.71% for the parallel encoding on average with a 2.05% bitrate
increase.

Index Terms—HTTP Adaptive Streaming, HEVC, Multirate Encoding, Machine Learning

I. INTRODUCTION

V IDEO streaming is a vital part of today’s Internet and
accounts for the majority of today’s global Internet

traffic. Its share is expected to rise in the near future [1].
HTTP Adaptive Streaming (HAS) is the de-facto solution for

delivering video content over the Internet and Dynamic Adap-
tive Streaming over HTTP (DASH) [2] is the standard solution
introduced by MPEG for HAS. In HAS, videos are provided
at different qualities and resolutions (i.e., representations) in
plain HTTP servers and the suitable representation is requested
by the client based on the underlying network conditions. An
example video storage schema for HAS is shown in Fig. 1.

The need to encode multiple representations of the same
video content for HAS and the increasing complexity of
video codecs are among the main problems for multi-rate
encoding. To address these problems, fast multi-rate encoding
methods were introduced. The main idea behind fast multi-rate
encoding is to exploit the redundancy that is introduced while
encoding the same video content at different quality levels.
Therefore, the video is encoded at one bitrate (i.e., reference
representation) and the encoding information obtained here is
re-used to speed up the encoding of the remaining represen-
tations (i.e., dependent representations).

Increasing complexity of video contents in recent years (i.e.,
higher resolutions, frame rate, etc.) [3] brought the need for

Submitted for review on 25 January 2021.
This research has been supported in part by the Christian Doppler Labo-

ratory ATHENA (https://athena.itec.aau.at/.)
E. Çetinkaya, H. Amirpour, C. Timmerer, and M. Ghanbari are with the

Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt,
Klagenfurt, Austria (e-mail: {ekrem, hadi}@itec.aau.at).

C. Timmerer is also with the Bitmovin, Klagenfurt, Austria (e-mail:
christian.timmerer@bitmovin.com).

M. Ghanbari is also with the School of Computer Science and Electronic
Engineering, University of Essex, UK (e-mail: ghan@essex.ac.uk)

Source Video

QP1 QP2 QP3

QP1

QP1

QP2

QP2

QP3

540p
1080p

2160p

Quality

R
esolution

Fig. 1: Example video storage schema for HAS. Multiple
representations with different quality (e.g., resolution, bitrate)
are encoded from a single source video.

more efficient video codecs. High Efficiency Video Coding
(HEVC) [4] was standardized in 2013 to address the increasing
complexity of video content and increased usage thereof is
reported recently [3]. Although HEVC offers up to about
50% bitrate saving compared to its predecessor, i.e., Advanced
Video Coding (AVC) [5], this bitrate saving is achieved at the
cost of a significantly increased time-complexity.

One of the most important and time-consuming tools intro-
duced in HEVC is the Coding Tree Unit (CTU) structure used
for block partitioning [6]. In HEVC, each frame is partitioned
into 64×64 pixels sized square regions (CTUs) and then each
CTU can be further divided recursively into smaller square
regions (i.e., Coding Unit (CU)) up to three times with the
smallest block size being 8×8 pixels. Each split increases the
depth value of the CU by 1 (i.e., depth 0 for 64 × 64 pixels
and depth 3 for 8 × 8 pixels). This block partitioning scheme
allows HEVC to achieve a more precise motion compensation,

https://athena.itec.aau.at/

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 2

but since the HEVC reference software uses a brute force
approach to determine the optimal CTU partitioning, it also
increases the time-complexity of the encodings [6]. In fast
multi-rate encoding approaches, when a CTU is encoded, its
information can be shared with other representations to avoid
unnecessary search process.

There have been many attempts in the literature to propose
a more efficient multi-rate or/and multi-resolution encoding
scheme [7]–[13]. The most common approach is to use the
highest quality as the reference representation [7], [9] while
some approaches use the lowest quality as the reference
representation [10], [12]. While several approaches achieve
improvements for multi-rate encoding in terms of encoding
time-complexity using the highest quality representation as
the reference [7], [8], the overall time-complexity of parallel
encoding scenarios are still not improved. In parallel encoding,
the encoding of the video representations are conducted at
the same time in different CPU or GPU cores and since
encoding of dependent representations needs information from
the reference representation, encoding time of the highest
quality representation is a bottleneck in that scenario for the
aforementioned approaches.

An example of the encoding time using the aforementioned
approaches is given in Fig. 2. Here the upper bound means
the highest depth value to be searched for the given CTU is
the depth level of the co-located CTU in the highest quality
representation (i.e., QP22). At the same time, double-bound
also uses the depth level of the co-located CTU in the lowest
quality (i.e., QP37) representation to limit the minimum depth
level to be searched as well. Since both of these approaches
require the encoding information from the highest quality
representation to encode the dependent representations, they
do not change the encoding time for the highest quality
representation. Thus, the highest quality representation is still
a bottleneck for parallel encoding scenario in this case. There
have been some attempts in the literature to address this
problem [11], [12], however, the multi-resolution scenario is
not included in those studies.

This paper is an extension to our previous work [12] where
we introduced a machine learning-based fast multi-rate encod-
ing approach to improve the parallel encoding performance
using the information from the lowest quality representation.
This paper extends the method mentioned above to address
multi-resolution encoding scenarios by introducing an en-
hanced Convolutional Neural Network (CNN) based encoding
method. The proposed method can decrease the encoding time-
complexity for both serial and parallel encoding scenarios.

The remainder of the paper is organized as follows. In
Section II, a brief summary of the related work is given.
Section III provides an overview about multi-rate and multi-
resolution encoding. Section IV introduces the proposed
method for multi-rate encoding and Section V describes the
method for multi-resolution encoding. Experimental results
for both approaches are given in Section VI. The paper is
concluded with Section VII.

II. RELATED WORK

Fast multi-rate encoding has become a popular topic due to

Fig. 2: Normalized average encoding time for HEVC refer-
ence software (HM 16.21), Upper Bound, and Double Bound
approaches.

the increasing usage of HAS for video delivery. The main goal
in multi-rate encoding is to utilize information from multiple
versions of a single video to speed up encoding decisions for
the remaining representations.

Representation with the highest resolution and quality is
chosen as the reference representation in [7]. The maximum
depth level of a CTU in the reference representation is chosen
as the upper bound for CTU depth level searches (i.e., depth
levels that are higher than the reference CTU are skipped)
while encoding the remaining representations. CTU structure,
prediction mode, intra mode and motion vector information [4]
are re-used to speed up encoding the remaining representa-
tions.

In [8], a double-bound approach is proposed for limit-
ing CTU partitioning search options for multi-rate encoding.
Information from both the highest and the lowest quality
representations are used to speed up the CTU partitioning
process for the remaining representations. Depth levels that
are higher than the reference CTU in the highest quality and
lower than the reference CTU in the lowest quality are skipped
while searching for CU levels in the dependent representations.
Multi-resolution scenarios are not mentioned in this study.

A random forest (RF) is used to predict the split decision
for the given CU using the information from the reference
representation (i.e., the highest quality and resolution) in [9].
RF uses the transform coefficients, motion vectors, and CTU
block structure as features to make the decision.

Although they improve the performance of individual en-
codings, the aforementioned studies do not improve the time
complexity of the parallel encoding scenarios since they are
using the highest quality representation as the reference, thus
limiting the overall time complexity for parallel-encoding by
the encoding time of the reference representation. There have
been several studies that utilize encoding information from
a lower quality representation which can be used in parallel
encoding scenarios.

Encoding the lowest quality and resolution first and using it
as the reference representation is proposed in [10]. Several
refinement techniques are applied to information from the
lower resolutions before using them to encode the higher
resolution.

A multi-resolution framework for x265 that uses encoding
information from the lower resolution representations is used

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

to encode higher resolution representations in [14]. Different
encoding information is shared depending on whether the
resolutions are dyadic (i.e., both width and height are multiple
factor of 2 such as 540p and 1080p) or not. The encoding
information reuse is limited by general information such as
slice-type or scene-cut decisions for non-dyadic resolutions.
In contrast, the encoding information in the block level is re-
used between dyadic resolutions.

Amirpour et al. [11], analyzed the effects of choosing
different quality levels as the reference representation. Based
on the findings, the middle-quality representation is selected
as the reference. An upper bound or a lower bound for CTU
searches is applied for dependent representations based on
their quality levels.

A CNN based approach for fast multi-rate encoding is
proposed in [12]. A set of videos are encoded with HEVC
and encoding information such as motion vectors, prediction
unit (PU) modes, and RD costs are obtained to construct
the training dataset. Then, separate CNNs for each quality
level and depth level are trained using these aforementioned
encoding information and YUV values from the raw videos.
Finally, these CNNs are used for depth 0 and 1 decisions
for the highest quality (QP22) and depth 0 decisions for the
second-highest quality (QP26) to speed up the encoding with
the specific focus on the parallel encoding performance.

Moreover, multiple studies utilized machine learning for
video transrating/transcoding. A random forest based classifier
is used to predict the CTU upper bound for HEVC transrating
in [15]. Encoding information from both higher and lower
bitrates are used to predict the CTU upper bound for the
given quality level. The Long Short Term Memory (LSTM)
model is used to predict CU split decisions for AVC to HEVC
transcoding in [16]. Encoding information from the AVC
bitrstream are fed to the LSTM and the CU split decisions
are given for each depth level.

In this paper, a machine learning-based approach for both
multi-rate and multi-resolution encoding is proposed which
aims to reduce the encoding time for both serial and parallel
encoding scenarios.

III. MULTI-RATE AND MULTI-RESOLUTION ENCODING

The adaptive aspect of HAS enables a client to have the
best possible content quality at a given time. An adaptive
bitrate (ABR) algorithm at the client is responsible for constant
monitoring of the network condition and deciding on what is
the best possible quality level at a given time for requesting the
next video segment. To make this adaptive streaming scheme
work, there need to be multiple representations of the same
video in the content server so that the ABR can have enough
options for a variety of network and client viewing conditions.
Therefore, the same video content needs to be encoded at
different qualities and resolutions to achieve this variety of
representations.

Encoding the same video into multiple representations re-
sults in significantly increased encoding time-complexity. Fast
multi-rate and multi-resolution encoding approaches try to
capitalize on the similarity between these representations to

0
0 1

3130

540p 1080p

1080p540p

Fig. 3: Number of CTUs needed to cover the same spatial
area between different resolutions. The numbers in the boxes
correspond to the CTU indexes. Here, the indexes are given in
a row-major order, i.e., it starts from top-left, increments by
one while moving from left to right and moves to the left-most
CTU in the next row when the CTUs in the row are finished.

reduce the encoding time by choosing a reference representa-
tion and re-using its information to reduce encoding decisions
for the remaining, i.e., dependent representations.

One important aspect that should be considered in a multi-
resolution case is that the spatial area that is covered by a
single CTU in the lower resolution needs to be covered by
multiple CTUs in the higher resolution due to the increased
spatial resolution. An example of this difference is shown in
Fig. 3. As can be seen in the figure, if it is required to use
the encoding information from one resolution to speed up the
encoding decision for another resolution, a mapping between
CTUs is required to transfer the information efficiently.

It should be noted that width and height differences between
two resolutions do not necessarily be as factors of 2. There
are many scenarios where the resolution ratios are not integer
values (e.g., 1080p (1920×1080) and 720p (1280×720). It is
important to determine a proper mapping for CTUs between
different resolutions to use the encoding information efficiently
for those cases. An example of this can be seen in [7] for PU
mode decision where a candidate list system is used to utilize
information from multiple high-resolution blocks to encode a
low-resolution block.

IV. MULTI-RATE ENCODING: FAME-ML

In this section, we introduce our previous work, a ma-
chine learning-based fast multi-rate approach for HAS with
a specific focus on the parallel encoding performance, Fast
multi-rate Encoding using Machine Learning (FaME-ML),
in detail [12]. The encoding information used in FaME-
ML is explained and then the training dataset is introduced.
Afterwards, the convolutional neural network (CNN) used in
FaME-ML is presented in detail, and the section is concluded
with the overall methodology.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

In FaME-ML, the lowest quality representation (i.e., QP38)
is used as the reference representation and its encoding infor-
mation is re-used to speed up the remaining representations in
the same resolution. For each depth level and QP combination,
a different CNN is trained.

A. Encoding Information

For FaME-ML we used the following encoding information
as features that have been determined experimentally:

1) RD cost (required bits to encode the co-located CTU
and its four sub-CUs for depth 0 and depth 1 values),
FRD, 5 elements.

2) Variance of pixel values (calculated for the co-located
CTU and its four sub-CUs in the raw video), FV , 5
elements.

3) Motion vectors (the average magnitude of motion vec-
tors inside the reference CTU), FMV , 1 element.

4) Depth split decision of the co-located CTU for the given
depth level, FD, 1 value.

5) Frame level QP, FQP , 1 element.
6) PU decision of the co-located CTU, FPU , 1 element.

.
Each feature is min-max normalized globally. The final

feature vector for each CTU consists of 14 elements as shown
in Fig. 4.

FRD FV FMV FD FQP FPU

5 5 1 1 1 1

14

F =

Fig. 4: Feature vector structure in FaME-ML. Numbers indi-
cate how many elements are stored for each feature.

B. Dataset

The network is trained over 12 sequences which have been
introduced in the HEVC Common Test Conditions [17]. Each
sequence is encoded with HM 16.21 [18] at five QP levels (22,
26, 30, 34, 38) and the aforementioned encoding information
in the CTU level is saved to be used in the training phase.
90% of frames are chosen as training set and the remaining
10% are used as the validation set.

C. FaME-ML CNN

A CNN is used as the depth split decision classifier in
FaME-ML. Y, U, and V values from the raw video and the
feature vector from the reference representation are fed into
the CNN to obtain the split decision for a given CTU. The
overall structure of the CNN is depicted in Fig. 5.

Y, U, and V values are passed through convolution block
separately as the first step. Single max-pooling is applied to
the Y channel so that the spatial size of the Y channel can
match U and V channels. Resulting feature maps from this first
part are concatenated and fed into the next part of the CNN

which is the main texture processing part. The output from this
part of the network has two dimensions ([Pnon−split, Psplit])
where each value represents the probability to split or not-
split the given CTU/CU. Finally, the encoding feature vector is
appended to this output and the final split decision is obtained
after the fully-connected layers.

Batch normalization [19] and dropout [20] method are used
to regulate the network. Rectified linear unit (ReLU) [21] is
used as the activation function and Adam [22] is used as
optimizer with a learning rate of 10−4.

D. Overall Method

FaME-ML is designed with a specific focus on the parallel
encoding time, thus, the CNN is used to predict the CTU de-
cisions for only those representations that can be a bottleneck
in the parallel encoding scenario. The normalized encoding
time of test sequences with HM 16.21 can be seen in Fig. 6.
It can be seen that if the encoding times of QP22 and QP26

can be reduced to a similar level to QP30, there will not be
an obvious bottleneck in that scenario. Thus, the CNN is only
applied for QP22 and QP26 in FaME-ML. Moreover, since
more time reduction is needed for QP22 than QP26, the CNN
is used for both depth 0 and depth 1 decisions while it is only
used for depth 0 decision for QP26.

V. MULTI-RESOLUTION ENCODING: FARES-ML

Despite achieving promising results for multi-rate encoding,
FaME-ML does not address the multi-resolution encoding
scenarios. Thus, we propose Fast multi-Resolution encoding
using Machine Learning (FaRes-ML) as an extension of
FaME-ML to address multi-resolution scenarios. This section
describes the details of FaRes-ML following the same structure
as for FaME-ML.

Different networks are trained for different target resolutions
and quality levels. There are three resolutions (540p, 1080p,
and 2160p) and four quality levels for each resolution in the
proposed setup. In total, there are 11 CNNs in the proposed
framework. For FaRes-ML, the highest quality of the lowest
resolution (i.e., QP22 of 540p) is selected as the reference
representation.

A. Encoding Information

Since the multi-resolution scenario is more challenging than
just predicting the decisions in the same resolution, the feature
set used in FaME-ML is extended for multi-resolution. Our
aim was to use the maximum available coding decisions
given by the HEVC reference encoder. After collecting that
information, we experimentally conducted different pieces of
training using a different set of features to decide on the
best feature set to be used for this approach. The feature
processing part of the FaRes-ML is also modified to exploit the
encoding decision correlation among different representations
more precisely. Following encoding information is used:

1) RD costs in CU level (CUBits, CUCosts).
2) Motion vectors (MVX, MVY).
3) PU modes (PU).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 5

1 @
64x64

1 @
32x32

1 @
32x32

4 @
32x32

8 @
32x32

4 @
32x32

4 @
32x32

 16 @
32x32

32 @
16x16

64 @
8x8

128 @
4x4

256 @
2x2 25

6

64 2 64 2

14

25
6

Texture Processing CNN

Conv (3x3 - Zero Padding)
+ ReLU + MaxPool

Fully Connected
Layer

Softmax Input Feature
Vector

CNN Input
(Y, U, or V)

Concatenated
YUV

P(Non-Split)
P(Split)

Fig. 5: CNN architecture of depth 0 classifier used in FaME-ML. Values inside the boxes are given in the following format
from left to right: Channel count @ Width×Height of the channel for convolution layers, output size for fully connected and
softmax layers, and input size for the feature vector. In depth 1 classifier, section marked with red-dotted rectangle is removed
and all layers but final two fully connected layers inside the texture processing CNN have their sizes halved.

Fig. 6: Normalized encoding time of test sequences with HM
16.21.

4) CTU block partitioning structure (Depth).
5) Reference frame selection (Reference).
6) Frame level QP (QP).
7) Intra luma and chroma directions. These values corre-

spond to the directions of luma and chroma components.
8) Prediction modes. These values correspond to the inter

or intra prediction mode decisions within the reference
CTU.

The last two encoding information were not used in FaME-
ML, and the remaining features were used in a different
format. In total, 11 features are used for FaRes-ML. Instead
of processing the features and reducing their representations
to a single dimension as in FaME-ML, each feature is directly
saved in a matrix with size 8 × 8 where each value in the
matrix corresponds to 8×8 pixel area, which is the minimum
spatial size for a given CU. Note that these matrices consist
of encoding decisions made by the HEVC reference software
(HM 16.21) [18] while encoding the reference representation.

Like FaME-ML, min-max normalization is applied in video
level for each feature (i.e., for each feature, minimum and
maximum value in the whole video is found, and all values are
normalized using these min-max values). Normalized features
are saved and used in the feature processing CNN part of
FaRes-ML.

Applying the min-max normalization resulted in an 0.5%

increase in F1-scores on average in our experiments. It should
also be noted that the possible value range for features is
determined in the HEVC encoder except for the CUBits and
CUCosts features. The effect of skipping the normalization
for these two features was negligible in our experiments (i.e.,
0.1%).

B. Dataset

We used 15 sequences from SJTU dataset [23] as our train-
ing data. All sequences were encoded with HEVC reference
software (HM 16.21) [18] and encoding information at CTU
level were extracted. All sequences are 30 fps and the first four
seconds of each sequence (i.e., 120 frames of each sequence)
are used in the dataset. 90% of frames in each sequence are
chosen as the training data and the remaining 10% are chosen
as the validation data.

C. FaRes-ML CNN

The overall structure of the CNN used in FaRes-ML is
depicted in Fig. 7. Y, U, and V values from the raw video
with the target resolution and the encoding information from
the reference representation are fed into the CNN to get the
output for the split decision for the current CTU.

Y, U, and V values are processed in the first part of
the network (i.e., texture processing CNN). This part of
the network consists of two convolutional blocks for the Y
channel, one convolutional block for the U channel, and one
convolutional block for the V channel. The reasoning behind
using more convolutional blocks for the Y channel is that
the Y channel contains more relevant information in most
cases when 4 : 2 : 0 chroma subsampling is used. Each
convolutional block in this part consists of a convolution
operation followed by a batch normalization [19] followed
by a ReLU [21] activation. Outputs of these convolutional
blocks are concatenated channel-wise at the end. In this part
of the network, each input has 64 × 64 sizes and the size of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

1 @
64x64

1 @ 64x64

1 @ 64x64

4 @
64x64

8 @
64x64

4 @
64x64

4 @
64x64

32 @
64x64

64 @
32x32

128 @
16x16

256 @
8x8

Texture Processing CNN

Conv (3x3 - Zero Padding) +
ReLU + MaxPool

Conv (8x8 - No Padding) +
ReLU

Conv (1x1 - No Padding) +
ReLU

Feature Input

CNN Input (Y) 4 @
8x81 @ 8x8

Feature Processing CNN (x11)

CNN Input (U or V)

256 @
1x1

64 @
1x1

2 @
1x1

Conv (3x3 - Zero Padding)
+ ReLU

32 @
1x1

2 @
1x1

32 2 2
P(Non-split)

Softmax

Fully Connected
Layer

P(Split)

22

Fig. 7: Structure of the CNN used in FaRes-ML.

the outputs from these layers is not changed, thus the final
output from the first part of the texture processing CNN has
16 channels with size 64 × 64.

Following the concatenation, the intermediate output is
passed through four convolutional blocks with max-pooling
applied at the end of each block, which reduces the size of
the input to 8 × 8 at the end with 256 channels. Finally, it is
passed through one convolution layer with kernel size 8 × 8
and two convolution layers with kernel size 1 × 1 to obtain
the output with 2 dimensions that is not activated.

The second part of the network (i.e., feature processing
CNN) is used for processing the encoding information. In this
part, each encoding information is passed through a single con-
volution layer followed by a ReLU activation. Then, similar to
the final part of the texture processing part, convolution with
kernel size 8 × 8 is applied followed by another convolution
with kernel size 1 × 1. These layers produce output with 2
dimensions, similar to the output of the texture processing part,
for each encoding feature. This part of the network is used for
each feature individually (i.e., 11 times) and the outputs are
concatenated together.

Finally, the output from the texture processing and the
encoding feature processing parts are concatenated and passed
through a fully-connected layer with a softmax function at the
end to obtain the probability distribution for the non-split or
the split class for the given CTU. The class with the higher
probability is chosen to obtain the final split decision for the
given CTU.

Adam [22] optimizer is used to train the network with a
learning rate of 8 × 10−4 and the learning rate is reduced by
a factor of 10 (i.e., learning rate is multiplied by 0.1) if the
training loss is stuck for 10 epochs. ReLU [21] was used as the
activation function. Batch normalization [19] and dropout [20]
are applied in specific parts of the network to regulate.

D. Overall Methodology

The flowchart of the FaRes-ML is shown in Fig. 8 and
works as follows:

Video

HEVC

..

HEVC

QPN

HEVC

..

CNN

HEVC

QPN

CNN

HEVC

QP2

CNN

HEVC

QP1

CNN

540pHEVC

QP1

HEVC

QP2

CNN CNN CNN

HEVC

..

CNN

HEVC

QPN

CNN

HEVC

QP2

CNN

HEVC

QP1

CNN

1080p
2160p

Fig. 8: Flowchart of the FaRes-ML.

1) Use HEVC to encode the reference representation (i.e.,
540p at QP1 in our example) and store the encoding
information that will be further re-used while encoding
the remaining (i.e., dependent) representations.

2) Feed the available information to the CNN trained for
the target resolution and QP combinations. That is,
provide the Y, U, and V values from the raw video in
the target resolution to the first part of the CNN (i.e.,
texture processing CNN) and encoding information from
the reference representation to the second part of the
CNN (i.e., feature processing CNN).

3) Use the decision of the CNN to speed up the encoding
of the dependent representations.

VI. EXPERIMENTAL RESULTS

Experimental results for both approaches are given in this
section. First, the common evaluation setup for both methods is
introduced. Second, results and ablation studies for FaME-ML
are presented. Finally, the experimental results and ablation
studies for FaRes-ML conclude this section.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 7

A. Common Evaluation Setup

Bjotengaard delta rates using PSNR and VMAF are used
to evaluate the performance [24], [25]. Pytorch is used as
the machine learning framework [26] and all experiments are
conducted on the server with an Intel Xeon Gold 5218 @
2.30GHz, NVIDIA Quadro GV100, 384 GB memory, and
Ubuntu Linux 18.04 as the OS. Please note that the predictions
run on the GPU while the actual video encodings run on the
CPU in parallel. GPU predictions were a multitude faster than
the CPU encodings. Thus, the predictions did not cause an
extra delay. For example, the time it takes to predict CTU
decisions for the Basketball sequence was around 350 secs
for 1080p resolution, while encoding the same sequence took
around 2,500 secs for QP22 and 800 secs for QP37.

B. Results: FaME-ML

To evaluate the performance of FaME-ML, 8 sequences
from different datasets [27], [28] are used as the test set.
The encoding information for the lowest quality representation
(i.e., QP38) is saved and re-used to speed up the remaining rep-
resentations (i.e., QP34, QP30, QP26, QP22). ROC-AUC [29]
scores of the trained networks on the test set are given in
Table I.

TABLE I: ROC-AUC scores of the CNN used in FaME-ML
for different QP targets and depth levels.

Target QP Depth 0 Depth 1
QP22 0.79 0.77
QP26 0.81 0.75

FaME-ML is compared with unmodified HEVC reference
software (HM 16.21) [18] and the Lower Bound approach.
The Lower Bound approach is a modified version of [8]. In
the lower bound approach, the lowest quality representation is
used as the reference encoding and the CU depth searches for
the remaining representations are bounded by the depth level
of the co-located CU in the reference representation, i.e., depth
levels that are lower than the co-located CU are not searched.

Normalized encoding time of different methods are given in
Fig. 9. It can be seen that FaME-ML eliminates the obvious
bottleneck problem by bringing down the encoding time of
two highest quality representations to a similar level to the
rest of the representations. The overall time saving for the
parallel encoding scenario is 41.26% on average.

Fig. 9: Normalized encoding time-complexities of different
methods and FaME-ML.

Encoding performance for individual sequences compared
to the HM 16.21 are given in Table II. BD-Rate (BDR)
results using both PSNR (BDRP) and VMAF (BDRV)
metrics for the test sequences are given along with the differ-
ence between the maximum time-complexity of each method
compared to the maximum time-complexity of the reference
software (∆TP). The average BD-PSNR & BD-VMAF values
are −0.0152 & −0.0283 and −0.0243 & −0.0393 for the
lower bound approach and FaME-ML, respectively. Moreover,
FaME-ML can reduce the overall encoding time by 15.08%
on average.

C. Ablation Studies

1) Using Middle-Quality as the Reference
It can be seen in the resulting encoding time graph that the

middle-quality representation has the highest encoding time.
Thus, one might ask why the middle-quality was not used
as the reference instead of the lowest quality. To answer this
question, the resulting encoding time graph with QP30 as
the reference representation is given in Fig. 10. It can be
seen that the difference is almost negligible, and the same
applies for BD-Rate as changing reference representation from
QP38 to QP30 results with only 0.04% decrease in BD-Rate.
Therefore, the lowest quality representation QP38 is chosen
as the reference representation as it is the ideal reference for
speeding up the parallel encoding scenario since it has the
lowest encoding time complexity.

2) Applying CNN for All Dependent Representations
Another study was about the encoding performance when

the CNN is applied to all dependent representations instead of
the highest two quality ones. In particular, the lowest quality
representation (QP38) is used as the reference and Depth 0
decisions by CNNs along with the Depth 1 decision for QP22

are applied to encode the representations. Moreover, the lower
bound approach is applied to all dependent representations.

In this encoding scheme, the BD-Rate is increased to 2.1%
compared to 0.88% in the proposed scheme. The resulting
time graph is given in Fig. 11. It can be seen that, if the
CNN is applied to speed up the encoding of QP30 and QP34,
the parallel encoding time is now bounded by the QP26 and
the time saving for parallel encoding is increased to 45%
compared to 41% in the proposed scheme.

Fig. 10: Normalized encoding time-complexities of different
methods and FaME-ML with QP30 as the reference.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

TABLE II: Encoding results for test sequences using Lower Bound and FaME-ML. Metrics are calculated over all five QP
levels. ∆TP represents the encoding time difference between the highest complexity representation for each method.

Lower Bound FaME-ML
Sequence ∆TP BDRP BDRP / ∆TP BDRV BDRV / ∆TP ∆T BDRP BDRP / ∆TP BDRV BDRV / ∆TP

DucksTakeOff 9.84 % 0.346 % 3.51 0.092 % 0.93 36.42 % 0.305 % 0.84 0.119 % 0.32
InToTree 3.11 % 0.368 % 11.83 0.688 % 22.12 54.59 % 1.325 % 2.42 0.511 % 0.93

OldTownCross 4.17 % 0.457 % 10.95 0.191 % 4.58 52.89 % 0.955 % 1.80 0.077 % 0.14
ParkJoy 21.23 % 0.404 % 1.90 0.083 % 0.39 36.04 % 0.920 % 2.55 0.250 % 0.69

RedKayak 12.72 % 0.764 % 6.01 0.282 % 2.21 22.98 % 0.525 % 2.28 0.184 % 0.81
RushFieldCuts 17.90 % 0.471 % 2.63 0.101 % 0.56 40.60 % 1.214 % 2.99 0.456 % 1.12
ControlledBurn 2.30 % 0.703 % 30.56 0.146 % 6.34 46.91 % 0.679 % 1.47 0.493 % 1.05
ParkRunning3 16.81 % 0.475 % 2.82 0.086 % 0.51 39.67 % 1.178 % 2.97 0.507 % 1.27

Average 11.01 % 0.498 % 8.77 0.208 % 4.70 41.26 % 0.887 % 2.16 0.324 % 0.79

TABLE III: F1-scores of different networks used in FaRes-ML.

Reference 540p 1080p 2160p
QP37 QP32 QP27 QP22 QP37 QP32 QP27 QP22 QP37 QP32 QP27 QP22

540p - QP37 - 81.53 % 88.03 % 87.85 % 59.54 % 62.22 % 73.28 % 80.79 % - - - -
540p - QP22 78.95 % 85.49 % 93.44 % - 67.66 % 71.81 % 79.53 % 84.37 % 64.81 % 67.35 % 69.14 % 76.02 %

Fig. 11: Normalized encoding time-complexities of different
methods and FaME-ML when the FaME-ML is applied to all
dependent representations.

D. Results: FaRes-ML

We used 6 sequences from the MCML dataset [30] as test
sequences. All videos were encoded at three resolutions (540p,
1080p, and 2160p) and at four different quality levels (QP22,
QP27, QP32, QP37) for each resolution. Similar to the FaMe-
ML, the performance of FaRes-ML is compared with HEVC
reference software (HM 16.21) [18] and the lower bound
approach [8].

Average f1 scores of CTU decisions in the test set for
different target quality and resolution levels using networks
trained with QP37 and QP22 from the 540p resolution as the
reference representation are given in Table III. It can be seen
that using the highest quality representation of 540p resolution
gives more accurate results, thus it was used as the final
reference representation in the proposed method. F1 scores
using QP37 as the reference is missing for 2160p since it was
observed that using the QP22 as the reference performs better
for the 1080p resolution. Thus the training using QP37 as the
reference was not done for 2160p due to high training time
requirements.

It is essential to understand the reasoning behind relatively
low f1 scores for depth predictions. We believe this is caused
by the large differences between characteristics of different
videos, which makes the CTU split decision problem a hard
one for learning-based solutions since it is difficult to gener-
alize properly. Fig. 12 illustrates the two input vectors at the
same resolution and same QP level used in our studies. The

first row is a feature vector that belongs to a CTU from Bund
Nightscape video in the training set and the second row is a
feature vector that belongs to a CTU from Lake video in the
test set. It can be seen that despite minor differences in several
features (i.e., Y, U, V CTUs, CUBits, and CUCosts), most of the
features are very similar if not the same. However, the depth
decision by HEVC is Depth 1 for the first feature vector and
Depth 3 for the second feature vector. This example shows the
CTU split decision problem is difficult to generalize.

Encoding results for test sequences are given in Table IV.
Here we can see that the FaRes-ML can decrease the encoding
time-complexity for 2160p and 1080p resolutions by 52.53%
and 49.63% on average, respectively, while the time reduction
is lower for 540p sequences (i.e., 36.65%) compared to higher
resolution versions. This is expected since there is no encoding
time saving for the reference representation (QP22), which has
the highest time-complexity in the 540p resolution. In fact, the
average time saving for the remaining representations (i.e.,
QP27, QP32, QP37) in the 540p resolution is 49.12%.

To illustrate the parallel encoding performance better, the
average normalized encoding times for test sequences in
various quality levels and resolutions are shown in Fig. 13.
It can be seen that using FaRes-ML can help with the bottle-
neck problem in parallel encoding scenarios by reducing the
complexity in the higher quality and resolution representations.
The encoding-time reduction is around (27.71%) in the highest
quality (QP22 and 2160p), which is much higher compared
to the lower bound approach (2.84%) but not as high as
the performance of FaME-ML in the multi-rate encoding.
The reasoning behind this is that even if the FaRes-ML can
predict depth decisions efficiently, the correlation between
different resolutions of the same video is lower than the
correlation between the same resolution but different quality
level representations.

Example RD curves for the Basketball sequence in three
resolutions are given in Fig. 14. Sample CTUs when the wrong
depth prediction is given by FaRes-ML are shown in Fig. 15.

Finally, to see the encoding performance of FaME-ML in
the multi-resolution scenario, Basketball sequence is encoded
in all resolutions and QP levels using the QP37 of 540p
representation as the reference (cf. Table V). As expected,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 9

Lake

Bund Nightscape

 = D1

 = D3
Fig. 12: Illustration of two different feature vectors in the dataset. The first row is a feature vector from the Bund Nightscape
sequence from the training set and the second one belongs to Lake sequence from the test set. Both vectors are obtained at
the same resolution with the same QP. It can be seen that despite the very minor differences between features, depth decisions
given by HEVC are totally different.

TABLE IV: Comparison between the lower bound approach and the FaRes-ML with respect to the unmodified HM reference
software (16.21).

Sequence Lower Bound FaRes-ML
∆T BDRP BDRV BDPSNR BDV MAF ∆T BDRP BDRV BDPSNR BDV MAF

3840x2160

Basketball 4.42 % 2.85 % 3.35 % -0.084 -0.412 43.47 % 2.18 % 2.70 % -0.068 -0.312
Bunny 3.64 % 1.44 % 1.10 % -0.051 -0.165 66.64 % 3.91 % 4.15 % -0.139 -0.520

Characters 2.62 % 6.92 % 4.84 % -0.193 -0.095 53.76 % 2.76 % 1.44 % -0.071 -0.079
Contsruction 1.67 % 1.70 % 2.08 % -0.047 -0.181 55.57 % 4.08 % 5.03 % -0.095 -0.357

Dolls 3.24 % 2.48 % 2.60 % -0.061 -0.323 53.28 % 3.45 % 4.09 % -0.081 -0.443
Lake 2.74 % 0.14 % 0.04 % -0.006 -0.011 42.46 % 1.76 % 1.57 % -0.074 -0.274

Average 3.06 % 2.59 % 2.34 % -0.074 -0.198 52.53 % 3.02 % 3.16 % -0.088 -0.331

1920x1080

Basketball 5.12 % 0.98 % 0.90 % -0.041 -0.175 45.27 % 3.47 % 3.14 % -0.150 -0.538
Bunny 3.15 % 0.50 % 0.49 % -0.020 -0.031 60.52 % 2.57 % 2.96 % -0.100 -0.324

Characters 3.65 % 2.18 % 1.01 % -0.076 -0.018 49.73 % 0.34 % 0 % -0.011 -0.024
Construction 2.12 % 0.94 % 1.03 % -0.034 -0.156 55.23 % 2.09 % 2.41 % -0.070 -0.192

Dolls 4.42 % 1.10 % 1.57 % -0.034 -0.236 49.67 % 3.93 % 4.73 % -0.120 -0.580
Lake 2.76 % 0.12 % 0.04 % -0.004 -0.004 37.35 % 1.39 % 1.49 % -0.054 -0.253

Average 3.53 % 0.97 % 0.84 % -0.035 -0.103 49.63 % 2.30 % 2.46 % -0.084 -0.318

960x540

Basketball 4.55 % 0.06 % 0.21 % -0.003 -0.027 32.28 % 2.11 % 3.03 % -0.102 -0.433
Bunny 2.53 % 0.13 % 0.26 % -0.006 -0.044 45.21 % 1.18 % 2.11 % -0.052 -0.229

Characters 2.84 % 0.31 % 0.75 % -0.007 -0.013 39.44 % 0.01 % 0 % -0.003 -0.038
Construction 1.64 % 0.11 % 0.60 % -0.004 -0.059 43.42 % 0.21 % 0.71 % -0.007 -0.056

Dolls 3.65 % 0.14 % 0.51 % -0.005 -0.018 30.90 % 0.57 % 0.66 % -0.020 -0.070
Lake 2.50 % 0.02 % 0.29 % -0.001 -0.036 28.66 % 0.89 % 2.35 % -0.034 -0.317

Average 2.95 % 0.12 % 0.43 % -0.004 -0.032 36.65 % 0.83 % 1.48 % -0.036 -0.191
Total Average 3.18 % 1.22 % 1.20 % -0.037 -0.111 46.27 % 2.05 % 2.36 % -0.069 -0.280

Fig. 13: Average normalized encoding time for test sequences
using HEVC reference software (HM 16.21), lower bound
approach, and the FaRes-ML.

FaRes-ML outperforms FaME-ML in all cases thanks to its
improved structure. The only case where FaME-ML performs
better in terms of BD-Rate is the 540p version since it is
a multi-rate encoding in this case; however, encoding time
reduction is still better for FaRes-ML.

TABLE V: Encoding performances of the FaME-ML and
FaRes-ML for the Basketball sequence.

Method ∆T BDRP BDPSNR

2160p FaME-ML 18.12 % 4.30 % -0.128
FaRes-ML 43.42 % 2.18 % -0.068

1080p FaME-ML 21.40 % 7.81 % -0.299
FaRes-ML 45.27 % 3.47 % -0.150

540p FaME-ML 9.44 % 1.98 % -0.109
FaRes-ML 32.28 % 2.11 % -0.102

E. Ablation Studies

1) Effects of Features
To better understand the effect of each feature, another

experiment is conducted. All feature vector values are set to
zero except a single feature, and the prediction results are
obtained. This procedure is applied for all features individually
and resulting F1 scores are used to interpret the effect of
each feature on the depth decision. The information factor is
calculated by applying min-max normalization to average F1
scores. Visualization of the feature effects is given in Fig. 16.

It can be seen that the CTU partitioning decision in the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 10

Fig. 14: RD-Curves for the Basketball sequence in three resolutions.

H
M

 C
TU

Fa
R

es
-M

L
C

TU

Fig. 15: Example CTUs from the encoded Basketball sequence
when the FaRes-ML predicts a wrong depth decision.

Fig. 16: Information factor of features

reference encoding (Depth) has the highest information factor.
This is expected since the depth decision given by the HEVC
during encoding is a clear indicator of the encoding complexity
of the given CTU and it should be well correlated with the
CTU in the dependent representation.

2) Minimum Depth Prediction Network
In this study, the network is modified to predict the mini-

mum depth level inside a given CTU instead of a binary split
decision for CTU split decision, thus both the intermediate
and the final outputs have four dimensions now. Here, each
dimension represents the probability of the CTU belonging to
a depth level (i.e., 0, 1, 2, and 3) given the input information.
The modified CNN architecture can be seen in Fig. 17.

In this method, the CNN is trained with the minimum
depth level inside the given CTU as the target during the
training phase. The decision of CNN is used to skip lower-
level depth searches based on the predicted depth value to

improve the lower bound approach. This can be seen as an
improvement for the lower bound approach using machine
learning. The encoding time graph is given in Fig. 18. While
the proposed approach can improve the lower bound approach,
the improvement is barely noticeable; thus, it is not used in the
final approach. With the minimum depth prediction network,
the classification problem becomes a multi-class classification
instead of the binary classification, which poses an extra
challenge and reduces the prediction accuracy. For example,
the accuracy of the minimum depth prediction network for
1080p/QP22 is 53.08% while it is 84.37% for the network
used in the FaRes-ML.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a machine learning-based approach is pro-
posed for fast multi-resolution and multi-rate encoding for
HTTP adaptive streaming. First, a fast multi-rate encoding
approach (FaME-ML) is proposed, and then it is extended
to address multi-resolution scenarios (FaRes-ML). The lowest
quality representation is used as the reference for FaME-
ML, while the highest quality representation from the lowest
resolution is chosen as the reference for the extended FaRes-
ML approach. Encoding information (e.g., RD cost, intra
directions, motion vectors, prediction modes, etc.) from the
reference representation in addition to luma (i.e., Y), chroma
(i.e., U, and V) values from the target resolution for a given
CTU are passed to the CNN to predict the split decision.
A CTU split decision dataset is constructed to train separate
CNNs for each target QP and resolution combination. The
trained CNN is then applied during the encoding of dependent
representations. Experimental results show that the FaME-
ML can achieve 15.08% time saving for serial encoding and
41.26% for parallel encoding while causing 0.89% bitrate
increase. On the other hand, FaRes-ML can achieve 46.27%
encoding time saving for serial encoding and 27.71% time
saving for parallel encoding while causing a 2.05% bitrate
increase.

As future work, the proposed approach can be applied for
other encoding decisions (e.g., PU decision, reference frame
selection, etc.) to improve the encoding performance better.
Moreover, the extension of the proposed approach for VVC
can also be an interesting study due to the increased encoding
time complexity of VVC compared to HEVC.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

1 @
64x64

1 @ 64x64

1 @ 64x64

4 @
64x64

8 @
64x64

4 @
64x64

4 @
64x64

32 @
64x64

64 @
32x32

128 @
16x16

256 @
8x8

Texture Processing CNN

Conv (3x3 - Zero Padding) +
ReLU + MaxPool

Conv (8x8 - No Padding) +
ReLU

Conv (1x1 - No Padding) +
ReLU

Feature Input

CNN Input (Y) 4 @
8x81 @ 8x8

Feature Processing CNN (x11)

CNN Input (U or V)

256 @
1x1

64 @
1x1

4 @
1x1

Conv (3x3 - Zero Padding)
+ ReLU

32 @
1x1

4 @
1x1

32 2

Softmax

Fully Connected
Layer

44

4 P(D2)
P(D3)

P(D0)
P(D1)

Fig. 17: Modified FaRes-ML CNN architecture for minimum depth prediction. The intermediate output vectors now have 4
dimensions, one for each depth level.

Fig. 18: Average normalized encoding time for test sequences
using HEVC reference software (HM 16.21), lower bound ap-
proach, and the proposed minimum depth prediction approach.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and methodology,
2017–2022 (white paper),” 2019.

[2] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over
the Internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, April 2011.

[3] Bitmovin, “Bitmovin developer report 2020,” [Online] https://go.
bitmovin.com/video-developer-report-2020, 2020, Accessed: 2020-11-
03.

[4] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Transactions
on circuits and systems for video technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[5] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[6] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and
implementation analysis,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1685–1696, 2012.

[7] D. Schroeder, A. Ilangovan, M. Reisslein, and E. Steinbach, “Efficient
multi-rate video encoding for HEVC-based adaptive HTTP streaming,”
IEEE Transactions on Circuits and Systems for Video Technology, vol.
28, no. 1, pp. 143–157, Jan 2018.

[8] H. Amirpour, E. Çetinkaya, C. Timmerer, and M. Ghanbari, “Fast multi-
rate encoding for adaptive HTTP streaming,” in 2020 Data Compression
Conference (DCC), 2020, pp. 358–358.

[9] J. De Praeter et al., “Fast simultaneous video encoder for adaptive

streaming,” in IEEE 17th International Workshop on Multimedia Signal
Processing (MMSP), 2015, pp. 1–6.

[10] K. Goswami et al., “Adaptive multi-resolution encoding for ABR
streaming,” in 25th IEEE International Conference on Image Processing
(ICIP), 2018, pp. 1008–1012.

[11] H. Amirpour, E. Çetinkaya, C. Timmerer, and M. Ghanbari, “Towards
optimal multirate encoding for HTTP adaptive streaming,” in Interna-
tional Conference on Multimedia Modeling (MMM). Springer, 2021, pp.
469–480.

[12] E. Çetinkaya, H. Amirpour, C. Timmerer, and M. Ghanbari, “FaME-ML:
Fast multirate encoding for HTTP adaptive streaming using machine
learning,” in 2020 IEEE International Conference on Visual Communi-
cations and Image Processing (VCIP). IEEE, 2020, pp. 87–90.

[13] M. Grellert, L. A. da Silva Cruz, B. Zatt, and S. Bampi, “Coding
mode decision algorithm for fast HEVC transrating using heuristics and
machine learning,” Journal of Real-Time Image Processing, pp. 1–16.

[14] A. Mathesawaran et al., “Open source framework for reduced-
complexity multi-rate HEVC encoding,” in Applications of Digital
Image Processing XLIII. International Society for Optics and Photonics,
2020, vol. 11510, p. 115101Y.

[15] M. Grellert, L. A. da Silva Cruz, B. Zatt, and S. Bampi, “Coding
mode decision algorithm for fast HEVC transrating using heuristics and
machine learning,” Journal of Real-Time Image Processing, pp. 1–16,
2021.

[16] Y. Wei, Z. Wang, M. Xu, and S. Qiao, “An LSTM method for predicting
CU splitting in H.264 to HEVC transcoding,” in 2017 IEEE Visual
Communications and Image Processing (VCIP). IEEE, 2017, pp. 1–4.

[17] F. Bossen et al., “Common test conditions and software reference
configurations,” JCTVC-L1100, vol. 12, pp. 7, 2013.

[18] “HEVC reference software HM 16.21,” [Online] https://vcgit.hhi.
fraunhofer.de/jct-vc/HM, 2020, Accessed: 2020-08-10.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, no. 56,
pp. 1929–1958, 2014.

[21] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315–323.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia, “The SJTU 4K video
sequence dataset,” in 2013 Fifth International Workshop on Quality of
Multimedia Experience (QoMEX). IEEE, 2013, pp. 34–35.

[24] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” VCEG-M33, 2001.

https://go.bitmovin.com/video-developer-report-2020
https://go.bitmovin.com/video-developer-report-2020
https://vcgit.hhi.fraunhofer.de/jct-vc/HM
https://vcgit.hhi.fraunhofer.de/jct-vc/HM

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3078657, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 12

[25] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and
M. Manohara, “Toward a practical perceptual video
quality metric,” [Online] https://netflixtechblog.com/
toward-a-practical-perceptual-video-quality-metric-653f208b9652,
2016, Accessed: 2020-05-29.

[26] A. Paszke et al., “PyTorch: an imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems,
2019, pp. 8024–8035.

[27] L. Haglund, “The SVT high definition multi format test set,” Swedish
Television Stockholm, 2006.

[28] K. Suehring and X. Li, “JVET common test conditions and software
reference configurations,” JVET-B1010, 2016.

[29] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve.,” Radiology, vol. 143,
no. 1, pp. 29–36, 1982.

[30] M. Cheon and J.-S. Lee, “Subjective and objective quality assessment
of compressed 4K UHD videos for immersive experience,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 28,
no. 7, pp. 1467–1480, 2017.

Ekrem Çetinkaya was born in Istanbul, Turkey
in 1995. Ekrem Çetinkaya received his B.Sc. in
computer science in 2018 and M.Sc.in computer
science in 2019 from Ozyegin University, Istanbul,
Turkey. He is currently pursuing a Ph.D. degree
in Alpen-Adria-Universität, Klagenfurt, Austria. He
is working on the content provisioning part of the
ATHENA project, and he contributed to several
publications. His current research interests include
video encoding enhancements with machine learn-
ing. Further information at https://ekrcet.com/

Hadi Amirpour received his B.Sc. degrees in Elec-
trical and Biomedical Engineering from Amirkabir
University of Technology and IAU-South Tehran
Branch, respectively. He pursued his M.Sc. in Elec-
trical Engineering at the K. N. Toosi University of
Technology between 2011-2013. He was involved
in the project EmergIMG, a Portuguese consortium
on emerging imaging technologies, funded by the
Portuguese Funding agency and H2020. Currently,
he is working in the ATHENA project and his
research interests are on image/video processing and

compression, quality of assessment, emerging 3D imaging technology and
medical image analysis.

Christian Timmerer (M’08-SM’16) is an associate
professor at the Institute of Information Technology
(ITEC) and is the director of the Christian Doppler
(CD) Laboratory ATHENA (https://athena.itec.aau.
at/). His research interests include immersive mul-
timedia communication, streaming, adaptation, and
quality of experience where he co-authored seven
patents and more than 200 articles. He was the
general chair of WIAMIS 2008, QoMEX 2013,
MMSys 2016, and PV 2018 and has participated in
several EC-funded projects, notably DANAE, EN-

THRONE, P2P-Next, ALICANTE, SocialSensor, COST IC1003 QUALINET,
and ICoSOLE. He also participated in ISO/MPEG work for several years,
notably in the area of MPEG-21, MPEG-M, MPEG-V, and MPEG-DASH
where he also served as standard editor. In 2013 he cofounded Bitmovin (http:
//www.bitmovin.com/) to provide professional services around MPEG-DASH
where he holds the position of the Chief Innovation Officer (CIO) — Head
of Research and Standardization. Further information at http://timmerer.com.

Mohammad Ghanbari (M’78–SM’97–F’01,
LF’14) is an Emeritus Professor at the School
of Computer Science and Electronic Engineering,
University of Essex, United Kingdom. He is
currently involved in the Athena Project at the
Universitat Klagenfurt, Austria. He is internationally
best known for the pioneering work on layered
video coding, which earned him IEEE Fellowship in
2001 and he was also promoted IEEE Life Fellow
in 2014. He has registered for thirteen international
patents and published more than 700 technical

papers on various aspects of video networking, many of which have had
fundamental influences in this field. These include: video/image compression,
layered/scalable video coding, video transcoding, motion estimation, and
video quality metrics. He is the author and co-author of 8books, and his
book video coding: an introduction to standard codecs, published by IET
press in 1999, received the Rayleigh prize as the best book of year 2000 by
IET.

https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://ekrcet.com/
https://athena.itec.aau.at/
https://athena.itec.aau.at/
http://www.bitmovin.com/
http://www.bitmovin.com/
http://timmerer.com

