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Abstract8

Symmetries are present at many scales in natural scenes. Humans and other animals are highly9

sensitive to visual symmetry, and symmetry contributes to numerous domains of visual percep-10

tion. The four fundamental symmetries, reflection, rotation, translation and glide reflection, can11

be combined into exactly 17 distinct regular textures. These wallpaper groups represent the com-12

plete set of symmetries in 2D images. The current study seeks to provide a more comprehensive13

description of responses to symmetry in the human visual system, by collecting both brain imaging14

(Steady-State Visual Evoked Potentials measured using high-density EEG) and behavioral (sym-15

metry detection thresholds) data using the entire set of wallpaper groups. This allows us to probe16

the hierarchy of complexity among wallpaper groups, in which simpler groups are subgroups of17

more complex ones. We find that both behavior and brain activity preserve the hierarchy almost18

perfectly: Subgroups consistently produce lower amplitude symmetry-specific responses in visual19

cortex and require longer presentation durations to be reliably detected. These findings expand20

our understanding of symmetry perception by showing that the human brain encodes symmetries21

with a high level of precision and detail. This opens new avenues for research on how fine-grained22

representations of regular textures contribute to natural vision.23

Symmetries are abundant in natural and man-made environments, due to a complex interplay of24

physical forces that govern pattern formation in nature. Sensitivity to symmetry has been demon-25

strated in a number of species, includes bees (Giurfa et al., 1996), fish (Morris and Casey, 1998;26

Schlüter et al., 1998), birds (Møller, 1992; Swaddle and Cuthill, 1994) and dolphins (von Fersen et al.,27

1992), and may be used as a cue for mate selection in many species (Swaddle, 1999) including humans28

(Rhodes et al., 1998). Humans cultures have created and appreciated symmetrical patterns through-29

out history, and since the gestalt movement of the early 20th century, symmetry has been recognized30

as important for visual perception. Symmetry contributes to the perception of shapes (Palmer, 1985;31

Li et al., 2013), scenes (Apthorp and Bell, 2015) and surface properties (Cohen and Zaidi, 2013). This32

literature is almost exclusively based on stimuli in which one or more symmetry axes are placed at a33

single point in the image. Focus has been on mirror symmetry or reflection, with relatively few studies34

including the other fundamental symmetries: rotation, translation and glide reflection (Wagemans,35
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1998) - perhaps because reflection has been found to be more perceptually salient (Mach, 1959; Royer,36

1981; Palmer, 1991; Ogden et al., 2016; Hamada and Ishihara, 1988) and produce more brain activity37

(Makin et al., 2013, 2014, 2012; Wright et al., 2015). In the current study, we take a different approach38

by investigating visual processing of regular textures in which combinations of the four fundamental39

symmetries tile the 2D plane.40

In the two spatial dimensions relevant for images, symmetries can be combined in 17 distinct41

ways, the wallpaper groups (Fedorov, 1891; Polya, 1924; Liu et al., 2010). Previous work on a sub-42

set of four of the wallpaper groups used functional MRI to demonstrate that rotation symmetries in43

wallpapers elicit parametric responses in several areas in occipital cortex, beginning with visual area44

V3 (Kohler et al., 2016). This effect was also robust when symmetry responses were measured with45

electroencephalography (EEG) using both Steady-State Visual Evoked Potentials (SSVEPs)(Kohler46

et al., 2016) and Event-Related Potentials (Kohler et al., 2018). The SSVEP technique uses periodic47

visual stimulation to produce a periodic brain response that is confined to integer multiples of the stim-48

ulation frequency known as harmonics. SSVEP response harmonics can be isolated in the frequency49

domain and depending on the specific design, different harmonics will express different aspects of the50

brain response. (Norcia et al., 2015). Here we extend on the previous work by collecting SSVEPs and51

psychophysical data from human participants viewing the full set of wallpaper groups. We measure52

responses in visual cortex to 16 out of the 17 wallpaper groups, with the 17th serving as a control53

stimulus. Our goal is to provide a more complete picture of how wallpaper groups are represented in54

the human visual system.55

A wallpaper group is a topologically discrete group of isometries of the Euclidean plane, i.e.56

transformations that preserve distance (Liu et al., 2010). The wallpaper groups differ in the number57

and kind of these transformations and we can uniquely refer to different groups using crystallographic58

notation. In brief, most groups are notated by PXZ, where X ∈ {1, 2, 3, 4, 6} indicates the highest59

order of rotation symmetry and Z ∈ {m, g} indicates whether the pattern contains reflection (m) or60

glide reflection (g). For example, P4 contains rotation of order 4, while P4MM contains rotation61

of order 4 and two reflections. By convention, many of the groups are given shortened names: for62

example, P4MM is usually referred to as P4M , as the second reflection can be deduced from the63

presence of rotation of order 4 alongside a reflection. Two of the groups start with a C rather than64

a P , (CM and CMM) which indicates that the symmetries are specified relative to a cell that itself65

contains repetition. Full details of the naming convention can be found on wikipedia and examples of66

the wallpaper groups are shown in Figures 1 and 2.67

In mathematical group theory, when the elements of one group is completely contained in another,68

the inner group is called a subgroup of the outer group (Liu et al., 2010). The full list of subgroup69

relationships is listed in Section 1.4.2 of the Supplementary Material. Subgroup relationships between70

wallpaper groups can be distinguished by their indices. The index of a subgroup relationship is the71

number of cosets, i.e. the number of times the subgroup is found in the supergroup (Liu et al., 2010).72

As an example, let us consider groups P2 and P6 (see Figure 1B). If we ignore the translations in two73

directions that both groups share, group P6 consists of the set of rotations {0◦, 60◦, 120◦, 180◦, 240◦,74

300◦}, in which P2 {0◦, 180◦} is contained. P2 is thus a subgroup of P6, and P6 can be generated75

by combining P2 with rotations {0◦, 120◦, 240◦}. Because P2 is repeated three times in P6, P2 is a76
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subgroup of P6 with index 3 (Liu et al., 2010). Similarly, PMM contains two reflections and rotations77

{0◦, 180◦}. PMM can be generated by adding an additional reflection to both P2 ({0◦, 180◦}) and78

PM (one reflection), so P2 and PM are both subgroups of PMM with index 2 (see Figure 1C). The79

17 wallpaper groups thus obey a hierarchy of complexity where simpler groups are subgroups of more80

complex ones (Coxeter and Moser, 1972).81
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Figure 1: Subgroup relationships with indices 2 (solid lines) and 3 (dashed line) are shown in (A).
All other relationships can be inferred by identifying the shortest path through the hierarchy, and
multiplying the subgroup indices. For example, P1 is related to P6 through P6→P3 (index 2) and
P3→P1 (index 3) so P1 is also a subgroup of P6 with index 3 × 2 = 6. We also show enlarged
versions of some of the subgroup relationships involving P6 (B, shown in red) and PMM (C, shown
in blue) and highlight the symmetries within the subgroups to emphasize how the supergroup can
be generated by adding additional transformations to the subgroup. Illustration adapted from Wade
(1993).

The two datasets we present here (data and analysis code has been made available on OSF) make82

it possible to assess the extent to which both behavior and brain responses follow the hierarchy of83

complexity expressed by the subgroup relationships. Based on previous brain imaging work showing84

that patterns with more axes of symmetry produce greater activity in visual cortex (Sasaki et al.,85

2005; Tyler et al., 2005; Kohler et al., 2018, 2016; Keefe et al., 2018), we hypothesized that more86

complex groups would produce larger SSVEPs. For the psychophysical data, we hypothesized that87

more complex groups would lead to shorter symmetry detection thresholds, based on previous data88

showing that under a fixed presentation time, discriminability increases with the number of symmetry89

axes in the pattern (Wagemans et al., 1991). Our results confirm both hypotheses, and show that90

activity in human visual cortex is remarkably consistent with the hierarchical relationships between the91
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Figure 2: Examples of each of the 16 wallpaper groups are shown in the left- and right-most column
of the figures, next to the corresponding SSVEP (center-left) and psychological (center-right) data
from each group. The SSVEP data are odd-harmonic-filtered cycle-average waveforms. In each cycle,
a P1 exemplar was shown for the first 600 ms, followed by the original exemplar for the last 600 ms.
Errorbars are standard error of the mean. Psychophysical data are presented as boxplots reflecting the
distribution of display duration thresholds. The 16 groups are ordered by the strength of the SSVEP
response, to highlight the range of response amplitudes.
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wallpaper groups, with SSVEP amplitudes and psychophysical thresholds following these relationships92

at a level that is far beyond chance. The human visual system thus appears to encode all of the93

fundamental symmetries using a representational structure that closely approximates the subgroup94

relationships from group theory.95

Results96

The stimuli used in our two experiments were generated from random-noise textures, which made97

it possible to generate multiple exemplars from each of the wallpaper groups, as described in detail98

elsewhere (Kohler et al., 2016). We generated control stimuli matched to each exemplar in the main99

stimulus set, by scrambling the phase but maintaining the power spectrum. All wallpaper groups100

are inherently periodic because of their repeating lattice structure. Phase scrambling maintains this101

periodicity, so the phase-scrambled control images all belong to group P1 regardless of group mem-102

bership of the original exemplar. P1 contains no symmetries other than translation, while all other103

groups contain translation in combination with one or more of the other three fundamental symmetries104

(reflection, rotation, glide reflection) (Liu et al., 2010). In our SSVEP experiment, this stimulus set105

allowed us to isolate brain activity specific to the symmetry structure in the exemplar images from106

activity associated with modulation of low-level features, by alternating exemplar images and control107

exemplars. In this design, responses to structural features beyond the shared power spectrum, includ-108

ing any symmetries other than translation, are isolated in the odd harmonics of the image update109

frequency (Kohler et al., 2016; Norcia et al., 2015, 2002). Thus, the combined magnitude of the odd110

harmonic response components can be used as a measure of the overall strength of the visual cortex111

response.112

The psychophysical experiment took a distinct but related approach. In each trial an exemplar113

image was shown with its matched control, one image after the other, and the order varied pseudo-114

randomly such that in half the trials the original exemplar was shown first, and in the other half the115

control image was shown first. After each trial, participants were instructed to indicate whether the116

first or second image contained more structure. The duration of both images was controlled by a117

staircase procedure so that a threshold duration for symmetry detection could be computed for each118

wallpaper group.119

Examples of the wallpaper groups and a summary of our brain imaging and psychophysical mea-120

surements are shown in Figure 2. For our primary SSVEP analysis, we only considered EEG data121

from a pre-determined region-of-interest (ROI) consisting of six electrodes over occipital cortex (see122

Supplementary Figure 1.1). SSVEP data from this ROI was filtered so that only the odd harmonics123

that capture the symmetry response contribute to the waveforms. While waveform amplitude is quite124

variable among the 16 groups, all groups have a sustained negative-going response that begins at125

about the same time for all groups, 180 ms after the transition from the P1 control exemplar to126

the original exemplar. To reduce the amplitude of the symmetry-specific response to a single number127

that could be used in further analyses and compared to the psychophysical data, we computed the128

root-mean-square (RMS) over the odd-harmonic-filtered waveforms. The data in Figure 2 are shown129

in descending order according to RMS. The psychophysical results, shown in box plots in Figure 2,130
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were also quite variable between groups, and there seems to be a general pattern where wallpaper131

groups near the top of the figure, that have lower SSVEP amplitudes, also have longer psychophysical132

threshold durations.133

We now wanted to test our two hypotheses about how SSVEP amplitudes and threshold durations134

would follow subgroup relationships, and thereby quantify the degree to which our two measurements135

were consistent with the group theoretical hierarchy of complexity. We tested each hypothesis using136

the same approach. We first fitted a Bayesian model with wallpaper group as a factor and participant137

as a random effect. We fit the model separately for SSVEP RMS and psychophysical data and then138

computed posterior distributions for the difference between supergroup and subgroup. These difference139

distributions allowed us to compute the conditional probability that the supergroup would produce140

(a) larger RMS and (b) a shorter threshold durations, when compared to the subgroup. The posterior141

distributions are shown in Figure 3 for the SSVEP data, and in Figure 4 for the psychophysical142

data, which distributions color-coded according to conditional probability. For both data sets our143

hypothesis is confirmed: For the overwhelming majority of the 63 subgroup relationships, supergroups144

are more likely to produce larger symmetry-specific SSVEPs and shorter symmetry detection threshold145

durations, and in most cases the conditional probability of this happening is extremely high.146

We also ran a control analysis using (1) odd-harmonic SSVEP data from a six-electrode ROI over147

parietal cortex (see Supplementary Figure 1.1) and (2) even-harmonic SSVEP data from the same148

occipital ROI that was used in our primary analysis. By comparing these two control analysis to our149

primary SSVEP analysis, we can address the specify of our effects in terms of location (occipital cortex150

vs parietal cortex) and harmonic (odd vs even). For both control analyses (plotted in Supplementary151

Figures 3.3 and 3.4), the correspondence between data and subgroup relationships was substantially152

weaker than in the primary analysis. We can quantify the strength of the association between the153

data and the subgroup relationships, by asking what proportion of subgroup relationships that reach154

or exceed a range of probability thresholds. This is plotted in Figure 5, for our psychophysical data,155

our primary SSVEP analysis and our two control SSVEP analyses. It shows that odd-harmonic156

SSVEP data from the occipital ROI and symmetry detection threshold durations both have a strong157

association with the subgroup relationships such that a clear majority of the subgroups survive even158

at the highest threshold we consider (p(∆ > 0|data) > 0.99). The association is far weaker for the159

two control analyses.160

SSVEP data from four of the wallpaper groups (P2, P3, P4 and P6 ) was previously published161

as part of our earlier demonstration of parametric responses to rotation symmetry in wallpaper162

groups(Kohler et al., 2016). We replicate that result using our Bayesian approach, and find an analo-163

gous parametric effect in the psychophysical data (see Supplementary Figure 4.1). We also conducted164

an analysis testing for an effect of index in our two datasets and found that subgroup relationships with165

higher indices tended to produce greater pairwise differences between the subgroup and supergroup,166

for both SSVEP RMS and symmetry detection thresholds (see Supplementary Figure 4.2). The effect167

of index is relatively weak, but the fact that there is a measurable index effect can nonetheless be taken168

as preliminary evidence that representations of symmetries in wallpaper groups may be compositional.169

Finally, we conducted a correlation analysis comparing SSVEP and psychophysical data and found170

a reliable correlation (R2 = 0.44, Bayesian confidence interval [0.28, 0.55]). The correlation reflects171
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an inverse relationship: For subgroup relationships where the supergroup produces a much larger172

SSVEP amplitude than the subgroup, the supergroup also tends to produce a much smaller symmetry173

detection threshold. This is consistent with our hypotheses about how the two measurements relate174

to symmetry representations in the brain, and suggests that our brain imaging and psychophysical175

measurements are at least to some extent tapping into the same underlying mechanisms.176

Discussion177

Here we show that beyond merely responding to the elementary symmetry operations of reflection178

(Sasaki et al., 2005; Tyler et al., 2005) and rotation (Kohler et al., 2016), the visual system repre-179

sents the hierarchical structure of the 17 wallpaper groups, and thus every combination of the four180

fundamental symmetries (rotation, reflection, translation, glide reflection) which comprise the set of181

regular textures. Both SSVEP amplitudes and symmetry detection thresholds preserve the hierarchy182

of complexity among the wallpaper groups that is captured by the subgroup relationships (Coxeter183

and Moser, 1972). For the SSVEP, this remarkable consistency was specific to the odd harmonics184

of the stimulus frequency that are known to capture the symmetry-specific response (Kohler et al.,185

2016) and to electrodes in a region-of-interest (ROI) over occipital cortex. When the same analysis186

was done using the odd harmonics from electrodes over parietal cortex (Supplementary Figure 3.3)187

or even harmonics from electrodes over occipital cortex (Supplementary Figure 3.4), the data was188

substantially less consistent with the subgroup relationships (yellow and green lines, Figure 5).189

The current study uses 16 distinct wallpaper groups, while previous neuroimaging studies focused190

on a subset of 4 (Kohler et al., 2016, 2018). This represents a significant conceptual advance, because it191

makes it possible to investigate the complete subgroup hierarchy among the 17 groups and ask to what192

extent the hierarchy is reflected in brain activity. Our data provide a description of the visual system’s193

response to the complete set of symmetries in the two-dimensional plane. We do not independently194

measure the response to P1, but because each of the 16 other groups produce non-zero odd harmonic195

amplitudes (see Figure 2), we can conclude that the relationships between P1 and all other groups,196

where P1 is the subgroup, are also preserved by the visual system. The subgroup relationships are in197

many cases not obvious perceptually, and most participants had no knowledge of group theory. Thus,198

the visual system’s ability to preserve the subgroup hierarchy does not depend on explicit knowledge199

of the relationships. Previous brain-imaging studies have found evidence of parametric responses with200

the number of reflection symmetry folds Keefe et al. (2018); Sasaki et al. (2005); Makin et al. (2016)201

and with the order of rotation symmetry Kohler et al. (2016). Our study is the first demonstration that202

the brain encodes symmetry in this parametric fashion across every possible combination of different203

symmetry types, and that this parametric encoding is also reflected in behavior. Previous behavioral204

experiments have shown that although naïve observers can distinguish many of the wallpaper groups205

(Landwehr, 2009), they tend to sort exemplars into fewer (4-12) sets than the number of wallpaper206

groups, often placing exemplars from different wallpaper groups in the same set (Clarke et al., 2011).207

The two-interval forced choice approach we use in the current psychophysical experiment makes it208

possible to directly compare symmetry detection thresholds to the subgroup hierarchy, and reveals209

that not only can the 17 wallpaper groups be distinguished based on behavioral data, behavior largely210
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Figure 3: Posterior distributions for the difference in mean SSVEP RMS amplitude. Colour coding
of the text indicates the index of the subgroup, while the colour of the filled distribution relates to
the conditional probability that the difference in means is greater than zero. We can see that 55/63
subgroup relationships have p(∆ > 0|data) > 0.99.
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Figure 4: Posterior distributions for the difference in mean symmetry detection threshold durations.
Colour coding of the text indicates the index of the subgroup, while the colour of the filled distribution
relates to the conditional probability that the difference in means is smaller than zero. We can see
that 43/63 subgroup relationships have p(∆ < 0|data) > 0.99.
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follows the subgroup hierarchy.211

A large literature exists on the Sustained Posterior Negativity (SPN), a characteristic negative-212

going waveform that is known to reflect responses to symmetry and other forms of regularity and213

structure (Makin et al., 2016). The SPN scales with the proportion of reflection symmetry in displays214

that contain a mixture of symmetry and noise Makin et al. (2020); Palumbo et al. (2015), and both215

reflection, rotation and translation can produce a measurable SPN Makin et al. (2013). It has recently216

been demonstrated that a holographic model of regularity (van der Helm and Leeuwenberg, 1996), can217

predict both SPN amplitude (Makin et al., 2016) and perceptual discrimination performance (Nucci218

and Wagemans, 2007) for dot patterns that contain symmetry and other types of regularity. The219

available evidence suggests that the SPN and our SSVEP measurements are two distinct methods220

for isolating the same symmetry-related brain response: When observed in the time-domain, the221

symmetry-selective odd-harmonic responses produce similarly sustained waveforms (see Figure 2),222

odd-harmonic SSVEP responses can be measured for dot patterns similar to those used to measure223

the SPN (Norcia et al., 2002), and the one event-related study on the wallpaper groups also found224

SPN-like waveforms (Kohler et al., 2018). Future work should more firmly establish the connection225

and determine if the SPN can capture similarly precise symmetry responses as the SSVEPs presented226

here. It would also be worthwhile to ask if and how W can computed for our random-noise based227

wallpaper textures where combinations of symmetries tile the plane.228

We observe a reliable correlation between our brain imaging and psychophysical data. This suggests229

that the two measurements reflect the same underlying symmetry representations in visual cortex. It230

should be noted that the correlation is relatively modest (R2 = 0.44). This may be partly due to the231

fact that different individuals participated in the two experiments. It may also be related to the fact232

that participants where not doing a symmetry-related task during the SSVEP experiment, but instead233

monitored the stimuli for brief changes in contrast that occured twice per trial (see Methods). Previous234

brain imaging studies have found enhanced reflection symmetry responses when participants performed235

a symmetry-related task (Makin et al., 2020; Sasaki et al., 2005; Keefe et al., 2018). It is possible236

that adding a symmetry-related task to our SSVEP experiment would have produced measurements237

that reflected subgroup relationships to an even higher extent than what we observed. On the other238

hand, our results are already close to ceiling (see Figure 5) and adding a symmetry-related task239

may simply enhance SSVEP amplitudes overall without improving the discriminality of individual240

groups, as has been observed for reflection by Keefe et al. (2018). Task-driven processing may be241

important for detecting symmetries that have been subject to perspective distortion, as suggested by242

SPN measurements (Makin et al., 2015) and somewhat less clearly in a subsequent functional MRI243

study (Keefe et al., 2018). Future work in which behavioral and brain imaging data are collected from244

the same participants, and task is manipulated in the SSVEP experiment, will help further establish245

the connection between the two measurements, and elucidate the potential contribution of task-related246

top-down processing to the current results.247

We also find an effect of index for both our brain imaging measurements and our symmetry detec-248

tion thresholds. This means that the visual system not only represents the hierarchical relationship249

captured by individual subgroups, but also distinguishes between subgroups depending on how many250

times the subgroup is repeated in the supergroup, with more repetitions leading to larger pairwise251
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differences. Our measured effect of index is relatively weak. This is perhaps because the index analy-252

sis does not take into account the type of isometries that differentiate the subgroup and supergroup.253

The effect of symmetry type can be observed by contrasting the measured SSVEP amplitudes and254

detection thresholds for groups PM and PG in Figure 2. The two groups are comparable except PM255

contains reflection and PG contains glide reflection, and the former clearly elicits higher amplitudes256

and lower thresholds. An important goal for future work will be to map out how different symmetry257

types contribute to the representational hierarchy.258

The correspondence between responses in the visual system and group theory that we demonstrate259

here, may reflect a form of implicit learning that depends on the structure of the natural world. The260

environment is itself constrained by physical forces underlying pattern formation and these forces261

are subject to multiple symmetry constraints (Hoyle, 2006). The ordered structure of responses to262

wallpaper groups could be driven by a central tenet of neural coding, that of efficiency. If coding is to263

be efficient, neural resources should be distributed to capture the structure of the environment with264

minimum redundancy considering the visual geometric optics, the capabilities of the subsequent neural265

coding stages and the behavioral goals of the organism (Attneave, 1954; Barlow, 1961; Laughlin, 1981;266

Geisler et al., 2009). Early work within the efficient coding framework suggested that natural images267

had a 1/f spectrum and that the corresponding redundancy between pixels in natural images could be268

coded efficiently with a sparse set of oriented filter responses, such as those present in the early visual269

pathway (Field, 1987; Olshausen and Field, 1997). Our results suggest that the principle of efficient270

coding extends to a much higher level of structural redundancy – that of symmetries in visual images.271

The 17 wallpaper groups are completely regular, and relatively rare in the visual environment,272

especially when considering distortions due to perspective (see above) and occlusion. Near-regular273

textures, however, abound in the visual world, and can be modeled as deformed versions of the274

wallpaper groups (Liu et al., 2004). The correspondence between visual cortex responses and group275

theory demonstrated here may indicate that the visual system represents visual textures using a276

similar scheme, with the wallpaper groups serving as anchor points in representational space. This277

framework resembles norm-based encoding strategies that have been proposed for other stimulus278

classes, most notably faces (Leopold et al., 2006), and leads to the prediction that adaptation to279

wallpaper patterns should distort perception of near-regular textures, similar to the aftereffects found280

for faces (Webster and MacLin, 1999). Field biologists have demonstrated that animals respond more281

strongly to exaggerated versions of a learned stimulus, referred to as “supernormal” stimuli (Tinbergen,282

1953). In the norm-based encoding framework, wallpaper groups can be considered supertextures,283

exaggerated examples of the near-regular textures common in the natural world. If non-human animals284

employ a similar encoding strategy, they would be expected to be sensitive to symmetries in wallpaper285

groups. Recent functional MRI work in macaque monkeys offer some support for that: Macaque286

visual cortex responds parametrically to reflection and rotation symmetries in wallpaper groups, and287

the set of brain areas involved largely overlap those observed to be sensitive to symmetry in humans288

(Audurier et al., 2021). In human societies, visual artists may consciously or unconsciously create289

supernormal stimuli, to capture the essence of the subject and evoke strong responses in the audience290

(Ramachandran and Hirstein, 1999). Wallpaper groups are visually compelling, and symmetries have291

been widely used in human artistic expression going back to the Neolithic age (Jablan, 2014). If292
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Figure 5: This plot shows the proportion of subgroup relationships that satisfy p(∆ > 0|data) > x

for the SSVEP data and p(∆ < 0|data) > x for the psychophysical data. We can see that if we take
x = 0.95 as our threshold, the subgroup relationships are preserved in 56/63 = 89% and 48/63 =
76% of the comparisons for the primary SSVEP and threshold duration datasets, receptively. This
compares to the 32/63= 51% and 22/63 = 35% for the SSVEP control datasets.

wallpapers are in fact supertextures, this prevalence may be a direct result of the strategy the human293

visual system has adopted for texture encoding.294

Participants295

Twenty-five participants (11 females, mean age 28.7 ± 3.3) took part in the EEG experiment. Their296

informed consent was obtained before the experiment under a protocol that was approved by the297

Institutional Review Board of Stanford University. 11 participants (8 females, mean age 20.73 ± 1.21)298

took part in the psychophysics experiment. All participants had normal or corrected-to-normal vision.299

Their informed consent was obtained before the experiment under a protocol that was approved by300

the University of Essex’s Ethics Committee. There was no overlap in participants between the EEG301

and psychophysics experiments.302

Stimulus Generation303

Exemplars from the different wallpaper groups were generated using a modified version of the method-304

ology developed by Clarke and colleagues(Clarke et al., 2011) that we have described in detail else-305

where(Kohler et al., 2016). Briefly, exemplar patterns for each group were generated from random-306

noise textures, which were then repeated and transformed to cover the plane, according to the sym-307

metry axes and geometric lattice specific to each group. The use of noise textures as the starting point308

for stimulus generation allowed the creation of an almost infinite number of distinct exemplars of each309

wallpaper group. To make individual exemplars as similar as possible we replaced the power spectrum310
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of each exemplar with the median across exemplars within a group. We then generated control exem-311

plars that had the same power spectrum as the exemplar images by randomizing the phase of each312

exemplar image. The phase scrambling eliminates rotation, reflection and glide-reflection symmetries313

within each exemplar, but the phase-scrambled images inherent the spectral periodicity arising from314

the periodic tiling. This means that all control exemplars, regardless of which wallpaper group they315

are derived from, are transformed into another symmetry group, namely P1. P1 is the simplest of316

the wallpaper groups and contains only translations of a region whose shape derives from the lattice.317

Because the different wallpaper groups have different lattices, P1 controls matched to different groups318

have different power spectra. Our experimental design takes these differences into account by compar-319

ing the neural responses evoked by each wallpaper group to responses evoked by the matched control320

exemplars.321

Stimulus Presentation322

Stimulus Presentation. For the EEG experiment, the stimuli were shown on a 24.5" Sony Trimaster323

EL PVM-2541 organic light emitting diode (OLED) display at a screen resolution of 1920 × 1080324

pixels, 8-bit color depth and a refresh rate of 60 Hz, viewed at a distance of 70 cm. The mean325

luminance was 69.93 cd/m2 and contrast was 95%. The diameter of the circular aperture in which326

the wallpaper pattern appeared was 13.8◦ of visual angle presented against a mean luminance gray327

background. Stimulus presentation was controlled using in-house software. For the psychophysics328

experiment, the stimuli were shown on a 48 × 27cm VIEWPixx/3D LCD Display monitor, model329

VPX-VPX-2005C, resolution 1920× 1080 pixels, with a viewing distance of approximately 40cm and330

linear gamma. Stimulus presentation was controlled using MatLab and Psychtoolbox-3 (Kleiner et al.,331

2007; Brainard, 1997). The diameter of the circular aperture for the stimuli was 21.5◦.332

EEG Procedure333

Visual Evoked Potentials were measured using a steady-state design, in which P1 control images334

alternated with exemplar images from each of the 16 other wallpaper groups. Exemplar images were335

always preceded by their matched P1 control image. A single 0.83 Hz stimulus cycle consisted of a336

control P1 image followed by an exemplar image, each shown for 600 ms. A trial consisted of 10 such337

cycles (12 sec) over which 10 different exemplar images and matched controls from the same rotation338

group were presented. For each group type, the individual exemplar images were always shown in339

the same order within the trials. Participants initiated each trial with a button-press, which allowed340

them to take breaks between trials. Trials from a single wallpaper group were presented in blocks of341

four repetitions, which were themselves repeated twice per session, and shown in random order within342

each session. To control fixation, the participants were instructed to fixate a small white cross in the343

center of display. To control vigilance, a contrast dimming task was employed. Two times per trial, an344

image pair (control P1 plus exemplar) was shown at reduced contrast. Participants were instructed to345

press a button on a response pad whenever they noticed a contrast change. Reaction times were not346

taken into account and participants were told to respond at their own pace while being as accurate as347

possible. We adjusted the reduction in contrast such that average accuracy for each participant was348

kept at 85% correct, in order to keep the difficulty of the vigilance task at a constant level.349
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Psychophysics Procedure350

The experiment consisted of 16 blocks, one for each of the wallpaper groups (excluding P1 ). We used351

a two-interval forced choice approach. In each trial, participants were presented with two stimuli (one352

of which was the wallpaper group for the current block of trials, the other being P1 ), one after the353

other (inter-stimulus interval of 700ms). After each stimulus had been presented, it was masked with354

white noise for 300ms. After both stimuli had been presented, participants made a response on the355

keyboard to indicate whether they thought the first or second image contained more symmetry. Each356

block started with 10 practice trials, (stimulus display duration of 500ms) to allow participants to357

familiarise themselves with the current block’s wallpaper pattern. If they achieved an accuracy of358

9/10 in these trials they progressed to the rest of the block, otherwise they carried out another set of359

10 practise trials. This process was repeated until the required accuracy of 9/10 was obtained. The360

rest of the block consisted of four interleaved staircases (using the QUEST algorithm (Watson and361

Pelli, 1983), full details given in the SI) of 30 trials each. On average, a block of trials took around 10362

minutes to complete.363

EEG Acquisition and Preprocessing364

Steady-State Visual Evoked Potentials (SSVEPs) were collected with 128-sensor HydroCell Sensor365

Nets (Electrical Geodesics, Eugene, OR) and were band-pass filtered from 0.3 to 50 Hz. Raw data366

were evaluated off line according to a sample-by-sample thresholding procedure to remove noisy sensors367

that were replaced by the average of the six nearest spatial neighbors. On average, less than 5% of368

the electrodes were substituted; these electrodes were mainly located near the forehead or the ears.369

The substitutions can be expected to have a negligible impact on our results, as the majority of our370

signal can be expected to come from electrodes over occipital, temporal and parietal cortices. After371

this operation, the waveforms were re-referenced to the common average of all the sensors. The data372

from each 12s trial were segmented into five 2.4 s long epochs (i.e., each of these epochs was exactly 2373

cycles of image modulation). Epochs for which a large percentage of data samples exceeding a noise374

threshold (depending on the participant and ranging between 25 and 50 µV) were excluded from the375

analysis on a sensor-by-sensor basis. This was typically the case for epochs containing artifacts, such as376

blinks or eye movements. Steady-state stimulation will drive cortical responses at specific frequencies377

directly tied to the stimulus frequency. It is thus appropriate to quantify these responses in terms of378

both phase and amplitude. Therefore, a Fourier analysis was applied on every remaining epoch using379

a discrete Fourier transform with a rectangular window. The use of two-cycle long epochs (i.e., 2.4 s)380

was motivated by the need to have a relatively high resolution in the frequency domain, δf = 0.42 Hz.381

For each frequency bin, the complex-valued Fourier coefficients were then averaged across all epochs382

within each trial. Each participant did two sessions of 8 trials per condition, which resulted in a total383

of 16 trials per condition.384

SSVEP Analysis385

Response waveforms were generated for each group by selective filtering in the frequency domain.386

For each participant, the average Fourier coefficients from the two sessions were averaged over trials387
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and sessions. The SSVEP paradigm we used allowed us to separate symmetry-related responses from388

non-specific contrast transient responses. Previous work has demonstrated that symmetry-related389

responses are predominantly found in the odd harmonics of the stimulus frequency, whereas the even390

harmonics consist mainly of responses unrelated to symmetry, that arise from the contrast change391

associated with the appearance of the second image (Norcia et al., 2002; Kohler et al., 2016). This392

functional distinction of the harmonics allowed us to generate a single-cycle waveform containing the393

response specific to symmetry, by filtering out the even harmonics in the spectral domain, and then394

back-transforming the remaining signal, consisting only of odd harmonics, into the time-domain. For395

our main analysis, we averaged the odd harmonic single-cycle waveforms within a six-electrode region396

of interest (ROI) over occipital cortex (electrodes 70, 74, 75, 81, 82, 83). These waveforms, averaged397

over participants, are shown in Figure 2. The same analysis was done for the even harmonics and398

for the odd harmonics within a six electrode ROI over parietal cortex (electrodes 53, 54, 61, 78,399

79, 86; see Supplementary Figure 1.1). The root-mean square values of these waveforms, for each400

individual participant, were used to determine whether each of the wallpaper subgroup relationships401

were preserved in the brain data.402

Defining the list of subgroup relationships403

In order to get the complete list of subgroup relationships, we digitized Table 4 from Coxeter (Coxeter404

and Moser, 1972) (shown in Supplementary Table 1.2). After removing identity relationships (i.e.405

each group is a subgroup of itself) and the three pairs of wallpapers groups that are subgroups of each406

other (e.g. PM is a subgroup of CM, and CM is a subgroup of PM ) we were left with a total of 63407

unambiguous subgroups that were included in our analysis.408

Bayesian Analysis of SSVEP and Psychophysical data409

Bayesian analysis was carried out using R (v3.6.1) (R Core Team, 2019) with the brms package (v2.9.0)410

(Bürkner, 2017) and rStan (v2.19.2 (Stan Development Team, 2019)). The data from each experiment411

were modelled using a Bayesian generalised mixed effect model with wallpaper group being treated412

as a 16-level factor, and random effects for participant. The SSVEP data and symmetry detection413

threshold durations were modelled using log-normal distributions with weakly informative, N (0, 2),414

priors. After fitting the model to the data, samples were drawn from the posterior distribution of415

the two datasets, for each wallpaper group. These samples were then recombined to calculate the416

distribution of differences for each of the 63 pairs of subgroup and supergroup. These distributions417

were then summarised by computing the conditional probability of obtaining a positive (negative)418

difference, p(∆|data). For further technical details, please see the Supplementary Materials where the419

full R code, model specification, prior and posterior predictive checks, and model diagnostics, can be420

found.421
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