
1

Perturbed Adaptive Belief Propagation Decoding for
High-Density Parity-Check Codes

Li Deng, Zilong Liu, Yong Liang Guan, Xiaobei Liu, Chaudhry Adnan Aslam, Xiaoxi Yu, and Zhiping Shi

Abstract—Algebraic codes such as BCH code are receiving
renewed interest as their short block lengths and low/no er-
ror floors make them attractive for ultra-reliable low-latency
communications (URLLC) in 5G wireless networks. This paper
aims at enhancing the traditional adaptive belief propagation
(ABP) decoding, which is a soft-in-soft-out (SISO) decoding
for high-density parity-check (HDPC) algebraic codes, such
as Reed-Solomon (RS) codes, Bose-Chaudhuri-Hocquenghem
(BCH) codes, and product codes. The key idea of traditional
ABP is to sparsify certain columns of the parity-check matrix
corresponding to the least reliable bits with small log-likelihood-
ratio (LLR) values. This sparsification strategy may not be
optimal when some bits have large LLR magnitudes but wrong
signs. Motivated by this observation, we propose a Perturbed
ABP (P-ABP) to incorporate a small number of unstable bits
with large LLRs into the sparsification operation of the parity-
check matrix. In addition, we propose to apply partial layered
scheduling or hybrid dynamic scheduling to further enhance
the performance of P-ABP. Simulation results show that our
proposed decoding algorithms lead to improved error correction
performances and faster convergence rates than the prior-art
ABP variants.

Index Terms—Adaptive belief propagation (ABP), High-
Density Prity-Check (HDPC) Codes, Reed-Solomon (RS) codes,
Bose-Chaudhuri-Hocquenghem (BCH) codes, Product codes,
Ultra-reliable low-latency communications (URLLC).

I. INTRODUCTION

REED-Solomon (RS) codes [1] and Bose-Chaudhuri-
Hocquenghem (BCH) codes are high-density parity-

check (HDPC) codes with large minimum Hamming distance
and no or low error floors. They have been widely applied in
data transmission, broadcasting, and digital storage systems
[2]–[4], etc. Recently, it has been shown that BCH codes
outperform short block-length polar codes and low-density
parity check (LDPC) codes, with decoding error rates close to
the coding bounds in the finite block-length regime [5], [6].

Li Deng and Zhiping Shi are with the National Key Laboratory on
Communications, University of Electronic Science and Technology of China,
Chengdu, China; Li Deng is also with School of Electronic Information
and Automation, Guilin University of Aerospace Technology, Guilin, China;
Zhiping Shi is also with Science and Technology on Communication Networks
Laboratory, Shijiazhuang, China (E-mail:dengli@std.uestc.edu.cn;
szp@uestc.edu.cn).

Zilong Liu is with the School of Computer Science and Elec-
trical Engineering, University of Essex, United Kingdom (E-mail:
zilong.liu@essex.ac.uk).

Yong Liang Guan, Xiaobei Liu, and Xiaoxi Yu are with the
School of Electrical and Electronic Engineering, Nanyang Technologi-
cal University, Singapore (E-mail: {eylguan,xpliu}@ntu.edu.sg;
XIAOXI001@e.ntu.edu.sg).

Chaudhry Adnan Aslam is with the public sector R&D organization,
Pakistan (E-mail: engr_adnan_aslam@hotmail.com).

Hence, BCH codes may be an excellent candidate for the sup-
port of ultra-reliable low-latency communications (URLLC)
[7] featuring short-packet transmissions in 5G networks and
beyond.

A. State-of-the-Art of ABP Algorithms

In most practical systems, algebraic hard-decision decoding
(HDD) is adopted for the decoding of RS and BCH codes, such
as the syndrome decoding of Berlekamp-Massey algorithm
[8] and the list decoding of Guruswami-Sudan algorithm [9].
Compared with HDD, soft-decision decoding (SDD) is capable
of achieving better error correction performance by using the
reliability information from the channel [10]. Known SDD
algorithms for algebraic HDPC codes include the generalized
minimum distance decoding [11], Chase decoding [12], Chase-
Pyndiah decoding for product codes [13], algebraic soft de-
coding (ASD) [14], [15], ordered statistic decoding [16], [17],
and adaptive belief propagation (ABP) decoding [18]–[20],
etc. This paper focuses specifically on the ABP for soft-in-
soft-out (SISO) decoding.

It is widely recognized that straightforward application of
BP decoding to HDPC codes could lead to poor error correc-
tion performance, due to a large number of short cycles in
the corresponding Tanner graph (TG) [21]. Denote by N and
K the codeword length and the message length, respectively.
Also, let M = N − K be the number of parity check bits.
The parity-check matrix has dimension of M×N . To circum-
vent the limitation of short-cycle overwhelmed BP decoding,
the ABP adaptively sparsifies the M parity-check columns
associated to M unreliable bits, using Gaussian elimination
(GE), before performing BP decoding in each iteration. To
further improve ABP decoding performance, various improved
algorithms have been proposed, such as hybrid ABP-ASD
[22], and stochastic ABP [23]. A decoding approach similar to
ABP is also introduced for BCH codes with simplified parity-
check matrix adaptation [20]. In [24], a Turbo-oriented ABP
called TAB is proposed for product codes, which provides a
performance close to that of Chase-Pyndiah algorithm [13].

Key Observation: Among the ABP and its variants, the
M bits with smallest log-likelihood ratio (LLR) magnitudes,
also called least reliable bits in this work, are selected as
the M unreliable bits. These unreliable bits, each connected
with only one edge in the corresponding TG (after GE), are
highly dependent on the K remaining bits1 to attain improved
LLRs. Hence, it is important that these K remaining bits all
have correct signs. Such an unreliable-bits selection strategy is,

1In contrast, these K remaining bits have relatively large LLR magnitudes.

ar
X

iv
:2

01
2.

10
74

3v
1

 [
cs

.I
T

]
 1

9
D

ec
 2

02
0

2

however, not optimal if some of the remaining bits have wrong
signs. In particular, those bits with relatively large LLRs but
alternating signs before and after an update in BP decoding
tend to be unstable [25] and hence it is desirable to identify
their locations and sparsify their parity-check columns in GE.
This key observation motivates us to propose an improved
ABP with enhanced unreliable-bits selection strategy.

Remark: Throughout this work, we differentiate the follow-
ing three types of bits:
• Unreliable bits: The M bits whose parity-check columns

are to be sparsified before every BP decoding.
• Least reliable bits: The M bits with smallest LLR mag-

nitudes before every BP decoding. In traditional ABP,
unreliable bits are the M least reliable bits.

• Unstable bits: Certain bits which have large LLR magni-
tudes and display alternating signs.

B. Fixed and Dynamic Scheduling for ABP Decoding
Decoding iteration scheduling is another strategy to improve

ABP decoding. Recent advances in the decoding of LDPC
codes show that the scheduling strategy has considerable
impacts on the decoding performance. Among a series of
major fixed scheduling based BP algorithms, both the layered
BP and shuffled BP can attain two times faster convergence
rates and comparable error correction performances compared
to the flooding BP [26], [27]. The authors of [28] presented
an edge-based flooding schedule (called “e-Flooding”) for RS
codes by only partially updating the edges originating from
the less reliable check nodes for complexity reduction.

Compared with the fixed scheduling, dynamic scheduling
is able to give further improvement to BP decoding, if run-
time processing can be afforded [25], [29]–[33]. The residual
based dynamic schedules, which update the edge messages
with the maximum residual first, are capable of circumventing
performance deterioration incurred by trapping sets [34]. A
layered residual BP (LRBP) is introduced in [35] for ABP
based decoding of RS codes, which updates the unreliable bits
more frequently in each iteration with a sequential updating
order of check nodes (CNs) to achieve better error correction
performance. The authors of [35] further presented a double-
polling residual BP (DP-RBP) [36] by selecting the variable
nodes (VNs) and CNs with a double-polling mechanism,
where the least reliable VNs and high-degree CNs have more
opportunities to get updated. However, both of the LRBP and
DP-RBP decoders could not be able to prevent the silent-
variable-nodes which have no chance to get updated during
the decoding [30].

In view of the above background, it is instructive to ex-
plore scheduling strategies for ABP. However, we found that
straightforward applications of the existing fixed or dynamic
scheduling may not be effective as they are not optimized for
HDPC codes.

C. Contributions
This work aims for enhancing the traditional ABP to achieve

better error correction performances and faster decoding con-
vergence rates for HDPC codes. Our main novelty and con-
tributions are summarized as follows:

1) We propose a Perturbed ABP (P-ABP) algorithm which
constitutes a refined unstable-bits selection strategy. We
select a small number of bits (denoted by ρ) with
relatively large LLRs, in addition to the (M − ρ) least
reliable bits, to be included in the parity-check matrix
sparsification. We develop a mechanism to first identify
those unstable bits displaying relatively large LLRs but
alternating signs in the BP iterations, and include them
as part of the ρ bits. We further present an extrinsic
information analysis method to obtain good values of
ρ.2

2) We develop a partial layered scheduling for P-ABP
(called PL-P-ABP) which can well adapt to the system-
atic structure of HDPC matrix after GE. The proposed
partial layered message updating strategy can also skip
certain edges associated with short cycles to stop unre-
liable message passing, leading to the significantly im-
proved convergence rate and comparable or better error
correction performance than the flooding and shuffled
scheduling schemes. We also apply a variation of PL-P-
ABP to decode product codes.

3) For decoders that can afford more run-time computa-
tions, we present a hybrid dynamic scheduling for P-
ABP (called as HD-P-ABP) aiming for faster conver-
gence rate than the proposed PL-P-ABP. HD-P-ABP
combines the merits of layered scheduling and dynamic
silent-variable-node-free (D-SVNF) scheduling to avoid
multiple types of greedy groups3 occurring in traditional
dynamic scheduling based decoding algorithms.

D. Organization
The remainder of this paper is organized as follows. Section

II provides some preliminaries of BCH/RS codes, BP decoding
with different fixed scheduling strategies, and the rationale of
ABP. Section III describes the proposed P-ABP, together with
the proposed partial layered scheduling and hybrid dynamic
scheduling for P-ABP. Section IV gives the complexity analy-
sis of the proposed decoding algorithms. The simulation results
and relevant discussions are presented in Section V, followed
by conclusions in Section VI. The list of acronyms used in
this paper is shown in Table I.

II. PRELIMINARIES

Throughout this paper, denote by N and K (as given in
Section I) the codeword length and the message length of a
code, respectively. Also, let M = N − K be the number of
parity-check bits.

A. Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomn
(RS) Code Family

1) BCH codes: The BCH code forms a large class of
powerful linear cyclic block codes, which is widely known

2Note that the traditional ABP decoding may be regarded as a special case
of the proposed P-ABP decoding with ρ = 0. A good ρ leads to better
decoding error probability as well as faster convergence rate.

3A greedy group refers to a few nodes in the TG of a code excessively
consuming computation resources in BP decoding. Such a greedy group is a
barrier to optimal decoding as the beliefs of certain other nodes may never
get updated.

3

TABLE I: List of acronyms

Acronyms Descriptions
ABP adaptive belief propagation
ASD algebraic soft decoding
AWGN additive white Gaussian noise
BCH Bose-Chaudhuri-Hocquenghem
BER bit error rate
BP belief propagation
BPSK binary-phase-shift-keying
CNs check nodes
D-SVNF dynamic silent-variable-node-free scheduling
e-Flooding edge-based flooding scheduling
EXIT extrinsic information transfer
FER frame error rate
GE Gaussian elimination
HDPC high-density parity-check
HDD hard-decision decoding
HD-P-ABP P-ABP with hybrid dynamic scheduling
LDPC low-density parity-check
LLR log-likelihood-ratio
LRBP layered residual BP
ML maximum likelihood
P-ABP Perturbed ABP
PL-P-ABP P-ABP with partial layered scheduling
PL-P-ABP-P PL-P-ABP for product codes
PUM perturbed unreliable-bits mapping
RS Reed-Solomon
SISO soft-in-soft-out
SDD soft decision decoding
SNR signal-to-noise-ratio
TAB Turbo-oriented ABP
TG Tanner graph
URLLC ultra-reliable low-latency communications
VNs variable nodes

for its capability of correcting multiple errors and simple
encoding/decoding mechanisms. The BCH code over the base
field of GF (q) can be defined by a parity-check matrix H
over the extension field of GF (qm) which is shown below:

H =


1 βb β2b · · · β(N−1)b

1 β(b+1) β2(b+1) · · · β(N−1)(b+1)

...
...

. . .
...

1 βb+d−2 β2(b+d−2) · · · β(N−1)(b+d−2)

 ,
(1)

where β is an element of GF (qm) of order N , b any integer
(0 ≤ b ≤ N is sufficient), and d an integer with 2 ≤ d ≤ N .
If β is a primitive element of GF (qm), then the codeword
length is N = qm − 1, which is the maximum possible
codeword length for the extension field GF (qm). The parity-
check matrix for a t-error-correcting primitive narrow-sense
BCH code can be described as

Hp =


1 β β2 · · · βN−1

1 β2 β4 · · · β2(N−1)

...
...

...
. . .

...
1 β2t β4t · · · β(2t)(N−1)

 . (2)

In this paper, we consider binary BCH code, where the
channel alphabets are binary elements and the elements of the
parity check matrix are in GF (2m) (q = 2). For any integer
m ≥ 3 and t < 2m−1, a binary BCH code can be found
with the length of N = 2m − 1 and the minimum distance
d ≥ 2t+ 1, where t is the error correction power.

2) RS codes: The RS code is a BCH code with non-
binary elements, where the base field GF (q) is the same
as the extension field GF (qm), i.e., m = 1. The generator
polynomial of a t-error-correcting RS code is

g(x) = (x− βb)(x− β(b+1)) · · · (x− β(b+2t−1)), (3)

where the minimum distance d ≥ 2t+1, which is independent
of β and b. Usually β is chosen to be primitive in order to
maximize the block length. The base exponent b can be chosen
to reduce the encoding and decoding complexity.

Assuming that the coded sequence c is passed to the additive
white Gaussian noise (AWGN) channel after the binary-phase-
shift-keying (BPSK) modulation, the received signal can be
given by y = x + w, where x is the modulated signal of the
coded sequence c, and w is the noise vector with the variance
of σ2. The BP algorithm uses the channel LLR as its input,
which can be expressed as

Lch(vn) = log
p(y |vn = 1)

p(y |vn = 0)
=

2

σ2
yn, (4)

where yn is the n-th element of the received signal y, and vn
is the n-th coded bit of the sequence c, n = 1, 2, . . . , N .

B. BP Decoding with Different Scheduling Strategies

BP is a classical message passing algorithm which recur-
sively exchanges the belief information between the VNs and
CNs in a TG. Before BP is executed, the soft information of
each VN is initialized by the channel LLR given in (4). BP
iteratively propagates the belief information along the edges
of TG from CNs to VNs (denoted by Ccm→vn , called a C2V
message), and from VNs to CNs (denoted by Vvn→cm , called
a V2C message). For the typical message passing schemes
of flooding, shuffled, and layered scheduling, the updating
orders of Ccm→vn and Vvn→cm may lead to different decoding
performances.

We assume that the binary parity-check matrix Hb has a
dimension of M × N , the set of VNs that are connected to
the m-th CN is N (cm), and the set of CNs that are connected
to the n-th VN is M (vn). N (cm) \vn denotes the subset
of N (cm) without vn and M (vn) \cm denotes the subset
M (vn) without cm. The three types of fixed scheduling based
BP algorithms are described as follows.

1) Flooding BP algorithm:
• Phase 1: C2V message update.

For m = 1 : M , generate and propagate Ccm→vn .

C(i)
cm→vn = 2tanh−1

 ∏
vj∈N (cm)\vn

tanh

(
V

(i−1)
vj→cm

2

),

(5)

where the superscripts i and (i − 1) denote the i-th and
the (i− 1)-th decoding iterations, respectively.

• Phase 2: V2C message update.
For n = 1 : N , generate and propagate Vvn→cm .

V (i)
vn→cm = Lch(vn) +

∑
cj∈M(vn)\cm

C(i)
cj→vn . (6)

4

Under the flooding scheduling, the C2V messages update
simultaneously at the first half iteration, while all the V2C
messages update at the second half. These steps are iter-
ated until the maximum iteration number is reached or the
parity-check (syndrome) equations below are satisfied:

s(i)cm =
∑

n:vn∈N (m)

hm,n ĉ
(i)
n = 0, (7)

where hm,n ∈ Hi
b, 1 ≤ m ≤ M, 1 ≤ n ≤ N , ĉ(i)n ∈

ĉ(i), 1 ≤ n ≤ N , and ĉ(i) is the estimated codeword in
the i-th iteration.

2) Shuffled BP algorithm:
• For n = 1 : N , and for each cm ∈ M (vn), update the

C2V and V2C messages serially for each VN. The V2C
update follows (6), while the C2V update can be split
into two parts as:

C(i)
cm→vn = 2 tanh−1

 ∏
vj∈N (cm)

vj<vn

tanh

(
V

(i)
vj→cm

2

)
·

∏
vj∈N (cm)

vj>vn

tanh

(
V

(i−1)
vj→cm

2

) ,

(8)

where the first and the second parts represent the V2C
messages in the current i-th iteration and the previous
(i− 1)-th iteration, respectively.

3) Layered BP algorithm:
• For m = 1 : M , and for each vn ∈ N (cm), update

the C2V and V2C messages serially for each CN. The
C2V update follows (5), while the V2C update can be
described as

V (i)
vn→cm =Lch(vn)+

∑
cj∈M(vn)

cj<cm

C(i)
cj→vn+

∑
cj∈M(vn)

cj>cm

C(i−1)
cj→vn ,

(9)

where the last two terms represent the C2V messages
in the i-th and (i − 1)-th iterations, respectively. It can
seen from (8) and (9) that the shuffled and layered
schedules allow a quick access to the latest updated
message V (i)

vj→cm for vj < vn and C(i)
cj→vn for cj < cm,

respectively. That explains why shuffled and layered BP
can achieve faster convergence rate than flooding BP for
most LDPC codes.

C. Traditional ABP Algorithm

The main idea of traditional ABP decoder is to adaptively
sparsify the parity-check columns corresponding to the M
unreliable bits (which are least reliable bits ordered by their
LLR magnitudes) with the aid of GE, followed by BP decoding
in each iteration.

Let the LLR of the n-th coded bit vn at the i-th iteration be
L(i) (vn), where n = 1, 2, · · · , N . Formally, the LLR vector
consisting of the N bits can be described as

L(i) =
[
L(i) (v1) , L(i) (v2) , · · · , L(i) (vN)

]
. (10)

Before the BP decoding starts, L(0) is ini-
tialized by Lch from the channel, where Lch =
[Lch (v1) , Lch (v2) , · · · , Lch (vN)] (see (4)). In each iteration,
the ABP algorithm mainly consists of two stages: the
parity-check matrix updating stage and LLR updating stage.

In the parity-check matrix updating stage, the magnitudes
of L(i)(vn) are sorted in an ascending order. The M least
reliable bits are selected and their indices are recorded. Then
GE is applied to generate an updated parity-check matrix H̄

(i)
b ,

where the least reliable bits are mapped to the sparse part of
H̄

(i)
b such that every least reliable bit is connected with one

CN. The idea is to “box” and freeze the propagations of belief
messages associated to those least reliable bits from affecting
the remaining K ones with relatively large LLR magnitudes.

In the LLR updating stage, the flooding BP is adopted to
generate the extrinsic LLR associated with H̄

(i)
b as [19]

L
(i)
ext (vn)=

∑
cm∈M(vn)

2tanh−1

 ∏
vj∈N (cm)\vn

tanh

(
L(i)(vj)

2

).

(11)

The LLR of each bit is then updated by [19]

L(i+1) (vn) = L(i) (vn) + αL
(i)
ext (vn) , (12)

where α ∈ (0, 1] is the damping factor. L(i+1) will be sent
from the VNs to the CNs for the next iteration.

III. PROPOSED PERTURBED ABP

In this section, we propose Perturbed ABP (P-ABP) as an
enhancement over the traditional ABP. P-ABP includes (i) a
perturbed unreliable-bits mapping (PUM) scheme, and (ii) a
partial layered scheduling, or a hybrid dynamic scheduling.

A. Proposed PUM

1) Definition of PUM: The traditional ABP is designed
such that every least reliable bit is connected with one CN
only. Such a feature helps to “freeze” the flow of the weak
belief message of a least reliable bit from propagating to
any other nodes in TG during the BP decoding. However,
ABP would not be optimal if there exist some unstable bits
which have large LLRs but incorrect signs. In particular, bits
displaying large LLRs but alternating signs after every other
iteration tend to be unstable and hence should also be frozen
in message passing. Formally, the definition of PUM is given
as follows:

Definition 1: PUM refers to an operation which sparsifies
the parity-check columns corresponding to the first (M − ρ)
least reliable bits and ρ number of carefully selected bits,
especially to the unstable ones with large LLR magnitudes
and alternating signs, where ρ is called the perturbation factor
of P-ABP.

5

2) Description of PUM: Detailed algorithm of PUM is
shown in SubAlg-1 with some definitions of the bit index
sets given first. Denote by ε(i)j the bit index of the j-th lowest
absolute value in L(i). The least reliable bit index set (ordered
by their LLR magnitudes) at the i-th iteration is defined as

URL(i) =
{
ε
(i)
1 , ε

(i)
2 , · · · , ε(i)M

}
, (13)

where its complementary bit index set is

RL(i) = {1, 2, · · · , N}\URL(i) =
{
ε
(i)
M+1, ε

(i)
M+2, · · · , ε

(i)
N

}
.

(14)
URL

(i)
1 and URL

(i)
2 are index subsets of the first M−ρ bits

and the last ρ bits in URL(i), i.e.,

URL
(i)
1 =

{
ε
(i)
1 , ε

(i)
2 , · · · , ε(i)M−ρ

}
, (15)

URL
(i)
2 =

{
ε
(i)
M−ρ+1, ε

(i)
M−ρ+2, · · · , ε

(i)
M

}
. (16)

For a given perturbation factor ρ, i.e., the number of
perturbed bits, the main task of SubAlg-1 is to generate a

refined bit index set ÛRL
(i)

at the i-th iteration which spec-
ifies the M selected parity-check columns for sparsification

with the aid of GE. The refined ÛRL
(i)

can be generated
based on the LLRs of the latest two iterations (i.e., L(i) and
L(i−1)). The alternating-sign bits (from the K bits with largest
LLR magnitudes) are first detected, then their corresponding
parity-check columns are sparsified. If the total number of
alternating-sign bits g is less than ρ in the i-th iteration,
then the least reliable bits in URL

(i)
2 and some other bits

in {RL(i) \ Z(i)} with large LLR magnitudes are randomly
selected for sparsification of their parity-check columns. The
reason of random selection from URL

(i)
2

⋃
{RL(i) \ Z(i)}

rather than directly selecting the least reliable bits in URL
(i)
2

lies in that the former may help bring in more LLR diversity
into the P-ABP decoder. This is verified in Fig. 1 which shows
the comparison of PUM aided ABP with random selection
versus selecting lowest-LLR bits in URL

(i)
2 . The latter refers

to the scheme that when g < ρ, ρ − g least reliable bits in
URL

(i)
2 with lower LLR magnitudes are selected into the

refined ÛRL
(i)

2 . The compared algorithms stop to work when
a successful decoding is attained within the maximum iteration
number (imax), and the average decoding iteration number
iter num is used to estimate the decoding convergence rate.
As shown in Fig. 1, the PUM aided ABP with random
selection (our proposed scheme) outperforms the original ABP
and the compared scheme in both the frame error rate (FER)
and decoding convergence. An approach for the finding of a
good value of ρ will be presented later.

Fig. 2 illustrates the PUM process by employing a (7, 4)-
Hamming code as a simple example, where N = 7, M = 3,
and the perturbation factor is assumed to be ρ = 2. Fig. 2 (a)
shows its TG, parity-check matrix and LLRs at the i-th itera-
tion L(i) and the (i−1)-th iteration L(i−1). Fig. 2 (b) describes
how the perturbation is carried out. Firstly, L(i) are sorted in an
ascending order according to the amplitudes. In this example,
URL(i) = {2, 1, 0}, URL

(i)
1 = {2}, URL

(i)
2 = {1, 0},

10-4

10-3

10-2

10-1

FE
R

3 3.5 4 4.5 5 5.5 6 6.5 7
EbN0(dB)

1

2

3

4

5

6

ite
r_
nu
m

Fig. 1: Comparison of PUM with different selection strategies
when g < ρ for (127, 92)-BCH code with imax = 20.

SubAlg-1: Proposed PUM Algorithm

Input: L(i), L(i−1);

Output: Refined bit index set ÛRL
(i)

for
sparsification of their parity-check columns.

1 Step 1: Select ρ using off-line extrinsic information
analysis.

2 Step 2: Record the LLR signs and absolute values
before and after each decoding iteration;

3 Step 3: Identify those bits from RL(i) with LLR sign
changes and arrange their indices in descending order
of amplitudes in Z(i) = {z(i)1 , z

(i)
2 , · · · , z(i)g | g ≤ K};

4 Step 4: Select ρ bits and denote their index set by

ÛRL
(i)

2 :
5 if g ≥ ρ then
6 choose the first ρ entries from Z(i) to generate

ÛRL
(i)

2 ;
7 else if 0 < g < ρ then
8 choose all the alternating-sign bits from Z(i), and

then randomly choose ρ− g bits from

URL
(i)
2

⋃
{RL(i) \ Z(i)} to generate ÛRL

(i)

2 ;

9 else
10 randomly choose ρ bits from URL

(i)
2

⋃
RL(i) to

generate ÛRL
(i)

2 ;
11 Step 5: Generate the new refined bit index set as

ÛRL
(i)

= URL
(i)
1

⋃
ÛRL

(i)

2 .

and RL(i) = {4, 3, 5, 6}. Secondly, we detect the bits with
alternating signs in RL(i) based on L(i) and L(i−1), and then
put their indices in set Z(i). In Fig. 2 (b), only bit v3 has
LLRs with reversed signs during the latest two iterations, thus

6

Fig. 2: Illustration of the proposed PUM for a (7, 4)-Hamming code and ρ = 2: (a) TG and parity-check matrix before GE;
(b) How PUM is carried out; (c) TG and parity-check matrix after GE.

Fig. 3: Extrinsic information analysis for perturbation factor ρ of the proposed P-ABP decoder.

Z(i) = {3}. Since the number of bits with alternating signs is
one, which is smaller than ρ, then one bit, say v6, is randomly
selected from URL

(i)
2

⋃
{RL(i) \ Z(i)}. Therefore, we have

ÛRL
(i)

2 = {3, 6}. Finally, the refined bit index set whose
corresponding parity-check columns will be sparsified can be

written as ÛRL
(i)

= URL
(i)
1

⋃
ÛRL

(i)

2 = {2, 3, 6}. In

Fig. 2 (c), GE is implemented, where the bits in ÛRL
(i)

are
mapped to the sparse part of H̄

(i)
b .

3) Perturbation Factor ρ: In this subsection, we propose an
extrinsic information analysis method to find a good perturba-
tion factor ρ. For a given initial binary parity-check matrix Hb

and a priori mutual information IA, the purpose here is to find
a good ρ which leads to the maximum extrinsic information
IE as well as the smallest average iteration number iter num.
Note that the conventional EXIT chart analysis [37] generally
assumes a fixed Tanner graph. In our proposed P-ABP decoder,
however, the Tanner graph changes according to the obtained
LLRs over different BP iterations. In order to conduct the
extrinsic information analysis, we treat the whole P-ABP
decoder as a black box (as shown in Fig. 3), and do not care
how the extrinsic information is transferred among different
nodes in the intermediate parity-check matrices during the BP
iterations. We only evaluate the resultant extrinsic information
IE and iter num after the decoding process. Finally, the ρ
with the maximum IE and the smallest iter num is selected
for a certain IA.

Fig. 3 shows the signal processing flow of extrinsic infor-
mation analysis. For a given input sequence X and IA, a priori
LLR LA is generated to feed into the P-ABP decoder with a
certain ρ for extrinsic information analysis. First, the standard
deviation σA of IA is approximated as [38]

σA = J−1(IA) ≈
(
− 1

H1
log2

(
1− I

1
H3

A

)) 1
2H2

, (17)

where H1 = 0.3073, H2 = 0.8935, and H3 = 1.1064. Then,
the a priori LLR LA can be estimated with the approximation
method as [39]

LA =
σ2
A

2
(2X− 1) + σAL0, (18)

where σ2
A is the variance of IA, and L0 denotes the noise term,

which is a sequence with the initial distribution of N (0, 1).
However, the noise term is expected to have the standard
deviation of σA, thus L0 is multiplied by σA.

Finally, IE is approximated by the extrinsic LLR (LE) of
the proposed P-ABP decoder [40]

IE(L;X) =1−E
{

log2(1 + e−LE)
}

≈1− 1

N

N∑
n=1

log2

(
1 + exnln

)
≈1− 1

N

N∑
n=1

H̃b(Pen),

(19)

7

where ln denotes the n-th element of LE , i.e., the LLR value
of the n-th bit xn, Pen is the probability of xn ·sgn(ln) = −1,
i.e.,

Pen =
e+

|ln|
2

e+
|ln|
2 + e−

|ln|
2

,

and H̃b denotes the binary entropy function:

H̃b(Pen) = −Pen · log2(Pen)− (1− Pen) · log2(1− Pen).

Fig. 4 shows an example of extrinsic information analysis
for the perturbation factor ρ with (127, 92)-BCH code. Specif-
ically, in Fig. 4(a), two good values of ρ for IA = 0.75 and
IA = 0.82 are found to be 1 and 3, respectively, both of which
give rise to the maximum IE and the smallest iter num.
Moreover, the advantages of PUM aided ABP on both the
extrinsic information and convergence speed can be observed
in Fig. 4(b) for all imax ∈ {50, 500, 2000, 4000}.

The proposed extrinsic information analysis can be carried
out off-line and provides a simple but effective method to
select the perturbation factor for the decoder.

B. P-ABP with Partial Layered Scheduling (PL-P-ABP)

1) Layered Scheduling for HDPC Matrix: As introduced
in Section I, for LDPC codes, both the shuffled BP and the
layered BP have convergence rates twice faster than the flood-
ing BP by timely propagating the latest updated messages.
However, due to the special structure of parity-check matrix
H̄

(i)
b after GE, the flooding, shuffled and layered based ABP

exhibit different performances in HDPC codes, compared to
LDPC codes.

Fig. 5 shows the schematic diagrams of the ABP algorithms
with different scheduling strategies. In each ABP iteration,
the original parity-check matrix Hb of RS or BCH codes is
transformed into a systematic matrix, i.e., H̄

(i)
b , where the

diagonal sub-matrix (shown within the red dashed rectangle)
and the complementary sub-matrix are called the sparse part
and the dense part of the transformed matrix, respectively. Fig.
5(a) and Fig. 5(b) show the C2V and V2C message updating of
flooding ABP, respectively; Fig. 5(c) and Fig. 5(d) individually
describe the layered and shuffled ABP. As seen in Fig. 5(c),
both the C2V and V2C updates of the layered ABP are similar
to the row-by-row C2V update of flooding ABP (see arrows
shown in Figs. 5(a) and 5(c)). In each row of the layered
scheduling iteration, all the C2V and V2C messages of the
neighboring VNs can be updated, including the sparse part
and the dense part. On the other hand, both the C2V and V2C
updates of the shuffled ABP in Fig. 5(d) are similar to the
column-by-column V2C update of flooding ABP (see arrows
shown in Figs. 5(b) and 5(d)). Again, it is stressed that for each
VN in the sparse part, there is one neighboring CN only. Due
to the column-by-column iteration pattern, there is no V2C
update in the sparse part for both the flooding and shuffled
ABP according to (6); and only once C2V update to the single
VN in each column of the sparse part for the shuffled ABP
according to (8).

Fig. 6 shows the error correction performances and the
convergence rates of different scheduling based ABP algo-
rithms with maximum iteration numbers imax of 5, 10, and

0.5

0.6

0.7

0.8

0.9

I E

0 1 2 3 4 5 6 7

5

7

9

11

ite
r_

nu
m IA=0.75: ABP

IA=0.75: PUM aided ABP

IA=0.82: ABP

IA=0.82: PUM aided ABP

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

I E

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

ite
r_

nu
m

 /
i m

ax

imax=50: ABP

imax=50: PUM aided ABP

imax=500: ABP

imax=500: PUM aided ABP

imax=2000: ABP

imax=2000: PUM aided ABP

imax=4000: ABP

imax=4000: PUM aided ABP

(b)

Fig. 4: Extrinsic information analysis for finding good per-
turbation factor ρ of (127, 92)-BCH code: (a) with IA ∈
{0.75, 0.82} and imax = 20; (b) with IA = 0.75 and
imax ∈ {50, 500, 2000, 4000}.

20, respectively. As seen from both Fig. 6(a) and Fig. 6(b),
the layered ABP (red lines) can achieve similar or better FER
performance with lesser iteration counts, compared to the other
two scheduling algorithms. Its superiority is more noticeable
in low SNR region as imax increases. The FER performance
of shuffled scheduling is worse than the other two scheduling
strategies when imax is small.

Based on the above analysis, we adopt the layered schedul-
ing as it enjoys the fastest convergence rate and similar or
better error correction performance within a certain imax.
Accordingly, the extrinsic LLR in (11) is rewritten as

8

Fig. 5: Schematic diagrams of ABP algorithms based on
different scheduling strategies: (a) C2V update of flooding
ABP (Phase 1); (b) V2C update of flooding ABP (Phase 2);
(c) C2V and V2C updates of layered ABP; (d) C2V and V2C
updates of shuffled ABP.

L
(i)
ext (vn)=

∑
cm∈M(vn)

cj<cm

2tanh−1

 ∏
vj∈N (cm)\vn

tanh

(
L(i)(vj)

2

)

+
∑

cm∈M(vn)
cj>cm

2tanh−1

 ∏
vj∈N (cm)\vn

tanh

(
L(i−1)(vj)

2

).

(20)

2) Partial updating: In BP based decoding, a large number
of VNs may converge with large LLRs after a few iterations.
For LDPC codes, one may adopt a forced convergence strategy
to significantly reduce the decoding complexity with negligible
compromise in error correction performance [41]. For HDPC
codes with a large number of short cycles, some edges of short
cycles may be skipped by partial updating, which is helpful
to obtain an enhanced error correction performance [28].
However, straightforward application of the partial updating
strategy of e-Flooding schedule in [28] is not optimal for
HDPC codes.

In this work, we propose an improved partial updating
strategy combined with layered scheduling for HDPC codes to
pursue both fast convergence rate and enhanced error correc-
tion performance. In our proposed partial updating strategy, the
edge-state vector E is iteratively updated to determine which
edges should be updated, where

E = {εm,n | 1 ≤ m ≤M,vn ∈ N (cm)}, (21)

3.5 4 4.5 5 5.5 6
EbN0 (dB)

10-5

10-4

10-3

10-2

10-1

100

FE
R

(a)

3.5 4 4.5 5 5.5 6
EbN0 (dB)

1

2

3

4

5

6

7

ite
r_

nu
m

Layered scheduling

(b)

Fig. 6: Performance comparison of different scheduling
schemes for ABP with (31, 25)-RS code: (a) FER perfor-
mance; (b) Average iteration number required to achieve FER
shown in Fig. 6(a).

and εm,n ∈ {0, 1}. εm,n = 1 indicates that the edge ~em,n has
not converged, hence will be updated in the next iteration, and
vice versa. The improved edge-state update criteria can be de-
scribed as follows: First, all the edges related with unsatisfied
syndromes need to be updated. Next, if the related syndrome
s
(i)
cm is satisfied, but the minimum LLR magnitude ηcm of the

connected VNs is smaller than a reliability threshold T , only

the edges with indices belong to ÛRL
(i)

are updated in the
next iteration. The reliability threshold T is a function of the
average CN degree d̄c which is shown in [28]. Different from
e-Flooding [28], the amplitude comparison is not required4 in
our solution to decide which VNs need to be updated in the

i-th iteration. Only VNs in ÛRL
(i)

are selected for updating.
The detailed algorithm of the proposed PL-P-ABP is shown

in Algorithm 1. In each iteration of Algorithm 1, PUM and
GE are implemented first from Steps 3 to 5; then the edge-
state vector E is updated from Steps 6 to 14; finally the partial

4In fact, this has been done in PUM.

9

layered updating is implemented according to E , followed by
LLRs updating and termination judgment.

Algorithm 1: P-ABP with partial layered scheduling
(Proposed PL-P-ABP)

1 Initialize L(0) = Lch, imax;
2 for i = 0 : imax − 1 do
3 Sorting L(i), generate URL(i) and RL(i) ;

4 Execute PUM (SubAlg-1), return ÛRL
(i)

;

5 Execute GE on Hb, return H
(i)

b ;
6 Update the edge-state vetor E :
7 Set E = {εm,n = 0|1 ≤ m ≤M,vn ∈ N (cm)} ;
8 for ∀ cm, 1 ≤ m ≤M do
9 if s(i)cm 6= 0 then

10 for ∀ vn ∈ N (cm) do
11 εm,n = 1 ;

12 if s(i)cm = 0 & ηcm < T then

13 for ∀ vn ∈ N (cm) ∩ ÛRL
(i)

do
14 εm,n = 1 ;

15 Execute partial layered updating:
16 for m = 1 : M do
17 for ∀vn ∈ N (cm) do
18 if εm,n = 1 then
19 update C(i)

cm→vn by (5);
20 update V (i)

vn→cm by (9);

21 Update L(i) by (20) and (12);
22 Hard decision on L(i) to yield ĉ(i) ;
23 if {s(i)cm = 0|1 ≤ m ≤M} then
24 Terminate decoding;

25 Proceed to Step 3 ;

26 Return ĉ(i) ;
27 End

3) Variation of PL-P-ABP for Product Codes: The product
code, as a special concatenation of some linear block codes,
such as BCH and RS codes, is a widely recognized technique
to attain multiplied minimum distance. Constructions of a
product code can be found in [13], [42], [43]. Consider the
product code P = C1 × C2 with two component codes Cj

with parameters of (nj , kj , dj), j = 1, 2, where nj , kj and
dj denote the codeword length, the message length, and the
minimum distance, respectively. The codeword length of P is
np = n1×n2, the information bit length is kp = k1×k2, and
the minimum distance is dp = d1 × d2.

TAB [24] is a turbo-oriented ABP decoding for product
codes, in which a parity-check matrix adaptation is moved
outside of the ABP decoding loop with very few maximum
local iteration number (usually 3 to 5). Moreover, the damping
factor is not adopted in TAB. The effect of extrinsic LLR is
reduced during the a posteriori LLR computation process [42].

In this work, the proposed PL-P-ABP is further modified to
adapt to the turbo iterative decoding of product codes. Such
a modified decoding scheme, called PL-P-ABP-P, is specified
in Algorithm 2, where iglobal denotes the maximum global
iteration (i.e., outer loop iteration) number, and ilocal denotes
the maximum local iteration number of PL-P-ABP. NumSucc
is the counter of successful decoded rows or columns in each
half global iteration, which is used for termination decision.
Note that PUM and GE are moved outside of local PL-P-ABP
decoding loop. Furthermore, considering the small number of
local iterations, the LLR updating in global iterations adopts
the following rule to prevent error propagation:

L(i+1) =

{
L(i), if

∑
S
(i)
cm = 0 ;

Lch, otherwise
, (22)

where S(i)
cm is the syndrome of m-th CN of component codes.

LLRs are updated only if all the checks of component codes
in a certain row or column are satisfied; otherwise, the initial
channel information Lch will be used in the global iterations.

C. P-ABP with Hybrid Dynamic Scheduling (HD-P-ABP)

Partial layered scheduling is a form of fixed scheduling,
which means that the scheduling order/sequence can be pre-
determined off-line. Compared with fixed scheduling, dynamic
scheduling can further improve the convergence rate, by
determining the scheduling order on-the-fly during decoding
runtime. The main idea of dynamic scheduling is to first update
the message associated with the largest LLR residual (then the
second largest and so on). Formal definition of “LLR residual”
can be found in (23). This will allow the decoder to focus on
the part of TG that has not converged. Moreover, dynamic
decoding has potential to circumvent trapping sets in TG and
hence improve the error correction performance [29].

However, dynamic scheduling may lead to certain types of
greedy groups, each consisting of a few CNs or VNs which
excessively consuming the computing resources. A greedy
group is called a myopic error if it is formed by a small
number of CNs [29]. The greedy group formed by certain
VNs may also result in some silent-variable-nodes which
never have a chance to be updated in the decoding process
[30]. Although some improved dynamic schemes have been
proposed to prevent those greedy groups for LDPC codes
[29], [30], [33], little is understood on how to prevent greedy
groups for HDPC codes. The LRBP for RS codes in [35]
can efficiently avoid myopic error by sequentially updating
the C2V message, but may not be able to prevent the silent-
variable-nodes. Motivated by these issues, we propose a hybrid
dynamic scheduling for HDPC codes to circumvent both types
of greedy groups.

Our proposed HD-P-ABP is a hybrid schedule that com-
bines layered scheduling and D-SVNF scheme. The main
idea of HD-P-ABP is that the layered scheduling is applied

only once for the unreliable bits in ÛRL
(i)

before the D-
SVNF scheduling. By doing so, one can prevent both the
myopic error by layered scheduling, and the silent-variable-
nodes by D-SVNF scheduling. Moreover, it provides one more

10

Algorithm 2: Variation of PL-P-ABP for product codes
(Proposed PL-P-ABP-P)

1 Initialize n1, n2, L(0) = Lch, NumSucc = 0 ;
2 Set iglobal, ilocal ;
3 for i = 0 : iglobal − 1 do
4 for row = 0 : n1 − 1 do
5 Sorting L(i)(row, :), generate URL(i) and

RL(i) ;

6 Execute PUM (SubAlg-1), return ÛRL
(i)

;

7 Execute GE on Hb, return H
(i)

b ;
8 for j = 0 : ilocal − 1 do
9 Execute Algorithm 1;

10 Hard decision to yield ĉ(i)(row, :) ;
11 if

∑
S
(i)
cm = 0 then

12 NumSucc = NumSucc+ 1 ;

13 Update LLR: L(i+1)(row, :) by (22) ;

14 if NumSucc = n1 then
15 Terminate decoding, proceed to Step 29;

16 NumSucc = 0;
17 for col = 0 : n2 − 1 do
18 Sorting L(i)(:, col), generate URL(i) and

RL(i) ;

19 Execute PUM (SubAlg-1), return ÛRL
(i)

;

20 Execute GE on Hb, return H
(i)

b ;
21 for j = 0 : ilocal − 1 do
22 Execute Algorithm 1;

23 Hard decision to yield ĉ(i)(:, col) ;
24 if

∑
S
(i)
cm = 0 then

25 NumSucc = NumSucc+ 1 ;

26 Update LLR: L(i+1)(:, col) by (22) ;

27 if NumSucc = n2 then
28 Terminate decoding, proceed to Step 29;

29 NumSucc = 0;
30 Proceed to Step 4 ;

31 Return ĉ(i) ;
32 End

chance of C2V message updating for the unreliable bits by
layered scheduling. Those updated messages before the second
iteration are almost independent and reliable for a HDPC code
with large number of short cycles [44].

The details of HD-P-ABP are presented in Algorithm 3
with some definitions given first. The C2V message residual
R(i) (cm → vn) is defined as

R(i) (cm → vn) =
∣∣∣C(i−1)
cm→vn − C

(i)
cm→vn

∣∣∣ , (23)

where C
(i−1)
cm→vn denotes the C2V message at the (i − 1)-th

iteration. To prevent the silent-variable-nodes, a binary vector
u = {un, 1 ≤ n ≤ N} is set to record the update states
of VNs, where un = 1 indicates that the variable node vn

Algorithm 3: P-ABP with hybrid dynamic scheduling
(Proposed HD-P-ABP)

1 Initialize L(0) = Lch, C2Vupdate = 0, imax,
total edges;

2 for i = 0 : imax − 1 do
3 Sorting L(i), generate URL(i) and RL(i) ;

4 Execute PUM (SubAlg-1), return ÛRL
(i)

;

5 Execute GE on Hb, return H
(i)

b ;
6 Execute layered scheduling once for bits in

ÛRL
(i)

:
7 for m = 1 : M do
8 Generate and propagate C(i)

cm→vn with (5);

9 Execute D-SVNF scheduling:
while (C2Vupdate < total edges−M) do

10 if all {un = 1, 1 ≤ n ≤ N} then
11 Reset {un = 0, 1 ≤ n ≤ N} ;

12 Select vp : up = 0, ui = 1,∀i < p. Set up = 1 ;
13 for cm ∈M (vp) , scm = 1, vn ∈ N (cm) \ vp

do
14 Compute R(i) (cm → vn) with (23);

15 Find R(i) (ci → vj) = max{R(i) (cm → vn) |
16 cm ∈M (vp) , vn ∈ N (cm) \ vp} ;
17 Generate and propagate C(i)

ci→vj with (5) ;
18 C2Vupdate = C2Vupdate + 1 ;
19 Set R(i) (ci → vj) = 0;
20 for ca ∈M (vj) \ ci do
21 Generate and propagate V (i)

vj→ca with (9);

22 if uj = 1 then
23 Proceed to Step 10 ;
24 else
25 Set vp = vj , up = 1. Proceed to Step 13;

26 Update L(i) by (20) and (12);
27 Hard decision on L(i) to yield ĉ(i) ;
28 if {s(i)cm = 0|1 ≤ m ≤M} then
29 Terminate decoding;

30 Proceed to Step 3 ;

31 Return ĉ(i) ;
32 End

has been updated and hence should not be updated again in
the current iteration. The variable total edges represents the
total edges in the TG, and C2Vupdate is used to count the C2V
update numbers, which should not be larger than total edges.

In Algorithm 3, PUM and GE are implemented first. From

Steps 6 and 7, the C2V messages of unreliable bits in ÛRL
(i)

are updated once with layered scheduling. By doing so, all the
CNs have been updated at least once to prevent the myopic
error. Then D-SVNF scheduling is implemented from Steps
8 to 24. It is noted that D-SVNF allows a dynamic updating
order of VNs, which can not only get rid of the silent-variable-
nodes, but also prioritize the message updating of the most

11

TABLE II: Complexity analysis of fixed and dynamic scheduling based algorithms (per iteration)

Scheme Code Algorithm V2C update C2V update Residual computation Real-value comparison

fixed

RS/BCH
codes

ABP [19] E E 0 0

e-Flooding ABP [28] ≤ E ≤ E 0 ψ

PL-P-ABP (Proposed) ≤ E ≤ E 0 ≤ N +K(K − 1)/2

product
codes

TAB [24] n1E2 + n2E1 n1E2 + n2E1 0 0

PL-P-ABP-P (Proposed) ≤ (n1E2 + n2E1) ≤ (n1E2 + n2E1) 0
≤ n1(n2 + k2(k2 − 1)/2)

+n2(n1 + k1(k1 − 1)/2)

dynamic
RS/BCH

codes
LRBP [35]

(
d̄v − 1

)
E E

(
d̄v − 1

) (
d̄c − 1

)
E

(
d̄c − 1

)
E

DP-RBP [36]
(
d̄v − 1

)
E E

(
d̄v − 1

) (
d̄c − 1

)
E

(
d̄c − 1

)
E

HD-P-ABP (Proposed)
(
d̄v − 1

)
E E ≤

(
d̄v − 1

) (
d̄c − 1

)
E ≤

[
d̄v

(
d̄c − 1

)
− 1

]
E

E: total edges in the TG d̄v : average VN degree d̄c: average CN degree ψ: see [28]
n1, n2, k1, k2, E1, E2: codeword lengths, message lengths, and total edges in the TG of product component codes

probably erroneous VNs which are connected with those CNs
with unsatisfied syndromes, thus resulting in a faster decoding
convergence rate [33].

IV. COMPLEXITY ANALYSIS

In this section, the decoding complexities of the proposed
and prior-art algorithms per decoding iteration are analyzed.
Table II lists the total numbers of V2C and C2V message
updates, residual computations, and real-value comparisons in
a single decoding iteration. For product codes, “per iteration”
means per global iteration. The real-value comparison is used
to measure the scheduling complexity which can be realized in
the hardware by a full-adder circuit [45]. For fair comparison,
no HDD is considered to assist SDD in all the compared
algorithms in Table II.

For fixed algorithms, ABP [19] needs E numbers of V2C
and C2V message updates, where E denotes the number of
total edges in TG. Both e-Flooding ABP [28] and the proposed
PL-P-ABP require fewer numbers of V2C/C2V updates than
ABP, owing to partial updating strategies. The real-value
comparisons of e-Flooding ABP denoted as ψ are used for
identification of minimum-reliability VNs. The approximation
of ψ is specified in [28]. Compared with ψ, the real-value
comparisons of proposed PL-P-ABP are quite simple, only
involving N numbers of sign comparison and g(g − 1)/2
numbers of magnitude comparison in the PUM, where g is
the number of alternating-sign bits (g ≤ K). As for product
codes, since the component codes are iteratively decoded by
local algorithms (i.e., local ABP for TAB, and local PL-P-
ABP for PL-P-ABP-P), the overall V2C/C2V updates and real-
value comparisons of TAB [24] and PL-P-ABP-P are linear
combinations of those of local algorithms. Thus, the V2C and
C2V updates of PL-P-ABP-P are less complex than TAB.

For dynamic algorithms, the proposed HD-P-ABP has the
same V2C and C2V message update counts with LRBP
[35] and DP-RBP [36], i.e.,

(
d̄v − 1

)
E and E, respectively,

where d̄v denotes the average VN degree. Since LRBP
and DP-RBP update CNs with a sequential order and a
double-polling mechanism, respectively, which have fixed
numbers of residual computation and real-value comparison,
i.e.,

(
d̄v − 1

) (
d̄c − 1

)
E and

(
d̄c − 1

)
E, respectively. How-

ever, the updating order of VNs in the proposed HD-P-
ABP is dynamic, in that the residual computation and real-
value comparison is implemented on-demand only for the

CNs with unsatisfied syndromes (which are connected to the
current updating VNs). Therefore, the proposed HD-P-ABP
has less residual computational complexity than LRBP and
DP-RBP. The real-value comparison of HD-P-ABP is less than[
d̄v
(
d̄c − 1

)
− 1
]
E, which is comparable to that of LRBP and

DP-RBP.

V. SIMULATION RESULTS

In this section, we benchmark the performances of the
proposed PL-P-ABP and HD-P-ABP algorithms for RS and
BCH codes against the prior-art ABP algorithms, including
traditional ABP in [19], LRBP in [35], DP-RBP in [36], and
e-Flooding ABP in [28]. For product codes, the proposed PL-
P-ABP-P is compared with the Chase-Pyndiah algorithm in
[13], and TAB algorithm in [24].

A. Performance Comparison for RS Codes

Two types of RS codes are considered for simulation, i.e.,
rate-0.80 (31, 25)-RS code and rate-0.87 (63,55)-RS code,
both having high coding rates, short block lengths, and HDPC
matrices with large numbers of short cycles. The maximum
decoding iteration number is set to be imax = 50, which
follows the setting of [28].

Fig. 7 compares the FER performances and the average
required iteration numbers (iter num) of different algorithms
for RS codes. The green lines in Fig. 7(a) represent the lower
bounds of the maximum likelihood (ML) decoding from [46]
and [19], the purple lines show the performance of Berlekamp-
Massey decoding algorithm [8]. For the fixed schemes, e-
Flooding ABP achieves better error correction performance
with a certain loss of convergence rate compared with ABP
(due to the partial updating strategy). The proposed PL-P-ABP
can further improve the average convergence rates of ABP
by 22.76% for (31,25)-RS code and 18.5% for (63,55)-RS
code, respectively, while maintaining an error rate performance
comparable to that of e-Flooding ABP but about 0.3 dB
gains over ABP at FER of 10−5. Both the two dynamic
schemes have comparable rapid decoding convergence rates.
The proposed HD-P-ABP can improve the convergence rate of
ABP by 67%, while obtaining enhanced error rate performance
about 0.5 dB and 0.3 dB gains over ABP and LRBP at FER
of 10−5 for (31,25)-RS code, respectively.

12

4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

10-5

10-4

10-3

10-2

10-1

100
FE

R

(31,25)-RS code
(63,55)-RS code
Berlekamp-Massey [8]
ABP [19]
e-Flooding ABP [28]
PL-P-ABP (proposed)
ML lower bound [46]

fixed scheduling

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5
EbN0 (dB)

10-5

10-4

10-3

10-2

10-1

FE
R

(31,25)-RS code
(63,55)-RS code
Berlekamp-Massey [8]
ABP [19]
LRBP [35]
HD-P-ABP (proposed)
ML lower bound [46]

dynamic scheduling

=8=3

=1

=4

=8

=11

=7

=5

=2

=5

=5

=2

(a)

1

2

3

4

5

6

7

8

9

ite
r _

nu
m

e-Flooding [28]
ABP [19]
PL-P-ABP (proposed)
LRBP [35]
HD-P-ABP (proposed)

(31,25)-RS code

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
EbN0 (dB)

0

2

4

6

8

10

12

14

16

ite
r_

nu
m

e-Flooding [28]
ABP [19]
PL-P-ABP (proposed)
LRBP [35]
HD-P-ABP (proposed)

 (63,55)-RS code

dynamic scheduling

fixed scheduling

dynamic scheduling

fixed scheduling

(b)

Fig. 7: FER and decoding convergence comparisons for (31, 25)-RS code and (63, 55)-RS code with imax = 50: (a) FER
performance; (b) Average iteration number required to achieve FER shown in Fig. 7(a).

We further bench mark the proposed dynamic scheme HD-
P-ABP with LRBP [35] and DP-RBP [36] for (255,239)-
RS code and (127,121)-RS code, which is shown in Fig.
8. Considering the long codeword length and high decoding
complexity of (255,239) and (127,121) RS codes, the algebraic
HDD is also incorporated into the proposed HD-P-ABP for
faster decoding and enhanced error rate performances [35],
[36]. As shown in Fig. 8, with a maximum iteration number of
imax = 60, the proposed HD-P-ABP can achieve about 0.5 dB
and 0.1 dB of SNR gain over ABP and LRBP for (255,239)-
RS code at FER=10−3, respectively, and about 0.65 dB and
0.15 dB of SNR gain over ABP and DP-RBP for (127,121)-RS
code at FER=10−3, respectively. There are two main factors
which contribute to the performance gains of the proposed
HD-P-ABP, i.e., the proposed PUM strategy and the hybrid
dynamic scheduling.

B. Performance Comparison for BCH Codes

In this section, we apply the proposed algorithms to rate-
0.72 (127, 92)-BCH code and rate-0.5 (128, 64)-BCH code,
and compare them with the traditional ABP in [19]. The
maximum iteration number is set to be imax = 20 for FER
convergence of the proposed algorithms.

Fig. 9 shows the FER and convergence rate comparisons
for BCH codes. The green lines represent the ML simulation
results from [47]. For (127, 92)-BCH code, PL-P-ABP and
HD-P-ABP lead to 34.43% and 74.50% faster convergence
rates compared with ABP, respectively; while for (128, 64)-
BCH code, the average convergence rate improvements are

10-4

10-3

10-2

10-1

100

FE
R

ABP [19]
LRBP [35]
HD-P-ABP (proposed)

(255, 239)-RS code

4.5 4.75 5 5.25 5.5 5.75 6
EbN0(dB)

10-5

10-4

10-3

10-2

10-1

FE
R

ABP [19]
DP-RBP [36]
HD-P-ABP (proposed)

(127, 121)-RS code

=27

=22

=15

=6

=8

=11

Fig. 8: FER comparison for (255, 239)-RS code and (127,
121)-RS code with imax = 60 and algebraic HDD assistance.

severally 38.38% and 84.49%. Owing to their faster conver-
gence rates, the proposed algorithms can achieve at least 2.25
dB gains over ABP at FER of 10−5 within a small iteration
number. HD-P-ABP outperforms PL-P-ABP about 0.2-0.4 dB.

13

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

EbN0 (dB)

10-5

10-4

10-3

10-2

10-1

FE
R

ABP [19]
PL-P-ABP (proposed)
HD-P-ABP (proposed)
ML lower bound [47]

 (128,64)-BCH code

10-5

10-4

10-3

10-2

10-1

100

FE
R

ABP [19]
PL-P-ABP (proposed)
HD-P-ABP (proposed)
ML lower bound [47]

 (127,92)-BCH code

=8

=12

=18

=6

=5

=3

=3

=2

=1

=5

=7

=10

(a)

2.5 3 3.5 4 4.5 5
EbN0

0

2

4

6

8

10

12

ite
r_

nu
m

ABP [19]
PL-P-ABP (proposed)
HD-P-ABP (proposed)

(127,92)-BCH code

2 2.5 3 3.5 4 4.5 5 5.5
EbN0 (dB)

0

2

4

6

8

 it
er

_n
um

ABP [19]
PL-P-ABP (proposed)
HD-P-ABP (proposed)

 (128,64)-BCH code

(b)

Fig. 9: FER and decoding convergence comparisons for (127, 92)-BCH code and (128, 64)-BCH code with imax = 20: (a)
FER performance; (b) Average iteration number required to achieve FER shown in Fig. 9(a).

C. Performance Comparison for Product Codes

We consider the rate-0.54 (15, 11)2-RS product code. The
iteration numbers are set the same as that in [24], i.e., global
iterations of iglobal = 8 and local iterations of ilocal = 5. Fig.
10 shows the bit error rates (BER) of compared algorithms.
The green solid and dashed lines represent the Poltyrev tight
bounds on ML soft decision decoding (ML-SDD) and ML
hard decision decoding (ML-HDD), respectively, from [48]
and [49]. The proposed PL-P-ABP-P achieves about 0.5 dB
and 1.1 dB gains over TAB [24] and Chase-Pyndiah algorithm
[13] at BER of 10−6, respectively. Moreover, the proposed
PL-P-ABP-P is less than 0.5 dB from the tight bound of ML-
SDD at BER of 10−6, which is a good result not attainable
before. On the other hand, as shown in Table II, the proposed
PL-P-ABP-P also has lower decoding complexity than TAB.
Note that the local PL-P-ABP is repeatedly implemented in the
global iterations of PL-P-ABP-P, leading to faster convergence
rate than local ABP based TAB (as shown in Fig. 7(b)). Thus,
the superiority of PL-P-ABP-P on the decoding convergence
rate over TAB follows.

VI. CONCLUSION

This paper considers the SISO decoding of HDPC codes
such as BCH codes, RS codes, and product codes using
an adaptive belief propagation (ABP) algorithm. We have
observed that the traditional ABP, which sparsifies the parity-
check columns corresponding to the M least reliable bits
(where M denotes the number of parity-check bits), may not
be optimal. Our key idea, called Perturbed ABP (P-ABP), is
to include a few unstable bits with large LLR magnitudes
but incorrect signs in the parity-check matrix sparsification.

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
EbN0 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

BE
R

ML-HDD [48,49]

Chase-Pyndiah [13]

TAB [24]

PL-P-ABP-P(proposed)

ML-SDD [48,49]

(15,11)2-RS product code

=1

=1

=2

=3

Fig. 10: BER comparison of rate-0.54 (15, 11)2-RS product
code with different decoding methods, where iglobal = 8,
ilocal = 5 are set in [24] and the proposed PL-P-ABP-P.

We have proposed an off-line extrinsic information analysis
method to search the proper number and the locations of these
unstable bits.

We then augment the P-ABP with two novel scheduling
schemes, namely, partial layered scheduling or hybrid dynamic
scheduling resulting in PL-P-ABP (Algorithm 1) and HD-P-
ABP (Algorithm 3), respectively. PL-P-ABP adopts layered
scheduling and an improved partial updating strategy to skip
unreliable message passing caused by some short cycles in

14

HDPC codes, while HD-P-ABP adopts a hybrid usage of
layered scheduling and D-SVNF to circumvent multiple types
of greedy groups. To decode product code, we have extended
PL-P-ABP to PL-P-ABP-P (Algorithm 2) in a non-trivial way
to avoid error propagation between the horizontal and vertical
decoding processes.

Our simulations have shown that PL-P-ABP and HD-P-
ABP achieve gains of 2.25 dB and 2.75 dB, and convergence
rate improvement of 38.38 % and 84.49% over the traditional
ABP for the (128,64)-BCH code, respectively. Separately,
the decoding performance of the proposed PL-P-ABP-P on
(15, 11)2-RS product code is within 0.5 dB from the tight
bound of ML decoding, which is much improved compared
to Chase-Pyndiah decoding or TAB decoding.

The excellent decoding performance of proposed P-ABP
algorithms do not come with higher computational complexity.
As shown in Table II, the proposed algorithms have less or
similar decoding complexities per iteration compared to the
prior-art fixed or dynamic ABP algorithms. Coupled with the
fewer iteration numbers required to achieve a particular FER
(shown in Fig. 7 and 9), the proposed P-ABP decoders can be
concluded to have lower overall computational complexity.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, Oct. 1960.

[2] S. B. Wicker, Reed-Solomon Codes and Their Applications. Piscataway,
NJ, USA: IEEE Press, 1994.

[3] W.J.Gross, F. Kschischang, R. Koetter, and P. Gulak, “Applications of
algebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans.
Commun., vol. 54, no. 7, pp. 1224–1234, Jul. 2006.

[4] C. Xu, Y. C. Liang, Y. L. Guan, and W. Leon, “Turbo product codes
for mobile multimedia broadcasting with partial-time jamming,” IEEE
Trans. Broadcast., vol. 53, no. 1, pp. 256–262, Mar. 2007.

[5] J. V. Wonterghem, A. Alloum, J. J. Boutros, and M. Moeneclaey,
“Performance comparison of short-length error-correcting codes,” in
2016 Symposium on Communications and Vehicular Technology (SCVT),
Nov. 2016, pp. 1–6.

[6] M. Shirvanimoghaddam and et al., “Short block-length codes for ultra-
reliable low latency communications,” IEEE Commun. Mag., vol. 57,
no. 2, pp. 130–137, Feb. 2019.

[7] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultra-reliable, and
low-latency wireless communication with short packets,” Proc. IEEE,
vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[8] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[9] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 1757–1767, Sep. 1999.

[10] H. Mani and S. Hemati, “Symbol-level stochastic Chase decoding of
Reed-Solomon and BCH codes,” IEEE Trans. Commun., vol. 67, no. 8,
pp. 5241–5252, Aug. 2019.

[11] G. J. Forney, “Generalized minimum distance decoding,” IEEE Trans.
Inf. Theory, vol. 12, no. 2, pp. 125–131, Apr. 1966.

[12] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp.
170–182, Jan. 1972.

[13] R. Pyndiah, “Near-optimum decoding of product codes: block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug.
1998.

[14] N. Kamiya, “On algebraic soft-decision decoding algorithms for BCH
codes,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 45–58, Jan. 2001.

[15] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809–
2825, Nov. 2003.

[16] M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp.
1379–1396, Sep. 1995.

[17] W. Jin and M. P. Fossorier, “Towards maximum likelihood soft decision
decoding of the (255,239) Reed-Solomon code,” IEEE Commun. Mag.,
vol. 44, no. 3, pp. 423–428, Mar. 2008.

[18] J. Jiang and K. Narayanan, “Iterative soft decoding of Reed-Solomon
codes,” IEEE Commun. Lett., vol. 8, no. 4, pp. 244–246, Apr. 2004.

[19] ——, “Iterative soft-input soft-output decoding of Reed-Solomon codes
by adapting the parity-check matrix,” IEEE Trans. Inf. Theory, vol. 52,
no. 8, pp. 3746–3756, Aug. 2006.

[20] M. Baldi, G. Cancellieri, and F. Chiaraluce, “Low complexity soft
decision decoding of BCH and RS codes based on belief propagation,”
in Proc. Riunione Annuale GTTI, Jun. 2008, pp. 1–8.

[21] F. Shayegh and M. Soleymani, “A low complexity iterative technique
for soft decision decoding of Reed-Solomon codes,” in Proc. IEEE Int.
Conf. Communications (ICC’09), Jun. 2009, pp. 1–6.

[22] M. El-Khamy and R. J. McEliece, “Iterative algebraic soft-decision list
decoding of Reed-Solomon codes,” IEEE J. Sel. Areas Commun., vol. 24,
no. 3, pp. 481–490, Mar. 2006.

[23] S. Tehrani, C. Jego, B. Zhu, and W. J. Gross, “Stochastic decoding of
linear block codes with high-density parity-check matrices,” IEEE Trans.
Signal Process., vol. 56, no. 11, pp. 5733–5739, Nov. 2008.

[24] C. Jego and W. J. Gross, “Turbo decoding of product codes using
adaptive belief propagation,” IEEE Trans. Commun., vol. 57, no. 10,
pp. 2864–2867, Oct. 2009.

[25] Y. Gong, X. Liu, W. Ye, and G. Han, “Effective informed dynamic
scheduling for belief propagation decoding of LDPC codes,” IEEE
Trans. Commun., vol. 59, no. 10, pp. 2683–2691, Oct. 2011.

[26] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing
schedule for LDPC decoding,” in Proc. IEEE Conv. Electrical and
Electronics Engineers, Sep. 2004, pp. 223–226.

[27] J. Zhang and M. Fossorier, “Shuffled belief propagation decoding,” in
Proc. Asilomar Conf. Signals, Systems and Computers, vol. 1, Nov. 2002,
pp. 8–15.

[28] C. A. Aslam, Y. L. Guan, and K. Cai, “Edge-based dynamic scheduling
for belief-propagation (BP) decoding of LDPC and RS codes,” IEEE
Trans. Commun., vol. 65, no. 2, pp. 525–535, Feb. 2017.

[29] A. I. V. Casado, M. Griot, and R. D. Wesel, “LDPC decoders with
informed dynamic scheduling,” IEEE Trans. Commun., vol. 58, no. 12,
pp. 3470–3479, Dec. 2010.

[30] H. C. Lee, Y. L. Ueng, S. M. Yeh, and W. Y. Weng, “Two informed
dynamic scheduling strategies for iterative LDPC decoders,” IEEE Trans.
Commun., vol. 61, no. 3, pp. 886–896, Mar. 2013.

[31] C. Healy and R. C. de Lamare, “Knowledge-aided informed dynamic
scheduling for LDPC decoding,” in Proc. IEEE Int. Conf. Commun.
Workshop (ICCW), Jun. 2015, pp. 2212–2217.

[32] X. Liu, Y. Zhang, and R. Cui, “Variable-node-based dynamic scheduling
strategy for belief-propagation decoding of LDPC codes,” IEEE Com-
mun. Lett., vol. 19, no. 2, pp. 147–150, Feb. 2015.

[33] C. A. Aslam, Y. L. Guan, K. Cai, and G. Han, “Low-complexity
belief-propagation (BP) decoding via dynamic silent-variable-node-free
scheduling,” IEEE Commun. Lett., vol. 1, no. 21, pp. 28–31, January
2017.

[34] T. Richardson, “Error floors of LDPC codes,” in Proc. Allerton Conf.
Communication Control and Computing, vol. 41, no. 3. The University;
1998, 2003, pp. 1426–1435.

[35] H. C. Lee, G. X. Huang, C. H. Wang, and Y. L. Ueng, “Iterative
soft-decision decoding of Reed-Solomon codes using informed dynamic
scheduling,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2015, pp. 2909–
2913.

[36] H. C. Lee, J. H. Wu, C. H. Wang, and Y. L. Ueng, “An iterative soft-
decision decoding algorithm for reed-solomon codes,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), 2017, pp. 2775–2779.

[37] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–
1737, Oct. 2001.

[38] F. Brannstrom, L. K. Rasmussen, and A. J. Grant, “Convergence analysis
and optimal scheduling for multiple concatenated codes,” IEEE Trans.
Inf. Theory, vol. 51, no. 9, pp. 3354–3364, Sept. 2005.

[39] L. Hanzo and T. Liew, Turbo Coding, Turbo Equalisation and Space-
Time Coding for Transmission over Fading Channels. John Wiley and
Sons Ltd, Oct. 2002.

[40] J. Hagenauer, “The EXIT chart - introduction to extrinsic information
transfer in iterative processing,” in Proc. Conf. European Signal Pro-
cessing (EUSIPCO), Sep. 2004, pp. 1541–1548.

[41] E. Zimmermann and G. Fettweis, “Reduced complexity LDPC decod-
ing using forced convergence,” in Proc. Int. Symp. Wireless Personal
Multimedia Communications (WPMC’04), Padova, Italy, 2004, p. 15.

15

[42] R. Pyndiah, A. Picart, and S. Jacq, “Near optimum decoding of prod-
uct codes,” in Proc. IEEE Global Telecommunications Conf. (Globe-
Com’94), Dec. 1994, pp. 339–343.

[43] O. Aitsab and R. Pyndiah, “Performance of Reed-Solomon block turbo
code,” in Proc. IEEE Global Telecommunications Conf. (GlobeCom’96),
Nov. 1996, pp. 121–125.

[44] Y. Mao and A. H. Banihashemi, “Decoding low-density parity-check
codes with probabilistic scheduling,” IEEE Commun. Lett., vol. 5, no. 10,
pp. 414–416, Oct. 2001.

[45] M. B. Damle, D. S. Limaye, and M. G. Sonwani, “Comparative
analysis of array multiplier using different logic styles,” IOSR Journal
of Engineering (IOSRJEN), vol. 3, no. 5, pp. 16–22, May 2013.

[46] D. Divsalar, “A simple tight bound on error probability of block codes
with application to turbo codes,” TMO Progress Report, no. TR 42-139,
1999.

[47] M.Helmling, “Database of channel codes and ML simulation results,”
Jan. 2018. [Online]. Available: https://www.uni-kl.de/en/channel-codes/
ml-simulation-results/.

[48] M. El-khamy, “The average weight enumerator and the maximum likeli-
hood performance of product codes,” in Proc. IEEE Int. Conf. Wireless
Networks, Communications and Mobile Computing (WiMob’05), Jun.
2005, pp. 1587–1592.

[49] M. El-khamy and G. Roberto, “On the weight enumerator and the
maximum likelihood performance of linear product codes,” Jan. 2006.
[Online]. Available: https://arxiv.org/pdf/cs/0601095.pdf.

https://www.uni-kl.de/en/channel-codes/ml-simulation-results/.
https://www.uni-kl.de/en/channel-codes/ml-simulation-results/.
https://arxiv.org/pdf/cs/0601095.pdf.

	I Introduction
	I-A State-of-the-Art of ABP Algorithms
	I-B Fixed and Dynamic Scheduling for ABP Decoding
	I-C Contributions
	I-D Organization

	II Preliminaries
	II-A Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomn (RS) Code Family
	II-A1 BCH codes
	II-A2 RS codes

	II-B BP Decoding with Different Scheduling Strategies
	II-B1 Flooding BP algorithm
	II-B2 Shuffled BP algorithm
	II-B3 Layered BP algorithm

	II-C Traditional ABP Algorithm

	III Proposed Perturbed ABP
	III-A Proposed PUM
	III-A1 Definition of PUM
	III-A2 Description of PUM
	III-A3 Perturbation Factor

	III-B P-ABP with Partial Layered Scheduling (PL-P-ABP)
	III-B1 Layered Scheduling for HDPC Matrix
	III-B2 Partial updating
	III-B3 Variation of PL-P-ABP for Product Codes

	III-C P-ABP with Hybrid Dynamic Scheduling (HD-P-ABP)

	IV Complexity Analysis
	V Simulation results
	V-A Performance Comparison for RS Codes
	V-B Performance Comparison for BCH Codes
	V-C Performance Comparison for Product Codes

	VI Conclusion
	References

