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Abstract
We analyse systemic risk in the core global banking system using a new network-based spec-
tral eigen-pair method, which treats network failure as a dynamical system stability problem.
This is compared with market price-based Systemic Risk Indexes, viz. Marginal Expected
Shortfall, DeltaConditionalValue-at-Risk, andConditional Capital ShortfallMeasure of Sys-
temic Risk in a cross-border setting. Unlike paradoxical market price based risk measures,
which underestimate risk during periods of asset price booms, the eigen-pair method based
on bilateral balance sheet data gives early-warning of instability in terms of the tipping point
that is analogous to the R number in epidemic models. For this regulatory capital thresholds
are used. Furthermore, network centrality measures identify systemically important and vul-
nerable banking systems. Market price-based SRIs are contemporaneous with the crisis and
they are found to covary with risk measures like VaR and betas.

Keywords OR in banking · Global financial networks · Systemic risk · Early warning
signals · Eigen-pair analysis · Statistical market price-based risk measures · Paradoxical
risk measures

1 Introduction

The importance of banking system stability and cross-border propagation of contagion has
been underscored by the 2007 Global Financial Crisis (GFC). The role of cross-border expo-
sures in the dynamics of the GFC was most prominent in European banks (Calabrese and
Osmetti 2019), which had surprisingly large exposure to US securitized assets (Allen et al.
2011) and resulted in a 50% equity capital loss (valued at $1.6 trillion). This has led many
to conclude that global financial interconnectedness is a major vehicle for macroeconomic
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instability (Soramäki et al. 2007; Degryse et al. 2010; Castrén and Rancan 2014; Simaan
et al. 2020) and systemic risk. The latter is associated with the “disruption to the flow of
financial services that is caused by the impairment of all or parts of the financial system and
has the potential to have serious negative spillovers to the real economy” (IMF-BIS-FSB
2009). This led the Basel Committee to include the cross-jurisdictional activity of banks as
a macro-prudential risk indicator (BCBS 2013). This calls for new methods for systemic
risk estimation that can capture the growing risk from chains of indebtedness between finan-
cial institutions (FIs) and also other economic sectors, both nationally and in a cross-border
setting.

The significance of financial networkmodels has come to the forefront post GFC (Haldane
2009), and analogies have been drawn between financial contagion and epidemic models,
including the notion of tipping points that has been well known since Furfine (2003). Despite
this, remarkably few economists have discussed the necessity to establish the financial conta-
gion systemic risk analog for the reproductive (R) number in epidemiology, which if greater
than 1 determines that the spread of infection in the population grows exponentially rather
than die out.1

We operationalize the model of financial contagion by explicitly adopting the two key
causal factors from the epidemic literature relating to transmission rate of infection and cure
rates and develop a systemic risk index (SRI) in terms of the spectral stability properties
of a dynamical model for the financial contagion (see, May 1972, 1974; Wang et al. 2003;
Newman 2010; Markose 2012; Markose et al. 2012; Bardoscia et al. 2017). In a financial
system, the ‘infection rates’ are not homogenous but arise from the exposures that creditors
face vis-á-vis counterparties’ debt within a structure of balance sheet interconnectedness,
which drives the domino effects of debtor defaults. Going forward, note the notion of ‘infec-
tion rates’ in the context of a financial contagion will be called financial exposure rates. In a
financial system in which contagion arises from insolvency, regulatory capital provides the
buffer against the spread of losses in credit chains and can be seen to be analogous to immune
responses that lead to cure rates in epidemic models.

In this paper, a spectral measure of stability (Spectral SRI for short) is developed for the
cross-border bilateral net liabilities of national banking systems adjusted for capital buffers
of the exposed counterparties. The latter is called stability matrix (Markose 2012; Markose
et al. 2012). This Spectral SRI is compared and contrasted with the widely popular market
price-based SRIs, namely the dynamic conditional correlation (DCC) variants, respectively,
of Marginal Expected Shortfall (MES) (Acharya et al. 2012, 2017), and Delta Conditional
Value-at-Risk (�CoVaR) developed byAdrian andBrunnermeier (2011), alongwith a hybrid
market price and balance sheet based Conditional Capital Shortfall Measure of Systemic
Risk (SRISK) by Acharya et al. (2012) and Brownlees and Engle (2016). We gauge the early
warning capabilities of the balance sheet network based Spectral SRI and market price based
SRIs for the core global banking system. In particular, we see that the Spectral SRI can
address the flaws associated with the paradoxical nature of the market price risk measures,
in that the latter underestimate risk during boom periods with excessive leverage, are at a
local minima directly before market crashes and give no early warning by spiking, at best,
contemporaneously with the crisis or after it (Markose 2013; Arsov et al. 2013).

The market price models of systemic risk suffer from the so-called “paradox of volatility”,
a term coined by Borio and Drehmann (2011) and adopted by others (Brunnermeier and San-
nikov 2015; Markose 2013). A well known pointer for paradoxical risk measures, analogous

1 See, van den Driessche (2017). The R number is regarded as the “the foremost and most valuable idea that
mathematical thinkinghas brought to epidemic theory” (Heesterbeek andDietz 1996),which applies dynamical
spectral analyses to the modelling of infection transmission for contagious diseases in a population.
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to the volatility of asset returns, which is low during boom market conditions, is their neg-
ative correlation with the balance sheet variable of leverage. The latter has been identified,
especially, in many post GFC studies as a major cause for failure in financial institutions
(see Glasserman and Young 2015; Bruno and Shin 2015b; Schularick and Taylor 2012). This
problem was presaged by Minsky (1986) who claimed that asset bubbles mask the growing
financial system fragility as the enhanced market values for assets and the perception of low
risk from paradoxical volatility measures encourage procyclical excessive growth of leverage
of banking systems with a commensurate growth of their interbank exposures and liabilities
andwith also non-bank sectors. Borio et al. (2001) give an extensive discussion on the general
problem of procyclicality and underestimation of system failure by market price-based SRIs.
Finally, market price based risk measures have been found to be more akin to systematic risk
measures that are positively correlated with market returns (Benoit et al. 2013, 2016) rather
than systemic risk measures that identity tipping points for system wide cascade failures.

The contribution of this paper is twofold. As the spectral approach relates to the stability
of dynamical systems, we first give an appropriate dynamical characterization of the rates
of failure of national banking systems when losses from their cross border exposures exceed
a given regulatory capital threshold. The Spectral SRI helps to identify the so called tip-
ping point when extant liability and net worth conditions represented within the core global
banking network can produce instability. The Spectral SRI is the maximum eigenvalue of the
associated generalised stabilitymatrix for the global banking system and yields themaximum
expected percentage loss of capital the system as a whole can suffer at each time step. If the
SRI is greater than 1, as in the case of the R number, in the absence of external interventions,
the exponential rate of losses can lead to system collapse. The main reason that the time path
of the R-number based Spectral SRI does not suffer from the flaws of market price SRIs is
because the former is the maximum eigenvalue of the stability matrix composed of capital
adjusted net liabilities of counterparties. Furthermore, the Spectral SRI is governed by the
upper bound given by the maximum row sum (infinity norm) of this matrix representing the
network positions of the most leveraged participant of the system. Hence, the size of the
Spectral SRI is directly related to instability from growing leverage in the system that can
be unfavourably skewed by even one member of the financial network. In the special case,
if financial institutions can be assumed to be governed by a single regulatory loss of capital
threshold that corresponds to the cure rate, then financial stability requires that the maximum
eigenvalue of the stability matrix is less than the capital loss threshold. This follows the
simple intuition that the cure rate should be greater than the infection rate for the epidemic
to be under control.

Second, we gauge systemic importance and vulnerability of national banking systems in
terms of network centrality measures by deriving the associated right and left eigenvectors
of the generalised stability matrix of the core global banking system. The network centrality
indexes under an appropriate 1-norm is shown to represent the share of the total expected
(%) loss of system wide capital either suffered by each banking system in the case of the
vulnerability index quantified by the left eigenvector centrality and the contribution to the
losses in terms of their systemic importance index given by the right eigenvector centrality.
These network centrality measures are prominent in practical monitoring exercises such as in
Google PageRank (Page and Brin 1998; Ipsen andWills 2005) in the world wide web and for
identification of ‘super-spreaders’ in epidemics. They use variants of the von Mises Power
Iteration algorithm espoused by us. The necessity of the fixed point algorithm that produces
internal consistency of an interconnected system has been recommended by Gauthier et al.
(2012) for systemic risk indexes. By tracking these SRI indexes over time for financial
networks directly based on contractual balance sheet data for national and global banking
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systems, there can be early warning of potential systemic failure and for the identification of
sudden changes in the rank order for the centrality of nodes. The latter can help in regulatory
interventions as well as the in the design of Pigou type externalities funds that can stabilze
the system, Markose et al. (2017).

In epidemicmodels, the R number depends on the transmission rate of the infection, which
is due to some forms of the contacts, either directly or indirectly. In this study, to derive the
R number in financial contagion in a cross border setting, we use the BIS Consolidated
Banking Statistics (CBS) which yields the direct exposures of national banking systems to
one another. For this analysis, we use quarterly data for 18 core reporting banking systems
from the BIS CBS on an ultimate risk basis. This takes account of credit risk mitigants, such
as collateral, guarantees and credit protection bought, that transfer the banks credit exposure
from one counterparty to another. This also takes care of any further adjustments needed
while netting gross BIS CBS between reporting banking systems relative to the Tier 1 capital
of the BIS reporting banks. What matters in the assessment of the vulnerability of the core
cross border banking network is the bilateral net exposures of the 18 BIS banking systems
relative to the Tier 1 capital of the internationally active banks in each of the 18 countries.
The latter is obtained from Bankscope for the period 2005Q4–2014Q4. As will be discussed,
the sectoral break-down is an important advance in the BIS CBS since 2005, which has made
the cross border banking network model feasible by reducing the data adjustments that are
needed in its absence. For themarket price-based SRIs, namely, the DCC-MES, DCC-CoVaR
and SRISK, we use the MSCI Financials corresponding with the 18 BIS reporting national
banking systems and the MSCI World as proxy for the market index. This paper is amongst
the first to give comprehensive applications of these measures in a cross-border setting.

Our findings covering the period 2005Q4–2014Q4 can be summarised as follows. First,
we find that the Spectral SRI provides early warning of extreme instability of the core global
banking system before the start of the GFC. In contrast to the market data based SRI’s, the
spectral SRI shows considerable systemic instability through out the period and also in late
2014.Weprovide a test statistic to determinewhich of the SRIs also showabnormal deviations
from ‘normal’ values to signal early warning of the impending crisis. At 99% confidence
level, only the Spectral SRI showed severe instability of the core global banking network
from 2005 Q1with peaks at 2007 Q1. In contrast, the DCC-�Co-VaR and DCC-MES, which
both have similar time profiles from 2005 to 2012Q3, momentarily showed two quarters of
statistically significant values before the GFC, and they peak contemporaneously with the
crisis in 2007 Q3. The SRISK fared the worst and showed no statistically significant early
warning with the earliest date for this being 2008 Q2. Secondly, the time series properties
of the Spectral SRI are found to correspond closely with the weighted clustering (Fagiolo
2007; Saramäki et al. 2007) for the top 5 highly clustered banking systems of the core global
banking network in the pre GFC period. However, the weighted clustering coefficient, in
being confined to a second order approximation of interconnectedness, fails to provide early
warning signals for the Eurozone crisis that the higher order Spectral SRI gives. Thirdly, we
are able to identify the increasing vulnerability of the Dutch and Belgian banking systems
prior to the GFC and of the phenomena that the UK banking system replaced the US one as
the most systemically important one in 2008 with the collapse of the subprime asset market
(Ye et al. 2012). Also noteworthy is the vulnerability of the Portugese banking system in 2012
before the bankruptcy of theirmajor bankBancoEspirito Santo2 and themarked vulnerability
of the Italian banking system, toward the end of 2014. These are results picked up by the

2 As will be discussed in Sect. 4, other stress testing methods such as that of the IMF had given a clean bill
of health for the Portugese banks for this period.
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Spectral SRI and are absent in the market price based SRIs. Fourthly, we find that market
price-based SRIs tend to be highly contemporaneous with standard market risk measures,
such as the VIX/VSTOXX, making them paradoxical and inversely related to asset price
booms and the growth of leverage. That is, market price-based SRIs are found to peak with
the crisis or even after it. Finally, we corroborate the Benoit et al. (2013) findings that the
market price-based SRIs are determined by systematic risk measures. While the Spectral SRI
and SRISK use a capital loss threshold related to the Basel regulatory thresholds to identify
tipping points, the lack of similar thresholds in the other market price-based SRIs is found
to add to the difficulty of monitoring the onset of potential crises.

The paper is organised as follows: Sect. 2 gives a literature review. Section 3 presents the
spectral SRI generalized for a cross-border setting. In Sect. 4we derive themarket price-based
SRIs in a cross-border setting. Section 5 describes the data and estimation methodology used
in our analysis. In Sect. 6 we provide a network analysis of cross-border exposures in the
core global banking network. Section 7 gives the results on cross-border banking network
SRI and contrasts with market price-based SRIs. Section 8 analyses rankings of systemic
importance and vulnerability over time for different groups of banking systems of countries
using both methods. Finally, in Sect. 9 we report conclusions and future work.

2 Literature review

The development of SRIs has taken two main approaches. These are market price oriented
statistical SRIs and the financial network approach championed byHaldane (2009).Due to the
ease of accessing publicly available market price data on FIs, the majority of SRI analytics
have taken this route. The market price based SRIs use a portfolio or weighted average
approach to the the Basel II risk measures typically based on stock returns of individual
banks, such as Value at Risk and Expected Shortfall. Of particular interest here are the
purely market price-based SRIs, namely, the Marginal Expected Shortfall (MES) of Acharya
et al. (2012, 2017), the �CoVaR of Adrian and Brunnermeier (2011) and a hybrid SRISK
developed by Acharya et al. (2012) and Brownlees and Engle (2016). The latter combines
balance-sheet data on leverage and equity with market price data.

The lack of bilateral financial exposure data has also led to simulations of financial net-
works using several assumptions. Examples are entropy maximisation methods (Castrén and
Rancan 2014; Mistrulli 2011), correlations or Granger causality methods based on stock
price data (see Billio et al. 2012; Diebold and Yılmaz 2014; Hautsch et al. 2015) and sparse
network reconstruction models (Torri et al. 2018; Anand et al. 2015; Mahdavi Ardekani et al.
2020). Simaan et al. (2020) proposes a quite novel approach to estimate hidden networks from
the interbank market using correlation-based statistical filtering methods. A recent study on
cross border systemic risk using copula-based approach is given in Calabrese and Osmetti
(2019). Theymodel the joint impact of idiosyncratic and systematic shocks between banks of
different countries. Simulationmethods for financial networks purported to represent balance
sheet interconnectedness introduce model risk and the network topology may have little to
do with the contractual financial obligations for cross border banks.

The market price-based SRIs have not been free from criticism. One of the main problems
is the absence of any early warning signal and they tend to be “coincident” or “near-
coincident” indicators of financial instability spiking contemporaneously with the crisis or
after it (Arsov et al. 2013). As indicated, this happens because most mainstream risk man-
agement models suffer from the so-called “paradox of volatility”. The regime sensitivity of
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the statistics for asset returns or GDP growth have been well known, at least since Hamilton
(1989). Volatility, correlations and other higher moments of asset returns are known to be
low during boom market conditions and become higher only when asset returns are negative
during market downturns. Low volatility of returns on stock indexes during boom market
conditions encourages procyclical excessive growth of leverage of banking systems without
breaching VaR risk limits. Sooner or later, this may result in system collapse while market
price based risk measures remain low.3 In order that regulators are not blindsided by the
paradoxically low risk measures that accompany asset price booms and growth of leverage,
Brunnermeier and Cheridito (2013) have used a two stage reduced form macro-model that
explicitly works to overcome the volatility paradox in their new SRI. Others like Bruno and
Shin (2015a, b) have used the reciprocal of volatility in asset returns to proxy leverage and
systemic risk. However, in contrast to the work of these authors, the need to avoid paradoxical
systemic risk measures is still not widely acknowledged.

In the context of highly integrated international financial markets, the cross-border expo-
sure of banks has been seen as one of the major catalysts for the GFC (Haldane 2009; Allen
et al. 2011; Minoiu and Reyes 2013; Castrén and Rancan 2014; Calabrese et al. 2017). As
pointed out by Degryse et al. (2010) in their study of network contagion using the same CBS
data, shocks that impact the proper functioning of this densely interconnected network of
activities involving cross-border banking may affect not only banks themselves but also the
economies they operate in. This is why it is vital to investigate the topological structure of
global banking and its vulnerability to liabilities of debtor countries. However, as will be dis-
cussed, our analysis differs from Degryse et al. (2010) in that they use former BIS Table 9D
data which gave the exposures of reporting banking systems to the debt aggregated across all
sectors of countries. Hence, in Degryse et al. (2010) the contagion failure of non-bank sectors
from banking sector failure is implicit and relies on an unspecied process they call “spill over
effect”. This method can only be implemented using ex post simulations of contagion and
an ex ante stability metric or an SRI cannot be derived.

Cerutti et al. (2012) go further than Degryse et al. (2010) and give an excellent account
of the scenario analysis for the simulation of the (CBS) cross border propagation of shocks
that include deleveraging and fire sales (Braouezec and Wagalath 2019; Feinstein 2020).
However, the latter are second order effects after a banking system suffers losses on extant
credit exposures. While the modeling of second order effects are interesting and can provide
evidence for how a crisis can deepen, Cerutti et al. (2012) do not examine whether the BIS
data, which they use, could have provided early warning of the GFC with the build up of
large exposures of European banking systems to US bank assets prior to 2007 (see Allen
et al. 2011).

Econometric techniques based on spatial autoregressive models have also been developed
to assess contagion and systemic risk. Calabrese et al. (2017) is an example of BIS CBS data
on cross-border bilateral European banks exposures used as input to estimate contagion and
systemic risk within an econometric model. Though not directly related to implementing a
systemic risk index, Von Peter (2007),Minoiu et al. (2013) and Hattori and Suda (2007) anal-
yse the topological properties of the global banking network using BIS Locational Banking
Statistics spanning over 30 years. They study the evolution of connectivity and density of
transactions over the period 1978–2010 and find that the global banking system is muchmore
connected during 2000s, when compared to previous decades, and the main trend in global
banking network connectivity has a procyclical path with global capital flows.

3 The idea of procyclicality of leverage is now acknowledged to be a major source of systemic risk and is well
articulated in Adrian and Shin (2010, 2011a).
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Another study is that of Castrén and Rancan (2014), who introduced the notion of Global
Macro-Networks, which combines a network of cross-border exposures of banking systems
of countries with the flow of funds between sectors within countries. Similar to Cont et al.
(2012) and Battiston et al. (2016), the authors quantify a metric of systemic risk, called the
Loss Multiplier, based on an average of ex post simulated contagion losses stemming from
the failure of each financial participant taken one at a time, in the spirit of Furfine (2003).
Despite the seminal nature of their concept of a global macro-net, as contagion losses are
greater after the onset of a crisis than before, the Castrén and Rancan (2014) Loss Multiplier
SRI gives no early warning and peaks well after the GFC. It must be noted that the problem
with Furfine (2003) type contagion loss estimates as the basis of SRI is that they are not
derived from fixed point algorithms pertaining to the financial network.

Gauthier et al. (2012) have discussed the significance of fixed point algorithms in systemic
risk analytics in order that they reflect internal consistency that corresponds to a very high
order of interconnections. The use of the fixed point result to financial network analyses
is well known from Eisenberg and Noe (2001), who distribute the exogenous loss, which
is taken to be the starting point of a contagion in such models, to all participants in the
financial network using a fixed point algorithm such that the loss suffered by one participant
is internally consistent with that of other participants. However, as the aggregated system
losses cannot exceed the initial shock itself, while systemic vulnerability of each of the
participants can be easily ascertained from the Eisenberg and Noe (2001) approach, it is hard
to gauge, in the absence of simulations, if the financial network has become more or less
stable independent of the size of the external shocks.

Battiston et al. (2016) use an approach closest to ours. In their DebtRank metric, although
the centrality measure is the result of a fixed point solution, they do not have the concept of
the tipping point epidemic R number as an endogenous fixed point solution. The DebtRank
centralities directly multiply the exogenously given total capital to obtain the SRI as the
total capital loss estimation for the banking system. As will be shown in the next section, as
capital measures net worth, it is the capital adjusted interbank net liabilities matrix that should
feature in contagion failure through capital inadequacy, rather than the leverage matrix that
is used by Battiston et al. (2016).

Our main contribution to the literature is to operationalize the conditions for the stability
of an interconnected financial system of assets and liabilities of participants irrespective of
the size of the external shocks. This corresponds with Alter et al. (2014), who have found that
eigenvector centrality directly extracted from the liabilities based financial network provides
the most effective systemic risk estimates for capital losses. In contrast, Karolyi et al. (2017)
use theBISCBScross border data to assess systemic risk not in a financial network framework
but in terms of the Acharya et al. (2012, 2017) MES approach. They find that during periods,
as in the run up to the GFC in 2007/2008, of large cross border exposures of banking systems,
especially of developed countries, their individual systemic riskMESmeasures fell. As noted,
this is what is expected of paradoxical risk measures that fail to give early warning for the
impending crisis.

3 Spectral SRI for cross-border banking networks

In contrast to a portfolio generalisation of risk, as is the case of many market price based
SRIs, the spectral method determines the stability of the networked system using the power
iteration fixed point algorithm for thematrix representing capital adjusted bilateral exposures,
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to characterize the impact of individual node failure on counterparties of counterparties, to a
very high order, in the chain of indebtedness.

The main focus here is on the Core Global Banking System Network (CGBSN) (18
BIS reporting countries). Here we will show how the Spectral SRI applies to the instabil-
ity dynamics that can arise from the cross border balance sheet interconnectedness, which
involves only a subset of the balance sheets. We start with a stylized balance sheet of a bank
headquartered in a country and has foreign assets and liabilities vis-á-vis banks headquar-
tered in other countries. It is also shown how this relates to the BIS CBS which aggregates
cross border exposures of banks headquartered in a country to give the foreign claims at the
level of national banking systems.

3.1 Stylized balance sheet for a cross border bank

The balance sheet equation for a bank headquartered in country i denoted as bi with Abi0

representing total assets, Lbi0, total liabilities and, Cbi0, equity capital of the bank in country
i at some initial date, 0:

Abi0 − Lbi0 = Cbi0. (1)

We distinguish between the assets and liabilities in the balance sheet of bank bi that are
part of the cross-border interbank system and those that are not. This is given in equation
(2) with Xbj bi denoting the liabilities of bank b j in country j to bank bi in country i , while
Xbi b j denotes liabilities of bank bi in country i to bank b j in country j . The terms A#

bi0
and

L#
bi0

, respectively, denote bi ’s non-interbank domestic and foreign assets and liabilities.
∑

b j

(
Xbj bi0 − Xbi b j0

) + A#
bi0 − L#

bi0 = Cbi0. (2)

In order to develop a cross border banking contagion model and the rates of failure of
banks, which we will denote by ubi t ≥ 0, we track the depletion of equity capital at time t+1
that arises only from cross border interbank defaults from net foreign debtors of bi . To focus
on this, we assume no losses or revaluations from non-interbank assets and liabilities and also
no recapitalizations for each bank bi . The second term in (3),

∑
b j

(
Xbj0bi0 − Xbi0b j0

)+
uLb j t

yields the total potential losses given as theweighted sumof net exposures of bank bi vis-á-vis
each of its foreign counterparties headquartered in all j countries j �= i which are pairwise
net debtors of bi . Note, as losses from net debtor banks can result in negative equity in (3),
it is not possible to restrict failure rates of banks, ubi t , to be less than 1.

Cbit+1 = Cbi0 −
∑

b j

(
Xbj0bi0 − Xbi0b j0

)+
uLb j t − (1 − ρi )

(
Cbi0 − Cbit

)
. (3)

The third term in (3) reflects the role played by the regulatory capital requirement on
solvency contagion dynamics for banks. Regulatory capital requirement in country i specifies
that cumulative loss of capital at each t , should not exceed a fixed threshold, ρi , of initial
capital viz

(
Cbi0 − Cbit

) ≤ ρiCbi0 . Likewise, incremental capital losses between t and t + 1
should not exceed the same percentage ρi of capital Cbit , viz.

(
Cbit − Cbit+1

) ≤ ρiCbit .
4

Losses exceeding this threshold signal financial distress, while losses up to the threshold

4 Note the respective cumulative and incremental capital loss threshold constraints
(
Cbi0 − Cbit

) ≤
ρ Cbit → Cbit ≥ (1 − ρ)Cbi0 and

(
Cbit − Cbit+1

)
≤ ρ Cbit → Cbit+1 ≥ (1 − ρ)Cbit . On setting
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can be offset by capital buffers. The term (1 − ρi )
(
Cbi0 − Cbit

)
in (3) gives the residual

cumulative losses till t that are not offset by the permitted initial capital buffer.

3.2 A network epidemic model for solvency contagion across national banking
systems

Wewill now showhow theEq. (3) can be used to track capital depletion and so called solvency
contagion at the level of national banking systems which are denoted pairwise simply by
(i, j). For this note that Ci0 = ∑

bi Cbi0 gives the total initial capital of country i’s cross
border banks and X ji is the cross border liabilities of country j banks to the banking system
of country i . Likewise, Xi j denotes the cross border liabilities of country i banking system
vis-á-vis banking system j . Thus theCore Global Banking SystemNetwork (CGBSN) (18
BIS reporting countries) is defined by a N × N directed weighted network represent by the
matrix X such that the sum of an i-th row

∑N
j=1 Xi j represents the total foreign liabilities

of the banking system i to all j banking systems represented by the BIS reporting banks of
each country j . The sum of the j-th column

∑N
i=1 Xi j represents the total receivable amount

in the form of foreign claims of BIS reporting banks in country j . Note that Xii = 0.

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 X12 · · · X1 j · · · X1N

X21 0 · · · X2 j · · · X2N
...

... 0 · · · · · · · · ·
Xi1

... · · · 0 · · · XiN
...

... · · · · · · 0
...

XN1 XN2 · · · XN j · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

To model cross border financial contagion between national banking systems we have

Cit+1 = Ci0 −
∑

j

(
X ji − Xi j

)+
uLjt − (1 − ρi ) (Ci0 − Cit ) . (5)

The cumulative rate of capital depletion that is used to assess the rate of failure of the i th
national banking system at t + 1, denoted by uLit+1, is given by subtracting the equivalent
Cit+1 from Ci0 and dividing through by Ci0 in (5). Hence,

uLit+1 = Ci0 − Cit+1

Ci0
=

∑
j

(
X ji − Xi j

)+

Ci0
uLjt + (1 − ρi ) u

L
it . (6)

This yields the form of the dynamics for the failure rates of national banking systems from
a loss of capital due to exposures to counterparty national banking systems in a cross border
interbank setting. Here, uLit+1 gives the potential failure rate of banking system i at t + 1 as
arising from two factors given in (6).

(i) The first factor in (6) for the failure of i arises from the balance sheet interconnectedness

term
∑

j
(X ji−Xi j )

+
Ci0

uLjt , which gives the weighted sum of heterogeneous rates of being
“infected” at t from the bilateral net exposures of i to those js which are net debtors

Footnote 4 continued
C∗
bit

= (1 − ρ)Cbi0 and C
∗
bit+1

= (1 − ρ)Cbit , we obtain the term in (3) for the cumulative losses of capital

that exceeded the permissible losses that can be offset as C∗
bit

− C∗
bit+1

= (1 − ρ)
(
Cbi0 − Cbit

)
.
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of i , adjusted for i’s capital. The weights uLjt are the individual rates of failure of
counterparties j , discussed below.

(ii) Banking systems can be vulnerable due to factors relating to themselves, viz. primarily,
the size of initial capital. The term uLit is the percentage cumulative loss of capital

suffered at t by i and is defined as uLit =
(
1 − Cit

Ci0

)
, t > 0, where Cit is the remaining

capital at t and Ci0 represents initial capital. In the epidemiology studies, ρi is called
the “cure rate” and hence (1 − ρi ) is the rate of not surviving due to the insufficiency
of the cure (see Chakrabarti et al. 2008). The factor (1 − ρi ) uLit defines the extent to
which i cannot mitigate its failure using a percentage ρi of its capital as buffer against
losses.

(iii) As already noted, uLit cannot be constrained to be less than 1 as bank losses can exceed
100% of initial capital and Cit can be negative at t > 0. Hence, uit cannot be modeled
as probability of failure. Further, it is known (Bardoscia et al. 2017) that uLit in the first
order dynamic model in (6) apply proportionately rather than follow a (0, 1) indicator
function as is the case in Furfine (2003) type contagion stress tests when counterparty
losses are propagated only when the counterparty has been deemed to have failed and
uLit = 1.

(iv) Finally, as will be shown, it is important that when only losses arising from a subset of
the balance sheet is being modelled, a pro rata adjustment to capital should be made to
represent this subset of the balance sheet. Or else, the contagion effects will be severely
underestimated.

The capital adjustment of the net liabilities of banking system j’s counterparties is

expressed as θi j = (Xi j−X ji )
+

C j0
, where the numerator takes only positive net liabilities from i

to j and this is equal to zero if (Xi j − X ji ) < 0. The denominator C j0 is the initial capital
of country j’s BIS reporting banks adjusted on a pro rata basis for foreign exposures.5 This
matrix � will also be referred to as the stability matrix:

� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (X12−X21)
+

C20
· · · 0 · · · (X1N−XN1)

+
CN0

0 0 · · · (X2 j−X j2)
+

C j0
· · · 0

...
... 0 · · · · · · · · ·

(Xi1−X1i )
+

C10

... · · · 0 · · · (XiN−XNi )
+

CN0
...

... · · · · · · 0
...

0 (XN2−X2N )+
C20

· · · (XN j−X jN )+
C j0

· · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

3.3 Eigen-pair method for stability of cross border exposures of national banking
systems

The capital loss thresholds ρi are important in the determination of the tipping point for
the cross border banking system as a whole. We will consider two cases for this. In the
homogeneous case, this threshold is assumed to be the same for both banks and the national
banking systems, denoted by ρ (without a subscript). A loss of capital in excess of 30% is a

5 This adjustment is explained in Sect. 3.1 and quantified in Table B.5 in B.
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good benchmark for impending crisis. Alternatively, we will apply the equivalent in terms of
absolute capital losses of the Basel II or Basel III criteria of capital adequacy for individual
banks of a national banking system. The determination of the ρi in the heterogeneous case,
the absolute capital loss thresholds for the national banking systems that are equivalent to the
regulatory capital requirements for individual banks, is based on the empirical data as will
be shown in Sect. 5.2.

In the matrix notation, the above dynamics in (6) in the general case of heterogeneous
capital loss thresholds is given by:

UL
t+1 = [

�′ + �
]
UL
t = Q′UL

t . (8)

Here UL
t is the 1 × N column vector of elements

(
uL1t , u

L
2t , . . . , u

L
Nt

)
defined in (6) for

the potential failure rates for each of the banking systems; �′ is the transpose of the N × N

non-negative stability matrix � given in (7) with each element � j i = (X ji−Xi j )
+

Ci0
and � is

the N × N identity matrix with the diagonal elements being 1 minus the country specific
absolute capital thresholds, ρi . Note, matrix Q or Q′ will be referred to as the generalized
stability matrix.

Result 1: System stability with heterogeneous loss threshold�i

The system stability for Eq. (8) is evaluated on the basis of the power iteration of the matrix
Q′ = [

�′ + �
]
, which yields:

UL
t+1 = [

�′ + �
]t UL

1 = Q′tUL
1

∼= g1λ
t
max

(
Q′) vL# (Q) . (9)

Following the Perron–Frobenius theorem, a non-negative real square matrix Q yields
non-negative real values for eigenvalues and corresponding eigenvectors with the largest
eigenvalue denoted as λmax (Q) being unique and greater than the next largest eigenvalue.
Expressing the eigenvalue equation in matrix notation, the matrix Q′ to the power t in
(9) takes the form: Q′V = DV → Q′tVL = DtVL . Here D is the N × N identity
matrix with eigenvalues of Q arranged from the highest to the lowest along the diagonal
and VL = [

vL1 v
L
2 . . . vLN

]
is the N × N matrix of the corresponding left eigenvectors of

Q. Note the latter are the right eigenvectors of Q′. As the set of eigenvectors of VL can
span the N dimensional vector space of real numbers RN , any non-zero, non-negative vec-
tor U1 can be expressed as a linear combination of the vectors in VL . Hence, we have

Q′tUL
1 = λt1

[
g1vL1 + g2

(
λ2
λ1

)t
vL2 + . . . + gN

(
λN
λ1

)t
vLN

]
. Note, g1, g2, . . . , gn are scalars.

For some t > 0, a speedy convergence to the term with the maximum eigenvalue in (9) is
assured as λ1 > λ2. Finally, note that vL# in (9) is the dominant left eigenvector associated
with themaximum eigenvalue λmax (Q)which is normalized by the 1-norm. This is discussed
in Corollary 2b below.

Corollary 1a: Tipping point condition and R number

The stability of the network system in (9) involving the non-negative matrix Q requires that
the following tipping point condition is fulfilled:

λmax (Q) < 1. (10)
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This is analogous to the R number in epidemiology. The key is to see that only λmax (Q)

will determine the tipping point for the system in (9) and drives the long term dynamics of
the epidemic in terms of containment (λmax (Q) < 1) or explosive growth (λmax (Q) > 1). 6

The latter case implies that in Eq. (9) as time progresses, without external interventions 7, the
system cannot be made stable and there will be full system failure from contagion from any
arbitrary size external initial shockwith any non-zeroU1 ≥ 0. A further property of λmax (Q)

is that its upper bound is given by the infinity norm ||Q||∞8. This implies that the instability
of the system can be exacerbated by a single participant who is typically highly leveraged
with its largest net debtor status given by the sum of its positions vis-á-vis counterparties in
matrix Q.

Corollary 1b: Speed of system failure

Temporally, the time taken for N banking systems to lose all of their capital, uit = 1 implies
||Ut ||1 = ∑

i uit scales with N and λmax (Q) > 1 . The exogenous arbitrary size shock at
time 1 depletes the initial capital of one or more participants and renders the vector U1 ≥ 0
such that at least one element of U1 is strictly positive. The constant g1 in (9), g1 = ||Q′U1||1

λmax (Q)
,

is a function of the initial vector of losses as a percentage of capital9. Taking logs, the time
taken till all N banking systems have lost 100% of capital denoted as t F :

ln (N ) = ln (g1) + t ln (λmax (Q)) → t F = ln (N ) − ln (g1)

ln (λmax (Q))
. (11)

Clearly, smaller g1 and 0 < g1 < 1 , ln (g1) < 0 and hence time to full system failure,
t F , increases, while higher λmax (Q) > 0 and higher g1, the sooner is the point of full system
failure.We hold the view that tipping condition in (10) gives a good ex ante indicationwhether
or not system failure can occur. For λmax (Q) > 1, systemic failure is not a matter of if but a
case of when, on the basis of bilateral data of extant contractual obligations and information
in matrixQ. Importantly, it is invariant to the size of the initial shocks, which may be difficult
to quantify. Hence, like the epidemic R number, we recommend that regulators as a matter
of routine monitor the status of λmax (Q) for purposes of systemic risk management.

Result 2: The eigen-pair indexes for systemic risk, systemic importance and
vulnerability of banking systems

The eigen-pair result, defined as
(
λmax (Q) ; vL# (Q) , vR# (Q)

)
, yields the systemic risk

index in terms of the maximum eigenvalue λmax (Q) of the matrixQ with vL# (Q) being the
1-norm dominant left eigenvector associated with the vulnerability indexes for the banking
systems and vR# (Q) is the 1-norm dominant right eigenvector for matrix Q, and gives the
network centrality of the systemically important banking systems.

6 Newman (2010, Chapter 17 on Epidemics on Networks) gives an analogous derivation for the epidemic
model to the one in (9).
7 By external intervention is meant policy drives like bail outs in the context of a financial contagion. In an
epidemic, external interventions include social distancing and vaccination.
8 Note, ||Q||∞ = ||Q′||∞. The infinity norm of a square matrix is the maximum of the absolute row sums of
the matrix. In the case of a vector, it is the largest absolute number in the vector.
9 This result on g1 is obtained by noting that in (9) for U2, we have U2 = Q′U1 = g1λmax (Q) vL# (Q).

This implies g1 = ||Q′U1||1
λmax (Q)

as ||vL# (Q) ||1 = 1.
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Corollary 2a: Unique steady state fixed point result incorporated in temporal
dynamics for state variables UL

t+1

Inherent to the dynamics of the financial contagion in (9) is the near term time independent
fixed point solution:

UL# = λmax (Q) vL# (Q) = Q′vL# (Q) . (12)

Key to the eigen-pair result is the von Mises and Pollaczek-Geiringer (1929) power iter-
ation algorithm where for any real initial non-zero vector UL

1 ≥ 0 as in (9), the t th power of
the matrix, denoted as Q′t , can be solved iteratively using an appropriate norm. As we will
see, for the economic interpretation of the λmax as a systemic risk index, it is important to use
the 1-norm || . ||1 10 to normalize the vector as in the following power iteration algorithm:

UL
t+1 = Q′UL

t

||Q′UL
t ||1

= Q′tUL
1

||Q′tUL
1 ||1

. (13)

The iteration is said to have converged at some t when UL
t+1 = UL

t = vL# (Q) with
an epsilon margin of error. The vector vL# (Q) is the left eigenvector of the matrix Q and
||Q′vL# (Q) ||1 = λmax (Q).

At the point of convergence, multiplying through by λmax (Q) in the power iteration
Eq. (13), we have the eigenvalue Eq. (14) which encapsulates the important fixed point
solution of the dynamical system in (12):

Q′vL# (Q) = λmax (Q) vL# (Q) ≡ UL#. (14)

Corollary 2b: 1-Norm left eigenvector vL# as vulnerability index for banking systems

From (14), noting that ||vL#||1 = ∑N
i=1 vL#

i = 1 , vL# is the 1-normdominant left eigenvector
of Q such that elements vL#

i satisfy 0 ≤ vL#
i ≤ 1. Thus vL#

i can be interpreted to be the
probability of failure of the i th banking system or its share of expected systemic losses
quantified by λmax as a percentage of total capital. Hence, vL#

i are characterized as the
vulnerability index for the i th banking system.

Corollary 2c: The systemic index �max measure of maximum expected total (%) loss
of capital

Equation (14) and Corollary 2b directly yield the result that λmax (Q) is the maximum total
expected losses as a percentage of capital for the system as whole at each t adjusted for the
permissible capital buffers:

λmax (Q) = ||Q′vL# (Q) ||1 =
N∑

i=1

⎡

⎣
∑

j �=i

(
X ji − Xi j

)+

Ci0
vL#
j + (1 − ρi ) vL#

i

⎤

⎦ . (15)

Noting Q′ = �′ + � from (8), the first term in the square bracket is the maximum
expected losses from net exposures to counterparties as a percentage of capital for the i th

10 We are grateful to an anonymous referee for our adoption of the 1-norm over other norms such as the
Euclidean or Infinity norm in (13). The λmax is invariant to the norm being used. However, all eigenvectors
v associated with λmax are unique only up to a scalar. But when they are normalized as v

||v||1 , we obtain v#

which is unique and whose elements add up to 1. This leads to Corollaries 2a and 2b.
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banking system,while the second term adjusts for the expected percentage of losses not offset
by the capital buffer threshold ρi . Here we assume that there is a 100% loss of net exposures
to counterparties given their probability of failure, vL#

j . Summing over all i , equation (15)
justifies the moniker of λmax (Q) as the Systemic Risk Index being a system wide measure
common to all participants.

There are two further points to mention. From (15), λmax (Q) = ||�′vL#||1 + ||IvL#||1 −
||�vL#||1 = λmax (�) + 1− ||�vL#||1. Here � is a diagonal matrix with values ρi . Hence,
the 1-norm of ||�vL#||1 = ||IvL#||1 − ||�vL#||1 = 1 − ∑

i ρiv
L#
i where the latter term is

the expected value of the (%) capital buffer for the system as a whole. This implies that, in
absence of capital buffer, any expected losses from counterparties given by ||�′vL#||1 will
lead to λmax > 1. Therefore the stability condition hinges onwhether or not the expected total
counterparty losses ||�′vL#||1 are greater or less than the expected total buffers, both as % of
total capital. This leads to the interpretation that if λmax −1 > 0, the system will lose capital
at this rate at each t . If λmax −1 < 0, then as buffers exceed losses, the latter will be reduced at
that rate, yielding negative growth of losses as percentage of capital. This is analogous to the
interpretation of the R number being greater or less than 1 in terms of the positive/negative
growth of the epidemic in the population. To give an example, if λmax (Q) = 1.09, then
(1.09− 1) = 0.09 is the growth rate of expected total losses as percentage of capital at each
time t . For any t , the (%) expected losses is

(
1.09t − 1

)
. If λmax (Q) = 0.83 then the total

expected losses will be offset/reduced by the buffers at the rate of (0.83 − 1) = −0.17 at
each t .

Corollary 2d: Right eigenvector centrality and systemic importance of banking
systems

Likewise, applying the power iteration algorithm (13) on Q, from some initial non-zero real

valued vectorUR
1 , yields the following power iteration equationU

R
t+1 = QUR

t

||QUR
t ||1 = QtUR

1
||QtUR

1 ||1 ,
which converges to the right eigenvector vR# (Q). The elements of latter represents the
systemic importance of each banking system in terms of the percentage loss of capital that it
can inflict on the rest of the system in the near term given as a product of λmax (Q) and the
right eigen vector centrality:

UR# = λmax (Q) vR# (Q) . (16)

From the eigenvalue equation, it can be seen in (17) that the centrality of a node (banking
system) is proportional by 1

λmax (Q)
to the weighted sum of the centrality measures of all its

neighbours, viz. as a fixed point result, a node is central not only because of the number and
size of its weighted links, but also because it is connected to other highly central nodes:

vR#
i (Q) = 1

λmax (Q)

N∑

j=1

�i jv
R#
j (Q) . (17)

These eigenvector centrality measures provide valuable analytics on systemic importance
and systemic vulnerability of the banking systems in that they provide a robust fixed point ex
ante quantitative percentage capital loss estimation at the level of each participant banking
system and also for the core global banking network as a whole using the SRI λmax (Q).
Other studies such as Cont et al. (2012), Degryse et al. (2010) and Castrén and Rancan
(2014) use ex post simulated Furfine (2003) type of stress test calculations for the loss of
capital conditional on the failure of a trigger bank.
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Result 3: A conservative tipping point condition with heterogeneous capital
threshold

As the upper bound of λmax (Q) is the infinity norm ||Q||∞, the more conservative tipping
point condition is given by

λmax (�) < ρmin
i . (18)

The infinity norm of ||Q||∞ = ||�||∞ + ||�||∞ = ||�||∞ + (
1 − ρmin

i

)
. As λmax (�)

has upperbound of ||�||∞, the stability condition in (9) can now be given as λmax (�) +(
1 − ρmin

i

)
< 1. This gives the result in (18). The condition in (18) highlights the role of the

so called weakest link identified by the banking system with the lowest absolute capital loss
threshold, ρmin

i , at which that constituent unit falls into distress.11 Thus, in general, in (9)
when many banking systems have low absolute capital loss thresholds, the instability of the
system is increased.

Result 4: Global banking system stability with homogeneous loss threshold�

In this case, as matrix Q differs from matrix � only by a constant multiple of the identity
matrix, the so called shift eigenvector theorem gives the result that

λmax (Q) = λmax (�) + (1 − ρ) . (19)

The eigenvector centrality of Q (Q′) in this case is given by the right (left) dominant
eigenvector of the matrix � (see also Newman 2010, p.663). As discussed in Markose
(2012), the stability condition that λmax (Q) < 1 in (19), for the case of a homogeneous loss
threshold the following tipping point with λmax (�) as the Spectral SRI is given by

λmax (�) < ρ. (20)

Note the condition for system stability in Eq. (20) implies that the expected percentage
loss of capital of the system as a whole cannot exceed the homogeneous regulatory capital
threshold ρ.

3.4 Operationalizing spectral SRI for BIS consolidated banking statistics (CBS)

We will now use this framework to fit the cross border banking system data given in BIS
Consolidated Banking Statistics (CBS). This is done in terms of the new BIS CBS based on
the banking sector breakdown.12 As the CBS are reported to the BIS at an aggregate (banking

11 This has been used in Heath et al. (2016).
12 Note, BIS data on the sectoral break down for foreign claims of the reporting banking systems only started
in 2005Q1. At the beginning of our sample period, this sectoral breakdown is given for 9 major BIS reporting
banking systems, i.e. Australia, Belgium, France, Ireland, Japan, Portugal, Sweeden, UK, US. From end of
2010, Spain, Italy and Germany started providing the foreign claims of their respective reporting banks on
counterparty banks in the destination countries; Austria and Greece from end of 2013; Switzerland only
provides partial information whereas India, Turkey and the Netherlands do not report at all. In the absence of
the sectoral breakdown, the N × N network will have foreign debt aggregated across all sectors of countries
along the rows of the matrix and banking systems of countries along the columns of the matrix. With the
banking sector disaggregation given for the BIS CBS, the matrix representing the network will have the same
entities in terms of banking systems, Bi , B j , respectively, along the rows and columns of the matrixX, which
is what is needed for a network representation. Note, the column B j , by definition, are the BIS reporting
lending banks.
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system) level rather than individual bank level, the netting is done at the level of the banking
systems.

The reporting banks in country i with foreign claims on the banking sector of each country
j in the BIS CBS are denote by bRi . Those with no foreign claims in a time period are the
non-reporting banks, bN R

i . Note that some of these can have liabilities to reporting banks
in another country. Thus, banking system of country i in BIS CBS can be defined as Bi =∑

bRi + ∑
bN R
i . In order to show how there is an analogous derivation as in (6), consider

the stylized bank balance sheet of a BIS reporting bank, bRi , in country i :

∑

j

X F
Bj bRi

+ A#DF
bRi

−
∑

j

X F
bRi B j

− L#DF
bRi

= CbRi
. (21)

XF
Bj bRi

: Assets/claims of reporting bank bRi of country i on the banking system Bj of country

j , with F denoting the foreign status.
XF
bRi B j

: Liabilities of bank bRi of country i owed to the banking system of country j . The

latter, by definition, can only be the BIS reporting banks of country j .
A#DF
bi

: Domestic interbank and non-interbank domestic and foreign assets of bank bRi of
country i .
L#DF
bRi

: Domestic interbank and non-interbank domestic and foreign liabilities of bank bRi of

country i .
CbRi

: Capital of the cross border reporting bank bRi in country i .
As in (2), aggregating over all reporting banks in a BIS country i and netting bilaterally

with their liabilities to country j’s reporting banks, we obtain
∑

bR CbRi
as in (22), which is

the total capital of the BIS reporting banks in country i :

∑

bR

∑

j �=i

(
XF
Bj bRi

− XF
bRi B j

)
+

∑

bR

A#DF
bRi

−
∑

bR

L#DF
bRi

=
∑

bR

CbRi
. (22)

Here, in the first term in brackets we have
∑

bR X F
Bj bRi

, which corresponds to the BIS

CBS definition of foreign claims of the reporting banks of country bRi on the banking sector
Bj of country j . This corresponds to X ji in (6). However, the cross-border liability side of
reporting banks in country i ,

∑
bR X F

bRi BR
j
, is not available. We proxy this by the sum of the

foreign claims of banking system j represented by the BIS reporting banks in that country
on the banking system of country i , i.e.

∑
bR X F

Bi b
R
j

≡ XF
Bi B j

noting that Bj by definition

includes only the BIS reporting banks in country j .13 Thus, the capital of the reporting banks
of country i given in (22), denoted simply as Ci , will be an overestimation of what is needed
in terms of their net exposure to the another country j’s banking system, which is a net
debtor vis-á-vis i . With this proviso, this yields a failure model analogous to (6) for the BIS
CBS reporting country banking systems. Finally, the above discussion implies a number of
adjustments given in the Online A.

13 Note that this proxy includes liabilities of non-reporting banks in country i . This discrepancy is not large
as the BIS reporting banks account for the vast majority of total cross-border liabilities (Avdjiev et al. 2015)
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4 Market price-based SRIs in a cross-border setting

In this section we provide a brief extension of some popular SRIs based on publicly available
market price data in a cross border setting.

4.1 Marginal expected shortfall (MES): cross border case

In our cross-border setting, the MES represents the marginal contribution of the financial
system of country i to global systemic risk, measured by the Expected Shortfall (ES) of
the global system, proxied by the MSCI World Index. The MES was initially proposed by
Acharya et al. (2012, 2017) and later on extended in a dynamic conditional correlation (DCC)
version by Brownlees and Engle (2016). The ES at the α% level is the expected return in
the worst α% of the cases. This can be generalized to the case where returns exceed a given
threshold C . Formally, denoting the MSCI World returns at time t by rmt and the country
MSCI Financial returns by rit , the conditional ES of the system is defined as:

ESmt (C) = Et−1(rm |rmt < C) =
N∑

i=1

wi t Et−1(rit |rit < C). (23)

Here, wi,t are the weights of the country MSCI Financials. In this context, the MES
corresponds to the partial derivative of the system ES with respect to the weight of country
i in the global financial system:

MESit (C) = ∂ESmt (C)

∂wi t
= Et−1(rit |rit < C). (24)

The higher a country’s MES, the higher the individual contribution of the country to
the risk of the global system. In order to estimate the MES, we follow the methodologies
of Brownlees and Engle (2016) and Benoit et al. (2013) and consider a bivariate GARCH
process for the demeaned returns:

Rt = H1/2
t Vt . (25)

Here R′
t = (rmt , rit ) denotes a return vector of the world market and the MSCI Financials

of country i , respectively. The random vector V ′
t = (εmt , ξi t ) are the associated standardised

innovations and are assumed to be i .i .d with the following first moments: E(Vt ) = 0 and
E(VtV ′

t ) = I2, a two-dimensional identity matrix. The Ht matrix denotes the conditional
variance-covariance matrix:

Ht =
(

σ 2
mt σi tσmtρi t

σi tσmtρi t σ 2
i t

)
. (26)

Here σi t and σmt , denote the conditional standard deviations and ρi t the conditional
correlation between the world market and the country financial returns. Based on Eqs. (25)
and (26), Brownlees and Engle (2016) show that the MES can be expressed as:

MESit (C) = σi tρi t Et−1

(
εmt |εmt <

C

σmt

)
+ σi t

√
1 − ρ2

i t Et−1

(
ξmt |εmt <

C

σmt

)
.(27)

Then, theMES can be expressed as a function of the country’s return volatility, its correla-
tionwith the global index return, and the comovement of the tail distribution.As demonstrated
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by Benoit et al. (2013), the i .i .d assumption on ξi,t and εm,t implies that the conditional

expectation Et−1

(
ξmt |εmt < C

σmt

)
is null. Thus, the MES takes the following form:

MESit (α) = βi t E Smt (α). (28)

Under these assumptions, ranking systemically important financial systems is equivalent
to sorting financial systems based on their betas (Benoit et al. 2013, 2016). Using daily
data, this SRI is estimated by the Dynamic Conditional Correlation Model of Engle and
Sheppard (2001), from which the time-varying beta is obtained (Eqs. (25) and (26)). In order
to compare the MES with the network-based SRI based on λmax , we calculate the quarterly
MES by averaging the daily MES within each quarter. To obtain our global measure of
MES, quarterly MES are averaged across countries, as done by Acharya and Stefen (2012)
to calculate their within country MES.

4.2 SRISK in cross border setting

The SRISK measure was developed by Acharya et al. (2012) and Brownlees and Engle
(2016). It is an extension of the MES by considering both the liabilities and the size of the
financial system. In a cross-country setting, the SRISK corresponds to the expected shortfall
of the stock returns of financial firms of a country, conditional on a crisis affecting the global
market (e.g., the MSCI World). The country with the largest shortfall is assumed to be the
largest contributor to the crisis and can be, therefore, regarded as the most systemically
important. Following Acharya et al. (2012), the SRISK is defined as:

SRI SKi,t = MAX
[
0;φ(Di,t + (1 − LRMESi,t )Wi,t ) − (1 − LRMESi,t )Wit

]
. (29)

Here φ is the prudential capital ratio, which is assumed to be 8%, Dit is the book value of
total liabilities of country i’s banking system, andWi,t is the market capitalisation or market
value of equity of the national banking system. The LRMESi,t is the long-run marginal
expected shortfall of country i . If we define leverage as Li,t = (Di,t + Wi,t )/Wi,t , SRISK
becomes:14

SRI SKi,t = MAX
[
0; (φLi,t − 1 + (1 − φ)LRMESi,t )Wi,t

]
. (30)

Notice that the SRISK is a weighted average of leverage and the LRMES. The LRMESi,t
measures the sensitivity of the country’s equity return to the downturn of the world market
in the case of a financial crash. Acharya et al. (2012) and Brownlees and Engle (2016)
define a market crash as a hypothetical 40% semiannual world market decline. LRMESi,t is
particularly difficult to estimate because it corresponds to an extremely rare event. In addition,
the LRMESi,t is typically not available in closed form for this class of dynamic models.
We follow the Brownlees and Engle (2016) simulation procedure to obtain exact LRMES
predictions15 for our 18 reporting countries. The results for this have been reported in the
Online D.

14 In order to allow comparison with the rest of the SRIs, we scale the SRISK by the country’s equity. Hence,

throughout the analysis, note we use
SRI SKi,t

Wi,t
.

15 This procedure consists of simulating a random sample of the h-period country and market (arithmetic)
returns conditional on the information set available on day t . The LRMES for day t is then calculated using the

average of the Monte Carlo simulated returns, LRMESi,t =
∑S

s=1 Ri,t+1:t+h I {Rm,t+1:t+h<C}
∑S

s=1 I {Rm,t+1:t+h<C} , where C is

the semiannual 40% drawdown and S is the number of runs of simulations, which in this case is S = 50, 000.
Ri,t+1:t+h are cumulated returns over a six months period.

123



Annals of Operations Research

In order to compare and contrast the SRI SK with λmax , we construct the quarterly
SRI SKi,t for every country i . To calculate the overall index, we follow Acharya et al.
(2012) and take the average of the quarterly SRI SK across countries.

4.3 1CoVaR in cross border setting

This measure is based on the concept of Value-at-Risk, denoted as VaR(α), which is the
maximum loss within the α%-confidence interval.16 The CoVaR corresponds to the VaR
of the MSCI World Index returns obtained conditionally on some event C(rit ) observed for
country i :

Pr
(
rmt ≤ CoVaRm|C(rit )

t |C(rit )
)

= α (31)

The �CoVaR of country i is then defined as the difference between the VaR of the MSCI
World returns conditional on this country’s financial system being in distress and the VaR of
the MSCI World returns conditional on the financial system of country i being in its median
state:

�CoVaRit (α) = CoVaRm|rit=VaRit (α)
t − CoVaRm|rit=Median(rit )

t . (32)

We follow Benoit et al. (2013) and derive the DCC variant of �CoVaR as a function of
the conditional correlations, volatilities, and VaR:

�CoVaRit (α) = γi t [VaRit (α) − VaRit (0.5)]. (33)

Here γi t = ρi tσmt/σi t with ρi t denoting the conditional correlation between the returns of
the MSCI Financial returns of country i and the MSCI World returns. If we assume that the
marginal distribution of the returns is symmetric around zero,�CoVaR is strictly proportional
to VaR:

�CoVaRit (α) = γi t V aRit (α). (34)

This means that while �CoVaR-based rankings and VaR-based rankings of systemic risk
may differ in the cross-section (that is, at a given point in time t), in the time-series (for a given
financial system i), however, �CoVaR is proportional to VaR. As a consequence, as noted
by Benoit et al. (2013), forecasting the future evolution of the contribution of a country’s
financial system i to global systemic risk is equivalent to forecasting its VaR in isolation
as given in Eq. (34). We compute the quarterly �CoVaR by taking the average within each
quarter for each of the countries. In a similar fashion, the overall index is calculated by taking
the global average of the quarterly �CoVaR across countries.

5 Data

The sample of BIS Consolidated Banking Statistics consists of 18 reporting countries and
spans quarterly from 4th quarter of 2005 until 4th quarter 2014.17 We consider the core
counterparts that correspond to the same reporting countries and further, we restrict the
analysis to the foreign claims only on the banking sector (see Sect. 3.1).

16 A quantile regression model of financial contagion using VaR is presented in Ye et al. (2017).
17 The countries in the sample are Australia, Austria, Belgium, France, Germany, Greece, India, Ireland,
Italy, Japan, Netherlands, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States.
Of these the so called GIIPS are Greece, Italy, Ireland, Portugal and Spain.

123



Annals of Operations Research

Fig. 1 Cross border net liabilities of the Core Global Banking System ($bn) ∗ GIIPS includes Greece, Ireland,
Italy, Portugal and Spain; non-GIIPS Eurozone (EUR) banking systems include Austria, Belgium, France,
Germany and Netherlands; Others include Australia, India, Sweden and Turkey . Source: BIS consolidated
banking statistics with adjustments made for banking system to banking system foreign claims (see Sect. 3.1)

5.1 Foreign claims and capital of core global banking system

The net liabilities trend in Fig. 1 highlights the drastic reversal of the US banking system from
being the biggest net borrower to that of net lender after 2008Q4. In contrast, the UK banking
system remains a net borrower throughout the period. In the Eurozone, with the exception
of the Netherlands, the core non-GIIPS countries are primarily net lenders with this tapering
off in the aftermath of the crisis. The GIIPS are all initially net borrowers and continue to be
so, with the exception of the Italian banking system which increasingly expanded its role of
net lender post 2007.

The second ingredient needed to construct the Core Global Banking System (CGBS)
network is information about the amount of Tier 1 capital, which serves as a buffer for losses
incurred by banks. Bankscope data on banks’ Tier 1 capital is reported on an annual basis,
so data is taken for the end of the year, that is, for the fourth quarter of a given year. Quarters
1 to 3 are then proxied by linear interpolation and discussed in the Online Appendix B.

In order to estimate theDCC-MES,DCC-�CoVaR andSRISKSRIs,we use the individual
MSCI Financials for the 18 countries and the MSCI World as a proxy for the market return
that is faced by the financial system of each country in the sample. Tables of descriptive
statistics are provided in Appendix E. The MSCI World Financial Index captures large and
mid cap primarily banking firms across 23 Developed Markets.18 We use daily returns of

18 Developed countries include:Australia, Austria, Belgium,Denmark, France,Germany,Hong kong, Ireland,
Israel, Italy, Japan, the Netherlands, Norway, New Zealand, Norway, Portugal, Singapore, Spain, Sweden,
Switzerland, the United States and United Kingdom.
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MSCI Financials for each country during the period 03/10/2005 until 31/12/2014. This data
has been retrieved from Bloomberg and it has been adjusted for bank holidays.

5.2 Estimated absolute capital threshold for losses (�i)

In Sect. 3, we argued that the stability of the networked system is also determined by the
absolute capital loss threshold, ρi for banking system of country i . These thresholds have
to be carefully specified in terms of how they relate to the regulatory Tier 1 capital to risk
weighted assets ratio (referred to as Tier 1 ratio).19

The Basel II criteria for the determination of the on-set of capital inadequacy in a bank
from losses of receivables from counterparties, can be defined as follows:

Tier1i − LGDi

RWAi
< 4% = TRWA, ∀ i . (35)

Here LGD is loss given default, RWA is risk weighted assets and Tier1i is Tier1 capital
of i . TRWA is the Tier 1 capital to risk weighted assets ratio. The condition in (35) states that
for each i , Tier 1 capital minus losses should not fall below 4% of RWA. However, as the
practical aspects of avoiding insolvency requires recapitalization, it is important to see the
equivalence of the above Basel rule with permissible LGD as function of absolute Tier 1
capital for each bank i , denoted as ρi . We set ρi · Tier1i = LGDi . Substituting this into (35)
when the condition in (35) is exactly met, we have:

ρi = MAX

(
0, 1 − TRWA

RWAi

Tier1i

)
. (36)

The threshold ρi indicates the percentage maximum absolute capital losses bank i can
absorb in terms of its Tier 1 capital ratio to RWA and this yields the point of distress.

For instance, when this condition is exactly met viz. Tier1iRWAi
= 4% = TRWA, this implies the

permissible absolute capital loss is zero, viz. ρi = 0. In contrast, if a bank has T ier1i
RW A = 8%,

then the absolute capital loss threshold ρi is 50%, see footnote 19. As a realistic absolute
capital loss threshold, ρ, of 30% is recommended, this implies a Tier 1 ratio of 5.7%. Hence,
banks that report very high Tier 1 ratios, should be very closely scrutinized for deflating RWA
in the denominator. We calculated ρi for the banking system of every BIS reporting country
i for all the quarters in order to estimate the Spectral SRI λmax given in Eqs. (9) and (10).

6 Network analysis of the core global banking system (CGBS)

Based on the methodology introduced in Sect. 3, we explore the evolution of the network
topology of the core global banking system. For this analysis, we have chosen three specific
periods: Fig. 2a represents the pre-crisis period (2006Q1); Fig. 2b depicts the crisis period
(2009Q1), while Fig. 2c, shows the network topology after the crisis (2013Q1).

19 In general, for financial contagion analysis, we recommend the use of an absolute Tier 1 capital loss
threshold that is equivalent to reported Tier 1 risk weighted capital ratio. The reason for this is that it is well
known that the risk weighted assets in the denominator of the Tier 1 ratio is not reliable as it can be ‘gamed’
(Leslé and Avramova 2012). Indeed, as will be shown, seemingly healthy Tier 1 ratios of 8% can imply very
large equivalent absolute capital loss thresholds of 50%. As no bank or banking system can survive with such
a large absolute percentage loss of capital, we recommend that a 30% absolute capital loss threshold is a more
realistic criteria for distress.
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Fig. 2 CGBS network topology. Direction of arrows goes from borrowing banking system to lending banking
system of the 18 BIS Reporting Countries. Note: Net payables are coded in red. Net receivables are coded in
blue.Authors calculations based on the BIS data. The tiered layout in these graphs is constructed according to
the net positions whether borrowing or lending. Tiering is based on a ratio of the net position of a country’s
banking system with that for the one with the highest net position. Those in the top 70 percentile of this ratio
belong to the inner core; those in between 70 and 30 percentile are in the mid-core; and the out-core lies
between 30 and 10 percentile; those with the lowest ratio belong to the periphery. The links are colour coded
based on their tier membership of the originating node (see legend). Source: See Fig. 1

These figures represent the network of banking systems of 18 reporting countries, with
links representing the net cross-border liabilities. The size of the node is proportional to the
total netted position. Blue nodes are net lenders, while red nodes are net borrowers. The links
are weighted and directed from the net borrower to the net lender. The thicker the edge, the
larger the cross-border net liabilities.

Before the crisis, in Fig. 1a the US is followed by UK in net payables, borrowing heavily
from Switzerland, France, Germany and Japan. After the crisis, Fig. 1b, c, US is no longer
among the top net borrowers and is overtaken by UK and the GIIPS. As we can see, France
started as a net lender and after the Eurozone crisis became the second largest net borrower.

During 2006Q1, the largest net lender isGermany followed by France and theNetherlands.
During the crisis France and Switzerland become the most exposed to US and UK debt,
while Germany andBelgium occupy the second and third positions, respectively. TheBelgian
banking system suffered huge losses during 2008 when Fortis group was sold to BNP Paribas
and in 2011 Dexia group was dismantled.

An interesting observation is that the GIIPS countries did not increase their overall bor-
rowing from 2006Q1 to 2009Q1, but instead they changed the composition of their lenders.
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Fig. 3 Systemic Risk Indexes (SRI): Spectral SRI Maximum Eigenvalue λmax (Q) (RHS axis) of the Core
Global Banking System Network versus DCC-�CoVaR (LHS axis), DCC-MES (LHS axis) and SRISK (RHS
axis) during the period 2005Q4–2014Q4

In fact, during 2009Q1, GIIPS countries borrowed heavily from Non-GIIPS Eurozone coun-
tries, as in the case of the strong borrowing by Italy from France and by Germany and Spain
from UK. This effect vanishes as we approach 2013Q1, where the non-GIIPS Eurozone
countries decreased their overall lending and their exposure to GIIPS countries.

The only banking systems that belong to the inner-core tier in Fig. 2 in all three periods
are the US and UK. We note that France joins US and UK in the in-core as second largest
net borrower by 2013.

The mid-core tier in Fig. 2 is populated initially only by Germany, joined by France
during the crisis in 2009. The outer-core banking systems are mostly Belgium, Spain, and
the Netherlands. From the GIIPS, we observe only Spain in the out-core as net borrower,
whereas the remaining GIIPS country banking systems occupy the periphery.

We also report the weighted clustering coefficient in the Online C as a key network
statistic for the core global banking network which has been identified in Sect. 1 as giving
early warning for high counterparty risk.

7 Spectral andmarket price-based SRIs

The level of instability of the Core Global Banking System Network (CGBSN), reflected by
the maximum eigenvalue (λmax ) of matrix Q given in (9) and (10) is depicted in Fig. 3 as a
dark line (right axis). As we can see, λmax (Q) is already high (at about 2.3) before the crisis
started at the end of 2005, and never falling below 1.5 till 2008Q1 and showing a peak at 1.8
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at the starting point of the 2007 crisis. The point here is that Spectral SRI estimated from a
higher order power iteration of matrix Q in (9) shows a unstable level of interconnectedness
through out the sample period based on the large net cross border exposures of banking
systems relative to the adjusted Tier 1 capital and heterogeneous capital loss thresholds given
in (36). The extremely high value of λmax (Q), estimating capital losses of over 150% for
the core global banking network before 2006, provides reasonable early warning for the
crisis that was about to come, with a peak corresponding to the collapse of two Bear Stearns
hedge funds followed by that of two BNP Paribas hedge funds in 2007Q3, which were highly
exposed to subprime mortgage backed securities. After the Subprime Crisis unraveled, λmax

starts decreasing throughout 2008 to 1.3 reflecting the drastic fall in cross border liabilities
of the US. The λmax starts picking up again from 2009Q3, when the crisis had transmuted
into the Eurozone sovereign debt crisis and remained high until 2010Q3. Since λmax (Q),
which signals system instability, includes both counterparty interconnectedness and also
weakness from own capital inadequacy vis-à-vis net exposures to debtor banking systems,
the high λmax (Q) in 2010 reflects the case of Greek banks being close to insolvency. This
is partially addressed with the first Greek bailout in 2010 Q3 (e110bn in May 2010). The
situation deteriorates again leading to a second Greek bailout in February 2012, Arghyrou
and Kontonikas (2012).

We note that although we observe fluctuations of λmax , the CGBSN has always been
unstable except briefly in 2013 Q3 and approaching 2014 Q4, as only at these points has it
been slightly below the tipping point threshold of 1 given in Eq. (10). The two cases in 2014,
in particular, where our Eigen-pair R number based analyses showed up the systemic risk
when other methods to failed to do so are that of Portugal and Italy (see Sect. 8.2). In the
Online B Table B.4 we give an approximation of the percentage of unadjusted total Tier 1
capital of the cross border banks in the BIS core global banking systems that can potentially
be lost from contagion risk. The extreme λmax in Fig. 3 signalling losses of over 200%
of the adjusted Tier 1 capital associated with the cross border banking system exposures,
is calculated to be between 50% to around 60% of total (unadjusted) Tier 1 capital of the
CGBSN in the period 2005Q4 to 2008Q1. Such losses were experienced in the wake of the
GFC. In contrast, the other statistical SRIs were just contemporaneous with the crisis and
provided no early warning signals for the financial losses that occurred.

In Fig. 3, we can see that DCC-MES spikes with the Lehman collapse, while the same
happens for DCC-�CoVaR and for SRISK after this event. By 2009 Q4, the three market
price based SRIs subside to pre GFC levels, when in contrast, the spectral SRI picks up in
anticipation of the Greek crisis. The market based SRIs peak with the Greek bailout showing
no sign of early warning. Further, note the added information in the post 2008 period in the
higher order interconnectedness being analyzed in the Spectral SRI which is over and above
the second order (neighbour’s neighbours) based clustering coefficient for the CGBSN in
Figure C.10.

The market based SRIs also seem to coincide with subsequent key events in financial
markets, such as the US Debt Ceiling Crisis (2011Q3) and the second Greek bailout. The
marked feature of the spectral SRI is its countercyclicality with market volatility and shows
high systemic risk with growing bank liabilities and leverage. SRISK in combining leverage
data with that of market prices, at least in the period of 2011 Q3 to 2013 Q2, shows similar
high systemic risk as the spectral SRI, unlike the pure market based SRIs.

In Table 1, we provide specially constructed T-Statistics to determine the statistical sig-
nificance for the early warning capabilities of the four SRIs shown in Fig. 3 for the period
2005–2014. We use the notion of ‘abnormal’ deviations of the SRIs from a normal non-crisis
reference value similar to the determination of abnormal returns in event studies (see Elad and
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Table 1 T-statistics of the Systemic Risk Indexes. Positive values at 1% significance are reported in bold

Test period T- statistics

λmax (Q)CGBS DCC-�CoVaR SRISK DCC-MES

2005Q4 22.36 −16.28 −0.39 −6.02

2006Q1 12.52 −6.50 −0.38 −3.51

2006Q2 16.26 6.35 0.80 4.93

2006Q3 17.54 −1.89 0.37 2.09

2006Q4 11.68 −22.44 −0.67 −11.60

2007Q1 19.58 4.42 0.35 7.02

2007Q2 19.94 −5.39 −0.23 0.18

2007Q3 18.56 9.27 1.08 6.18

2007Q4 18.75 7.13 0.72 5.14

2008Q1 14.79 20.07 3.28 14.61

2008Q2 11.30 6.03 3.14 5.80

2008Q3 6.35 8.76 4.81 9.67

2008Q4 5.02 11.90 4.89 9.92

2009Q1 4.74 8.30 3.72 6.48

2009Q2 4.23 7.10 4.47 5.97

2009Q3 7.04 5.56 3.70 4.86

2009Q4 5.72 5.92 3.24 5.13

2010Q1 11.91 4.95 3.19 4.61

2010Q2 11.37 10.36 5.26 7.83

2010Q3 13.22 5.10 3.92 4.98

2010Q4 1.33 2.91 3.62 2.93

2011Q1 6.79 4.31 2.76 5.85

2011Q2 6.97 4.59 3.66 3.99

2011Q3 2.36 10.28 4.76 9.64

2011Q4 5.56 7.43 3.44 6.62

2012Q1 3.50 4.34 2.72 4.99

2012Q2 2.30 5.71 3.10 4.18

2012Q3 3.78 4.35 2.91 4.14

2012Q4 4.94 −1.20 1.95 2.07

2013Q1 1.37 0.17 1.88 3.17

2013Q2 0.05 2.55 4.23 5.07

2013Q3 −2.67 −0.82 2.74 2.94

2013Q4 1.32 −5.62 1.47 −1.08

2014Q1 3.34 1.32 1.70 3.56

2014Q2 3.57 −4.85 1.77 1.11

2014Q3 2.76 −0.88 1.43 1.43

2014Q4 −0.36 1.33 2.32 2.79

Reference values for the non-crisis period are the average of the first 5 quarters 2005Q4–2006Q4 for the
DCC-�CoVaR, SRISK and DCC-MES while we use 1 as reference value for λmax (Q) as derived in Eq. (10).
Standard deviations used in the t-statistics for the DCC-�CoVaR, SRISK and DCC-MES refer to the cross
sectional standard deviation of countries SRIs in each quarter, while the standard deviation of the right eigen-
vector of Eq. (16) is used for λmax (Q). Note, the right eigenvector centrality for each of the 18 national
banking systems is the measure of their systemic importance
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Bongbee 2017; Mackinlay 1997).20 The T-statistic measures the likelihood that the actual
value of the index is different than a reference non-crisis value21. The larger the absolute
deviations of the SRI over and above the reference value for SRI at each quarter adjusted for
the relevant cross-sectional standard deviation, the higher the probability that the SRI can
signal statistically significant values for instability in the system (Elad and Bongbee 2017;
Mackinlay 1997). Note that with 18 cross-sectional observations per quarter and a degree
of freedom of 17, the critical value at 99% significance is 2.57. The statistically significant
values for the T-Statistics for the abnormal values of the SRIs at 99% are marked in red
in Table 1. Test results for spectral SRI, λmax (Q), are positive and above the critical value
since 2005Q4. In contrast, the DCC-�Co-VaR andDCC-MES, which both have similar time
profiles from 2005 to 2012Q3, momentarily signaled two quarters of statistically significant
‘abnormal’ values before the GFC, but thereafter peaking contemporaneously with the crisis
in 2007 Q3. SRISK shows the worst early warning capability of all indexes as its t-statistics
are above the critical value only from 2008Q1.

An explanation for this is given by Benoit et al. (2013), who argue that the SRISK tends
to depend on leverage during boom market conditions, while during crisis periods tends to
depend on the beta of the country, as correlations increase while equity prices drop and the
LRMES increases. However, for the sample analysed, the SRISKmainly behaves as a purely
market price-based SRI except for the Eurozone crisis period. For further analysis, see the
Online D of this paper.

We explore the degree of cyclicality of these market based SRIs, which we have argued
signals their paradoxical nature that vitiates their capacity to give early warning for financial
crisis. All SRIs are analyzed for their comovements with market volatility by computing
the R2’s from a regression of the VIX index against the systemic risk measures at different
time lags to gauge their explanatory power.22 As documented by Adrian and Shin (2011b),
standard riskmanagement riskmeasures, such as theVaR of financial equity returns, fluctuate
procyclically with measures of risk such as the implied volatility of traded options on banks’
shares. This means, that financial intermediaries are deleveraging and withdrawing credit
precisely when the financial system is under stress, serving to amplify the downturn. In
Table 2, we report contemporaneous and lagged regression R2 coefficients (for up to 2 lags)
between the different SRIs and theVIX (Column 1). In addition, taking into account that most
countries in our sample are European, we also report the R2’s with the VSTOXX (Column
2).23 Finally, in Column 3, we report the R2’s of a regression of the TED spread on the
systemic risk measures. The TED spread is the difference between the 3-month T-bill and
the rate at which banks lend to each other on a 3-month period (measured by the Libor) and
it is often used as a good proxy for interbank credit risk and perceived health of the banking
system.

We calculate the R2’s based on 50,000 bootstrapped samples.We report the standard errors
in parentheses. In Table 2 we can see that the market price-based SRIs are contemporaneous

20 An alternative approach to early warning signals can be found in Savona (2014).
21 For all market price-based SRIs we use the first five quarters average 2005Q4–2006Q4 to calculate the
reference value. The λmax (Q) reference value is 1 as derived in Eq. (10). The standard deviation used in the
t-statistics for the market price-based SRIs refers to the cross sectional standard deviation of countries SRIs
in each quarter (Elad and Bongbee 2017), while our spectral SRI uses the standard deviation of the values for
the right eigenvector of Eq. (16).
22 The VIX is the acronym for the Chicago Board Options Exchange Volatility Index. This is often used as a
good proxy for international risk aversion. A high value of the VIX corresponds to a more volatile market.
23 This is the European counterpart of the VIX, based on the EURO STOXX 50 realtime options prices and
is designed to reflect the market expectations of near-term up to long-term volatility.
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Table 2 Bootstrapped R2’s from a regression of the VIX, VSTOXX and TED spread (taken as the last day of
every quarter) on the SRIs

Systemic risk measures VIX VSTOXX TED Spread
(1) (2) (3)

λmax
t CGBS 0.119 0.211∗∗ 0.104

(0.080) (0.103) (0.108)

λmax
t−1 CGBS 0.055 0.113 0.200

(0.055) (0.086) (0.124)

λmax
t−2 CGBS 0.035 0.079 0.242∗∗

(0.041) (0.072) (0.134)

DCC − MESt 0.820∗ ∗ ∗ 0.828∗ ∗ ∗ 0.273∗
(0.060) (0.056) (0.184)

DCC − MESt−1 0.370∗ ∗ ∗ 0.333∗ 0.036

(0.194) (0.193) (0.060)

DCC − MESt−2 0.147∗ 0.147∗ 0.033

(0.136) (0.129) (0.049)

DCC − �CoVaRt 0.784∗ ∗ ∗ 0.720∗ ∗ ∗ 0.152∗
(0.063) (0.078) (0.091)

DCC − �CoVaRt−1 0.294∗∗ 0.265∗∗ 0.026

(0.162) (0.147) (0.044)

DCC − �CoVaRt−2 0.058 0.074 0.025

(0.060) (0.067) (0.030)

SRI SKt 0.510∗ ∗ ∗ 0.646∗ ∗ ∗ 0.025

(0.146) (0.100) (0.040)

SRI SKt−1 0.133 0.194 0.087

(0.103) (0.120) (0.064)

SRI SKt−2 0.018 0.031 0.227∗ ∗ ∗
(0.028) (0.043) (0.081)

DCC-MES,DCC-�CoVaRandSRISKare calculated at a 5% tail. Standard errors in parentheses. ∗Significance
at 10%; ∗∗Significance at 5%; ∗∗∗Significance at 1%. Own calculations

with the VIX/VSTOXX, with R2’s of 80% in the case of DCC-MES and over 70% for DCC-
�CoVar at time t and this falls off greatly as the number of lags increases. The λmax SRI
exhibits the lowest contemporaneous explanatory power with the VSTOXX (21%). Market
price-based SRIs lose their explanatory powerwith time lags and in some cases, they even lose
significance after the contemporaneous period, as the case of the DCC-�CoVaR. Another
interesting finding can be seen in Column 3, where λmax and SRISK exhibits a low but
significant explanatory power with respect to the TED spread at time lag 2, thus giving some
advance signals for the potential tightening of credit conditions in the interbank market.
The rest of the market price-based SRIs are not able to reflect this phenomenon, not even
contemporaneously.
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Fig. 4 Rankings of Systemic Importance for Core Europe, US, UK, Japan, Switzerland and average for other
countries (2005Q4–2014Q4). Note: Estimations based on Right Eigenvector Centrality (V R#), DCC-MES,
DCC-CoVaR and SRISK. GIIPS: Portugal, Italy, Ireland, Greece, Spain; Eurozone non-GIIPS: Germany,
France, the Netherlands, Belgium, Austria; Other: Australia, India, Sweden, Turkey

8 Systemic risk importance and vulnerability in the core global
banking system

As derived in Sect. 3 above, the eigen-pair method not only delivers an index for systemic
stability, based on themaximum eigenvalue (λmax ) of the generalised stabilitymatrix (Q), but
also delivers simultaneously its associated right (V R#) and left (V L#) eigenvectors. The right
eigenvector centrality gives a cardinal ranking, see Eq. (17), of the systemically important
banking systems according to their capacity to cause loss of capital by their potential failure.
The left eigenvector can give the rank order of banking systems’ vulnerability to contagion
and the percentage loss of capital they can suffer as implied by Eq. (12).

The Right Eigenvector Centrality (V R#) for the major economies and blocs in our sample
is depicted in Fig. 4a. Here we observe the large systemic threat posed by the US in the run
up to the GFC. The drastic reversal of the US in terms of being a net borrower in the CGBS
is clear from Fig. 4a as the UK banking system assumes top systemic importance from 2008
Q4. In 2014 Q4 the right network centrality of the US begins to overtake that of the UK.
Compared to the high centrality measures for the US and UK, other banking systems do not
pose much risks to the system.

In the case of DCC-MES and DCC-�CoVaR, Fig. 4a, b, there is no significant difference
between the banking systems for their systemic importance and the time profiles of the latter
simply mimic the respective SRIs in Fig. 3. This is because these SRIs are an average of
individual banking systems quantile risk measures. As the SRISK SRI includes leverage,
there are considerable differences in the time profiles of systemic importance across banking
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Fig. 5 Rankings of Systemic Vulnerability for US, UK, Japan, Switzerland and averages for GIIPS, non-GIIPS
Eurozone and other countries (2005Q4–2014Q4)

systems. Interestingly, as SRISK includes stock market prices in Fig. 4d, it ends up placing
the US only a poor second in terms of systemic importance in the run up to the GFC. Indeed,
SRISK ranks Japan as the most systemically important in the pre GFC period. During the
Lehman collapse, the UK and Eurozone banking systems become systemically important.
During the Eurozone crisis, the GIIPS dominate in terms of their SRISK in Fig. 4d.

While the market based SRIs can give some ranking of systemic importance of banking
systems, only �CoVaR can give us a ranking for those that are susceptible to these potential
losses. In Fig. 5 we plot the Left Eigenvector Centrality (V L#, Panel (a)), while in Panel (b),
we plot the vulnerability rankings given by the DCC-�CoVaR.24 In Fig. 5a, we can see a
different story to the one shown in Fig. 4a. Switzerland is the most systemically vulnerable
banking system in the CGBSN almost throughout thewhole sample periodwith the exception
of the Eurozone crisis. The non-GIIPS Eurozone countries rank second until 2011Q2, when
the vulnerability of GIIPS becomes prominent. Japan is ranked the third most vulnerable
banking system, after non-GIIPS Eurozone bloc except during the Eurozone crisis and after
this Japan ranks second after Switzerland.

In Fig. 5b the DCC-�CoVaR shows very little difference in the vulnerability ranking of
banking systems with the exception of the period of the Lehman collapse and to a lesser
extent during the two Greek bailout events. During the Lehman collapse, DCC-�CoVaR
shows the US to be the most vulnerable, followed by Switzerland, Eurozone non-GIIPS and
UK.

8.1 Systemic importance and vulnerability of core Eurozone countries

In this section, we look more closely at the Eurozone crisis. We start with a subset of Fig. 4
that covers the core Eurozone banking systems. For this subset, the first main result for the
Right Eigenvector Centrality (V R#) measure for systemic importance in Fig. 6a shows that
the potential contributions to capital loss is dominated by French banks and followed to a
lesser extent by German banks. This problem is post GFC and relates to the Eurozone crisis.
In fact, the potential for the French banks to trigger contagion losses increased sharply in the
midst of the Eurozone Crisis.

TheLeft Eigenvector Centrality (V L#), whichmeasures the vulnerability of core Eurozone
banking systems, see Fig. 7a, shows that Dutch and Belgian banks are the most vulnerable

24 Vulnerability, in a �CoVaR context, is defined as the VaR of the country, conditional on the VaR of the
market (Adrian and Brunnermeier 2011).
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Fig. 6 Rankings of systemic importance for core Eurozone countries (2005Q4–2014Q4) . Source: Own cal-
culations

Fig. 7 Rankings of systemic vulnerability for core Eurozone countries (2005Q4–2014Q4) . Source: Own
calculations

and their problems strongly predate the GFC. During this period, two financial companies,
Fortis NV and ABN AMRO, were experiencing great difficulties due to the US subprime
exposure. Prior to its collapse in 2008, Fortis was the largest financial services company
in Belgium, named as Fortis SA/NV, and in the Netherlands, named as Fortis NV. On the
13th of October 2008, the Belgian government designed and approved a mechanism to com-
pensate certain categories of Fortis shareholders. In the same month, the Dutch government
became involved and bailed-out the bank. This event is reflected in Fig. 7a, where the Left
Eigenvector Centrality of Belgian banking system almost halves (from 0.70 to 0.50 from
2007Q4–2008Q4). The Dutch left centrality index almost doubles (from 0.5 to 0.84 in 2009
Q2) due to repercussions from the UK bailout of RBS which had acquired the Dutch bank
ABN AMRO. The subsequent recapitalization of core Eurozone banks reduced their vulner-
ability indexes. We finally note that after 2011 Q4, the vulnerability of Dutch banking system
increases from a low point.
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Fig. 8 Rankings of systemic importance for Eurozone periphery countries (2005Q4–2014Q4) . Source: Own
calculations

The DCC-MES and DCC-�CoVaR based systemic importance rankings for this subset
of banking systems in Fig. 6b, c remain relatively low and homogeneous in the run up to the
GFC. In Fig. 6a, b, they start picking up during 2008Q2, reaching their maximum during
2008Q4, with the exception of Belgium, which peaks in 2008Q3. After that, they only react
in the face of critical market events, such as the Greek bailout during 2010Q2, the growing
uncertainty over Greece staying in the Eurozone (2011Q4) and the second Greek bailout
(2012Q1). The market based systemic importance or vulnerability measures of individual
banking systems are entirely contemporaneous with the three main market shocks, viz. the
Lehman collapse and the Greek bailouts. In particular in Fig. 7b, DCC-�CoVaR, unlike the
left eigenvector centrality ranking, gives no early warning of the weakness in the case of
Netherlands and Belgium in the pre GFC period.

8.2 Systemic importance and vulnerability of Eurozone periphery countries

Figure 8 illustrates the contributions to the SRIs by the individual GIIPS. In Fig. 8a we
plot the Right Eigenvector Centrality (V R#), which shows that, on average, the systemic
importance of the GIIPS was higher than that of the non-GIIPS Eurozone banking systems
that was shown in Fig. 6a. When compared with the right centrality indexes of France and
Germany, Spain can potentially inflict a higher percentage of capital loss in the system by its
failure. In 2009 Q4 and 2010 Q4, Ireland and Italy respectively, pose some threats, but to a
much lesser extent than Spain. Only in 2013 Q1 does Greece dominate in terms of systemic
importance among the GIIPS.

With more than 400% growth of cross-border banking liabilities of countries such as
Spain and Ireland between 2003 and 2008 (Bruno and Shin 2014), it is not surprising that
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Fig. 9 Rankings of systemic vulnerability forEurozoneperiphery countries (2005Q4–2014Q4).Note:Greece’s
left eigenvector centrality is on the right axis . Source: Own calculations

they become systemically important as seen from their Right Eigenvector Centralitymeasure
in Fig. 8a.

Now, focusing on the Left Eigenvector Centrality (V L#) in Fig. 9a, we note that the
vulnerability of Italy stands out as the greatest, both in the period around GFC and in the
recent years of 2013/14. However, in the case of Greece during the period 2011Q3–2013Q1,
its vulnerability index goes to one (right axis), indicating the dire insolvency of its banking
system. Something that is worth noting is that following the IMF/EU bailout package for the
Portuguese banking system during 2011 (Fig. 9a), there is a substantial reduction in its left
eigenvector centrality. However, soon after, we see in Fig. 9a that its vulnerability increases
again during 2013Q3 in the run up to the collapse of the major Portuguese Banco Espirito
Santo in August 2014, generating fears of a second round of contagion in the Eurozone.25

Note that, in general, the vulnerability index increases for banking systems when their bank
equity capital is eroded by non-performing loans. In a similar vein, Italy’s Left Eigenvector
Centrality in Fig. 9a is able to capture the growing instability of its banking system in recent
years. Three large-medium size banks failed at the end of 2015 (Banca Etruria, Cassa di
Risparmio di Ferrara and Bancha delle Marche), along with many small banks and others
in serious distress (i.e. Monte Dei Paschi di Siena). The spectral method shows up the great
vulnerability of the Italian banking systems in recent years among the GIIPS, an event which
is not anticipated by any of the other SRIs presented here.

In keeping with what has been previously noted, the market based DCC-MES and DCC-
�CoVar SRIs for the individual GIIPS in Fig. 8b, c show substantial jumps only during the
main shocks events. These SRIs rank Ireland as being the most systemically important with
the exception of Greece during the Greek crisis and Portugal in the 2014 period.The SRISK
in Fig. 8d reflects the leverage data and provides risk profiles for Greece and Portugal which
are similar to the left centrality/vulnerability index of the spectral approach given in Fig. 9a.

8.3 What explains market price-based sris?

In this section we ask what are the possible reasons for the divergence in rankings of sys-
temically important banking systems as given by the different SRIs. To answer this question,
we follow Benoit et al. (2013) and calculate the R2’s from a time-series and cross-sectional

25 On the 10 August 2014, the Financial Times queried how the IMF Progress Report of January 2014 had
given the Portugese banking system a clean bill of health just before Banco Espirito Santo collapsed in Portugal
in August 2014, see Financial Times 10 August 2014: http://www.ft.com/cms/s/0/2965c812-1e29-11e4-bb68-
00144feabdc0.html
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regression of the SRIs presented above and some of the ingredients used to construct them,
namely, the beta of the country’s banking system, total book value of liabilities, value of
equity and Value at Risk.26 As pointed out by Benoit et al. (2013), under certain condi-
tions, the DCC-MES and beta tend to identify the same systemically important financial
institutions. This begs the question of why not rank institutions/countries by the betas in
the first place? This relates to the confusion between systemic and systematic risk with the
latter encapslated in the beta. Indeed, this can be seen in Table 3, where the R2’s shows an
almost perfect cross-sectional correlation between the DCC-MES and beta and there is 85%
R2 for correlation between DCC-�CoVar and beta. Hence, if a ranking is done for systemic
importance of country’s financial systems usingDCC-MES, this will be equivalent to ranking
according to their betas.

Although the SRISK is a function of beta, it does not seem to be very sensitive to beta,
in both the cross-section and time-series, with an R2 of 0.189 and 0.249, respectively. The
SRISK seems to be explained by leverage (LVG), with a cross-sectional R2 of 0.812. Cross-
sectional correlations are very important in this case, as these are the ones that provide the
rankings of systemic importance at a given point in time. However, the relative impact of the
beta and leverage factors on SRISK is strongly influenced by market conditions. Thus, as
seen in Fig. 3 and also in Figs. 4, 5, 6, 7, 8 and 9, we note that there is a lack of early warning
in the run up of the GFC. This is caused by the beta factor being greater than the one for
leverage during conditions of market boom. Only in the post GFC period does the SRISK
behave like the spectral SRI.27

Finally, in Table 3 we find that the DCC-�CoVaR is explained with a 80% R2 in the time-
series by its VaR. A high correlation in the time-series domain means that while rankings
may differ, for a given country, DCC-�CoVaR is proportional to its VaR. This means that
forecasting the future evolution of the contribution of a country to systemic risk is equivalent
to forecasting its VaR in isolation. This provides evidence that most SRIs can be summarised
by using standard risk measures such us VaR and beta. While we have made use of a very
limited sample, our findings are in line with those studies using larger samples (Benoit et al.
2013).

9 Conclusions

One of the clear shortcomings of macro-prudential analyses has been the lack of systemic
risk models that can, even after the event, identify the threats from large exposures (see Allen
et al. 2011) that the global banking system had to US banking sector liabilities in the run
up to the GFC. It is increasingly being understood, and as underscored in this study, that
paradoxical systemic risk measures based on market price data will fail to give early warning
of banking system crises from growing interbank liabilities. For this, network models based
on balance sheet linkages are needed. However, despite a number of such networkmodels that
have been based on cross border BIS banking flows data involving global banking systems
(Degryse et al. 2010; Castrén and Rancan 2014; Cerutti et al. 2012), these have had to rely
on simulation methods to assess the average size of losses that the global banking network
can suffer having triggered the failure of each of the participants. This approach has failed

26 When we estimate cross-sectional regressions, we regress cross-country SRIs against cross-country betas
at each t . In contrast, in the time-series domain, we regress individual country SRIs against individual country
beta for that particular country. In both cases, the R2s are retrieved and subsequently averaged.
27 This is seen in Engle et al. (2015) who find systemic risk given by SRISK is high even in the 2012/13
period for European financial institutions.
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to give a reliable metric for gauging if a data based network of financial obligations has
become more or less prone to tipping into a state of contagion from one period to the next.
The advances being made to the BIS Consolidated Banking Statistics since 2005 that gives
banking sector liabilities of a country to the BIS reporting cross border banks of another
country on an ultimate risk basis, makes it possible to develop a network model of foreign
claims of a country’s banking system on that of another.

The spectral and fixed point eigen-pair approach, widely used in the epidemic and cascade
models, has been absent from many economic models of such phenomena. We have shown
how a financial contagion model can produce an index analogous to the famous R number
for epidemic models. We give a step by step guide, in a more general setting than in Markose
(2012), on how the framework of Newman (2010, section 17) and Wang et al. (2003) can be
adapted for tipping points for networks and then implemented for cross border exposures of
national banking systems using publicly available BIS CBS.

Firstly, to apply the analytic fixed point eigen-pair results in Eqs. (9), (18), (19) and
(20), we have discussed in Sect. 3.1 how the BIS CBS has to be adjusted in the cases when
the banking sector breakdown of foreign bank liabilities of a country to the BIS reporting
banks of another has not been given. As all contagion models have to specify thresholds
for failure, much care was exercised in determining the heterogeneous absolute capital loss
thresholds implied by the extant Basel regulatory capital requirement that signals distress.
When assessing the potential for contagion failures from capital inadequacy for what is
effectively a subset of activities of banks, it is recommended that pro rata adjustments for
capital are done.

The Spectral SRI based on the maximum eigenvalue (λmax (Q)) given in Eqs. (9) and (15)
for the core global banking system network (CGBSN) can be interpreted as the maximum
expected percentage loss of capital exceeding the permissible capital buffer for the CGBSN
from a contagion that may arise from arbitrary sized shocks. In Fig. 3 we find that λmax (Q)

manifests extreme contagion losses of over 50% of the total adjusted capital in the CGBSN
in the run up to the 2007 GFC and there are also similar uptrends before the Eurozone
crisis. The right eigenvector centrality has been shown to give the near term proportionate (to
the λmax (Q)) capital losses that each banking system can inflict on the CGBSN, giving its
systemic importance. Likewise, the product of the λmax (Q) and the left eigenvector centrality
gives the share of the total systemic losses (as percentage) of CGBSN adjusted capital that
each of them can lose signaling their vulnerability. We have noted that sudden changes in the
rank order of these network centrality indexes with respect to the top rank should be taken
seriously by regulators as it can identify new ‘super spreaders’ and those that are vulnerable
to failure. The difference in the time profiles of the weighted clustering coefficient and the
Spectral SRI in Figure C.10 and Fig. 3 respectively, shows the richer information especially
in the higher order approximation of interconnectedness in the latter as opposed to the former.

Another objective of the paper is to compare the results of the Spectral SRI with those
for the standard market price-based SRIs, namely, the DCC-MES of Acharya et al. (2017),
the SRISK of Acharya et al. (2012) and the DCC-�CoVaR of Adrian and Brunnermeier
(2011), in a cross border setting. Our main finding is that the market price based measures
exhibit an extremely high contemporaneous correlationwithmarket sentimentmeasures such
as the VIX/VSTOXX, which results in little early warning capabilities. Likewise, most of
them tend to spike perfectly with market events such as the Lehman collapse and two Greek
bailouts and only during those times are they able to identify systemically important financial
systems. The overwhelming systemic importance of the US banking system pre GFC and the
subsequent systemic importance of theUKbanking system found in the Spectral SRI analysis
in Fig. 4a do not feature in the market based SRI results. Indeed, only DCC-�CoVaR makes
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a distinction between systemic important and vulnerable banking systems. Within subsets of
banking systems, while the Spectral SRI identifies the vulnerability of the Dutch and Belgian
banking systems to predate the 2007 GFC and to highlight the continued weakness of the
Italian banking system especially in 2014, the market based SRIs are silent in this respect.
Finally, it is surprising that SRISK, which combines leverage with market price-based data
is not able to capture the increasing instability of the core global banking system pre GFC.
An explanation for this, is that while leverage is increasing in the run up to the crisis, the
reliance on the market price determined long run marginal expected shortfall (LRMES) term
nullifies this effect and prevents SRISK from giving any early warning.

The present study demonstrates the importance of the informational content of cross-
border balance sheet BIS CBS data aggregated at the level of the national banking system
in a network setting for assessing global banking stability. It is not only the severe threats
from the US banking system that was signalled pre GFC, but also less obvious vulnerability
of the Belgian cross border banks in this period and that of the Portuguese banking system
in 2012/2013. Future research should widen the scope of this methodology by including
financial exposures of sectors within countries and between sectors from different countries,
as in the Castrén and Rancan (2014) framework. This will require additional modeling of
how failure propagates in non-banking sectors.
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