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Abstract

Most of the current popular semantic segmentation convolutional networks are focus on accuracy and require large

amount of computation, which is using complex models. In order to realize real-time performance in practical applications,

such as embedded systems and mobile devices, lightweight semantic segmentation has become a new need, where the

network model should keep good accuracy in very limited computing budget. In this paper, we propose a lightweight

network with the refined dual attention decorder (termed LRDNet) for better balance between computational speed and

segmentation accuracy. In the encoding part of LRDNet, we offer an asymmetric module based on the residual network

for lightweight and efficiency. In this module, a combination of decomposition convolution and deep convolution is used

to improve the efficiency of feature extraction. In the decoding part of LRDNet, we use a refined dual attention

mechanism to reduce the complexity of the entire network. Our network attained precise real-time segmentation results on

Cityscapes, CamVid datasets. Without additional processing and pretraining, the LRDNet model achieves 70.1 Mean IoU

in the Cityscapes test set. With a parameter value below 0.66 M, it can be up to 77 FPS.
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1. Introduction

Autonomous driving or robot navigation is a complex task that requires perception, planning and execution

in a constantly changing environment [1]. Over the last decade, deep learning has attracted the most attention,

and it is viewed as an indispensable technology for this kind of tasks. In particular, semantic segmentation can

be achieved with convincing results by using deep neural networks, which is important for scene perception

and recognition. Semantic segmentation provides valued information about free space on the road for

navigation, as well as relevant information such as lane markings and traffic signs for full awareness of the

traffic conditions.
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Fig. 1. General asymmetrical architecture of the proposed LRDNet. The encoder employs an FCN type network, while a dual
attention is adopted in the decoder. C denotes the number of classes. (Best viewed in color)

Most of today’s semantic segmentation research is mainly dedicated to improving the accuracy of the

models [2-7], and significant progress along this direction has been made. These papers contribute to the

research of semantic segmentation prediction. For example, many well-developed feature extraction modules

are proposed based on FCN [3]. The core idea of these methods is to use the convolution layer instead of the

fully connected layer in the classification network, and generate segmentation predictions by up sampling the

output feature map. Although ordinary convolution is friendly in image segmentation, they have many

limitations. All these methods, such as ResNet-101 [6] and VGG-16 [7], have large-scale backbone, in which

the complex structure takes up a lot of GPU resources, resulting in slow reasoning speed. Therefore, these

networks are not enough to meet the computing power and real-time performance of current mobile platforms.

In order to reduce the computational burden, it is very important to develop a lightweight and efficient

semantic segmentation method for the real-time application of low-power GPUs. The use of a small-scale

model can improve the inference speed and computational efficiency, and thus can reduce the cost of the

equipment. Due to the high redundancy of large-scale deep learning networks, the efficiency of model

structure and parameters is limited. Lightweight networks [8-17] are friendly to Edge Computing devices of

self-driving cars, and the scalability of their applications is potentially high, such as for mobile robots.

Generally, there are two types of lightweight networks: convolution factorization [8-14] and network

compression [15-17]. The first one focuses on training small-scale networks directly, which is mainly based

on the convolution factorization principle of decomposing standard convolution into group convolution. For

example, InceptionNet [8] uses deconvolution as the backbone network to perform effective reasoning. Zhao

et al. [9] proposes a cascade network, which combines advanced label guidance to improve performance. The

second kind tends to reduce reasoning computation by compressing the pre-train network, including pruning

[15], hashing [16] and quantization [17]. In order to further eliminate the redundancy, another method to
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reduce CNN depends on the sparse coding theory. In some researches, symmetric encoder-decoder

architectures, such as SegNet [2] and ERFNet [10], are used to reduce the number of parameters while

maintaining the accuracy. Although some preliminary research work has been done for lightweight

architecture network, the accuracy of many real-time semantic segmentation algorithms is not ideal due to the

limitation of detail loss. Therefore, it is still an open research problem to pursue the best accuracy in the very

limited computing budget.

Our research results in this paper show that the trade-off between the size, speed, and accuracy of a

network model can be made by designing various decomposition convolutions. We use 1D decomposition

convolution [10,18] and separable convolution [14] with dilation to replace ordinary convolution. As a result,

the computational load of the model is greatly reduced, and the efficiency of the model is improved without

losing too much accuracy. Recently, various attention mechanisms [19-26] have been successfully applied in

many computer vision tasks. Such as SENet [19] and CBAM [20], these papers prove that weighting in space

and channel is helpful to improve feature extraction. Inspired by this success, we optimize the network by

adopting a refined dual attention mechanism by using high-level feature layers as the input of the channel

attention mechanism, and low-level features as the input of the spatial attention mechanism. Compared with

SENet [19], we optimize the global operation of 1x1 ordinary convolution to the local operation of 3x1 1D

convolution. In this way, we introduce fewer parameters and less computation. This dual attention mechanism

is conducive to improving the recognition accuracy.

In this paper, we aim to reduce the loss of detail, improve the inference speed, and achieve better balance

between speed and accuracy. Motivated by this objective, an asymmetric and efficient encoder-decoder model

is proposed for real-time semantic segmentation tasks, which we call LRDNet, as shown in Fig. 1. Our

LRDNet consists of two parts: encoder and decoder networks. We develop an efficient decomposition

convolution as a feature extraction network. We use a ResNet's residual module with skipping connection to

prevent the network degradation and adopt a channel shuffling operation to enhance the robustness of the

network. Through a channel split operation, 1D convolution and dilated separable convolution are combined

in the grouping channel, which aims to reduce the computational cost of the model and deal with long-

distance and short-distance features. In the decoding part, we combine the advantages of different feature

layers to form a refined dual attention mechanism module to enhance the semantic segmentation effect. The

contributions in this paper are summarized as follows:

(1) We propose an efficient split convolution with non-bottleneck (ESC-nbt). The combination of 1D

convolution and expanded separable convolution can reduce the amounts of parameters, increase the speed of

inference, and improve the accuracy of feature extraction for long distance features.
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(2) The decoder employs a refined dual attention mechanism, which can reduce the complexity of the

model and improve the accuracy of semantic segmentation.

(3) Our LRDNet demonstrates a good trade-off in terms of the parameter size, computational cost and

accuracy on the Cityscapes dataset.

The remainder of this work is structured as follows. In Section 2, related work on decomposition

convolution, depth separating convolution, dilated convolution, encoder-decoder and attention mechanism is

introduced. Following that, a detailed illustration of the proposed LRDNet is presented in Section 3.

Furthermore, in Section 4, the LRDNet’s performance is tested in detail by performing a number of

experiments. Key conclusions and highlights of results achieved are then presented in Section 5.

2. Related work

With the development of DCNN [27-29], more and more semantic segmentation networks based on DCNN

have been proposed, and good performance has been demonstrated in various benchmarks. Among them,

many methods constructed different convolution structures to reduce the network parameters and improve the

utilization of high-level and low-level feature maps. Here, we briefly review the current existing works in this

area.

2.1. Decomposition convolution and depth separable convolution

Decomposition convolution [10] is to decompose the ordinary k×k convolution into k×1 and 1×k

convolutions. In this way, the amount of computational load can be greatly reduced even if the receptive field

is the same, and the number of parameters is also reduced. Compared with ordinary convolution, the number

of parameters of decomposition convolution is 2/k of it. For deep separable convolution, the typical network

includes MobileNet [11,12]. In general, the work of depth separable convolution [14] is to decompose

standard convolution into depth-wise convolution and point-wise convolution. The basic idea is to replace the

standard convolution with a decomposed version and split the convolution into two separate layers. The first

layer is called deep convolution, and it performs the lightweight filtering by applying a single convolution

filter for each input channel. The second layer is a 1×1 convolution, called point-wise convolution [14], which

is responsible for constructing new features by computing the linear combination of input channels. The basic

principle is to divide the feature map into multiple sub-maps according to the number of channels. For
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example, an N×H×W×C feature map is divided into C two-dimensional feature maps of N×H×W, and then

convolved. The reduction in the number of parameters is ended with (N2-1)/N2 compared with a standard

convolutional layer.

2.2. Dilated Convolution

In order to refine the high-order feature maps, the expanded convolution [30] introduces a dilated rate,

which defines the stride between two adjacent kernel values. The receptive field range of k×k convolution

with r = n is identical to the convolution of ((k-1) (n-1) + k) × ((k-1) (n-1) + k), and the number of parameters

is constant. For example, for the 3×3 kernel with r = 3 and 7×7 kernel, their receptive fields are the same.

Since different dilated rates can receive different proportions of information from high-level feature maps

[10,18], they use the convolution-based multi-scale semantic information extractors in semantic segmentation

tasks. However, the large dilation could result in local information lose.

2.3. Encoder-Decoder

The significant leap in the overall accuracy of semantic segmentation came after FCN [3] (Fully

Convolutional Neural Network) was proposed. FCN uses only the convolutional layer from start to end and

the extraction part is generally called an encoder. The subsequent up-sampling or de-convolution part is called

a decoder. The encoder-decoder structure is an effective means to solve the problem of resolution degradation,

and improves the utilization of high- and low-level feature maps at the same time. By gradually mapping low-

level features to high-level features, the boundary and detail information of high-level feature mapping can be

restored. FCN uses a skip structure to combine low-level and high-level feature maps. U-Net [31] uses a more

efficient skip connection method to reduce the loss of boundary information. RefineNet [32] introduces many

refinement blocks to combine low-level and high-level feature maps. Due to the gap in the mapping between

the high and low feature layers, the high feature layer has a small amount of spatial information which could

easily lose the boundary information, and the low feature layer has less semantic information. In order to

mitigate the gap between them, we use a novel fusion module to improve the fusion effect of the high and low

feature layers.

2.4. Attention mechanism

Various attention mechanisms have been successfully used in computer vision, especially in the field of

semantic segmentation. Normally, there are two attention mechanisms: soft-attention mechanism [19-22] and
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self-attention mechanism [23-26]. In the soft-attention mechanism, channel attention and spatial attention are

often used for dealing with the task of semantic segmentation. The channel attention mechanism

automatically obtains the importance of each feature channel through learning, and uses the obtained

importance to enhance the features and suppress the features that are not important to the current task. The

spatial attention mechanism is aimed at a single feature layer by weighting the spatial pixels of a feature layer

to improve the network's ability to capture remote context information. This paper introduces a dual attention

channel mechanism, i.e. channel and spatial attention mechanism, to improve the network's ability to capture

both channel and context information. In regard to self-attention mechanism, such as in the Non-local Neural

Networks [23], which proposes a non-local information statistics attention mechanism based on capturing the

dependencies between long-distance features. For each query point, self-attention mechanisms firstly

calculate the paired relationship between the query point and all points to obtain the attention map, and then

aggregates the features of all points by weighted sum, so as to obtain the global features related to the query

point, and finally the global features are added to the features of each query point respectively to complete the

modeling process of remote dependence. Although the non-local method can improve the accuracy to a

certain extent, the problem is that the amount of calculation is too large. So, we adopt a lightweight dual

attention mechanism.

3. Method

3.1. Residual module with 1D convolution and depth separable convolution

Our module focuses on improving the efficiency of a residual network. Because the residual module has

the advantage of preventing the network degradation, it is widely used in neural networks for image

processing. The residual module can be formulated as:

x�+1 = x� + �(x� , W� ) (1)

Where F(xl , Wl ) is coming from:

F xl , Wl = σ(Wl xl ) (2)

σ x = max (0, x) (3)

In Equ. (1), (2) and (3), the variables variables x�+1 , x� , W� and σ stand for, respectively, the network output

values, input value, the weight and activation function.
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Fig. 2. Comparison of different residual layer modules. From left to right are (a) ShuffleNetV2 [33], (b) SS-nbt of LEDNet [34],
(c) our ESC-nbt.

Since the ordinary standard 2D convolution kernel intersects channels through the connection relationship

between the input and output, the redundancy caused by its parameters and memory size will affect the real-

time performance in feature extraction. MobileNet uses a deep separable convolution, which is composed of
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Fig. 3. Overview of the specific working process. From left to right are (a) channel splitting, (b) channel shuffling

1×1 point-wise convolution and deep convolution to learn the relationship between channels and the local

relationship of each channel feature map. MobileNet greatly reduces the amount of network parameters and

computational costs. At present, there are already some lightweight network modules that have achieved

better feature extraction results. As shown in Fig. 2, ShuffleNetV2 [33] adopts the split shuffling strategy and

the deep separable convolution to reduce the number of parameters and computational load. The SS-nbt

module of LEDNet [34] uses 1D convolution to reduce the number of parameters. We propose a new

lightweight and efficient split convolution structure ESC-nbt, as shown in Fig. 2 (c). The proposed ESC-nbt

follows the strategy of channel splitting and channel shuffling. In our paper, the purpose of channel splitting,

shown in Fig. 3 (a), is to divide the channels of the input feature map into two branches, which replaces the

grouped convolution structure by extracting the features of the two branches separately. After channel

splitting, it uses 1D convolution and deep convolution with a dilated rate to perform the short-distance and

long-distance feature extraction respectively. It replaces the expanded 1D convolution in SS-nbt with an

expanded depth convolution to reduce the number of parameters and computational cost. Deep convolution

with dilated rate can enlarge receptive field, the receptive field of the (� + 1) th convolution layer can be

written as:
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���+1 = ��� + �' − 1 ∗ �� (4)

Here, the term k' and Sl is defined as:

k' = k + k − 1 d − 1 (5)

Sl = i=1
l Stridei� (6)

In Equ. (5) and (6), the variables k' , k, d and Stridei stand for, respectively, the size of dilated convolution,

the size of ordinary convolution, the dilation and the step size of the sliding window.

The ESC-nbt also uses point convolution to improve the cross-intersection relationship between channels.

Due to channel splitting, which simulates group convolution, will lead to loss of information, it is necessary to

exchange channels. Since the information contained in different channels in the same group may be the same,

if some channels are exchanged after different groups, then information can be exchanged. This makes the

information about each group richer, and naturally more features can be extracted, which is conducive to

getting better results. Channel shuffling, shown in Fig. 3 (b), is to reorganize the subsequent feature maps to

ensure that information can flow between different groups. It is very easy to implement channel shuffle

programmatically: assuming that the input layer is divided into g groups, the total number of channels is g × n,

firstly split the channel dimension into two dimensions (g, n), and then transpose the dimensions into (n, g),

and finally reshape into a dimension (g × n). Experimental results (Section 4) have shown that our ESC-nbt

module can extract the features with high efficiency.

3.2. LRD network structure

As shown in Table 1, our LRDNet is different from LEDNet [34]. Our method uses an asymmetric

encoder-decoder mechanism, where the encoder performs the feature extraction on down-sampling of the

feature map. The subsequent decoder uses a dual attention mechanism to improve the quality of feature

extraction, and uses the similar deconvolution to up-sample the feature map in order to maintain the input

resolution. Specially, we also adopt a Res (Refined residual edge) as the input of spatial attention to reduce

the boundary loss.

In addition to the ESC-nbt module, we also introduce a down-sampling module in the encoding part, as

shown in Fig. 4 (a). This module uses the convolution with a step size of 2 and maximum pooling to reduce

the resolution of a feature map, which also helps reduce the computational complexity, and increase the

number of feature layer channels to enhance the semantic context information. The down-sampling module

can be formulated as:

x�+1 = h(x� ) + �(x� , W� ) (7)
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Table 1. The architecture of LRDNet. “Output Size” denotes the dimension of output feature maps, C is the number of classes.

Stage Name Type Input Output size

Encoder

d1 Downsampling Unit image 512 X 256 X 32

m1 3 X ESC-nbt Unit d1 512 X 256 X 32

d2 Downsampling Unit m1 256 X 128 X 64

m2 2 X ESC-nbt Unit d2 256 X 128 X 64

d3 Downsampling Unit m2 128 X 64 X 128

m3 ESC-nbt Unit(diated r = 1) d3 128 X 64 X 128

m4 ESC-nbt Unit(diated r = 3) m3 128 X 64 X 128

m5 ESC-nbt Unit(diated r = 7) m4 128 X 64 X 128

m6 ESC-nbt Unit(diated r = 11) m5 128 X 64 X 128

m7 ESC-nbt Unit(diated r = 2) m6 128 X 64 X 128

m8 ESC-nbt Unit(diated r = 5) m7 128 X 64 X 128

m9 ESC-nbt Unit(diated r = 13) m8 128 X 64 X 128

m10 ESC-nbt Unit(diated r = 17) m9 128 X 64 X 128

Res

d4 Downsampling Unit image 512 X 256 X 32

d5 Downsampling Unit d4 256 X 128 X 64

sa1 Spatial attention Unit d5 256 X 128 X 1

up1 Upsampling Unit m10 256 X 128 X 64

m11 up1 + d5 up1, d5 256 X 128 X 64

Decoder ca1 Channel attention Unit m11 256 X 128 X 64

sa2 sa1 X ca1 sa1, ca1 256 X 128 X 64

output 2 X Upsampling Unit sa2 1024 X 512 X C

The formula is similar to Equ. (1), but because the number of channels of F(xl , Wl ) and xl is different, the

function h is to increase the number of channels by 1x1 convolution.

In the encoding part, we use the ESC-nbt module with a dilated rate greater than 1 in the low-level feature

layer, which allows the network to have a larger receptive field in the process of feature extraction and to

ensure the improvement of accuracy. Because the high-level feature map has low resolution with rich

semantic information and the low-level feature layer has a high resolution, the boundary with more detailed

information is maintained. In order to compensate for the boundary loss and improve the relationship between

channels, we introduce a refined dual attention mechanism in the decoding part. The difference between

spatial and channel attention is that the former assigns a weight to a spatial point of a feature map, while the
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Fig. 4. The module of Decoder. From left to right are (a) Down-sampling, (b) Spatial attention Unit, (c) Channel attention Unit, (d)
Up-sampling.

latter assigns different weights for different channels. The output feature map Fsout and Fcout, which are after

spatial attention and channel attention respectively, can be calculated as follows:

����� = �⨂ � ��� (8)

Fcout = F⨂ M uc (9)

where � ��� and � �� are coming from:

� ��� = 1
� �=1

� ��� �� + max
�∈[1,�]

(��� � ) (10)

M uc = 1

��� �=1
�

�=1
� �� �, ��� (11)
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In Equ. (8) and (9), the feature map of input is F ∈ ��×ℎ×� , � ��� ∈ �1×ℎ×� is adopted as the spatial

attention mask, and � �� ∈ ��×1×1 serves as the channel attention mask. And ⨂ denotes element-wise

multiplication. In Equ. (10) and (11), the variables ��� , �� , C , H and W stand for, respectively, the pixel

weight, the channel weight, channel number, image height and width.

For spatial attention shown in Fig. 4 (b), we first use a combination of average pooling and maximum

pooling, and then reduce the number of channels through a 7×7 convolution to ensure that the number of

channels in the input is the same as the output, and finally use the sigmoid function to normalize the result.

The spatial attention mechanism, as shown in Fig. 1, is formed by down-sampling the original image twice

through a residual edge, which could maintain more refined boundary information. For the channel attention,

as shown in Fig. 4 (c), we first adopt the average pooling layer, and then reshape the 1×1×C feature map into

C×1×1. The 1D convolution of 3×1 is used to improve the local relationship mapping among channels.

Compared with SE [22], it has a lower computational load and does not significantly reduce the accuracy.

Then the C×1×1 feature map is reshaped into 1×1×C. Finally, the sigmoid function is also used to normalize

the weight value between channels. The input of the channel attention mechanism is the high-level features

after feature extractions of the decoder. In addition, as shown in Fig. 4 (d), we use linear interpolation to

enlarge the image resolution in the up-sampling module, then use 3×3 depth convolution to filter the image,

and finally use 1×1 point convolution to modify the number of channels.

4. Experiments

4.1. Datasets

This paper chooses the widely used CityScapes dataset [35] and CamVid dataset [36]. The CityScapes

dataset [35] is composed of high-quality pixel-level annotations of 5000 street scenes of 2048×1024 images,

including 19 different types of object categories, and background information. There are 2975, 500 and 1525

images in the training set, validation set and test set, respectively. According to our lightweight method, we

use 1024×512 sub-sampled images for testing. The CamVid dataset [36] consists of 367 training images, 101

validating images and 233 testing images with a resolution of 960×720, but we follow the setting as [2,18]

using 480×360 resolution for training and testing.

In addition, we choose the DeepScene dataset [37] to verify the real-time performance of our model. The

DeepScene dataset consists of 233 training images and 139 validation images of off-road imagery, which are

densely labeled with six semantic categories: void, road, vegetation, grass, tree, sky, and obstacle. The

resolution is 868×481, but the setting we followed is to use 448×448 images for training and testing.
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4.2. Settings

The network structure parameters are the key for improving the performance of the network [38, 39]. An

important conclusion obtained from [39] is that the value of learning rate is more sensitive to the stability and

accuracy of neural network approaching the optimal state. In particular, a relatively small value of ξ may

result in insufficient approximation accuracy. However, a large value of ξ often leads to insufficient

robustness of convergence history. In the early stage of algorithm optimization, it will accelerate learning,

making the model easier to approach the local or global optimal solution. However, in the later stage, there

will be large fluctuations, even the value of the loss function hovers around the minimum value. Therefore,

the concept of learning rate decay is introduced, that is, in the initial stage of model training, a larger learning

rate will be used for model optimization, and with the increase of iterations, the learning rate will gradually

decrease. This ensures that the model will not have too much fluctuation in the later stage of training, so as to

be closer to the optimal solution. This is achieved by introducing a natural exponential decay equation:

ξ = ξ(1 − iter
max _iter

)λ (12)

Where iter stands for the current iteration step, max_iter is the decay step, ξ stands for the initial learning

rate. � denotes the decay rate. In addition, we found that the dilation of convolution also has a certain impact

on the image feature extraction. Taking dilation without common divisor will not produce grid effect and can

better improve the accuracy, so we change the dilation from 1,2,4,6,8,12,14,16 to 1,2,3,5,7,11,13,17.

For a fair comparison, we use Pytorch for training on GTX 1080ti GPU. All the training batch sizes are set

to 6 and 1000 iterations of training are performed. The initial learning rate is 5×10-4, "poly" learning rate

momentum sampling 0.9, momentum and weight decay are set to 0.9 and 10-4.

4.3. Metrics

(1) mIoU: The ratio of intersection and union of two sets of true and predicted values. It is the most

typical comparison metrics in semantic segmentation.

(2) Params: Number of parameters of the CNN, which is involved in memory usage of the device.

(3) Pre-trained: Some methods are pre-trained in ImgeNet to improve accuracy.

(4) Time and Speed: Time (ms) is the inference time spent on GPU (on GTX 1080ti using Pytorch

framework), which reflects the real-time performance of the model. Speed (FPS) = 1/Time.

(5) GFLOPS: Giga Floating-point Operations Per Second of a forward step.
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Table 2. Comparison with the LEDNet on Cityscapes validation set, including accuracy and parameter size

Model mIoU Params(M)

LEDNet 69.6 0.94

Model A of LRDNet 71.5 0.65

Model B of LRDNet 72.0 0.66

Table 3. Individual category results on the CityScapes test set in terms of class and category mIoU scores. Compared with other
approaches.

Method Roa Sid Bu i Wal Fen Po l TL i TS i Veg Ter Sky Ped Rid Ca r Tru Bus Tra Mot Bic Cla Cat

SegNet

ENet

ESPNet

CGNet

ERFNet

ICNet

LEDNet

96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9

96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4

97.0 77.5 76.2 35.0 36.1 45.0 35.6 46.3 90.8 63.2 92.6 67.0 40.9 92.3 38.1 52.5 50.1 41.8 57.2

95.5 78.7 88.1 40.0 43.0 54.1 59.8 63.9 89.6 67.6 92.9 74.9 54.9 90.2 44.1 59.5 25.2 47.3 60.2

97.2 80.0 89.5 41.6 45.3 56.4 60.5 64.6 91.4 68.7 94.2 76.1 56.4 92.4 45.7 60.6 27.0 48.7 61.8

97.1 79.2 89.7 43.2 48.9 61.5 60.4 63.4 91.5 68.3 93.5 74.6 56.1 92.6 51.3 72.7 51.3 53.6 70.5

97.1 78.6 90.4 46.5 48.1 60.9 60.4 71.1 91.2 60.0 93.2 74.3 51.8 92.3 61.0 72.4 51.0 43.3 70.2

57 .0 79 .1

58 .3 80 .4

60 .3 82 .2

64 .8 85 .7

66 .3 85 .2

69 .5 86 .4

69 .2 86 .8

Ours 97.9 81.7 90.4 43.0 49.1 58.9 63.7 66.8 92.1 69.5 94.6 77.6 58.4 93.3 53.2 62.5 59.3 54.5 65.9 70.1 87.3

4.4. Comparison with Other Methods

In order to reflect the advantages of the attention mechanism, we conduct some comparative experiments

on the CityScapes validation set. We call the model without the attention mechanism in the LRDNet

framework as Model A, and the model with the attention mechanism as Model B. In Table 2, we refer to

Comparing Model A and Model B with LEDNet [34]. It can be seen that both of our model has higher

accuracy and fewer model parameters, and the addition of a refined dual attention mechanism, i.e. Model B,

can achieve even better results.

In the CityScapes test set, in order to demonstrate the advantages of LRDNet, we choose 8 different

lightweight networks as benchmarks, including SegNet [2], ENet [18], ERFNet [10], ICNet [9], CGNet [40]

And ESPNet [41], LEDNet [34].

In order to quantitatively analyze the segmentation result, we compared our method with other methods in

each class. From the comparison results of Table 3, our method reaches a result of 70.1 mIoU in class and

87.3 mIoU in rough classification. We can see that in the above methods, our method obtains the best scores

in 13 out of 19 categories, such as road, sidewalk, build, car, people, etc. In our design to ensure real-time

performance, we do not obtain the best results in certain classes., such as wall, person, truck.
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Table 4. Comparison with the state-of-the-art approaches on the CityScapes test set in terms of segmentation accuracy and
implementing efficiency.

Model Pre-trained mIoU Time (ms) Speed
(Fps)

Params
(M)

GFLOPS

SegNet [2] N 57.0 67 15 29.5 286

ENet [18] N 58.3 7 135 0.36 3.8

ERFNet [10] N 68.0 24 42 2.10 21.0

ESPNet [41] N 60.3 9 112 0.40 5.2

ICNet [9] Y 69.5 33 30 7.80 28.3

CGNet [40] Y 64.8 20 50 0.50 6.0

LEDNet [34] N 69.2 14 71 0.94 11.5

Our LRDNet N 70.1 13 77 0.66 9.2

As shown in Table 4, our model, in comparison with SegNet, is 5 times faster than SegNet and 45 times

smaller in model size, and with the accuracy improved by 23%. Compared to ERFNet, our model is 1.8 times

quicker and the number of parameters is 3.2 times fewer, the accuracy is increased by 3.1%. Compared with

LEDNet, our model parameters are reduced by 30%, and the accuracy rate is increased by 1.3%. These results

lend credibility to our contention that a lightweight network can also achieve excellent results in terms of

accuracy and speed.

Fig. 5. Visual comparison on CityScapes validation dataset. From left to right are input images, ground truth, segmentation
outputs from SegNet [2], ENet [18], ERFNet [10], ESPNet [41], ICNet [9], CGNet [40], LEDNet [34], and our LRDNet. (Best
viewed in color)
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Fig. 6. Detail comparison on CityScapes validation dataset. From left to right are input images, ground truth, segmentation
outputs from, LEDNet [34], and our LRDNet. (Best viewed in color)

Fig. 5 and Fig. 6 show the segmentation results on the validation set of Cistyscapes. Compared with other

models, as shown in Fig. 5, our model achieves better results in the overall segmentation result. To

qualitatively analyze the segmentation result, we show visual results of the LEDNet and LRDNet in Fig. 6.

The red box areas in the above pictures show that our LRDNet has lower misclassification on roads and

vegetation than LEDNet, and it has more refined edge segmentation results on poles and automobiles.

Table 5. Comparison with the state-of-the-art approaches on the Camvid test set in terms of segmentation accuracy and params.

Model Pre-trained Params (M) mIoU

SegNet [2] N 29.5 46.4

ENet [18] N 0.36 51.3

ICNet [9] Y 7.80 67.1

CGNet [40] Y 0.50 65.5

LEDNet [34] N 0.94 66.6

Our LRDNet N 0.66 69.7

In the Camvid test set, we choose 5 different lightweight networks as benchmarks to demonstrate the

advantages of LRDNet, including SegNet [2], ENet [18], ICNet [9], CGNet [40] And LEDNet [34]. As shown

in Table 5, our method reaches a result of 69.7 mIoU. In comparison with SegNet [2], our model is with the

accuracy improved by 50.2%. Compared with recently state-of-the-art LEDNet [34], the accuracy rate of our

model is increased by 4.7%. We show some visual results of the LEDNet and LRDNet in Fig. 7. It can be

seen that our method has more precise boundary segmentation and more accurate classification.
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Fig. 7. Detail comparison on Camvid test dataset. From left to right are input images, ground truth, segmentation outputs from,
LEDNet [34], and our LRDNet. (Best viewed in color)

Fig. 8. Visual comparison on DeepScene validation dataset. From left to right are input images, ground truth, segmentation
outputs from our LRDNet. (Best viewed in color)
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Table 6. Comparison with approaches on the DeepScene validation dataset in terms of segmentation accuracy. The first three
rows use a 300 × 300 image size, as in UpNet; the last two uses 448 × 448.

Model mIoU

Upnet (RGB) [37] 79.86

cnns-fcn [42] 58.51

dark-fcn [42] 60.35

dark-fcn-448 [42] 60.61

LRDNet-488 87.60

In the DeepScene data set, Fig. 8 shows the segmentation outputs from our LRDNet.

Regarding to the accuracy, LRDNet is 9.7%, which is higher than Upnet [37]. Compared with the Dark-fcn

network [42], the accuracy of our model has increased by 44.5%. As shown in Table 6, we can see that our

model achieves the best scores.

From the above experimental results, it can be seen that our model LRDNet has a better trade-off between

speed and accuracy.

Fig. 9. Some segmentation results of practical scenes, From left to right are field robot, input images which were located in the
Xiang'an campus of Xiamen University, segmentation outputs from ICNet, LEDNet, LRDNet, . (Best viewed in color. ■roads,
■sidewalks, ■buildings, ■high vegetation, ■unknown obstacles, ■terrain, ■poles, ■traffic signs, ■grass, ■cars, ■sky, ■people)

4.5. Scene experiment

Although results in Section 4.4 can prove the significant performance of the proposed method in

qualitative and quantitative aspects, the practical application results are more ideal for reliable and convincing

evaluation. Therefore, we test our proposal in real-world scenarios, as shown in Fig. 9 . In order to be applied

in practical scenarios, we combine a city data set and a forest data set to form a new data set. Our semantic
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segmentation uses 12 categories in the experiment to distinguish: unknown obstacles, roads, sidewalks,

buildings, street lights (poles), traffic signs, people, cars, sky, high vegetation, terrain and grass. In the mixed

data set, our model achieves 80.33 mIOU, which is a very good result.

Our experiment is carried out under the ROS system via subscribing to the image topic of a ZED2 camera.

With 20Hz subscription frequency, our model can reach a publishing speed of 20Hz, which is able to perform

in real-time semantic segmentation tasks. As shown in Fig. 9, we compare the segmentation results of ICNet,

LEDNet and our LRDNet in real-world scenes. As can be seen from the red box in the above figure, our

method reduces the misclassification of people and sidewalks in urban scenes, and has more refined boundary

segmentation on buildings and poles. In the forest scene, our method has a more accurate classification in the

low vegetation, which is conducive to unmanned ground vehicle shuttling through the grass (in the field

environment, we think that the low vegetation is passable). To sum up, our model has generalization ability.

However, the current data sets of urban and forest mixing are still scarce, so the effect of simultaneous

application in different scenarios is poor, and this part of the work needs to be further improved.

5. Conclusion

This paper presents an asymmetrical, refined and efficient encoder-decoder model LRDNet for real-time

semantic segmentation tasks. To strikes a good trade-off between speed and accuracy, we adopt an ESC-nbt

module and a dual attention mechanism. From the results, it can be concluded the following.

1) The proposed efficient split convolution module (termed ESC-nbt), which adopts the combination of

decomposition convolution and deep convolution, can indeed provide contributions to the efficient

feature extraction.

2) The developed dual attention mechanism and refined residual edges have the capability of reducing

boundary loss and improving accuracy with low parameters.

3) The proposed model (LRDNet) has high accuracy and generalization ability, and its real-time

performance is verified

The entire network is an end-to-end framework. With regard to semantic segmentation on the Cityscapes

and Camvid dataset, our model has a high accuracy and fewer parameters. Field experiments were also

executed and the results verify the availability of our method in real application. In the near future, we plan to

explore multi-scale feature fusion strategies with low computational cost in the decoding part.
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