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Abstract— Research on classification and segmentation of 3-D
point clouds using deep learning methods has become a hot topic
in emerging applications, such as autonomous driving, augmented
reality, and indoor navigation. However, as the complexity of
the network structures increases, the computational efficiency
reduces, which affects the practical applications of these methods.
In addition, prior researchers mostly seek to enhance the quality
of spatial encodings, while the channel relationships are ignored.
It makes the feature learning of point clouds insufficient, which
will reduce the accuracy of classification and segmentation. In this
article, a lightweight attention module (LAM) is proposed to
improve the computational efficiency and accuracy at the same
time by adopting a novel convolution mode and introducing
a new attention mechanism based on channelwise statistical
features. As the submodules of LAM, the lightweight module
and the attention module can also be used independently to
focus on improving the computational efficiency and accuracy,
respectively, according to the actual applications. LAM and its
submodules can be easily integrated into state-of-the-art deep
learning methods on classification and segmentation of 3-D point
clouds. The experimental results show that the proposed modules
have a good performance on benchmark data sets.

Index Terms— Attention mechanism, classification, lightweight,
point clouds, segmentation.

I. INTRODUCTION

3-D point cloud is a set of discrete points on the surfaces

of target objects collected by laser rangefinders [1], [2].
With the rapid development of the 3-D laser ranging tech-
nology, 3-D point clouds have been widely used in emerging
applications, such as autonomous driving, augmented reality,
and intelligent robots [3]-[5]. Classification and segmentation
are critical techniques for processing of 3-D point clouds.
Through these operations, point clouds are classified into
different sets. The same set has similar or identical attributes.
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Classification and segmentation of point clouds are the basis
of some important processing tasks, such as the detection of
3-D objects and the reconstruction and understanding of 3-D
scenes.

In recent years, some researchers have devoted themselves
to developing methods for classification and segmentation of
3-D point clouds. Traditional methods for classification and
segmentation of 3-D point clouds use handcrafted features to
capture geometric attributes [6]. In this way, the performance
of feature learning is largely affected by the handcrafted fea-
tures [7]. More recently, many investigations borrow concepts
from the convolutional neural network (CNN) to deal with
point clouds motivated by the success of CNN in image
processing. This kind of method develops rapidly and outper-
forms traditional methods in various tasks for classification
and segmentation of 3-D point clouds [8]. However, due to
the irregularity of point clouds, most of these methods cannot
directly deal with them. It needs to convert point clouds into
other regular representations since the standard CNN requires
input data with a regular structure. One common approach is to
project 3-D point clouds onto a 2-D plane [9]-[11], which will
lose certain 3-D inherent geometric information. Another com-
mon approach is to convert 3-D point clouds into volumetric
grids [12]-[14], which will introduce quantization artifacts and
reduce computational efficiency. These transformations usually
lead to difficulties in extracting fine-grained features.

State-of-the-art architectures are designed to handle the
irregular point clouds directly. This kind of method was
pioneered by PointNet [15], which implements the permutation
invariance of point clouds by independently performing feature
learning on each point and then applying max pooling to
accumulate features. Although PointNet is more accurate and
robust than previous methods, it ignores local features, which
limits its fine-grained pattern recognition and perception of
complex scenes. To solve this problem, various extensions take
measures to make use of local features through considering
neighborhoods of each point [7], [16], [17]. Compared with
PointNet, these improved algorithms have achieved some
improvements in performance.

However, with the increasing complexity of network struc-
tures, computational efficiency decreases, which brings obsta-
cles to the practical application of these methods. In addition,
these extensions mostly seek to enhance the quality of spatial
encodings, the relationships between different feature channels
are ignored. It makes the feature learning of point clouds
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insufficient, which will affect the accuracy of classification
and segmentation. There are a relatively few studies on these
problems for 3-D point clouds. However, researchers have
made some progress in improving the computational efficiency
and accuracy for image processing [18]-[21]. It has certain
reference significance for solving related problems in 3-D
point clouds.

To deal with these problems, we propose a lightweight atten-
tion module (LAM) that is obtained by organically integrating
two submodules: lightweight module (LM) and attention mod-
ule (AM). LM improves computational efficiency by adopting
depthwise separable convolution (DSConv). AM improves the
accuracy by automatically rescaling the weights of different
feature channels based on channelwise statistical features.
LAM can improve the computational efficiency and accuracy
at the same time. These modules are easy to be implemented
and can be integrated into state-of-the-art deep learning archi-
tectures for classification and segmentation of point clouds.
In the experiments, we integrate LAM into PointNet and
PointNet++ [16]. The improved networks perform more
accurately and efficiently on different data sets, such as most
notably ModelNet40 [13] for classification, ShapeNet [22] for
part segmentation, and the Stanford large-scale 3-D indoor
space data set [23] for indoor scene segmentation.

The key contributions of this article are summarized as
follows.

1) LAM is proposed to improve the computational efficiency
and accuracy simultaneously by adopting a novel convolution
mode and introducing a new attention mechanism based on
channelwise statistical features.

2) As the submodules of LAM, LM and AM can be
used independently to focus on improving the computational
efficiency and accuracy, respectively.

3) The proposed modules have good portability and help
to improve the performance of the original deep learning
methods.

The remainder of this article is organized as follows.
Section II reviews the related works on classification and
segmentation of 3-D point clouds. Section III describes the
proposed module LAM and the improved backbone archi-
tectures based on LAM. Section IV shows the experimen-
tal results and discussions. The conclusions are drawn in
Section V.

II. RELATED WORKS

As critical technologies for processing 3-D point clouds,
many classification and segmentation methods have been
proposed over recent years [24]. These methods can be
classified into three categories: traditional methods based on
hand-designed features, deep learning methods based on regu-
lar representations of point clouds, and deep learning methods
based on irregular point clouds.

Traditional methods based on hand-designed features arti-
ficially design feature descriptors according to different prob-
lems and then use machine learning methods to complete
classification and segmentation of point clouds. Many pre-
vious studies have proposed a variety of different local
feature descriptors for point clouds to handle different

problems [25], [26]. Common descriptors of point clouds can
be divided into two categories: statistical feature descriptors
and geometrical feature descriptors. Representative statistical
feature descriptors are fast point feature histograms [27],
direction histograms [28], normal histograms [29], and
inner-distance descriptors [30]. Representative geometrical
feature descriptors are spin images [31], local surface
patches [32], and intrinsic shapes [33]. Traditional methods
based on hand-designed features usually have a high degree
of human dependence and are often poorly portable. For some
challenging tasks, it is very difficult to find the optimal features
with human experience. Some new feature descriptors have
been proposed, which play a very important role in extracting
features of point clouds. In [34], a new local feature matching
method was proposed based on the combination of geometrical
and spatial information. In [35], the cross features have been
used to combine the correlation between features to avoid
overfitting problems.

In recent years, deep learning has made breakthroughs
in many fields, including classification and segmentation of
3-D point clouds. Deep learning methods based on regular
representations of point clouds focus on converting irregular
point clouds to regular representations. Some researchers
apply 3-D CNNs on the volumetric grid [13], [14], [36],
which makes computational efficiency reduce exponentially
with resolution because of the data sparsity generated by
this data representation. This is very challenging for the
classification and segmentation of point clouds in large scenes.
Studies [37], [38] have made some progress in solving the
sparsity problem, but it has not been completely solved.
Some researchers [11], [39], [40] adopt the multiview method
to render 3-D point clouds into multiple 2-D images. This
method can make full use of 2-D CNNs’ successful experience
in image processing. However, point clouds will lose depth
information in the process of projection from 3-D to 2-D,
which is not conducive to classification and segmentation of
3-D point clouds.

Deep learning methods based on irregular point clouds,
pioneered by PointNet, make it possible to use CNNs directly
to handle raw irregular point clouds. Experiments show that
PointNet is an effective method to solve the irregularity of
point clouds. It is also an effective way to learn features
directly from point clouds and retain feature information to the
greatest extent. PointNet ++ [16], as an extension of PointNet,
makes up for the shortcoming of PointNet’s inability to extract
local features. It leverages proximity to obtain local informa-
tion on multiple scales for better performance. Dynamic graph
convolution neural network (DGCNN) [7] utilizes local feature
information by constructing a local neighborhood graph and
applying dynamic graph convolution on the edges connecting
adjacent point pairs.

Although many alternatives to PointNet have been proposed
for higher performance, the simplicity and effectiveness of
PointNet and its extension PointNet++ make them popu-
lar for classification and segmentation of 3-D point clouds.
In this article, PointNet and PointNet++ are used as the
backbone architectures for evaluating the effect of LAM and
its submodules.
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III. METHODOLOGY

In this section, we show the problem statement in
Section III-A, propose LAM in Section III-B, and finally
improve PointNet and PointNet++ based on LAM and its
submodules in Section III-C.

A. Problem Statement

As a pioneer of deep learning methods based on irregular
point clouds, PointNet makes it possible to directly process an
irregular 3-D point cloud, which is represented as P = {p; =
(xi, vi, zi)|l <i < n}. Extra features can also be added, such
as normal vectors and colors. Some subsequent improvements,
such as PointNet++ and DGCNN, have further enhanced the
ability to extract local features. These methods have made
significant breakthroughs on classification and segmentation
of point clouds. Not only do they avoid reliance on hand-
designed features, but they can also take full advantage of
the information in point clouds. However, the computational
efficiency of these methods decreases with the increasing
complexity of network structures. It brings obstacles to the
practical application of these methods. In addition, these exten-
sions mainly seek to enhance the quality of spatial encodings
while ignoring channel relationships. This makes it impossible
to distinguish the importance of different feature channels,
which affects the accuracy of classification and segmentation.
The specific causes and solutions for these problems are as
follows.

1) Computational efficiency decreases as network complex-
ity increases. These algorithms use regular convolution
to map simultaneously cross-channel correlations and
spatial correlations with a single convolution kernel.
Through this operation, the cross-channel correlations
and the spatial correlations are fused, which are in
a decoupled state. This will affect the sufficiency of
feature extraction and reduce the computational effi-
ciency. Changing the convolution mode to make the
network more lightweight is an effective way to solve
this problem.

Schema of LAM: Inside the dotted frame on the left is the submodule of LM, and inside the dotted frame on the right is the submodule of AM.
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Fig. 2. DSConv and regular convolution. (a) Regular convolution. (b) Depth-
wise convolution of DSConv. (c) Pointwise convolution of DSConv.

2) Insufficient feature extraction affects the accuracy on
classification and segmentation of 3-D point clouds.
Traditional CNN cannot explicitly model the relation-
ships between different feature channels. This makes
it impossible to distinguish the importance of different
feature channels, which will affect the sufficiency of
feature extraction and reduce accuracy. Introducing an
attention mechanism to automatically rescale the weights
of different feature channels is essential to screen out the
information that is more critical to the current task and
improve the accuracy on classification and segmentation
of 3-D point clouds.

B. Lightweight Attention Module

1) Framework: LAM is designed to improve the computa-
tional efficiency and accuracy on classification and segmenta-
tion of 3-D point clouds. As shown in Fig. 1, it is obtained
by integrating two submodules: LM and AM. LAM consists
of four steps: DSConv, squeeze, excitation, and rescale.

a) DSConv: In order to improve computational efficiency,
the DSConv is adopted to deal with the cross-channel cor-
relations and spatial correlations. The spatial convolution is
performed independently on each channel and followed by
a pointwise convolution, as shown in Fig. 2. It conduces to
make the network more lightweight by reducing the amount



of parameters. Given an input X € R"*/'*¢ the intermediate
features U e R"*/*¢ can be obtained by

U = DSConv(X). (1)

Subsequently, batch normalization is performed to increase the
stability of the learning process by regulating the distribution
of the intermediate features U.

b) Squeeze: In order to make better use of global spatial
information, the intermediate features U = {Ui|l < k < ¢}
are squeezed into channel descriptors, where k indicates the
sequence number of channels. First, two important features
of mean and standard deviation are calculated separately on
each feature channel. Then, the 2-norm of these two features is
calculated to get channelwise statistical features. M = {u|1 <
k < c} represents the mean, where yy is calculated by
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mediate features. D = {o}|1 < k < ¢} represents the standard
deviation, where oy is calculated by
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R = {r|]1 < k < c} represents the 2-norm of the two kinds
of features, where ry is calculated by

Ty = sqrt(,ui + akz). 4)

Through the operation of squeeze, the multidimensional fea-
tures on each feature channel are compressed into a real
number. This real number has a global receptive field and can
effectively reflect the mean and change range of all features
on the feature channel.

c) Excitation:: In order to make full use of the infor-
mation gathered in the operation of squeeze, the operation of
excitation is adopted to fully capture the weights of different
feature channels. It uses the gating mechanism with two fully
connected (FC) layers. This helps to better fit the complex
relationships between different feature channels by increasing
nonlinearity and can greatly reduce the amount of parameters.
ReLU ¢ is used as the activation function after the first
FC layer. It contributes to alleviating the vanishing gradient
problem and improving the speed of convergence. Sigmoid
£ is adopted as the activation function after the second FC
layer. It is used to get normalized weights between O and 1.
The recalibration parameters S € R!*!*¢ that represent the
importance of each feature channel are calculated by

S = B(W26(WiR)) (5)
where W, € R°*7 is the weight of the first FC layer, W, €

R7*¢ is the weight of the second FC layer, and r represents
the reduction ratio of the bottleneck formed by two FC layers.

d) Rescale: The final output of the LAM module
T = {Ti|1 <k < c}is calculated by rescaling the intermediate
features with the recalibration parameters S = {s¢|1 < k < ¢}

Tk :SkUk. (6)

Through this operation, different feature channels are given
different weights according to the role of them.

2) Basic Idea: LAM can improve computational efficiency
and accuracy on classification and segmentation of point
clouds. It mainly includes two core innovations: lightweight
and attention mechanism.

a) Lightweight: Regular convolution adopted by the pre-
vious methods maps cross-channel correlations and spatial
correlations at the same time using a single convolution kernel.
This is shown in Fig. 2(a). The cross-channel correlations
and the spatial correlations are fused through this operation.
This will reduce the computational efficiency. To solve this
problem, DSConv is adopted to deal with the cross-channel
correlations and spatial correlations in LAM. DSConv divides
the convolution operation into two steps: a depthwise convolu-
tion and a pointwise convolution. The depthwise convolution
carries out spatial convolution on each channel of the input,
as shown in Fig. 2(b). The pointwise convolution maps the
channels’ output by the previous step onto a new channel space
using a 1 x 1 convolution, as shown in Fig. 2(c). The number
of parameters is an important indicator of computational
efficiency. Assume that the depth of input feature is d;, the
size of convolution kernel is (ck, cx), and the depth of output
feature is d,. The number n, of weights for regular convolution
is calculated by

n, =cp X cp Xdi xd,. (7)
The number n, of weights for DSConv is calculated by
ng=cy xXcpy x1xdi+1x1xd; xd,. (8)

By comparing the two formulas, it can be seen that DSConv
can effectively reduce the number of parameters. This plays
an important role in improving computational efficiency.

Through adopting DSConv, the mutual interference of fea-
ture extraction in two different dimensions of space and
channel can be reduced. Different convolution kernels can be
selected for the convolution in these two dimensions accord-
ing to different characteristic properties. What is more, the
computational efficiency on classification and segmentation of
point clouds can be effectively improved.

b) Attention mechanism: Traditional CNN adopted in
previous algorithms on classification and segmentation of point
clouds cannot effectively distinguish the importance of differ-
ent feature channels, which will affect the adequacy of feature
extraction and reduce accuracy. To solve this problem, a new
attention mechanism is proposed in this article. The attention
mechanism is designed to explicitly model the relationship
between different feature channels. In the squeeze step, the
global spatial information is squeezed into channel descriptors
R through calculating channelwise statistical features. These
channel descriptors are then excited with two FC layers to get
the weights of different feature channels. Finally, the weights
S are used to rescale the input features.
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Fig. 3. Improved PointNet architecture on classification and segmentation of point clouds using LAM and its submodules. MaxPool represents global max
pooling. AvgPool represents the global average pooling. We modify it on the PointNet framework [15].

By introducing the attention mechanism, the weights of
different feature channels are learned adaptively according to
the loss. It gives higher weights to valid features and lower
weights to invalid ones. The limited computing resources can
be used to screen out the information that is more critical to
the current task. It helps to improve the adequacy of feature
expressions, thereby improving the accuracy on classification
and segmentation of point clouds.

C. Improved PointNet and PointNet++

1) Review of PointNet and PointNet++: PointNet is a
pioneering deep learning network that can directly classify
and segment the irregular point clouds. The basic idea of
PointNet is to learn and extract the important features of
each point through regular convolution and then fuse the
information to generate global features using global max
pooling. For a raw irregular 3-D point cloud that is represented
as P ={p; = (xi,y:,2;)|1 <i <n}, PointNet can learn a
function that maps the point cloud to a vector

JF(P) =y MAX{h(pi)}) €

where y represents the FC network, MAX represents the
global max pooling, and / represents the regular convolution.

However, PointNet cannot exploit local features that are
important for extracting fine features of 3-D point clouds.
To solve this problem, PointNet++ constructs a hierarchical
neural network, which is composed of many set abstraction
levels. At each level, PointNet++4 will first conduct sampling
and grouping on a point cloud and then extract local features
in each small region using PointNet. These local features are
grouped into larger units and used as part of the input to extract
more advanced features at the higher level. However, these
methods have a common problem that they only pay attention
to the features expression in spatial dimension while ignoring
the channel dimension.

2) Improved PointNet and PointNet++: As shown in Fig. 3,
PointNet is improved by integrating LAM and its submodules:
LM and AM, known as LAM-PointNet, LM-PointNet, and
AM-PointNet. For an irregular 3-D point cloud P = {p; =
(xi, vi,zi)|l < i < n}, the improved PointNet can learn a
function that maps the point cloud to a vector

f(P) = y (MAX + AVG){LM(p:)}) (10)
f(P) = y (MAX + AVG){AM(p/)}) (11
f(P) = y (MAX + AVG){LAM(p;)}) (12)

where y refers to the FC network and MAX + AVG refers
to the sum of output features using global max pooling and
average pooling.

Compared to PointNet, the improved methods have the
following two main improvements.

1) LAM and its submodules are adopted for feature extrac-
tion of point clouds. LM can improve the computational
efficiency by adopting DSConv. AM can improve the
accuracy by introducing a new attention mechanism
with channelwise statistical features. LAM improves the
computational efficiency and accuracy simultaneously
by organically integrating LM and AM.

2) Global features are generated by aggregating infor-
mation of all points through global max pooling and
average pooling. Through this operation, the influence
of salient features and the retention of feature ranges
can be considered at the same time.

To improve PointNet++, LM-PointNet, AM-PointNet, and
LAM-PointNet are adopted in place of PointNet to extract
local features in each small region which is obtained by
sampling and grouping at each set abstraction level.

IV. EXPERIMENTS AND ANALYSIS

In order to verify the effectiveness of LAM and its sub-
modules, we use PointNet and PointNet++ as the backbone
architectures and conduct comparative experiments before and
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after using the proposed modules for improvement. Experi-
ments on classification and segmentation of point clouds are
carried out for each network. We choose the ModelNet40
data set in classification experiments, the ShapeNet data set in
part segmentation experiments, and the Stanford Large-Scale
3-D Indoor Space data set in scene segmentation. These data
sets are very typical in the field of point cloud processing.
They are widely used by many classic algorithms of point
cloud classification and segmentation. They can be used to
fully verify the performance of point cloud classification and
segmentation algorithms. In addition, these data sets are open
source, easy to obtain, and easy to use. In the experiments,
the cross-entropy loss function is adopted as

Hy(y) == yllog(y) (13)
where H,/(y) represents the loss, y/ represents the ith value
in the labels, and y; is the corresponding component in
the predicted values output after normalization by softmax.
The training algorithm is shown in Fig. 4. The experimental
results are shown and analyzed. The key details are visualized.
Experiments are conducted in Python3.5. The deep learning
framework is TensorFlow1.8, and the GPU is Tesla P100.

A. Classification

1) Data Set: The ModelNet4( data set is used to evaluate
our module on classification of point clouds. ModelNet40

TABLE I
ABLATION ANALYSIS

Overall

Time  Parameters FLOPs

Method accuracy

(%) (s) ™M) (&)
PointNet 89.2 13.0 3.52 0.93
LM-PointNet 88.6 9.6 3.14 0.80
AM-PointNet 90.3 13.7 3.82 1.05
LAM-PointNet 89.6 10.5 345 0.85
PointNet++ 90.7 153 1.75 2.97
LM-PointNet++ 90.2 11.0 1.40 2.69
AM-PointNet++ 91.9 16.5 1.97 3.06
LAM-PointNet++ 91.3 13.2 1.68 2.87

contains 12 311 CAD models from 40 categories of artificial
objects. These models are split into two parts: 9843 for training
and 2468 for testing. The point cloud of each model is formed
by uniformly sampling 1024 points from the grid surface of
the model and normalizing them into a unit sphere. In the
preprocessing stage, the same method as PointNet is adopted
for data enhancement, including the random rotation of point
clouds and jitter of point positions.

2) Training: The momentum optimizer is used with an
initial learning rate of 0.001. The epoch number is 250. The
learning rate decreases with the increase in training epoch
number until it reaches 0.00001. The decay step is 200 000 and
the decay rate is 0.8. The batch size is 32 and the momentum
is 0.9. Other parameter settings are the same as PointNet [15]
in the experiments of classification.

3) Results: In order to better verify the experimental results
of classification, we select reasonable performance metrics.
Overall accuracy represents the ratio between the number
of correctly classified point clouds and the total number of
point clouds on all the test sets. It can effectively reflect the
accuracy of the models. Time represents the forward pass time
of all the test sets and it can well reflect the computational
efficiency of the models. Parameters represent the number of
weights and bias of the models. FLOPs represent the floating-
point operations. Parameters and FLOPs can well reflect the
complexity of the models.

a) Ablation analysis: In order to show the performance
of LAM and illustrate the contributions of each submodule, the
ablation analysis is carried out in Table I. As can be observed,
the proposed LM can effectively improve the computational
efficiency and reduce the model complexity, but it reduces
the accuracy. The proposed AM can effectively improve the
accuracy, but it will increase the model complexity and reduce
the computational efficiency. After the organic integration of
the two modules, it can be seen that LAM not only helps
to improve the computational accuracy but also reduces the
complexity of the model and improves the computational
efficiency.

In general, LM is suitable for applications that focus on
efficiency, and AM is suitable for applications that focus
on accuracy. LAM has achieved the best tradeoff among
the computational efficiency, the accuracy, and the model
complexity. It is suitable for a wide range of applications.



LIGHTWEIGHT COMPARATIVE EXPERIMENTS WITH AMs

TABLE II

Method Parameters(M) FLOPs(G)
SENet-PointNet 4.02 1.04
CBAM-PointNet 4.05 1.06
LAM-PointNet 3.45 0.85
SENet-PointNet++ 1.98 3.06
CBAM-PointNet++ 2.03 3.07
LAM-PointNet++ 1.68 2.87

b) Standard deviation analysis: In order to analyze the
standard deviation of the overall accuracy, the error bars are
shown in Fig. 5. As can be seen, LM makes the fluctuation
range of the overall accuracy slightly larger. AM can effec-
tively reduce the fluctuation range of the overall accuracy.
LAM obtained by the organic integration of the two sub-
modules can effectively suppress the fluctuation of the overall
accuracy. The standard deviation of the overall accuracy is
controlled at about 1%.

¢) Comparative experiments with AMs: In order to ver-
ify the lightweight effect of LAM, comparative experiments
are conducted with other AMs in Table II. As can be
observed, LAM has lower model complexity compared with
SENet [20] and CBAM [41] in experiments with PointNet and
PointNet++ as the backbone architectures. This proves that
LAM is more lightweight.

d) Robustness tests: In practical applications, the input
point clouds are often affected by changes in sampling den-
sities, outliers, and Gaussian noises. In order to show the
robustness of the proposed method, robust experiments are
conducted on these issues. We obtain the point clouds of each
CAD model with different sampling densities by randomly
dropping out some points. In the experiment, each model
samples 1024, 768, 512, 256, and 128 points. What is more,
outliers are evenly added to the point cloud, and Gaussian
noise is added independently for each point.

In order to test the robustness of LAM, robustness tests are
carried out for sampling density, outliers, and Gaussian noise.
Fig. 6 shows the overall accuracy with the increase in sampling
density, outlier ratio, and perturbation noise standard. Fig. 6(a)
shows the results with different sampling densities of point
clouds. As can be observed, with the increase in the sampling
densities, the classification accuracy has shown an overall
upward trend. This is basically consistent with the actual
situation. We also find that the performance of our methods
at each sampling density is always close to the best compared
with the backbone architectures. Fig. 6(b) shows the results
with different outlier ratios. As can be observed, with the
increase in outlier ratios, the classification accuracy has shown
an overall downward trend. We also find that the performance
of our methods at each outlier ratio is always close to the best
compared with the backbone architectures. Fig. 6(c) shows the
results with different perturbation noise standards. As can be
observed, with the increase in perturbation noise standards,
the classification accuracy has shown an overall downward
trend. We also find that the performance of our methods at
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Fig. 6. Classification of point clouds: overall accuracy with the increasing

of (a) sampling density, (b) outlier ratio, and (c) perturbation noise standard.

each perturbation noise standard is always close to the best
compared with the backbone architectures. This proves that
the proposed LAM improves the robustness of classification.

B. Part Segmentation

1) Data Set: Compared with classification, part segmen-
tation is a more precise 3-D recognition task. Its main task
is to assign part category labels to each point in the point



TABLE III
SEGMENTATION RESULTS ON THE SHAPENET DATA SET

. Param- FL- . .

Method mioU Time eters OPs Air- Bag Cap Car Chair Ph- Gui Kn- Lamp Lap-~ Mo- Mug  Pistol Roc  Skate- Table
(%) (s) M) G) craft one -tar ife top tor -ket  board
PointNet 83.7 329 863 095 834 787 825 749 896 73.0 915 859 80.8 953 652 93.0 81.2 579 72.8 80.6
lI;QrI:/tII_\Iet 84.1 290 7.66 0.87 836 821 81.7 77.1 89.8 71.0 913 859 8l.6 957 649 934 83.6 584 74.3 80.7
PointNet++  85.1 428 141 265 824 79.0 877 773 90.8 71.8 91.0 859 837 953 71.6  94.1 81.3 587 76.4 82.6
LA,M- 85.3 397 1.06 254 830 792 875 784 909 707 913 881 84.0 953 71.9 943 819 589 76.7 82.8
PointNet++

cloud of a 3-D model. The ShapeNet segmentation data set is
used to evaluate our module. It contains 16 881 3-D shapes
of 16 object categories. The points in the data set are annotated
as a total of 50 parts. Most of the training shapes are labeled
as 2-5 parts; 2048 points are sampled from each shape.

2) Training: The momentum optimizer is used with an
initial learning rate of 0.001. The epoch number is 200. The
learning rate decreases with the increase in training epoch
number until it reaches 0.00001. The decay step is 200 000 and
the decay rate is 0.5. The batch size is 32 and the momentum
is 0.9. Other parameter settings are the same as PointNet [15]
in the experiment of part segmentation.

3) Results: In order to better verify the experimental
results of part segmentation, we select reasonable perfor-
mance metrics. Intersection-over-Union (IoU) represents the
ratio between the intersection and union between the actual
segmentation point cloud and the ground truth. The IoUs of
all the parts that belong to a certain shape are calculated,
and then, these IoUs are averaged to calculate the IoU of
the shape. The IoU of a category is obtained by averaging
the IoUs of all the shapes in it. The mean IoU (mloU) is
finally obtained by averaging the IoUs of all the testing shapes.
Time represents the forward pass time of all the test sets
and it can well reflect the computational efficiency of the
models. Parameters represent the number of weights and bias
of the models. FLOPs represent the floating-point operations.
Parameters and FLOPs can well reflect the complexity of the
models.

In the experiments of part segmentation, we compare
LAM-PointNet with PointNet, and LAM-PointNet++ with
PointNet++ in terms of the segmentation accuracy, model
complexity, and computational efficiency. Table III shows the
results of part segmentation on the ShapeNet data set. As can
be observed, the model complexity, computational efficiency,
and accuracy of both LAM-PointNet and LAM-PointNet++
are always close to the best compared with the backbone
architectures. Although our methods have good performance
in most of the 16 categories, they do not achieve the expected
results in the remaining few. This is mainly due to the fact
that small changes in parameters can cause large changes in
results.

The part segmentation results of some testing shapes are
visualized for showing the details in Figs. 7 and 8. As shown
in Fig. 7, compared with the ground truth, there are obvious
errors in the results of part segmentation using PointNet. For
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Fig. 7. Part segmentation II on the ShapeNet data set. (a) Ground truth.
(b) Results of PointNet. (c) Results of LAM-PointNet.

an aircraft, a part of the tail is incorrectly segmented as the
fuselage. For a car, tires are incorrectly segmented as the car
body or the axle. For a chair, part of the cushion is incorrectly
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Fig. 8. Part segmentation II on the ShapeNet data set. (a) Ground truth.
(b) Results of PointNet++. (¢) Results of LAM-PointNet++.

segmented as the leg. These errors have been significantly
improved after integrating LAM. The part segmentation results
of LAM-PointNet are very close to the ground truth.

As shown in Fig. 8, compared with the ground truth, there
are obvious errors in the results of part segmentation using
PointNet++. For a guitar, part of the body is incorrectly
segmented as the neck. For a lamp, part of the lampshade is
incorrectly segmented as the lamppost. For a knife, part of the
blade is incorrectly segmented as the handle. These problems
are basically resolved after integrating LAM to improve the
backbone architectures. The results of LAM-PointNet++ are
very close to the ground truth.

It can be seen from Figs. 7 and 8 that segmentation errors
are prone to occur at the positions of the connecting surfaces,
corner points, edges, and so on. At these locations, the segment
results of the methods integrating LAM are much closer to the
ground truth than that of the backbone architectures. This can

intuitively show that LAM is helpful to improve the accuracy
on part segmentation of point clouds, especially at the key
locations that are difficult to segment.

C. Scene Segmentation

1) Data Set: The Stanford Large-Scale 3D Indoor Space
data set (S3DIS) is used to evaluate our module for
the segmentation of indoor scenes. The data set includes
the 3-D scan point clouds for six indoor areas, covering a total
of 272 rooms. These areas are split into two parts: areas 1-5
for training and area 6 for testing. Each point in the point
clouds corresponds to one of the 13 semantic categories; 4096
points are sampled from each block. Each point is represented
as a 9-D vector (XYZ, RGB, and normalized location as to
the room).

2) Training: The momentum optimizer is used with an
initial learning rate of 0.001. The epoch number is 50. The
learning rate decreases with the increase in training epoch
number until it reaches 0.00001. The decay step is 300 000 and
the decay rate is 0.5. The batch size is 24 and the momentum
is 0.9. Other parameter settings are the same as PointNet [15]
in the experiment of scene segmentation.

3) Results: In order to better verify the experimental results
of scene segmentation, we select reasonable performance met-
rics in the experiments of scene segmentation. loU represents
the ratio between the intersection and union between the actual
segmentation point cloud and the ground truth. The mloU is
finally obtained by averaging the IoUs of all the semantic cat-
egories in the testing rooms. Time represents the forward pass
time of all the test sets and it can well reflect the computational
efficiency of the models. Parameters represent the number of
weights and bias of the models. FLOPs represent the floating-
point operations. Parameters and FLOPs can well reflect the
complexity of the models.

Table IV shows the results of scene segmentation on the
S3DIS data set. As can be observed, the computational effi-
ciency, model complexity, and accuracy of LAM-PointNet are
always close to the best compared with PointNet. Although our
methods have good performance in most of the 13 semantic
categories, they do not achieve the expected results in the
remaining few. This is mainly due to the fact that small
changes in parameters can cause large changes in results.

The scene segmentation results of some testing rooms
are visualized for showing the details. As shown in Fig. §,
compared with the ground truth, there are obvious errors in the
results of scene segmentation using PointNet. For a conference
room, the board has a severe segmentation error and cannot
be effectively distinguished from the wall. For a lounge, sofas
are incorrectly segmented as chairs. For an office, part of the
board is incorrectly segmented as the wall. These problems
have been greatly improved after integrating LAM. The indoor
scene segmentation results of LAM-PointNet are always closer
to the ground truth than that of PointNet in most cases. For
some chairs, the segmentation results do not meet expectations.

It can be seen from Fig. 9 that the errors of indoor scene
segmentation are prone to occur when adjacent different kinds
of objects have similar shapes or very close depth range.
At these difficult-to-segment locations, the segment results



TABLE IV
SEGMENTATION RESULTS ON THE S3DIS INDOOR SCENE DATA SET

Para-

Method mloU  Time —iorg FLOPS  iiin g Floor Wall Beam Col- - Win- 1y Table Chair Sofa 2°°K Board Clutter
(%) (s) (M) (G) umn dow case

PointNet 57.0 174 1.41 7.22 91.2 96.5 70.5 492 259 407 68.0 67.0 658 113 577 48.0 49.5

LAM-PointNet  59.1 160 1.14 7.08 91.7 972 705 50.5 293 387 693 66.7 612 384 557 48.9 50.4
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Fig. 9. Scene segmentation on the Stanford Large-Scale 3-D Indoor Space Data Set. (a) Ground truth. (b) Results of PointNet. (c) Results of LAM-PointNet.

of the methods integrating LAM are always closer to the
ground truth than that of the backbone architectures. This can
intuitively show that LAM is helpful to improve the accuracy
on scene segmentation of point clouds, especially at the key
locations that are difficult to segment.

D. Discussion

To show the performance of our method, the results are
explained in more detail in comparison with state-of-the-art
methods. For the computational accuracy, Kd-Net [42] is 1.4%
higher than PointNet [15], PointNet++ [16] is 1.5% higher
than PointNet, and PCNN [43] is 1.7% higher than Kd-Net.
Based on a comprehensive comparison, the improvement of
our methods on the accuracy of the original algorithms is

competitive. For computational efficiency, LAM helps Point-
Net to process 45 more classification models per second and
helps PointNet++ to process 26 more classification models
per second. The improvement of 2—-10 s is very important
for practical applications, which can effectively improve the
real-time performance of the algorithm. What is more, as the
amount of point clouds increases, the more time our model
can save. With the wide application of point cloud in large
scenes, our proposed modules can save more time.

The reason that our method can achieve good performance
is mainly due to the following aspects.

1) By adopting DSConv, the backbone architectures become
more lightweight to improve the computational efficiency on
classification and segmentation of point clouds.



2) By integrating a new attention mechanism based on
channelwise statistical features, the weights of different feature
channels are adaptively rescaled to improve the accuracy on
classification and segmentation of point clouds.

3) We integrate DSConv and the attention mechanism to
propose a new module LAM, which is easy to be implemented
and has good portability.

V. CONCLUSION

In this article, we propose a novel module LAM for deep
learning on classification and segmentation of point clouds.
The main technical contributions of our module include a
new convolution mode, a new attention mechanism based
on channelwise statistical features, and a modular structure
obtained by organic combination of different submodules. The
adoption of DSConv makes the backbone architectures more
lightweight. The definition and integration of the new attention
mechanism enable the weights of different feature channels to
be adaptively rescaled. As the submodules of LAM, LM and
AM can also be used independently to focus on improving the
computational efficiency and accuracy, respectively, according
to the practical applications. The modular structure makes
LAM and its two submodules have good portability. These
technical contributions make our module easily be integrated
into state-of-the-art deep learning methods on classification
and segmentation of point clouds and contribute to improving
the computational efficiency and accuracy of the backbone
architectures. Experimental results show that the improved
methods obtained by integrating LAM have better performance
and are easy to be implemented in practical applications.
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