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The application of deep learning techniques has led to
substantial progress in solving a number of critical
problems in machine vision, including fundamental
problems of scene segmentation and depth estimation.
Here, we report a novel deep neural network model,
capable of simultaneous scene segmentation and depth
estimation from a pair of binocular images. By
manipulating the arrangement of binocular image pairs,
presenting the model with standard left-right image
pairs, identical image pairs or swapped left-right images,
we show that performance levels depend on the
presence of appropriate binocular image arrangements.
Segmentation and depth estimation performance are
both impaired when images are swapped. Segmentation
performance levels are maintained, however, for
identical image pairs, despite the absence of binocular
disparity information. Critically, these performance
levels exceed those found for an equivalent,
monocularly trained, segmentation model. These results
provide evidence that binocular image differences
support both the direct recovery of depth and
segmentation information, and the enhanced learning of
monocular segmentation signals. This finding suggests
that binocular vision may play an important role in
visual development. Better understanding of this role
may hold implications for the study and treatment of
developmentally acquired perceptual impairments.

Introduction

In both biological and artificial systems, visual
processing supports the recovery of critical
environmental properties, such as segmentation of
figure from background, and the localization of
objects in depth. In biological systems, numerous
visual cues have been identified as supporting
both figure-ground segmentation (e.g., Wagemans,
Elder, Kubovy, Palmer, Peterson, Singh, & von der
Heydt,2012) and the measurement of depth (e.g.,
Cutting & Vishton, 1995; Howard & Rogers, 2012;
Welchman, 2016). These cues have typically formed
the basis of efforts to model the processing of depth
and object segmentation in the brain (e.g., Elder,
Krupnik, & Johnston, 2003; Elder, 2018; Hildreth
& Royden, 2011; Langer, Zheng, & Rezvankhah,
2016; Watt, Ledgeway, & Dakin, 2008). In machine
vision research, problems of scene segmentation and
depth estimation have been similarly addressed to
support multiple applications including the guidance
of autonomous vehicles (e.g., Smolyanskiy, Kamenev,
& Birchfield, 2018), object tracking (Wang, Zhang,
Bertinetto, Hu, & Torr, 2019) and enhanced scene
understanding (e.g., Garcia-Garcia, Orts-Escolano,
Oprea, Villena-Martinez, & Garcia-Rodriguez, 2017;
Huang, Matzen, Kopf, Ahuja, & Huang, 2018; Jégou,
Drozdzal, Vazquez, Romero, & Bengio, 2017; Song,
Lichtenberg, & Xiao, 2015; Wang & Shen, 2018).
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Despite these overlapping concerns, substantial
differences exist between the modeling approaches
used in biological vision research, and those used in
the development of machine vision systems. Despite
notable early exceptions (e.g., Marr & Hildreth, 1980;
Marr & Poggio, 1979), models of biological visual
processing have often focused on accounting for
the performance of human observers on an array
of psychophysical tasks (e.g., Banks, Gepshtein, &
Landy, 2004; Goutcher, 2016; Henricksen, Cumming,
& Read, 2016; Hillis, Ernst, Banks, & Landy, 2002;
Lovell, Bloj, & Harris, 2012). Many such models
also constrain themselves to consider processing in
biologically plausible terms, often focusing on the
combination of physiologically inspired receptive field
structures or other established response properties of
neurons or neuronal populations in visual cortex (e.g.,
Banks et al., 2004; Chauhan, Masquelier, Montlibert,
& Cottereau, 2018; Ecke, Papp, & Mallot, 2021;
Goncalves & Welchman, 2017; Henricksen et al., 2016;
Maiello, Chessa, Bex, & Scolari, 2020; May, Zhaoping,
& Hibbard, 2012; Watt et al., 2008). Indeed, for a
subset of physiologically inspired models, a primary
aim is to account for the functioning or organization
of particular sets of neurons, rather than to directly
solve how such neurons contribute to specific visual
or visuomotor behaviors (e.g., Bredfeldt, Read, &
Cumming, 2009; DeAngelis, Ohzawa, & Freeman,
1991).

In contrast, machine vision research has largely
focused on providing exactly these solutions. As
such, the goal for machine vision models has been to
maximize the precision and accuracy of performance,
typically in estimation and categorization tasks,
with real world, or close to real world, scenes. This
typically means that such models disregard some of
the peculiarities of biological visual processing that
are often highlighted in the use of specific stimuli
and experimental designs (e.g., Goutcher, Connelly &
Hibbard, 2018; Goutcher & Wilcox, 2016; Goutcher &
Wilcox, 2021; Harris, 2014; Kingdom, Yared, Hibbard,
& May, 2020; Wardle, Palmisano, & Gillam, 2014;
Wardle & Gillam, 2016). Yet these more targeted
examinations of specific effects in visual processing
(e.g., depth illusions, bias, etc.) can often reveal critical
information about visual signals and visual processing
that might otherwise be overlooked in the search
for solutions to real world tasks. In this article, we
show how a consideration of the visual cues for scene
segmentation and depth measurement may inform the
development of a deep neural network (DNN) model of
these processes. This model was focused on examining
the efficacy of binocular cues, which we consider in
detail below.

Binocular signals for depth estimation and
scene segmentation

Depth estimation and scene segmentation are two
fundamental problems for visual processing. Depth
estimation problems include the measurement of
egocentric distance, as well as the measurement of
relative depth and the estimation of three-dimensional
(3D) object shape (cf., Parker, 2007; Howard & Rogers,
2012; Welchman, 2016). Scene segmentation problems
can be similarly subdivided, delineating problems
of figure-ground segmentation, object boundary
classification, semantic segmentation and instance
segmentation (Garcia-Garcia et al., 2017; Long,
Shelhamer, & Darrell, 2015). In this article, we consider
the problems of estimating egocentric distance, defined
as the normalized absolute distance to the observer
for each pixel in a scene, and semantic segmentation,
defined as the production of a pixel-by-pixel map
defining the identity and location of each object in a
scene.

For depth estimation, numerous visual cues have been
identified as informative of depth structure, including
pictorial cues, such as shape-from-shading, texture
gradients, and linear perspective, and dynamic cues
such as motion parallax and structure-from-motion
(cf., Howard & Rogers, 2012; Welchman, 2016). A
similar array of cues has been proposed for scene
segmentation, including the identification of edges
defined by differences in luminance, contrast, color,
texture and/or motion (e.g. Martin, Fowlkes, & Malik,
2004; Sundberg, Brox, Maire, Arbeláez, &Malik, 2011),
as well as principles for the grouping and interpretation
of such edges (Wagemans et al., 2012).

Binocular images provide a particularly important
source of information for both depth estimation and
scene segmentation. The role of binocular signals
for depth estimation is relatively uncontroversial;
small positional differences between left and right eye
images, known as binocular disparities, are highly
informative of the 3D structure of the distal scene.
Use of this depth cue depends on the resolution of the
problem of binocular correspondence, where matching
points are found between left and right eye images.
Numerous rules, constraints and heuristics have been
proposed for correspondence resolution in biological
vision (e.g., Goutcher & Hibbard, 2010; Goutcher
& Hibbard, 2014; Marr & Poggio, 1979), many of
which are implicitly implemented in biologically
inspired algorithms that measure binocular disparity
through cross-correlation, or cross-correlation-like
processes (Banks et al, 2004; Qian & Zhu, 1997; Read &
Cumming, 2007). Such models are often derived from
the binocular energy model, where the energy at a given
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disparity is measured as the sum of quadrature pairs of
phase or position-shifted binocular simple cell receptive
fields (DeAngelis et al, 1991; Fleet, Wagner & Heeger
1996). The use of such constraints is also evident in
the measurement and optimization processes of many
classical machine vision models of depth estimation
(Hirschmulller, 2005; Scharstein & Szeliski, 2002).

In addition to their role in depth estimation,
binocular images also contain important signals
for scene segmentation. Depth differences at object
boundaries may give rise to areas of binocular
half-occlusion, where regions of an image are visible
to one eye only (Harris & Wilcox, 2009; Nakayama &
Shimojo, 1990; Tsirlin, Wilcox, & Allison, 2010). This
absence of matching regions between left and right
eyes results in changing patterns of disparity energy,
where unmatched regions are likely to be associated
with generally low levels of binocular correlation across
a range of potential disparity values, and where the
local image structure at these unmatched regions is
more likely to match neighboring “background” image
areas (Basgöze, White, Burge, & Cooper, 2020). Where
binocular disparity information is available, disparity-
defined boundaries are typically associated with large
disparity gradients (Basgöze et al., 2020; Cammack
& Harris, 2016; Goutcher et al., 2018; Goutcher &
Wilcox, 2021). Note that, for both half-occlusion and
disparity-defined boundaries, binocular segmentation
signals are the result of image-based, rather than depth
or distance-based, computations. This contrasts with
many machine vision models of segmentation, where
monocular images may be supplemented by an explicit
depth channel, rather than make direct use of binocular
imaging (Eitel, Springenberg, Spinello, Riedmiller, &
Burgard, 2015; Silberman, Hoiem, Kohli, & Fergus,
2012; Song et al., 2015, although see some early work
by, for example, Birchfield & Tomasi, 1999). The DNN
model detailed in this article makes use of binocular
image inputs to provide access to these image-based
cues.

Deep learning as a tool for understanding the
brain

Given the, often diverging, purposes of modeling
endeavors in biological and machine vision research,
one may wonder whether there are any benefits to
utilizing machine vision approaches in an attempt
to understand biological systems. Recently, this
question has come under renewed focus with the rise
of deep learning approaches in machine vision (cf.,
Lopez-Rubio, 2018; Majaj & Pelli, 2018; Richards et
al., 2019). For many researchers in biological vision,
deep learning networks provide an attractive and
powerful way to conceive of the processes occurring
in the mammalian visual system (Kriegeskorte, 2015;

Rideaux & Welchman, 2020; Rideaux & Welchman,
2021; Srinath, Emonds, Wang, Lempel, Dunn-Weiss,
Connor, & Nielsen, 2020). Like cells in the visual
pathway, from retina to cortex, the filtering operations
in DNNs make use of operations such as convolutions
and max pooling, with some model architectures (e.g.,
“AlexNet”; Krizhevsky, Sutskever, & Hinton, 2017)
exhibiting filter weights that bear similarity to the
excitatory-inhibitory receptive field structures found in
retinal ganglion cells, LGN and primary visual cortex.
The activity of these forms of DNN has been used to
draw inferences about the processing potential of areas
further along the visuo-cortical pathways (e.g., Srinath
et al., 2020). Yet many of the model architectures
used in machine vision differ significantly from the
processing pathways seen in biological visual systems.
The development of DNN models also typically
depends on supervised learning processes that differ
markedly from the kinds of feedback available to active
organisms (for detailed discussion, see Majaj & Pelli,
2018). Together, these differences suggest that, at the
very least, substantial care must be taken when drawing
comparisons between the activity in DNNs and the
processing occurring in biological systems.

There is, however, another way to make use of DNN
performance as a tool for understanding biological
vision. Rather than consider DNNs as intrinsically
informative of the processes occurring in biological
visual systems, one may instead consider such networks
as informative of the signals present in the input images.
Thus, one may consider the capacity of DNNs to
successfully perform a given task (e.g., segmentation
and/or depth estimation) as indicative of the presence
of task-relevant information within the input images
and of its encoding by the network. By extension,
one may therefore consider changes in performance
in response to a principled stimulus manipulation as
indicative of the efficacy of the manipulated stimulus
information for the model’s set task.

This approach is similar to existing model-based
analysis methods, such as Bayesian-derived ideal
observer-based measures of efficiency (Barlow,
1962; Pelli, 1990; Pelli, & Farell, 1999) and the
application of support vector machines, for example
in the classification of signal-relevant responses in
neuroimaging data (LaConte, Strother, Cherkassky,
Anderson, & Hu, 2005). It also extends image
analysis-based approaches aimed at understanding the
statistics of natural scenes (e.g., Adams, Elder, Graf, &
Muryy, 2016; Burge &Geisler, 2014; Fowlkes, Martin, &
Malik, 2007; Hunter & Hibbard, 2018) by determining
whether useful visual information is readily recoverable.
Using this approach, one may distinguish between
signals that are in principle informative for a given
task, and those that, given the complex, multi-object
structures found in natural scenes, a sensory system
can actually learn to use effectively. This can be done
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by focusing on the input sensory information, and
output task performance, without there necessarily
being any direct relationship between the properties of
the DNN hidden layers, and any particular features
of the biological visual system (López-Rubio, 2018).
Under this approach, network architectures can be
considered as hypotheses on the importance of specific
image properties for the task(s) under investigation.
In this article, we examine the learning of depth
estimation and segmentation signals from binocularly
presented, rendered, multi-object scenes and examine
the role played by binocular signals in this process.
We show that manipulation of binocular image
signals significantly impacts on model performance in
both depth estimation and scene segmentation tasks,
highlighting the importance of binocular viewing for
these tasks. We further show that inputs from scene
segmentation pathways in our network significantly
enhance depth estimation performance.

Methods

To assess the importance of binocular cues for scene
segmentation and depth estimation, we developed
a DNN that took binocular images as inputs. This
model was structured as an encoder-decoder network,
an architecture that has previously proven useful
for both segmentation and depth estimation tasks
(Garcia-Garcia et al., 2017; Wang & Shen, 2018).
Specifically, our architecture was based on the U-net
network developed by Ronneberger, Fischer and Brox
(2015). Following initial layers of feature extraction,
left and right image input pathways converged on a
common binocular stage. Subsequent processing stages
were separated into parallel pathways for segmentation
and depth estimation, producing a single set of depth
estimates for distance to the left camera, and object
identity segmentation maps for both left and right
camera images. The model was trained on both tasks
simultaneously.

A 3D rendered image training set

We constructed a training dataset of complex
scenes, each containing multiple objects. Scenes were
constructed using Blender (Blender Foundation,
Amsterdam, Netherlands), and objects were drawn
from an existing dataset of high-quality 3D renders
of real objects (Solid Sight Dataset – Hibbard, Scarfe,
Hornsey, & Hunter, 2016). Objects were scanned using
a NextEngine 3D laser scanner (NextEngine Inc., Santa
Monica, CA, USA), creating high-density 3D models
of the object. Our complex scenes each contained
24 distinct objects from the dataset, arranged in

pseudo-random positions to mimic objects distributed
across a circular flat surface of radius 5.2 m. Scanned
objects were an array of fruits, vegetables and toys,
rendered and captured under a diffuse light source.
Each scene was viewed within a hemispherical domed
“sky” covering the full circular area of the scene.
This was textured using image samples taken from
the McGill Calibrated Colour Image Dataset (Olmos
& Kingdom, 2004). Image samples were used to
ensure that segmentation was not overly simplified by
the presence of large blank areas, but instead were
comprised of image information consistent with the
statistics of natural scenes. Example images and ground
truths are shown in Figure 1.

To train our networks we generated 40 such scenes,
capturing pairs of 224 × 224 pixel RGB images from
laterally separated binocular cameras. Images were
captured for 50 frames following pseudo-random walks
around the perimeter of the scene. The inter-camera
distance was 6.5 cm, with parallel viewing geometry.
Training images were accompanied by pixel-by-pixel
ground-truth segmentation images for the left and right
camera and equivalent depth maps, obtained as part of
the image rendering process. Segmentation maps used
One-Hot encoding (cf., Cerda, Varoquaux, & Kégl,
2018) to specify categories, matched to a colourmap for
later visualization. Depth map values were normalized
to fall between values of 0 and 1, with 0 being the
value closest to the camera and 1 being the farthest
value. Depth values were therefore on a relative scale,
although, in practice, nearest and farthest distances
were equivalent between scenes. In addition to this
initial training set, we generated a further validation
set of seven scenes, containing pairs of images for
50 frames to check trained model performance. All
results reported below used a final test set of four novel
scenes not previously presented to the model. The use
of identical test images allowed for statistical analysis
using related-samples approaches.

Model architecture and training regime

Our binocular encoder-decoder model is built
on a TensorFlow 2.x and Keras backbone. In this
model, features are encoded from the RGB image
pair inputs and fed into a common binocular stage
for the simultaneous learning of segmentation and
depth from a shared feature pool. The binocular stage
is a concatenation of prior monocular filter pathways,
allowing differences in filter structure at equivalent
image locations to affect subsequent processing.
Information from this binocular concatenation
stage is fed forward into the three output branches,
left image segmentation, right image segmentation
and depth prediction. As stated above, depth is
calculated as normalized distance. This was calculated
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Figure 1. Example images from the dataset (a) arranged for crossed and uncrossed free fusion, together with (b) segmentation and (c)
normalized depth ground truths. Segmentation image colors label each object category (see Figure 4b for details). Normalized depth
values vary from 0 (closest, in red) to 1 (farthest, in violet).

relative to the left camera only. An illustration of
the model architecture is shown in Figure 2, with
full details provided in Supplementary Table S1.
There were a total of 10,901,923 parameters in
the network, with 10,889,955 trainable parameters
and 11,968 nontrainable parameters. Code for the
network is available at the following URL: https:
//github.com/StirlingChris/User_Version/tree/master.

The model consisted of five types of layers:
convolutional, batch normalization, maximum pooling,
up-sampling, SoftMax and skip connections/residual
units. We used a convolutional filter size of 3 × 3
and a stride of one for all convolutional layers. Batch
normalization is used to rescale the values of the results
between zero and one to improve model efficiency
and stability. We also utilized maximum pooling to
summarize and reduce the dimensionality of the
extracted features, decreasing the number of parameters
in the overall model and the size of the input into the
next layer. The up-sampling modules are used when
decoding the features extracted and to increase the
size of the input so that the output is the same size
as the ground-truths the model is trained on. Skip
connections have been shown to improve the passing
on of information between layers and to help preserve
spatial information (He, Zhang, Ren, & Sun, 2016;
Jégou et al., 2017), which is of particular use for our
model. We used skip connections to pass information
between modules of matching size in the encoding and
decoding ends of the network.

The output layer of the segmentation branch consists
of SoftMax neurons, which output a probability that
each pixel is a given class, producing a 224 × 224
RGB segmentation map as output. The argmax of all
the SoftMax outputs is then taken as the most likely
class for each pixel. The number of SoftMax neurons
determines the maximum number of potential outputs.
As such, we used 25 SoftMax neurons; one for each
possible object category (24 object categories, plus
background) in our dataset.

An additional feature of our model is that we
introduced connections between these segmentation
pathways and the depth branch. The depth branch
of the network has features from both segmentation
branches fed into it at 3 dimensionalities: 28 × 28, 56 ×
56 and 112× 112. These features are then fed forward to
the linear activation output unit to produce a depth map
of a 224 × 244 × 1 image as output. Note that there
were, however, no direct connections from the network’s
depth branch to the segmentation branches. This
means that any depth-based segmentation cues must be
derived directly from underlying image properties and
cannot be due to the explicit measurement of depth.
The potential benefit of these connections instead lies in
the enhancement of depth estimation processes. Several
recent psychophysical findings (Cammack & Harris,
2016; Deas & Wilcox, 2014, 2015; Goutcher et al. 2018;
Goutcher &Wilcox, 2021; Mamassian & Zannoli, 2020)
point to the importance of segmentation boundaries
in the quantitative perception of binocular depth.
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Figure 2. Illustration of the network architecture. Left and right input pathways feed into a common binocular concatenation stage,
leading to distinct segmentation and depth estimation output pathways. Full details of the operations at each network layer are
provided in Supplementary Table S1.

By explicitly manipulating the input of segmentation
information into depth measurement processes, we
tested whether our network was able to learn to make
use of such signals.

The network was trained using the 40 binocular
training scenes described in section 2.1, where each
scene contained 50 binocular, 224 × 224 pixel, RGB

frames. No data augmentation was used during
our training processes, except for vertical flips
which were tested but offered little for improving
performance while also increasing training time.
Standard data augmentation procedures were avoided,
as these alter available disparity signals and would,
therefore, affect the learning of disparity dependent
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signals. No dropout was used on any part of the
network.

The model was trained using the Adam optimizer
with learning rate α = 0.001, β1 = 0.9, β2 = 0.999,
ε = 1e -07, where α controls the step-size for weight
changes on each iteration, β1 and β2 control the decay
rate on moving averages of the first and second moment
of the estimated gradient, and ε prevents division by
zero (see Kingma & Ba, 2014, for further details).
The ReLu activation function was used on all units
except for the output neurons, which used SoftMax
and a linear activation. We trained for a maximum of
150 epochs, using a batch size of 8 image pairs and
a step size of 32. Image pairs were shuffled between
epochs. Model performance was calculated on each
iteration using a categorical cross-entry loss function
for each segmentation pathway and by finding the per
image root mean squared error (RMSE) for the depth
estimation pathway. The total loss for the model was
taken as the sum of these measures. An early-stopping
condition was specified, where training was stopped and
“best performing” weights saved if performance failed
to improve for 15 consecutive epochs. Best performance
was measured as minimized validation loss. Model
weights at each layer of the network were held constant
following the completion of these training regimes.

Binocular image manipulation

To examine the contribution of binocular image
signals to model performance, we tested our DNN
under three distinct viewing conditions. Following
training and validation, the model was presented with
test images under standard viewing conditions, identical
to the image arrangements used in training, identical
images or images swapped between left and right
cameras. This type of swapped image presentation is
typically referred to as pseudoscopic viewing, after the
device developed by Charles Wheatstone (1852). The
presentation of identical images removes all binocular
disparity and monocular occlusion cues from the
input images, while swapped presentation reverses
these signals while leaving monocular depth and
segmentation cues intact. All image manipulations were
accompanied by appropriate adjustments to ground
truth data, where these data were tied directly to the
presented image(s). Thus, for pseudoscopic viewing,
ground truth data was in direct opposition to binocular
disparity-defined depth.

As a further examination of the contribution of
binocular image signals, we also trained and tested
adapted versions of our network. First, we ran a fully
monocular version of our model, based on the U-net
architecture (Ronneberger et al., 2015) from which our
binocular network is derived. Our U-net architecture
focused on segmentation only and used only single

images as inputs. There were a total of 3,120,921
parameters in the U-net model, with 3,117,049 trainable
parameters and 3,872 nontrainable parameters. The
reduction in parameters compared with our binocular
network is due to the absence of the depth estimation
pathway and the reduction to only a single image input
and single segmentation output pathway. The models,
and number of equivalent parameters, are identical in
all other respects. As a further comparison with the
monocular U-net model, we also trained a segmentation
only version of our binocular model. This version of
our network was trained on binocular images, as with
our standard approach, but with learning guided only
by the segmentation loss functions.

In addition to training the monocular U-net model
and segmentation only version of our binocular model,
we also trained and tested our binocular model with
identical inputs only. This variation on our approach
allowed for a direct comparison of the effects of
binocular image presentation within the same model
architecture. Further comparison with the results of
the U-net model additionally allowed for an assessment
of the benefits of binocular viewing even in the
absence of binocular disparity signals, for example,
through binocular summation (Baker, Lygo, Meese, &
Georgeson, 2018; Blake & Fox, 1973; Blake, Sloane, &
Fox, 1981).

Results

Figure 3 shows example segmentation and depth
estimation outputs from the binocular image trained
network, alongside ground truth images. Segmentation
performance, including object identification, was highly
accurate for binocular images, as was the estimation
of depth at each image location. Simultaneous
segmentation and depth estimates were also produced in
near real-time, providing output images in a processing
time of 136 ms (∼8 frames on a 60Hz display). Timing
estimates were obtained from a machine running the
network with a GeForce GTX 1080 GPU.

Depth estimation performance

To quantify model performance for standard
binocular image presentation, depth estimation errors
were taken as the difference between estimated and
ground truth depth values for each point in the image.
Errors could vary between ±1, with negative errors
indicating over-estimation of relative depth, and
positive values indicating under-estimation. Depth
errors were calculated on a per-pixel basis, for all images
to provide measures of the distribution of depth errors
across the test image set. Mean depth errors were 0.016,
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Figure 3. Model outputs for an example image (a), provided with comparison to ground truth images for (b) scene segmentation and
(c) depth estimation. Outputs, images, and ground truths are shown for the left image only, because this was the basis for all depth
calculations.
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Figure 4. (a) Model segmentation performance for each object, plotted as the Hit rate against the Object False Alarm rate. Better
segmentation performance is indicated by points lying closer to the top-left corner of this graph. Curves plotting differing levels of
performance as dʹ scores are shown for comparison. (b) Average dʹ scores for each object in the dataset. Error bars show standard
deviations, colors are matched to datapoints shown in (a).

with a standard deviation of 0.052, indicating a slight
bias for positive (i.e., underestimation) errors. As a
further summary of depth errors, we also calculated
the average unsigned error (RMSE), which was 0.053
across all images, with a standard deviation of 0.013.

Scene segmentation performance

Pixel-by-pixel segmentation accuracy averaged 98.8%
across all 100 test images (min 89.6%, max 99.8%). To
further quantify the model’s segmentation performance
under standard binocular image presentation, we
calculated the proportion of pixels on each image
correctly identified as belonging to each object class,
plus a “background” class (the Hit rate). In addition, we
calculated the proportion of pixels mistakenly identified
as belonging to each class (the False Alarm rate). There
are multiple potential metrics for calculating these False
Alarm rates. One may consider the proportion of pixels
misidentified as belonging to the target object, either
for all non-target pixels (including background pixels),
or for non-target pixels that belong to another object
(i.e., non-target, non-background pixels). We used this
latter, more conservative, measure in all segmentation
analyses. We refer to this as the Object False Alarm rate.
These results are plotted in Figure 4a.

Segmentation hit rates were typically high (averaging
79% across objects), with consistently very low object
false alarm rates, averaging 0.3%. False alarm rates were
highest for the background pixels, indicating that target
pixels were typically misidentified as belonging to the
background. These values were summarized as dʹ scores
and are plotted for each object in Figure 4b. Average dʹ

values of 4.4 were found across objects and images. This
value can be understood as quantifying the strength of
the classification decision information available to the
model, relative to the standard deviation of the noise in
these decisions.

Quantifying the contribution of binocular
signals

The use of different binocular viewing conditions
allows for a more detailed understanding of the
contributions of binocular signals to depth estimation
and scene segmentation performance. We presented
our model with correctly arranged left-right images,
identical images or left-right swapped, pseudoscopic
images. These latter manipulations have the effects
of, respectively, removing or reversing binocular
depth signals. Mean depth errors and segmentation
performance for these models are shown in Figure
5. We also compared segmentation performance to a
version of the monocular U-net model (Ronneberger et
al., 2015), trained on our dataset. As noted in section
2.3, the segmentation pathway for our model used
equivalent processing stages to the U-net model, except
for the presence of the binocular convergence stage. As
such, it offers a clear comparison for the benefits of
binocular presentation for both learning and testing.

Depth estimation errors (Figure 5a) increased from
average RMSE values of 0.053 across all 100 test
images for the standard model, to 0.072 and 0.110
for identical image and swapped image conditions,
respectively. These differences were significant on
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Figure 5. (a) Depth errors (RMSE) for binocular presentation, identical images, and swapped images. Errors increase for non-standard
binocular presentation. (b) Segmentation performance plotted as dʹ scores across all objects for the same presentation arrangements
as in (a), plus the monocular U-net segmentation model. Reductions in dʹ scores show poorer segmentation performance for
swapped and U-net trained models, compared to standard binocular presentation. Error bars show standard errors on the mean.

Bonferroni corrected, two-tailed, related-samples t-tests
(t99 = 14.97, p < 0.001, Cohen’s d = 1.5; t99 = 16.78,
p < 0.001, Cohen’s d = 2.0; t99 = 11.44, p < 0.001,
Cohen’s d = 1.4, for standard-same, standard-swapped,
and same-swapped comparisons, respectively). These
results indicate that our model is able to use monocular,
pictorial depth cues, while also showing sensitivity to
eye-of-origin dependent binocular image differences.

The segmentation pathway shows a similar pattern
of results (Figure 5b): dʹ values were 4.44 for the
standard model, 4.49 for identical images and 2.98
for swapped images. Analysis with related-sample
t-tests, using mean dʹ values for each object showed
significant differences between standard and swapped
presentation (t24 = 17.05, p < 0.001, Cohen’s d = 3.4)
and between standard and identical image presentation
(t24 = 3.35, p = 0.003, Cohen’s d = 0.7). These results
indicate that swapped binocular image presentation
led to an impairment in segmentation performance
while also, surprisingly, showing a slight preference
for monocular presentation. This was not the case,
however, for testing with the monocularly trained
U-net model, where dʹ values averaged only 3.34.
U-net performance contrasts markedly with the
d’ values obtained when our binocular model was
presented with identical images. Differences were again
significant on a two-tailed, related-samples t-test (t24
= 19.41, p < 0.001, Cohen’s d = 3.9). This result
suggests that binocular presentation during training is
beneficial for the learning of monocular segmentation
signals.

In addition to comparing our model’s performance
against an equivalent, purely monocular, model, we also
conducted a further comparison, where our binocular
model was trained on identical images and tested either

against identical or against standard binocular images.
Depth estimation performance for this identical image
trained model is shown, compared to our standard
model performance in Figure 6a. Depth estimation
errors increased for the identical image trained model,
compared to our standard model, with RMSE values
rising from 0.053 to 0.059 under identical image
testing and 0.063 under binocular image testing. These
differences were significant on related-samples t-tests
(t99 = 3.14, p = 0.002, Cohen’s d = 0.3; t99 = 4.77,
p < 0.001, Cohen’s d = 0.5). The difference in depth
estimation performance for the identical image trained
network was also significant for identical, compared
with binocular image testing (t99 = 3.66, p < 0.001,
Cohen’s d = 0.4). Note that depth estimation errors
were still much lower than for identical image and
pseudoscopic viewing in the standard model (see Figure
5a), indicating a dependence on pictorial depth cues
in the identical image trained model and further
demonstrating the impact of binocular depth cues in
our standard network.

Segmentation performance for the identical image
trained network is shown under both identical image
and binocular viewing conditions in Figure 6b. When
tested with identical images, this network showed
impaired segmentation performance compared to our
standard binocular image trained network, with mean
object d’ values declining from 4.44 to 4.22 (t24 = 5.38, p
< 0.001, Cohen’s d = 1.1), although these performance
levels were significantly greater than found with the
monocular U-net (t24 = 11.42, p < 0.001, Cohen’s d =
2.3). Segmentation performance for our standard model
was also better than for the identical image trained
model, tested under binocular viewing conditions with
mean d’ values for the latter falling to 4.14 (t24 = 5.52,
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Figure 6. (a) Depth errors (RMSE) for the standard model, plus a version of the model trained and tested on identical image pairs, and
one trained on identical image pairs and tested on standard binocular pairs. (b) Segmentation performance plotted as dʹ scores for
the same sets of models as in (a), plus the monocular U-net model and a version of the network trained on the segmentation task
only. Error bars show standard errors on the mean.

p < 0.001, Cohen’s d = 1.1). Unlike depth estimation,
there was no significant difference in dʹ values for the
identical image trained model under these two viewing
conditions (t24 = 1.80, p = 0.085, Cohen’s d = 0.4).

The improved performance of our standard model
compared to the identical image trained model
provides further support for the benefits of binocular
image viewing in both depth estimation and scene
segmentation. Yet, the improved segmentation scores
for this identical image trained model, relative to the
monocular U-net model shows that binocular viewing
is not the only driver of performance in our network.
While one possibility is that these improvements were
due to factors such as binocular summation (Baker
et al., 2018; Blake & Fox, 1973; Blake et al., 1981),
this is not consistent with the lack of impairment
in performance when the identical image trained
network was tested with standard binocular image
pairs. To further examine this issue, we investigated a
remaining difference between the monocular U-net
model and our binocular network, the presence of a
simultaneous depth estimation pathway. We compared
the performance of our standard binocular network
to a network trained on the segmentation task only
(see Figure 6b). Although this binocular trained
segmentation network performed substantially better
than the monocular U-net, with average dʹ values of
4.25, compared to 3.34 (t24 = 10.54, p < 0.001, Cohen’s
d = 2.1 on a related samples t-test), this was still lower
than average dʹ values found for our standard network
(t24 = 5.49, p < 0.001, Cohen’s d = 1.1). These results
suggest that simultaneous training on depth estimation
and segmentation is itself beneficial for segmentation
performance.

Segmentation and depth estimation

The preceding comparisons of depth estimation
and segmentation performance show clear benefits of
binocular presentation in both the training and testing
of our network. The architecture of our network,
with its lateral connections providing inputs from
the segmentation pathways into the depth estimation
pathway, also allowed for a further comparison,
examining the potential role of segmentation
information for depth estimation. To examine this
relationship, we trained and tested our network under
an additional condition where these lateral connections
were removed. This left the segmentation pathways
unchanged but led to significant impairment of depth
estimation performance (Figure 7a). RMSE values
across images rose from 0.053 with lateral connections,
to 0.078 without (t99 = 10.73, p < 0.001, Cohen’s d =
1.1). Notably, depth estimates from the model without
lateral connections varied more smoothly over space,
with an absence of sharp depth edges between objects
(see Figure 7b).

Discussion

In this article, we have reported the results of a
new DNN model for simultaneous depth estimation
and scene segmentation, using binocular image
inputs. This model shows selectivity for binocular
eye-of-origin signals, a necessary prerequisite for the
encoding of both binocular disparities and monocular
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Figure 7. (a) Depth errors (RMSE) for the standard binocular model, as well as a version of the model that removed lateral
connections between the network’s segmentation pathways and the depth estimation branch. Error bars show standard errors on the
mean. (b) An example depth estimation output from the “no lateral connections” model, with accompanying ground truth. Depth
estimates were visibly smoothed over space compared with those from the standard binocular model (see Figure 3c).

occlusions. Here, we consider what may be learned
about the function of biological visual systems from the
performance of this model.

Binocular image training enhances monocular
segmentation

There has been significant debate among researchers
in biological vision as to the adaptive significance of
binocular vision for real world tasks (cf. Heesy, 2009).
Although benefits of binocular viewing have been
demonstrated in laboratory situations for a number of
tasks, including color constancy (Yang & Shevell, 2002),
object tracking and visual search (Dunser & Mancero,
2009; Nakayama & Silverman, 1986; Vishwanathan &
Mingolla, 2002), and the perception of shape, depth,
distance and heading direction (Brenner & van Damme,
1999; McCann, Hayhoe, & Geisler, 2018; Macuga,
Loomis, Beall, & Kelly, 2006; Scarfe & Hibbard, 2006;
van den Berg & Brenner, 1994), a number of factors
suggest that its benefits may be more limited in natural
environments. One commonly raised issue is that
deficits in binocular vision are relatively commonplace.
Coutant and Westheimer (1993) found that 2.7% of a
student population sample had stereoacuity thresholds
of greater than 2 arcmin, with 20% unable to meet
a stricter stereoacuity criterion of 30 arcsec. Other
studies have shown dominance for non-binocular visual
cues under multi-cue presentation conditions (Allison
& Howard, 2000a; Allison & Howard, 2000b; Hill &
Johnston, 2007; van Ee, van Dam, & Erkelens, 2002),
including in scene recognition tasks (Valsecchi, Caziot,
Backus, & Gegenfurtner, 2013).

Here, we provide evidence for the importance of
binocular signals for depth estimation and scene
segmentation tasks, while also supporting the idea that,
for segmentation at least, we typically depend upon
the information from monocular signals. For depth
estimation, binocular image presentation resulted in
lower average errors than either monocular presentation
or pseudoscopic presentation. These results clearly show
the benefits of adding correctly arranged binocular
signals for estimating depth. In addition, however,
they also show that the reversal of these binocular
signals, although effective in impairing performance,
does not entirely override the information provided
by monocular depth cues. In this respect our model
behaves in a manner consistent with human observers,
where pseudoscopic viewing typically only fully reverses
depth in abstract stimuli (van den Enden & Spekreijse,
1989). It should be noted, however, that pseudoscopic
perception is not particularly well understood with
regards to how binocular and pictorial depth cues
interact to determine perceived three-dimensional
structure. Our model may therefore prove useful in
allowing for the generation of predictions on perceived
depth and shape under these viewing conditions.

This benefit for binocular presentation extends
to scene segmentation tasks. Model segmentation
performance for standard binocular image presentation
surpassed that found for pseudoscopically presented
images. This effect of presentation order shows
that the binocular signals encoded by our network
are eye-of-origin dependent, a prerequisite for any
subsequent measurement of binocular disparity or
monocular occlusion. Yet our results are not simply an
indication that binocular information is, by default,
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critical or beneficial for this task. Two main results
complicate this issue. First, identical image presentation
offers a small, but significant, benefit over binocular
presentation for our model. Second, this benefit for
images without binocular disparity information does
not extend to a purely monocular version of the
segmentation model or to a model trained on identical
image pairs.

To understand these issues, one must consider
the nature of both monocular and binocular object
boundary signals. For binocular cues, although
monocular occlusions are effective for signaling object
boundaries, they also give rise to the problem of
ascribing both depth and object identity to monocular
regions. These difficulties could underpin the slightly
poorer performance of our model under binocular,
compared with identical image, presentation.

A consideration of monocular boundary cues can
help to explain the differences in performance between
our model, under identical image conditions, and the
equivalent, purely monocular, U-net segmentation
model. The primary difficulty faced by monocular
segmentation processes, is the requirement to
differentiate between pattern edges and object edges.
As noted, binocular presentation offers a powerful
means to resolve this problem through the addition
of binocular disparity-defined edges and monocular
occlusions. The benefits of these binocular signals are,
potentially, twofold. First, they can directly contribute
to boundary detection, as under standard binocular
viewing conditions. They may, however, also offer
systems a means to learn how to distinguish between
monocular signals associated with boundary edges and
pattern edges. In this way, binocular signals may hold
adaptive value not just as segmentation signals in and of
themselves, but as a means to support the development
of such abilities using other image cues. This finding
offers potential insight into developmentally acquired
perceptual impairments, such as amblyopia, where
disruptions in the development of binocular vision lead
to perceptual deficits in both amblyopic and fellow eyes
(Parker, Smith, & Krug, 2016; Simmers & Bex, 2004;
Simmers, Ledgeway, Hess, & McGraw, 2003). Relatedly,
impairments in scene segmentation abilities have also
been reported in human patients recovering from early
blindness, with signals from motion-defined boundaries
seemingly critical for the development of these abilities
(Ostrovsky, Meyers, Ganesh, Mathur, & Sinha, 2009).

Learning depth estimation supports enhanced
segmentation

By manipulating the arrangement of binocular image
pairs in the training and testing of our network, we have
shown that the binocular viewing of scenes enhances

segmentation performance and supports the further
development of monocular segmentation capabilities.
Binocular viewing offers these enhancements whether
compared to a purely monocular model, or to a
model with the same binocular architecture, trained
on identical image pairs. Although our monocular
comparison model shows poorer segmentation
performance than the identical image trained model,
further comparison with a version of our binocular
model trained only on the segmentation task suggests
that this may be due to a beneficial effect of our dual
task training. This suggests that training on both
depth estimation and scene segmentation leads to
depth-related differences, through the feedback of depth
errors into the initial left-right and binocular encoding
layers, with these differences acting as beneficial cues for
segmentation. This raises the intriguing possibility that
information relevant for the scene segmentation task
is learned by the network only by virtue of its initial
relevance for another task.

Scene segmentation in the brain

Although any attempts to compare DNN
architectures and model weights to human and
nonhuman animal physiology should be made with
extreme caution (Lopez-Rubio, 2018; Majaj & Pelli,
2018), it is worth considering where similarities do
exist and how this may inform our knowledge of
biological visual systems. Critically, we do not view any
similarities between the structure of our network and
mammalian physiology as essential for our findings
to hold relevance for our understanding of biological
visual systems. Although the learning that occurred
within our network need not necessarily translate to
the information learned by biological systems, the
benefits of binocular viewing for segmentation and
depth estimation in our network may still be considered
as hypotheses on the likely pattern of sensitivities to be
found in such biological systems. The model reported
here offers the possibility for two comparisons to
biological vision. First, the architecture of our network
maps onto several known aspects of the physiology
of mammalian visual systems. As in such biological
systems, our network begins with monocular encoding
stages, followed by a point of binocular convergence.
After this point the network proceeds along specialized
pathways for segmentation and depth estimation.

This specialization is similar, in some respects, to the
divergence of dorsal and ventral pathways in humans
(cf., de Hann & Cowey, 2011). Although binocular
processing occurs in multiple areas of the human brain,
it does so in very different ways with, for example,
ventral areas V4, TE and IT showing selectivity for
both surface segmentation and descriptors of surface
shape (Verhoef, Vogels, & Janssen, 2016). That our
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model is able to simultaneously learn and perform
both segmentation and depth estimation tasks shows
the suitability of our common encoding pathway as
a generalized stage of visual processing. As noted in
section 4.2, there may be additional benefits to these
common early processing stages, where selectivity
for signals may develop in response to specific task
requirements but may also then prove useful for a range
of other tasks.

A second point of comparison between our network
and human vision comes in the use of connections
between our specialized segmentation and depth
estimation output pathways. These connections
enhance depth estimation performance, with RMSE
values for depth estimation increasing significantly
in their absence. Depth estimates without lateral
connections were also notably poorer across object
boundaries, with a visible smoothing of depth between
objects. Not only do these lateral connections map
onto those found between functionally specialized
areas in the mammalian brain (Cloutman, 2013; de
Haan & Cowey, 2011; Schenk & McIntosh, 2010),
their measured effects also provide a qualitative match
to the psychophysical behavior of human observers
in a number of depth perception tasks (Cammack &
Harris, 2016; Deas & Wilcox, 2014; Deas & Wilcox,
2015; Goutcher et al., 2018; Goutcher & Wilcox,
2021; Mamassian & Zannoli, 2020; Wardle & Gillam,
2016). This psychophysical work has demonstrated the
importance of segmentation boundaries on perceived
depth, with Mamassian and Zannoli (2020) suggesting
that object boundaries are used to delimit depth
averaging processes. The benefits of lateral connections
between segmentation and depth estimation pathways
in our network support this suggestion.

Conclusions

The novel DNN reported in this article shows
high levels of accuracy in scene segmentation and
depth estimation tasks and is capable of learning
and performing these dual tasks simultaneously. By
manipulating the arrangement of binocular images,
we have shown that this model encodes eye-of-origin
information, necessary for the encoding of both
binocular disparities and monocular half-occlusions.
Results from these manipulations show that binocular
signals are informative for both tasks and may play
a role in supporting the learning of monocular
segmentation signals. They further show that the
simultaneous learning of depth estimation and
segmentation tasks may in itself be beneficial for
the development of sensitivity to depth-related
segmentation cues. These findings provide a further
example to illustrate the usefulness of deep learning
approaches as a tool for understanding biological

vision, providing evidence on where and how stimulus
information can be used and recovered by suitable
network structures.

Keywords: deep learning, binocular vision,
segmentation, depth perception
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