
Pricing under a multinomial logit model with non linear
network effects.

FELIPE MALDONADO, GERARDO BERBEGLIA, and PASCAL VAN HENTENRYCK

We study the problem of pricing under a Multinomial Logit model where we incorporate network effects
over the consumer’s decisions. We analyse both cases, when sellers compete or collaborate. In particular, we
pay special attention to the overall expected revenue and how the behaviour of the no purchase option is
affected under variations of a network effect parameter. Where for example we prove that the market share
for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger
communication among costumers increases the expected amount of sales. We also analyse how the customer’s
utility is altered when network effects are incorporated into the market, comparing the cases where both
competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to
prove that the probability of purchasing the available products converges to a unique stationary distribution.
We model that the sellers can use this stationary distribution to establish their strategies. Finding that under
those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an
optimal (that maximises the total revenue) fixed price characterise the case of collaboration.

1 INTRODUCTION
The widespread use of internet has created many new type of markets that are reshaping the
global economy, for example, people now watch movies on Netflix instead of renting a DVD at
Blockbuster. These Internet-based markets do not necessary follow the same rules than traditional
markets (which have been well studied for decades), since their structure can be fairly different,
where for example products can have unlimited supply (e.g., digital goods like songs), and millions
of users from all across the world can access to them instantaneously. All these new type of markets
open research opportunities in many disciplines such as Economics, Operations Research and
Computer Science, where researchers could tackle problems like novel pricing schemes, subscription-
based fees, recommendations systems and many more.
A very interesting feature of these markets is the effect of consumption history, reflected in a

social signal (e.g., 5 stars rating, number of views, etc.), over the purchasing decisions of upcoming
customers, phenomenon that in the literature is referred as network effects. Consumers make
their purchasing decisions (choose one product over the others, or do not purchase anything) not
only based on the quality and prices of the available alternatives, but also based on market-specific
features such as rating systems that keep track of past consumption and opinions. These network
effects become even more relevant when the prior information about the products is scarce, so the
willingness to try/pay is heavily influenced by the opinion of the rest (Wisdom-of-the-Crowd e.g.,
[Wang et al., 2014]).
In this paper we aim to study seller’s pricing strategies based on a model of consumer choice,

where the purchasing decisions are affected by past consumption. In general terms we assume
that the willingness to purchase is influenced by the (known) intrinsic utility of the products, their
prices, and network effects as a function of consumption history. The consumers can purchase the
product i ∈ {1, . . . ,n} that maximises their expected utility or they can choose to leave the market
without making any purchase, what is called choosing the no purchase option.

We also aim to represent how ineffective transactions affect the purchasing decisions, motivated
for markets like eBay, where after each transaction the users can give an evaluation to the seller in
the categories of positive, negative and neutral. New consumers can observe howmany transactions
a seller has made and a reputation score that penalises the negative feedback, providing extra
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information about transactions where the consumers were not satisfied (e.g, [Cabral and Hortacsu,
2010]). In order to capture those ineffective transactions with our model, we consider that the no
purchase option also presents network effects. In this way we are able to keep track of consumers
that do not buy anything in the market, or equivalently they buy similar products somewhere else.

The main contributions of this paper can be summarised in the following way:

• Non-linear network effects in a consumer choice model:We propose a variation of the
Multinomial Logit Model for consumer choice where we incorporate non-linear network
effects, representing in this way, market interactions where consumers only see a score
function based on past consumption. Since the probability of choosing the available products
(or the no purchase option) dynamically changes over time due to the network effects, we
apply stochastic approximation techniques to prove that such probability converges almost
surely to an asymptotic stationary distribution, that represents the market share of each
product in the long run.
• Monopolistic and competitive pricing are analysed: For a market with n sellers, we
model their expected revenues based on the asymptotic market share distribution and the
displayed prices. First, we study the case where sellers act collaboratively, adopting a monop-
olistic pricing strategy to maximise the overall expected revenue. We show that the market
share of the no purchase option is decreasing in terms of the network parameter r : 0 < r < 1,
and that the overall expected revenue is increasing in that parameter as long as r is large
enough. We then study the case where sellers compete, inducing a price competition game
that has a unique pure Nash Equilibrium (we also provide an algorithm to compute it). We
finally compare experimentally and analytically both cases, incorporating the consumers’
perspective into the analysis.

The rest of the paper is structured as follows: Section 1.1 describes the related literature. Section 2
details the proposed consumer choice model. Section 3 focuses on the sellers acting collaboratively,
in opposition to Section 4 where they compete. Finally, Section 5 compares the strategies defined
in the previous two sections, showing how they affect/benefit the consumers.
Across the whole paper we include some numerical examples based on synthetic data, comple-

menting the theoretical results and providing some extra insights. We also include an Appendix
where more experiments are shown.

1.1 Related Literature
Capturing the way people make decisions has been a problem of interest across different disciplines
for many decades, having on one hand classic models from Economic Theory, and on the other hand
data-driven approaches from Machine Learning, two different perspectives that aim to the same:
understand consumer behaviour, and eventually predict with certain accuracy future outcomes.
Many features have been considered into these models (e.g., type of users, willingness to pay, etc.),
trying to establish what is more relevant to the consumers, leading to better structured markets.

Predicting the sales quantities is a key element in the field of Revenue Management, where sellers
have to decide what products to sell and their best prices that maximise their revenues (among
other decisions). In order to do that, it is required to have at least an estimation of the consumers’
demands for each one of the products. Such a problem has been widely studied in Economics,
where classic models assume that each user obtains certain utility for buying a particular product
(given by a real number), so among all the available discrete options, consumers try to maximise
their utilities. It is important to notice that this can be as general as possible, where for instance,
among the available options we can consider bundles of products as a single one, or include the
no-purchase option as a fictional product that captures the consumers that do not buy anything.
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An important subclass of discrete choicemodels are the RandomUtilityModels (RUM) ([Block and
Marschak, 1959]). Among the most common Random Utility Models, we can find the Multinomial
Logit (MNL) model, originally introduced by [Luce, 1959], widely used in fields such as Marketing,
Economics, and Computer Science, where it is often used for operational and managerial decisions
problems such as assortment optimisation ([Wang and Wang, 2016]), pricing ([Besbes and Sauré,
2016]), scheduling ([Feldman et al., 2014]).
The MNL model has many advantages due to the simplicity on how it is defined, leading to

desirable results like being computational tractable (e.g., assortment optimisation can be computed
in polynomial time [Rusmevichientong et al., 2010a, Talluri and Van Ryzin, 2004]), however it
exhibits the property known as independence of irrelevant alternatives (IIA), which states that the
ratio of the probabilities of being chosen between two alternatives, is independent of the rest of
alternatives. In practice, this property is often violated, particularly when there are more than two
similar alternatives. To overcome this limitation, several extensions have been proposed, among
them we can find the Nested Multinomial Logit (NMNL) model ([Williams, 1977]), where the
alternatives are grouped in nests, choosing each nest follows a MNL model, and choosing each
alternative within each nest, is also chosen accordingly a MNL. Another extension is the Mixed
Multinomial Logit (MMNL) model ([Daly and Zachary, 1978]) that considers random utilities and
integrates the original MNL model over the distribution of utilities. Some of the downsides of these
more general choice models is the computational complexity associated to them, while problems
like assortment (choosing the subset of products that maximise the expected revenue) under the
MNLmodel admits a polynomial-time algorithm, in the case when consumers follow either a NMNL
or MMNL model, the optimal assortment problem is NP-hard ([Davis et al., 2014, Rusmevichientong
et al., 2010b] respectively).
As [Berbeglia, 2018] states, RUM’s fail to explain several choice phenomena, such as the decoy

effect, where the inclusion of a similar but inferior product into the option set, can increase the
probabilities of being chosen for some of the original products (a typical example is to include a
medium size popcorn with a price close to the large size option). Hence, more complex consumer
behaviour has led to the inclusion of more general choice models that are not RUM’s such as
the Perception-Adjusted Luce model (PALM) ([Echenique et al., 2018]), the General Attraction
Model (GAM) ([Gallego et al., 2014]), the General Luce Model ([Echenique and Saito, 2015]), and
the General Stochastic Preference [Berbeglia, 2018]). PALM for example considers a perception
effect, where the individuals check sequentialy their alternatives according a perception priority
order, and the probability of choosing an alternative is affected by the probability of not choosing
alternatives with higher priority.

A big part of the problems studied with the use of discrete choice models are either assortment
or pricing problems (or a combination of both), where researchers weight the trade-off between
having a more general model and its computational complexity. The different types of problem
studied under these models has lead to many extensions, in [Besbes and Sauré, 2016] for example,
the authors present a model where the demands follow a MNL model, they analyse equilibrium
outcomes when different firms compete and face a display constraint (assortment), each retailer
needs to choose strategically which products to show and what prices in order to maximise their
revenues. The analysis is separated in two parts, the first part is when the prices are fixed by an
external agent and the firms only compete in assortments, and the second is when they compete
on both assortment and pricing, for the latter the prices are chosen according an assortment
maximisation strategy. [Li and Huh, 2011] on the other hand, study a case where a Nested Logit
model (including MNL as a special case, when there is only one nest) represents the demands of
consumers, defining what the authors call the market share of the products, the authors find an
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optimal price, that maximises the revenue for a monopolist selling multiple products. A price and
quantity competition are also studied under simpler conditions for the case of an oligopoly.

Some recent research have also incorporated the effect of past purchases (network effects) into
a MNL model for consumer choice, for example in [Wang and Wang, 2016] and [Du et al., 2016],
the authors propose a model that focuses in a monopolistic environment (studying assortment,
and pricing optimisation respectively), defining a consumer utility function affected linearly by
network effects. Their models has led to many related research and extensions (e.g., [Chen and
Chen, 2017, Cui and Zhu, 2016]).
Most of the previous research that include network effects into their models have focused on

monopolistic markets, among the exceptions we can find [Li and Huh, 2011] and [Chen and Chen,
2017], where the latter analyses a duopoly in which the firms compete using the market share as a
decision variable (instead of the price), finding multiple Nash Equilibria depending on the strength
of the network effects and the quality of the products. In contrast to them, as we will see in Section
4, when we study a competition between sellers, our model leads to a unique Nash Equilibrium.

Also in the competition research literature, we can find a recent paper, [Feng and Hu, 2017]
where the authors provide a game theoretical approach to a market where the strategic sellers
decide to enter if their expected revenues are positive, their managerial decision is the investment
in the quality of their products. After the quality game is played, sequential customers enters to the
market and base their purchasing decisions on the qualities and the current sales volume. Unlike
the model presented in Section 2 , they do not consider a no purchase option, since they assume
the prices are the same for every product and fixed beforehand.

In a different stream of literature some researches have focussed on social networks and pricing
decisions over the services provided (e.g., [Candogan et al., 2010, Chen et al., 2011, Crapis et al.,
2016, Sääskilahti, 2015] ), due to the nature of this type of network, most of the research in this
area only analyses monopolistic pricing. However some extra complexities have also been included
into their models , such as incomplete information. For example [Crapis et al., 2016] considers a
model where the qualities of the products have a random distortion, and the preferences for each
product follow a known distribution, the author study the monopolist’s pricing problem where
sequential customers arrive and face the decision of buying or taking an outside option. Under
some conditions based on social interactions, the products’ qualities eventually can be learnt, and
under this setting two pricing policies are proposed (static price, and single change price).
From a model perspective, the closest papers to our research are [Du et al., 2016] and [Cui and

Zhu, 2016], where the authors have among their results, that for the homogeneous case (identical
products), if the network effects are strong enough then the optimal price assigns the same price
to all the products except for one (arbitrary) product, which gets a lower price. This result differs
from the classical MNL model without network effects, where in such a case, all the products have
the same price. In our model on the other hand, the presence of network effects does not affect that
outcome, obtaining the same price for all products. That price depends on a network parameter
r , and when r → 0 we recover the prices from the MNL without network effects. Another key
difference is that unlike their market models (which are a static ), we present a dynamic model
where customers arrive sequentially and observe a different network signal based on previous
purchases, and the way the market shares are updated (stepsize) does not affect the long run
behaviour.

2 MODEL
We consider a market with n sellers, n ≥ 2, where each seller i ∈ {1, ...,n} owns one indivisible
product with unlimited supply (e.g., digital goods like e-books). For notational convenience we also
call i to the product of seller i .
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Once the sellers have fixed the prices for their products, sequential consumers arrive and decide
to buy one of the n products or not to buy anything. We define a discrete time k ≥ 1 as the arrival
of consumer k to the market.
We assume that consumers’ decisions are affected by the intrinsic utility of the products, the

prices and some network effects related to the popularity of the products. We model this as a
variation of a standard MNL model with network effects (see for example [Du et al., 2016, 2018]),
where we incorporate a non-linear network effect (in the consumers’ utilities), reflecting a score
function based on past purchases. This is done mainly for two reasons: first, we intend to use some
results from prior related research (e.g., [Maldonado et al., 2018]), that gives us some assurances
over the asymptotic behaviour of the market, and second, we aim to avoid multiplicity of price
equilibria, a phenomenon that can be observed for example in [Du et al., 2016].

Formally our model is defined as follows: the k+1-th consumer’s utility obtained from purchasing
product i is given by

uki := ui (r ,дi ,dki ,pi ) = дi + r ln(dki ) − βipi + ξi , (1)

where дi represents the intrinsic utility of product i (a measure of its quality); r is a constant
that represents the strength of the network effect on the consumers (0 < r < 1); pi is the price of
the product i and βi its price sensitivity; dki is its cumulative amount of purchases up to time k ,
that for notational convenience we initialised as d0i = 1 for all i ∈ {1, . . . ,n} (this is equivalent to
consider ln(dki + 1), with d0i = 0 ). Finally ξi is a random variable representing consumer specific
idiosyncrasies.
We also consider a dummy product, n + 1, representing the no purchase option, which we

characterise with the parameters дn+1 = 0, pn+1 = 0, and d0n+1 = 1 which is increased by 1 every
time a new consumer does not buy anything, keeping track of the ineffective exchanges between
sellers and consumers. The utility for the no purchase option is then ukn+1 = r ln(dkn+1) + ξn+1.
In [Dhar, 1997] the author shows several empirical studies where consumers decide for a no

purchase option, even when the available products have a good intrinsic utility. With our model
we try to capture that type of phenomenon.

We denote [n + 1] := {1, ...,n} ∪ {n + 1}, the set of products extended by the no purchase
option. Let ϕk be the vector of market share at time k , given by ϕki =

dki∑
j∈[n+1] dkj

, for all i ∈ [n + 1].
Under the assumption that {ξi }n+1i=1 are i.i.d random variables following a Gumbel distribution, and
according to standard results for the Multinomial Logit model (see [McFadden, 1973] for details),
the probability that the (k + 1)-th consumer purchases product i is given by

πk
i = πi (ϕk ,p,q, β) =

(dki )reдi−βipi∑
j ∈[n+1](dkj )reдj−βjpj

=
(ϕki )reдi−βipi∑

j ∈[n+1](ϕkj )reдi−βjpj
.

Where πk
n+1 +

∑n
i=1 π

k
i = 1 for all k ≥ 0. We put πk = (πk

1 , . . . ,π
k
n ,π

k
n+1).

A key feature of this model, is that every new customer observes a different network signal in
their utilities. This dynamic behaviour could imply that a noisy start could drive the market towards
unpredictable outcomes. Figure 1 depicts the evolution of a market with 4 products (and the no
purchase option), where it can be observed that our market model allows to correct misalignments
between initial perceptions and the true quality of the products (as long as 0 < r < 1).

The following Lemma establishes an important property that the market share ϕk satisfies, this
result will help to prove that the market eventually stabilise:

Lemma 2.1. The market share ϕk , satisfies the following recurrence:
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Fig. 1. Evolution of the market share with 4 products (and the no purchase option), using a network parameter r = 0.5.
The stars represent the respective theoretical convergence points (See Lemma 2.2)

ϕk+1 = ϕk + γ k+1
[
πk − ϕk +U k+1

]
, (2)

with γ k+1 = O(k−1) andU k+1 a martingale difference noise term (i.e., E[U k+1 |ϕt , t ≤ k] = 0).

The recurrence given by Equation (2) is known as a Robbins-Monro Algorithm, and under
mild conditions over γ k ,ϕk , and U k , the asymptotic behaviour of (2) is closely related with the
asymptotic behaviour of a continuous deterministic dynamic given by

Ûϕt = π (ϕt ) − ϕt , ϕt ∈ ∆n+1. (3)

[Ljung, 1977] introduced this idea, commonly called the ODE Method for stochastic approximations,
ever since it has been extensively studied (e.g., [Duflo and Wilson, 1997, Kushner and Yin, 2003]).
In a recent publication [Maldonado et al., 2018] proved that a dynamic like (3) has only one
equilibrium with all its coordinates positive, and that under some conditions over the parameters
(that are satisfied in our setting), a related Robbins-Monro Algorithm converges almost surely to
that equilibrium. Using that result we can establish Lemma 2.2.

Lemma 2.2. For any fixed price p = (p1, ...,pn ,pn+1) ∈ Rn+ × {0}, fixed parameters βi ,дi , and a
network effect parameter r : 0 < r < 1, the market share ϕk converges almost surely to the unique
equilibrium ϕ∗ = (ϕ∗i )i ∈[n+1] given by

ϕ∗i =
(eдi−βipi )1/(1−r )∑

j ∈[n+1](eдj−βjpj )1/(1−r )
. (4)

Furthermore, for every i ∈ [n + 1], πi (ϕ∗) = ϕ∗i (fixed point for the probability function π ).

It is important to notice that according to some results from [Maldonado et al., 2018], when
r > 1, ϕ∗ is an unstable equilibrium, hence the market converges to other equilibria (for example,
monopolies for some product) with probability 1. Establishing pricing policies in those cases using
the equilibrium ϕ∗ as a decision variable does not make sense from a market model perspective
(given the associated unpredictability). Therefore, we will focus only on the cases where 0 < r < 1
but allowing dKi to grow freely (dynamic market). In some related research (e.g., [Cui and Zhu,
2016] and [Wang and Wang, 2016]) the authors do not consider upper bounds on the network



Pricing under network effects 7

parameters, but the market size is fixed (static market). As [Du et al., 2016] point out, higher values
of those parameters can lead to suboptimal results (due to multiplicity of equilibria).
In the case that 0 < r < 1 we notice that the term τi := дi − βipi affects directly the expected

market share for each product, in particular the product with the highest value of τi gets the largest
market share. In this way, if a high intrinsic utility product is too expensive, then the chances of
being purchased may decrease, or equivalently lower intrinsic utility products could increase their
expected sales after a reduction on their prices. Keeping this into consideration, we define the
expected revenue for each seller in terms of the expected market share and the chosen prices.

Definition 2.3. The expected revenue for seller i is given by

wi = wi (r ,q,pi ,p−i ) = piϕ∗i = pi
(eдi−βipi )1/(1−r )∑

j ∈[n+1](eдj−βjpj )1/(1−r )
.

For notational convenience we assume without loss of generality that the intrinsic utilities are
non-decreasingly ordered, this is, д1 ≥ д2 ≥ · · · ≥ дn > дn+1 = 0, meaning that seller 1 has the
highest intrinsic utility product. In the following two sections we will analyse two types of strategic
decisions, that the sellers can follow based on their expected revenueswi . In Section 3 we analyse
the case of a coalition between the sellers where they adopt a monopolistic pricing strategy to
maximise the overall expected revenue. Whereas in Section 4 we study the case where sellers
compete on their prices to maximise their own expected revenues. We will pay special attention
to the behaviour of the price and revenue in terms of the network parameter r , and when that is
relevant we will make explicit the dependance (e.g., pi = pi (r )).

3 MONOPOLISTIC PRICING
We consider in this section a setting where the sellers decide to act collaboratively. In this context
the sellers choose their prices such that they maximise the overall expected revenue defined by

R(p) =
n∑
i=1

wi =

n∑
i=1

piϕ
∗
i .

Thus, we are interested on finding a price vector pM := (pM1 , . . . ,pMn ), that we call monopolistic
price, that satisfies

pM ∈ argmax
p∈Rn+

R(p).

In Theorem 3.1 we will deduce the conditions that pM must satisfy to maximise R(p), and in the
special case of having the same price sensitivities for all the products ( βi = β ,∀i ∈ {1, . . . ,n}), we
will provide a closed expression for this price using the LambertW function (see [Corless et al.,
1996]), where in particular, for any nonnegative x ,W (x) is defined as the solution of the equation

WeW = x .

If x > 0, thenW (x) is a positive continuous differentiable function, strictly increasing and concave.
The use of the LambertW function spans a wide range of applications, and particularly it has been
used in Economics for pricing on discrete choice models (e.g., [Li and Huh, 2011] and [Cui and Zhu,
2016] ).

Theorem 3.1. The monopolistic price, pM = (pM1 ,pM2 , . . . ,pMn ) that maximises R(p) must satisfy
that

pMi
1 − r −

1
βi
=

pMk
1 − r −

1
βk
, for every pair i,k ∈ {1, . . . ,n} (5)
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Furthermore, if the products have the same price sensitivity βi = β ,∀i ∈ {1, . . . ,n} then all the
products have the same price pMi = p

M given by

pM =
1 − r
β

[
W

(∑n
i=1 e

дi /(1−r )

e

)
+ 1

]
, (6)

withW () is the Lambert W function.

Equation (6) is in agreement with the results from the classic Multinomial Logit model, where
in the case of having the same price sensitivities, leads to the same price for every product. More
comparisons can be found in Appendix A, where we also compare our results to the ones from [Du
et al., 2016].

The proof for Theorem 3.1 is as follows.

Proof. To find the prices that optimise R(p) we compute the gradient of R, ∇R(p), with coordi-

nates
∂R(p)
∂pk

given by

∂R(p)
∂pk

=

n∑
i=1,i,k

∂(piϕ∗i )
∂pk

+
∂(pkϕ∗k )
∂pk

=

n∑
i=1,i,k

βk
1 − r piϕ

∗
i ϕ
∗
k + ϕ

∗
k −

βk
1 − r ϕ

∗
kpk (1 − ϕ

∗
k )

= ϕ∗k

[
βk
1 − r

(
n∑

i=1,i,k
piϕ
∗
i + pkϕ

∗
k

)
+ 1 − βk

1 − r pk

]
= ϕ∗k

[
βk
1 − r R(p) + 1 −

βk
1 − r pk

]
Imposing the first order conditions over R(p) gives us

∂R(p)
∂pk

= 0⇔ ϕ∗k = 0 ∨ R(p)
1 − r =

pk
1 − r −

1
βk
, i ∈ {1, . . . ,n},

However ϕ∗k = 0 ⇔ pk = ∞, we conclude that for all pairs i,k , i,k ∈ {1, . . . ,n}, the following
equality must hold

pk
1 − r −

1
βk
=

pi
1 − r −

1
βi
,

which is the desired condition (5). Now, defining zk =
βkpk
1 − r (that we will call the normalised price

for product k), Equation (5) is equivalent to

zk − 1
βk

=
zi − 1
βi
, ∀i,k ∈∈ {1, . . . ,n}. (7)

Equation (7) defines a pairwise relation. On the other hand the prices must also satisfy

R(p)
1 − r =

zk − 1
βk

(8)

Now in the special case when βi = β for all the products, Equation (7) implies that all the prices
are the same, pi = p for all i ∈ {1, . . . ,n}. Replacing this condition into Equation (8) produces the
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following equivalences

p

1 − r

n∑
i=1

ϕ∗i =
z − 1
β

zϕ∗n+1 = 1 (9)
z

1 + e−z
∑n

i=1 e
дi /(1−r )

= 1

z − 1 = e−z
n∑
i=1

eдi /(1−r ) (10)

(z − 1)ez−1 = e−1
n∑
i=1

eдi /(1−r )

⇒ zM =W (e−1
n∑
i=1

eдi /(1−r )) + 1. (11)

Finally replacing pM = (1−r )z
M

β we have our conclusion. □

We can easily notice that each coordinate of pM := (pM , . . . ,pM ) is increasing on each value of дi
for all i ∈ {1, . . . ,n}, this is, higher the intrinsic utility, higher the price. Theorem 3.2 summarises
other properties related to the monopolistic price, and the monotonic behaviour of the revenue in
terms of the network effect parameter r . The proofs for part (1) and (2) are fairly straightforward,
and they can be found in the Appendix C.

Theorem 3.2. Let all the products have the same price sensitivity βi = β , and consider a network
effect parameter r , 0 < r < 1, then the following statements hold true:
(1) The market share of the no purchase option, ϕ∗n+1(pM (r )), is strictly decreasing in r .
(2) The market share of the highest intrinsic utility product, ϕ∗1(pM (r )), is strictly increasing in r .
(3) There exists r ∗, 0 < r ∗ < 1 such that, the overall expected revenueR(pM (r )) = ∑n

i=1 p
M
i (r )ϕ∗i (pM (r ))

is strictly increasing in r for all r : r ∗ ≤ r < 1.

Proof. (3) We first notice that if pM (r ) is increasing in some interval [r ∗, r ∗∗), then the conclu-
sion is direct, indeed, since R(pM (r )) = pM (r )(1 − ϕ∗n+1(pM (r ))), taking the partial derivatives
with respect to r gives an expression that it is always positive for r : r ∗ < r < 1. We assume
then that pM (r ) is decreasing for all 0 < r < 1, in particular, we have that if for some
r1 : 0 < r1 < 1, дi − βpM (r1) > 0, then for all r2 : r1 < r2 < 1, дi − βpM (r2) > 0.
Now, we know that the monopolistic price pM (r ) is characterised by Equation (8) as follows:

R(pM (r )) = pMi (r ) −
1 − r
βi

and in the special case where all βi are the same, we have

R(pM (r )) = 1 − r
β

(
βpM (r )
1 − r − 1

)
=

1 − r
β
(zM (r ) − 1).

Hence, taking the derivative of R(pM (r )) with respect to r , is the same as computing the
following

∂R(pM (r ))
∂r

=
∂ 1−rβ (zM (r ) − 1)

∂r
=

1
β
[(1 − r )∂z

M (r )
∂r

− (zM (r ) − 1)]
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But it can be shown (see Appendix C) that ∂zM (r )
∂r =

1
(1 − r )2

∑n
i=1 ϕ

∗
i (pM (r ))дi .

Therefore, using again that 1−r
β (zM (r ) − 1) = R(pM (r )) = ∑n

i=1 ϕ
∗
i (pM (r ))pM (r ), we have

∂R(pM (r ))
∂r

=
1

β(1 − r )

[
n∑
i=1

ϕ∗i (pM (r ))дi −
n∑
i=1

ϕ∗i (pM (r ))βpM (r )
]

=
1
β

[
n∑
i=1

ϕ∗i (pM (r ))
(
дi − βpM (r )

1 − r

)]

where ϕ∗i (pM (r )) =
e
дi −βpM (r )

1−r

1 +
∑n

j=1 e
дj −βpM (r )

1−r

.

For a fixed r we define the following sets:

N −(r ) = {i ∈ {1, ...,n} : дi − βpM (r ) ≤ 0}
N +(r ) = {i ∈ {1, ...,n} : дi − βpM (r ) > 0}

Then we find the following equality

n∑
i=1

ϕ∗i (pM (r ))
[
дi − βpM (r )

1 − r

]
=

∑
i ∈N −(r )

e
дi −βpM (r )

1−r
дi−βpM (r )

1−r

1 +
∑n

j=1 e
дj −βpM (r )

1−r

+
∑

i ∈N +(r )

e
дi −βpM (r )

1−r
дi−βpM (r )

1−r

1 +
∑n

j=1 e
дj −βpM (r )

1−r

We notice that if r is close enough to 1, then for all i ∈ N −(r ), e
дi −βp
1−r

дi−βpM (r )
1−r is a small

negative number, on the other hand for i ∈ N +(r ), e
дi −βpM (r )

1−r
дi−βpM (r )

1−r is positive and can be
arbitrarily large when r ∼ 1. Necessarily there must exists r ∗ such that

1
β

[
n∑
i=1

ϕ∗i (pM (r ∗))
(
дi − βpM (r ∗)

1 − r ∗

)]
> 0

and as pM (r ) is assumed to be decreasing, we can ensure that there will not be another change
of monotony. In conclusion, R(pM (r )) is a strictly increasing function when r ∗ < r < 1.

□

The following example shows a small instance where we can see how the prices, market share
and revenue are affected under different values of r .

Example 3.3. Consider network parameters r ∈ (0, 1), a price sensitivity βi = β = 0.1 and intrinsic
utilities given by (д1,д2,д3,д4,д5) = (0.9874, 0.6454, 0.4053, 0.2891, 0.03353). Figure 2 depicts the
values of monopolistic price (pM ), the market share of the no purchase option (ϕ∗n+1(pM )) and the
highest intrinsic utility product (ϕ∗1(pM )), and finally the overall revenue (R(pM )) as a function of r .
Figure 3 shows the different expected revenues (the area of the rectangles) for each value of r , the
total demand is defined as the sum of the expected market shares (not including the no purchase
option), and the optimal prices are obtained using Theorem 3.1. As it can be observed, for lower
values of r the prices are higher but the total demands are lower, the opposite effect is observed
when r is close to 1. Figures 5 and 6 in Appendix D also complement these observations.

In Section 4 we will study the case where the strategic sellers decide to compete to maximise
their individual revenues, inducing a price competition game.
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Fig. 2. In the top figure, R(pM (r )) and pM (r ) (blue and red respectively) are displayed for different values of the parameter
r : 0 < r < 1. In the bottom figure, the market shares of the highest intrinsic utility product and the no purchase option
are displayed (green and purple respectively).

Fig. 3. In the figure, the X axis represents the total demand (scaled up to 1) for the available products, while Y axis contains
the prices. The area of each rectangle corresponds to the expected revenue for each value of r .

4 PRICE COMPETITION
We consider a complete information price competition game G = ({1, . . . ,n},w, S), where each
player (seller) i ∈ {1, . . . ,n} chooses as a strategy a price pi for his product, in a common strategy
space Si = [0,∞). Let S :=

∏n
i=1 Si = [0,∞)n , and each element p ∈ S will be called a strategy

profile.
The payoff received by player i after the strategy profile p = (pi ,p−i ) ∈ S is played, is given

by wi (p) = piϕ
∗
i (p), where p−i = (p1, . . . ,pi−1,pi+1, . . . ,pn). We define the joint payoff as w =

(w1, . . . ,wn). Each player chooses the best response to the other sellers’ strategies to maximise
their payoff, hence our objective is to find a maximiser for w. We consider the important notion of
Nash Equilibrium in the following definition.

Definition 4.1. A strategy profile p∗ = (p∗i , . . . ,p∗n) ∈ S is a pure Nash Equilibrium (NE) for the
game G if for each player i

wi (p∗i ,p∗−i ) ≥ wi (pi ,p∗−i ),∀pi ∈ Si .
The following Theorem shows that there exists a unique pure NE for the game G, given in an

implicit form using the LambertW function.
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Theorem 4.2. The price competition gameG has a unique (pure) Nash Equilibrium, pC = (pC1 , . . . ,pCn ) ∈
[0,∞)n , with

pCi =
1 − r
βi

W (
eдi /(1−r )

e +
∑n

j=1, j,i e
дj −βj pCj

1−r +1
) + 1

 , ∀i ∈ {1, . . . ,n}. (12)

We call pC , the competitive price.

Proof. We will proceed as follows: first we will show the conditions that the strategy profiles
must satisfy in order to be critical points for the vector field w = (w1, . . . ,wn); second we will
prove that these conditions are also sufficient, meaning that they describe the best response for
each player; third we will show that the system of equations that define the best responses has a
unique solution; and finally we will conclude.
Indeed, let us consider a vector p ∈ (0,∞)n and take the first order derivative of wi = piϕ

∗
i (p)

with respect to pi for all i ∈ [n + 1], i , n + 1 (where we are assuming a fixed intrinsic utility vector
g = (д1, . . . ,дn) and parameters βi , r ), this is,

∂wi

∂pi
= ϕ∗i + pi

∂ϕ∗i
∂pi

= ϕ∗i +
βipi
1 − r

[
(ϕ∗i )2 − ϕ∗i

]
= ϕ∗i

[
1 − βipi

1 − r (1 − ϕ
∗
i )

]
Then ∂wi

∂pi
= 0⇔ pi =

1−r
βi (1−ϕ∗i )

∨ ϕ∗i = 0 . Notice that ϕ∗i = 0⇔ pi = ∞. The system of equations
that define the possible equilibria are given by the conditions

βipi =
1 − r
1 − ϕ∗i

for all i ∈ {1, . . . ,n}. (13)

Calling zi :=
βipi
1−r , the normalised price, ci := eдi /(1−r ) and M(z) := ∑

j ∈[n+1] c je
−zj (with zn+1 =

0, cn+1 = 1), we notice thatM(z) has the same value for all sellers i ∈ [n + 1], so in this context can
be treated as a constant (for every set of values of prices,M(z) has a fixed value). Equation (13) can
be rewritten as follows:

zi =
M(z)∑n

j=0, j,i c je
−zj , for all i ∈ {1, . . . ,n} (14)

⇔ (zi − 1)ezi =
ci∑n

j=0, j,i c je
−zj

⇔ (zi − 1)ezi−1 =
ci∑n

j=0, j,i c je
−zj+1

⇒ zi − 1 =W (
ci∑n

j=0, j,i c je
−zj+1 ), for all i ∈ {1, . . . ,n} (15)

W (·) here is the Lambert W function. We have obtained a set of conditions that the critical points
of w must satisfy. Moreover, zi satisfying Equation (13) maximises the profit wi (z), indeed, we
consider the second order condition for each functionwi

∂2wi (z)
∂p2i

=
∂

∂pi
(ϕ∗i

[
1 − βipi

1 − r (1 − ϕ
∗
i )

]
) = ϕ∗i (ϕ∗i − 1)

[
zi − z2i + 2z2iϕ∗i +

βi
1 − r

]
(16)
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ALGORITHM 1: Find equilibrium zC given by Equation (15).

Input: Parameters: r , ci = eдi /(1−r ), i ∈ {1, . . . ,n}, ϵ > 0; Initial starting point: z0 ∈ Rn+ × {0};
Output: A normalised equilibrium price z ∈ Rn+ × {0}.
z ← z0;
repeat

for i ∈ {1, . . . ,n} do
z ← Φi,z (W ( ci∑n

j=0, j,i c j e
−zj +1 ) + 1); [Update]

end

until
√∑n

i=1 |zi − (W (
ci∑n

j=0, j,i c j e
−zj +1 ) + 1)|2 < ϵ ;

and if zi satisfies Equation (13), then ϕ∗i =
zi−1
zi

, and replacing this into (16) we have

∂2wi (z)
∂p2i

= −zi − 1
z2i

[
z2i − zi +

βi
1 − r

]
< 0, ∀i ∈ {1, . . . ,n}.

Then if p∗ = (p∗1, . . . ,p∗n) is given by Equation (13) necessarily,w(p∗) ≥ w(pi ,p∗−i ) for all pi ∈ Si for
all i ∈ N , this is, p∗ is a pure NE. Now, we claim that there is only one solution to the system of
equations (14) (for each set of parameters g, β , r ), defining a unique Nash Equilibrium for the price
competition game G.
Clearly the left hand side of (14) is increasing in zi , and the right hand side of (14), yi (z) :=
M (z)∑n

j=0, j,i c j e
−zj ∈ [1,∞) is decreasing for every zi , 0 < i ≤ n. Indeed, the denominator of yi (z) is

constant in terms of zi , and the numeratorM(z) = ∑
j ∈[n+1] c je

−zj is decreasing in zi hence there
exists a unique intersection of both curves, defining a vector solution z∗ = (z∗1, ..., z∗n , z∗n+1) =
(z∗1, ..., z∗n , 0) ∈ (1,∞)n ×{0}. Finally using that z∗i =

βip∗i
1−r into Equation (15), we find that the unique

NE, pC = (pC1 , . . . ,pCn ) is given by

pCi =
1 − r
βi

W (
eдi /(1−r )

e +
∑n

j=1, j,i e
дi −βj pCj

1−r +1
) + 1

 , ∀i : 1 ≤ i ≤ n.

□

Remark. pCi is clearly increasing in terms of its associated intrinsic utilityдi (sinceW () is increasing),
and decreasing in terms of the others products’ intrinsic utilities дj , j , i . Also for all i ∈ [n],
pCi >

1−r
βi

.

Generally the competitive price for product i , pCi , depends on the coordinates of the other prices,
thus there is no closed expression for each case. To overcome this issue, we propose the greedy
Algorithm 1, to compute the value of the pC for any set of parameters g, β , and r . We first consider
the following definition: given a vector x = (ϕ1, ...,ϕn ,ϕn+1), we consider the transformation
Φ : Rn+1 × R × {1, ...,n} → Rn+1 that changes the i-th coordinate of x by a given real value a, this
is, Φi,x (a) := Φ(x ,a, i) = (ϕ1, ...,ϕi−1,a,ϕi+1, ...,ϕn ,ϕn+1)

In Lemma 4.3 we will show that Algorithm 1 always terminates. We will prove it, by exploiting
the fixed point structure on how the normalised prices are defined.

Lemma 4.3. Algorithm 1 is guaranteed to terminate, and its output is the normalised equilibrium
price zC = (zC1 , . . . , zCn ).
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Proof. We consider the sequence (zk )k ∈N ∈ Rn+1 created by each time the Algorithm 1 reaches
the step [Update], its coordinates are defined by the recurrence:

zk+1i =W ( ci∑n
j=0, j,i c je

−zkj +1
) + 1 for all i ∈ {1, . . . ,n}, and k ∈ N. (17)

(zk )k ∈N is clearly bounded, hence the Bolzano-Weierstrass Theorem ( see for example in [Burk,
2011] (Theorem 2.6)) implies that zk has a convergent subsequence zkl with l ∈ N. Let zC be the
limit of zkl . AsW (·) is a continuous function for positive arguments. Applying the limit when
l → ∞ in both sides of Equation (17), necessarily zC must satisfy that for any i ∈ {1, . . . ,n},
zCi =W (

ci∑n
j=0, j,i c j e

−zCj +1
) + 1, hence Algorithm 1 terminates when it finds the Equilibrium zC . □

The following Theorem shows the monotonic behaviour of the competitive price pC in terms of
the network effect parameter r : 0 < r < 1.

Theorem 4.4. The competitive price pC (r ) = (pC1 (r ), . . . ,pCn (r )) ∈ [0,∞)n given by Equation (12)
is decreasing as a function of the network effect parameter r : 0 < r < 1.

Proof. Imposing the first order conditions over each expected revenue functionwi (pC(r)), gives
us Equation (13), which is defined in the following way:

βip
C
i (r ) =

1 − r
1 − ϕ∗i (pC(r))

for all i ∈ {1, . . . ,n},

or equivalently:
1 − r

βip
C
i (r )

= 1 − ϕ∗i (pC(r)) for all i ∈ {1, . . . ,n}

⇒ (1 − r )
n∑
i=1

1
βip

C
i (r )

= n − 1 + ϕ∗n+1(pC(r)). (18)

Notice that as 0 < ϕ∗n+1(pC(r)) < 1, then Equation (18) implies that

n − 1
1 − r <

n∑
i=1

1
βip

C
i (r )

<
n

1 − r .

Clearly n−1
1−r and n

1−r are increasing in terms of r (and independent of the intrinsic utility parameters),
thus necessarily

∑n
i=1

1
βipi

is increasing, which implies that there exists a product k ∈ {1, . . . ,n}
such that pCk (r ) is decreasing. But by definition of the competitive price, we have

pCk (r ) =
1 − r
βi

W (
eдk /(1−r )

e +
∑n

j=1, j,k e
дj −βj pCj (r )

1−r +1
) + 1

 , ∀k ∈ {1, . . . ,n}.

hence if any pCk (r ) decreases, in order to preserve the equilibrium, all the other coordinates must
decrease as well, which proves the result. □

The following example shows the competitive prices for the case of 3 products with fixed intrinsic
utilities, a fixed value of price sensitivities and 4 different values of network parameters, r .

Example 4.5. Consider a set of network parameters given by r ∈ {0.2, 0.4, 0.6, 0.8}, and intrinsic
utilities given by (д1,д2,д3) = (0.993, 0.480, 0.159), the competitive price equilibriapC = (pC1 ,pC2 ,pC3 ),
and the market share and expected revenue for product i = 1 are given in the following table.
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r pC1 pC2 pC3 ϕ1(p) w1(p)
0.2 11.461 9.912 9.298 0.302 3.461
0.4 9.269 7.509 6.900 0.352 3.269
0.6 7.243 5.082 4.498 0.448 3.243
0.8 5.612 2.581 2.121 0.644 3.613

As we can observe from Examples 4.5, the highest intrinsic utility product i = 1 has in general a
decreasing price, and increasing market share, which eventually leads to have a higher revenue
when r = 0.8, a formal explanation of this phenomenon is still an open question. More numerical
examples can be observed in the Appendix in Fig. 4, where the prices are also compared against
the Monopolistic price pM .

In Appendix B we have included a subcase of the price competition, the homogeneous case where
all the products have the same intrinsic utility (this is, дi = д, i ∈ {1, . . . ,n}). A similar case was
studied in [?] so we compare our results against theirs. The main result from that section is that the
market share of the no purchase option ϕ∗n+1(r ) is a decreasing function of r (which we interpret as
that in the presence of stronger network effects, people tend to purchase more). This result seems
to be true also in the general case (дi different), but we only have observed this empirically (see
Figure (7) in Appendix D).

In the following section we will compare the two different pricing strategies, including also the
consumer’s perspective.

5 MONOPOLISTIC VS COMPETITIVE
In this section we will compare the different pricing schemes where network effects are present, in
absolute terms (which prices are higher) and in relative terms from the consumer’s perspective. We
assume from now on, that the products have the same price sensitivities βi = β for all i ∈ {1, . . . ,n}.
The following theorem recovers the intuitive result that the monopolistic price is higher than the
competitive one.

Theorem 5.1. For any set of parameters дi , i ∈ {1, . . . ,n}, 0 ≤ r < 1 and β > 0, the monopolistic
price pM is higher than the competitive price, pCi for all i ∈ {1, . . . ,n}.

Proof. We know that according to Equations 6, and 12, pM and pCi are given respectively by

pM =
1 − r
β

[
W

(∑n
i=1 e

дi /(1−r )

e

)
+ 1

]

pCi =
1 − r
β

W
©«

eдi /(1−r )

e +
∑n

j,i e
1+

дj −βpCj
1−r

ª®®¬ + 1


Their respective vector forms are given by: pM = (pM , . . . ,pM ) and pC = (pC1 , . . . ,pCn ). Comparing
both expressions we have that for any set of parameters дi , i ∈ {1, . . . ,n}, 0 ≤ r < 1 and β > 0 and
for any product i ∈ {1, . . . ,n}

pM ≥ pCi ⇔
1
e


n∑
i=1

eдi /(1−r ) − eдi /(1−r )

1 +
∑n

j,i e
дj −βpCj

1−r

 ≥ 0,



Pricing under network effects 16

But, 
n∑
i=1

eдi /(1−r ) − eдi /(1−r )

1 +
∑n

j,i e
дj −βpCj

1−r

 = eдi /(1−r )
©«1 −

1

1 +
∑n

j,i e
дj −βpCj

1−r

ª®®¬︸                                   ︷︷                                   ︸
:=A

+

n∑
j,i

eдj /(1−r )︸        ︷︷        ︸
:=B

Clearly B > 0 and since ex > 0 for any value of x , then for all i ∈ {1, . . . ,n} ,A > 0. Consequently
pM ≥ pCi as desired. □

The following theorem shows that for any product, the consumer’s expected utility obtained
from purchasing it, is higher when the competitive price is used instead of the monopolistic price.
This result is trivial when there is no network effects (r = 0) since the utility is a decreasing
function of the price, however if we include the non-linear effect of past purchases the result is not
necessarily obvious (given the non linear dependency of the price in the market share).

Theorem 5.2. For any product i ∈ {1, . . . ,n}, in the long run, the expected utility perceived by a
customer after purchasing product i when the competitive price is used, is higher than the case when
the monopolistic price is used.

Proof. We want to prove that asymptotically uki (pC ) − uki (pM ) is strictly positive, with uki (p)
given by Equation (1). We know that by to Lemma 2.2, d

k
i (p)
k −−−→

a .s .
ϕ∗i (p), then

uki (pC ) − uki (pM ) −−−→a .s . r [log(ϕ
∗
i (pC )) − log(ϕ∗i (pM ))] − β(pCi − pM )

= r log

[
ϕ∗i (pC )
ϕ∗i (pM )

]
+ β(pM − pCi )

According to Theorem 5.1, we know that β(pM − pCi ) > 0, on the other hand we have ϕ∗i (p) =
eдi /(1−r )

e
βpi
1−r +

∑
j e

дj /(1−r )e
β (pi −pj )

1−r

, which is clearly decreasing in terms of pi , then as pM > pCi for all

i ∈ {1, ..,n}, necessarily r log
[
ϕ∗i (pC )
ϕ∗i (pM )

]
> 0 for all i , meaning that r log

[
ϕ∗i (pC )
ϕ∗i (pM )

]
+ β(pM − pCi ) > 0

as desired. □

The structure of the market share in the equilibrium (Equation(4)) implies that the highest

market share would be assigned to the product with highest value of
дi − βipi
1 − r which at least for

the competitive price, pC is a increasing function of r , meaning that in general, the consumer’s
utility associated to the product with highest intrinsic utility (i = 1), increases as r approaches to 1.
The following example depicts this effect.

Example 5.3. Consider a large enough amount of customers such that for any product i ∈
{1, . . . ,n}, dki

k+1 = ϕ∗i (p), where ϕ∗i (p) is the market share in the equilibrium (see Equation(4)) under
a price p (competitive Nash Equilibrium and/or monopolistic price). Customer k + 1 will then
choose strategically a product j = j(q, r , β,p, ξ ) that maximises his expected utility of purchasing
any product (or he will choose the no purchase option), this is, using formula (1), we have

j ∈ argmax
0≤i≤n

E[дi + r ln(dki ) − βpi + ξi ]
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Where ξi , i ∈ [n + 1] were chosen to be i.i.d random variables following a Gumbel distribution,
in particular we have that E[ξi − ξ j ] = 0 for all pairs i, j ∈ {1, . . . ,n,n + 1}. Let vj (p) := uj (p) − ξ j
and consider the following parameters: βi = β = 0.1, k = 10K , and intrinsic utilities given by
(д1,д2,д3) = (0.993, 0.480, 0.159)

The following table summarises how the expected utilities, E[vj ], behave under different values
of r . The second and third columns show which product, j is the one that maximises the expected
utility, under the competitive and monopolistic pricing ( jC and jM respectively). The fourth and
fifth column show the respective competitive and monopolistic prices for those products. Finally,
the last two columns show the expected values of vjC and vjM respectively.

r jC jM pCjC pM E[vjC (pC )] E[vjM (pM )]
0.2 1 1 11.461 15.498 2.831 2.395
0.4 1 1 9.269 12.523 6.097 5.721
0.6 1 1 7.243 9.798 9.458 9.167
0.8 1 1 5.613 7.934 12.974 12.791

Where in each one of the cases, the highest intrinsic utility product (j = 1) is the one with the
largest chances of being chosen.

6 CONCLUSIONS AND OPEN PROBLEMS
In this work we have designed a model for consumer choice, based on a MNL model with non-
linear network effects. We studied a multi-seller pricing problem where sellers can collaborate or
compete, finding in each case a unique equilibrium price (monopolistic price and Nash Equilibrium
respectively). We also studied the monotonic behaviour of the market shares, prices and revenues
in terms of the network parameter r (both theoretically and numerically). We finally compared both
pricing strategies from the consumer’s perspective, recovering for our model some well known
results from the traditional MNL, such as that the monopolistic price is higher than the competitive
one, and that the utility perceived by the consumers is higher when the competitive price is used.
We also analysed numerically how increasing the network parameter r generates higher utilities
for the consumer.

Some interesting questions remain open, for example, numerically we detected that the revenue
for the highest quality product w1 in the competitive case seems to decrease and then increase
when the network parameter r approaches to 1, then is there a critical value r̂ such that for all
r : 1 < r < r̂ ,w1 is increasing? Numerically, we also have observed that the expected utility for the
costumers seem to increase with the value of r , but we do not have a proof for that phenomenon.
Answering those kind of questions would help to find the best value of r such that both consumers
and sellers are benefited from network effects.
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A MODEL COMPARISON
In the context of monopolistic pricing, many research has been done using variations of the
Multinomial Logit model, particularly pricing under the standard MNL has some very well known
properties (e.g., for products with the same intrinsic quality, the optimal (monopolistic) price is
the same for all the products ). In general, the functional form of the consumers’ utilities lead
to different probability functions that drive the behaviour of the model. It is important then, to
compare pM from our model against the monopolistic price obtained with other models (classic
MNL, and the model proposed by [Du et al., 2016]). To do that we proceed to characterise the two
models we will be comparing against (under our notation), using their probabilities.

Definition A.1. The probability πCi of choosing product i ∈ {1, . . . ,n} for the classic MNL model
(without network effects) is given by

πCi =
exp(дi − βipi )

1 +
∑n

j=1 exp(дj − βjpj )

where дi ,βi and pi are defined as before. We put πC = (πC1 , . . . ,πCn+1).

Definition A.2. For theMNLmodel with network effects defined in [Du et al., 2016], the probability
πD
i of choosing product i ∈ {1, . . . ,n} is given by

πD
i =

exp(дi − βipi + αiϕi )
1 +

∑n
j=1 exp(дj − βjpj + α jϕ j )

whereαi is the network sensitivity of product i , andϕi its market share.We put πD = (πD
1 , . . . ,π

D
n+1).

The following table summarises some of the comparisons we obtain when we consider the differ-
ent probability models. The first column of the table contains the settings where we will be making
the comparisons, the second column contains the conclusions given by our probability distribution

π = (π1, . . . ,πn+1), where πi =
ϕri exp(дi − βipi )∑

j ∈[n+1] ϕ
r
j exp(дj − βjpj )

. The third and fourth columns contain

the results when πC ,πD are used, respectively.
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Setting π πC πD

βi = β for
all i ∈ [n]

Unique optimal price is to as-
sign the same price to every
product (uniform price).

Uniform price. No explicit form for the op-
timal price.

Market shares are increasing
on the intrinsic utility of the
products.

Market shares are in-
creasing on the intrinsic
utility of the products.

Since, in their model, the fol-
lowing expression must be
constant 2αϕi − log(ϕi ) + дi ,
then if for some i , ϕi >
1
2α , an increment on its in-
trinsic utility, would lead to
a decrement of its market
share (Lemma 4.1 in [Du
et al., 2016]).

βi = β ,
дi = д for
all i ∈ [n]

Uniform price Uniform price Uniform price if α < α̂ , for
some α̂ . Otherwise, uniform
price for n − 1 products, and
one product with a lower
price (Theorem 3.2 in [Du
et al., 2016].)

Uniform market share Uniform market share Uniform market share if α <
α̂ , otherwise, the cheapest
product has a larger market
share (Theorem 3.1 in [Du
et al., 2016]).

Finally, it is worth mentioning that in our model, even if the price sensitivities are different,
according to Equation (5), if r → 1, then for all i,k ∈ {1, ...,n}, pMi = pMk . However, in that case the
highest intrinsic utility product gets a market share close to 1, while the rest of the products have a
negligible share (a monopoly for the highest intrinsic utility product).

B SUBCASES: PRICE COMPETITION HOMOGENEOUS CASE
In this section we present a simplification of the general case of price competition, where every
product presents the same intrinsic utility. This case will allow us to study, from a theoretical
point of view, the behaviour of the prices as a function of the network parameter r . We assume in
this section that the values дi = д for all i : 1 ≤ i ≤ n, and we define for notational convenience
ĉ = eд/(1−r ) . The following corollary is a direct consequence of Theorem 4.2 for the case where all
products have the same intrinsic utility.

Corollary B.1. If all the products have the same intrinsic utility, дi = д for all i ∈ N , then the
competitive price for the homogeneous case, pCH = (pCH1 , . . . ,p

CH
n ) is the unique pure NE for the game

G , and its coordinates are given by

pCHi =
1 − r
βi

W (
ĉ

e + ĉ(n − 1)e1−
βi p

CH
i

1−r

) + 1
 , ∀1 ≤ i ≤ n. (19)

Proof. Thanks to Theorem 4.2, we know that the coordinates of the unique NE for the price
competition are given by Equation (12). Now in the particular case where all the products have the
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same intrinsic utility, Equation (15) gets reduced to

zi − 1 =W (
ĉ

e + ĉ
∑

j=1, j,i e
−zj+1 ), ∀i : 1 ≤ i ≤ n

which is completely symmetric for each zi , therefore for all 1 ≤ i ≤ n, it must hold zi = z for some
z > 1. Consequently the previous Equation is equivalent to

z − 1 =W ( ĉ

e + ĉ(n − 1)e−z+1 ) (20)

⇒ pi =
1 − r
βi

[
W ( ĉ

e + ĉ(n − 1)e1−
βi pi
1−r
) + 1

]
.

□

Remark. Even when the solution for zi is given by a fixed value zi = z for all 1 ≤ i ≤ n, the prices
pi can be different, due to the sensitivity parameter βi . This phenomenon has also been studied in
[Ezra et al., 2017] where the authors analyse the problem of pricing identical items, that eventually
leads to different prices depending on consumption patterns.

The following Theorem states similar properties to Theorem 3.2 but now for the case of the
competitive price. We are able to prove some monotonic behaviour of the normalised price, the
products’ market share, and the market share of the no purchase option when the competitive
homogeneous price is used. However, similar properties seem to hold also for the general case (see
Example B.3).

Theorem B.2. Under the assumption of homogeneity in the intrinsic utilities (i.e. дi = д for all
i ∈ {1, ...,n}), if we consider a network effect parameter r , 0 < r < 1, then the following statements
hold true:

(1) The normalised competition price zCH is increasing in terms of r .
(2) Every product has the same market share ϕ∗i (pCH ) = ϕ∗(pCH ) which is increasing in r .
(3) The market share for the no purchase option, ϕ∗n+1(pCH ), is decreasing as a function of r .

Proof. (1) We prove first that our normalised price z is increasing in terms of r . Indeed, we
notice that by definition of LambertW function, Equation (20) is equivalent to

(zCH − 1)ezCH + zCH ĉ(n − 1) = nĉ .

Taking the derivative with respect to r in both sides of the Equation, we find the following:

zCH
∂zCH

∂r
ez

CH
+
∂zCH

∂r
ĉ(n − 1) + zCH (n − 1)∂ĉ

∂r
= n
∂ĉ

∂r

∂zCH

∂r
[zCHezCH + (n − 1)ĉ] = ĉд[n − (n − 1)zCH ]

(1 − r )2 (21)

On the other hand, according to Equation (20) we see that

zCH − 1 = ĉ

ezCH + ĉ(n − 1)
<

ĉ

ĉ(n − 1) =
1

n − 1 ,

and then zCH <
n

n − 1 . Using this into Equation (21) we obtain that
∂zCH

∂r
> 0, where z is a

increasing function of r .
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(2) We notice that each market share in the equilibrium is given by ϕ∗i (pCH ) =
ĉe−z

CH
i

1 + ĉne−zCHi
=

ĉ

ezCH + ĉn
:= ϕ∗(pCH ) which is independent of i , since all the normalised prices zi are the

same. Taking the derivative of x with respect to r give us the following equalities:
∂ϕ∗(pCH )
∂r

=
∂

∂r

[
ĉ

ezCH + nĉ

]
=
ĉϕ∗(pCH )
(1 − r )2

[
zCHe2z

CH
+ (zCH (n − 1) − 1)ĉezCH

(zCHezCH + (n − 1)ĉ)(ezCH + nĉ)

]
> 0.

Hence all themarket share in the equilibrium are increasing in terms of the network parameter
r .

(3) Since ϕ∗n+1(pCH ) = 1 −∑n
i=1 ϕ

∗
i (pCH ) = 1 − nϕ∗(pCH ), and ϕ∗(·) is increasing in r , necessarily

ϕ∗n+1(pCH ) must be decreasing.
□

Remark. Numerical simulations have shown us that similar conclusions from Theorem B.2 in the
points 1. and 3. (normalised price increasing and market share for no purchase option decreasing)
seem to hold for the general competition case. However, we only have been able to observe it
empirically (see for example Figures 4 to 7 in the Appendix D).

The following example shows that Theorem B.2 part (2). does not necessarily hold when the
intrinsic utilities are different, where there are some products whose market shares decrease in
terms of r . We also can observe that the market share for the highest intrinsic utility products
seems to be increasing.

Example B.3. Consider a set of network parameters given by r ∈ {0.2, 0.4, 0.6, 0.8}, intrinsic
utilities given by (д1,д2,д3) = (0.993, 0.480, 0.159), and a price sensitivity βi = β = 0.1, the market
share for each product and their respective expected revenue for each r are given in the following
table.

r ϕ1(p) ϕ2(p) ϕ3(p) w1(p) w2(p) w3(p)
0.2 0.302 0.193 0.134 3.461 1.912 1.298
0.4 0.352 0.201 0.130 3.269 1.509 0.900
0.6 0.448 0.213 0.111 3.243 1.082 0.498
0.8 0.644 0.225 0.057 3.613 0.581 0.121

C PROOFS
Proof of Lemma 2.1. Following the idea of [Maldonado et al., 2018], consider that in each

time step k (arrival of k-th consumer) either a product i ∈ {1, ...,n} is purchased, or no product
is purchased (i = n + 1), then, defining Dk :=

∑
j ∈[n+1] d

k
j =

∑
j ∈[n+1]

∑k
t=1 d

t
j = k , we have

that ϕk = Dk ϕ
k

Dk
⇒ ϕk+1 =

Dkϕk+ek+1

Dk+1 , with ek+1 a random (n + 1- dimensional) variable with

coordinates (ek+1)i = 1 if product i ∈ {1, ...,n} has been purchased at time k + 1, (ek+1)j,i = 0; and
(ek+1)n+1 = 1 if no product is purchased by the consumer k + 1.
Hence, clearly E[ek+1 |ϕt , t ≤ k] = πk , and considering γ k+1 :=

1
Dk+1 =

1
k + 1

, and U k+1 :=

ek+1 − E[ek+1 |ϕt , t ≤ k], we get the desired recurrence

ϕk+1 = ϕk + γ k+1
[
πk − ϕk +U k+1

]
.
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□

Proof of Theorem 3.2 parts (1) and (2). Let pM (r ) be the monopolistic price for each product,
given by Theorem 3.1, and consider the normalised price zM (r ) = βpM (r )

1−r .
(1) We know that according to Equation (9), the market share for the no purchase option,

ϕ∗n+1(pM (r )), must satisfy zM (r )ϕ∗n+1(pM (r )) = 1. Clearly sinceW () is an increasing function,
Equation (11) implies that zM (r ) is strictly increasing in terms of r , hence ϕ∗n+1(pM )(r ) must
be strictly decreasing as a function of r .

(2) We first compute the derivative of zM (r ) with respect to r , indeed we use Equation (10) to
obtain the ∂zM (r )

∂r as follows

∂zM (r )
∂r

= −∂z
M (r )
∂r

e−z
M (r )

n∑
i=1

eдi /(1−r ) + e−z
M (r )

n∑
i=1

дie
дi /(1−r )

(1 − r )2

⇒ ∂z
M (r )
∂r

=
1

(1 − r )2

∑n
i=1 e

−zM (r )eдi /(1−r )дi

1 + e−zM (r )
∑n

i=1 e
дi /(1−r )

=
1

(1 − r )2
n∑
i=1

ϕ∗i (pM (r ))дi .

Now we consider the market share for the highest intrinsic utility product, ϕ∗1(pM (r )), and
we take its first derivative with respect to r :

∂ϕ∗1(pM (r ))
∂r

=

∂eд1/(1−r )
∂r e−z

M (r ) + ∂zM (r )
∂r e−z

M (r )eд1/(1−r )

1 + e−zM (r )
∑n

i=1 e
дi /(1−r )

−

e−z
M (r )eд1/(1−r )

(1 + e−zM (r )∑n
i=1 e

дi /(1−r ))2

(
e−z

M (r )
n∑
i=1

∂eдi /(1−r )

∂r
− ∂z

M (r )
∂r

e−z
M (r )

n∑
i=1

eдi /(1−r )
)

=
ϕ∗1(pM (r ))
(1 − r )2

[
д1 −

n∑
j=1

ϕ∗j (pM (r ))дj + [1 −
n∑
j=1

ϕ∗j (pM (r ))]
n∑
j=1

ϕ∗j (pM (r ))дj

]
,

the only term that can be negative in the last equality isд1−
∑n

j=1 ϕ
∗
j (pM )дj , but as

∑
j ∈[n+1] ϕ

∗
j =

1, then д1 =
∑

j ∈[n+1] ϕ
∗
jд1 =

∑n
j=1 ϕ

∗
jд1 + ϕ

∗
n+1д1, and since д1 ≥ дj , for all 1 ≤ j ≤ n we have

д1 −
n∑
j=1

ϕ∗j (pM )дj =
n∑
j=1
(д1 − дj )ϕ∗j (pM ) + ϕ∗n+1(pM )д1 > 0.

In conclusion ϕ∗1(pM ), the market share for the highest intrinsic utility product is strictly
increasing in terms of r .

□

D ADDITIONAL EXPERIMENTS
We present here some extra experimental results depicting the different behaviour of both pricing
schemes (competitive price against monopolistic price). We use the following parameters: д =
(д1, ....,д5) = (0.850, 0.733, 0.416, 0.256, 0.139), βi = β = 0.1.
In Fig. 4 we observe how the prices (both pC , PM ) decrease as a function of r . And that in the

competitive case the prices seem to be increasing in the value of their intrinsic utilities (дi ).
Fig. 5 shows how the total revenue R(p) varies for different values of r (in both, competitive

and monopolistic cases). Clearly R(pM ) > R(pC ) for each value of r . And R(pM ) has a change of its
monotony after some value r ∗ > 0.7.
Fig. 6 depicts the behaviour, for different values of r , of the sum of the market shares for the

available products, in contrast to the behaviour of the no purchase option, when the monopolistic
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Fig. 4. Comparison of prices, competition versus monopoly respect to the products’ intrinsic utility (X axis).
The red triangles are the competitive prices (NE) for each product, and the blue dotted line is the monopolistic
price

price, pM , is used. We can clearly see that ϕ∗n+1 decreases to zero in terms of r , while
∑n

i=1 ϕ
∗
i

increases.
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Fig. 5. Comparison of total revenue perceived by the sellers: competition versus monopoly
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Fig. 6. Comparison of total market shares assigned in the equilibrium for different values of r , and the
respective market share for the no purchase option, when the monopolistic price is used.
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Fig. 7. Comparison of total market shares assigned in the equilibrium for different values of r , and the
respective market share for the no purchase option, when the competitive price is used.
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