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1. Summary 
 

 

Natural Language Processing was adopted in this study to model data driven discourses in the crypto 

economy. Utilising topic modelling, specifically Latent Dirichlet Allocation (LDA), a text analysis of 

cryptocurrency articles (N=4218) published from over 60 countries in international news media, 

identified key topics associated with cryptocurrency in the international news media from 2018 to 

2020. This study provides empirical evidence that 18 key topics were framed around the following 

key macro discourses: crypto related crime, financial speculation and investment, financial 

governance and regulation, political economy (with reference to specific geographical areas), 

cryptocurrency actors and communities and specific crypto projects and their respective markets. 

Analysis showed that the identified cryptocurrency macro discourses may have had a ‘social signal’ 

effect on movements in the crypto financial markets, including potential effects of crypto price 

volatility. Further in some cases, that the source of the news may have amplified the effect, 

particularly in terms of geographical region, relative to broader market conditions. 
 

 

2. Introduction 
 

Cryptocurrency research has primarily focused on Bitcoin, where there has previously been extensive 

research in analysing the link between Google search volumes and Bitcoin metrics (1–8) and further 

research developed on the words and sentiment that underly search terms (9).  Whilst past research 

has focused on Google searches and specifically social media, this article shows that alternatively, 

media such as digital news articles from online news outlets (for example such as Bloomberg and FT 

among others), can identify not only popular single worded terms, but contextualised cryptocurrency 

market sentiment too.  By linking words to other common and popular crypto-economic terms (or 

topics), narratives emerge that express a range of micro ideologies and speculation. The combinations 

of these narratives, cumulate into macro discourses within the crypto economy, providing a clearer 

and broader view of overall sentiment. 

 

Bitcoin was the original blockchain.  It was the first of a peer to peer digital currency that eliminated 

the need for a third party (such as a central bank) to validate transactions, by utilising a distributed 

ledger system where the decentralised consensus mechanism - Proof of Work - ensured validity and 

trust within the network (10).  Since Bitcoin’s inception, other cryptocurrencies have entered the 

crypto market. As of February 2021 there were 4,501 crypto coins (11). Cryptocurrencies, or ‘crypto-
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assets’ as they are commonly referred to (12), are along with Bitcoin, part of a wider crypto market 

(13). It is a market that is growing in capacity of coins and in trading volume (11) and is an economy 

with a growing market capital (14).   

 

 

2.1 Why News Media? 
 

This paper puts forward that crypto market activity should not be restricted to studies of Bitcoin but 

must consider the array of other cryptocurrencies on the market with macro discourses in the news 

and their interrelated sentiment connections.  What discourses the media present to their audiences 

(its construction) and how the news media presents cryptocurrency (its analysis), are as important and 

influential to the crypto-economy, as Google searches and social media Bitcoin metrics (15). 

Research has confirmed the suggestion that movements in financial markets, and movements in 

financial news are intrinsically interlinked (16).   

 

The function of the media, is a source of information and sentiment in the financial market (17). 

Bloomberg or Reuters for example, as reputable financial media outlets can affect the markets as 

investor behaviour can be in response to company news and events which gain high media coverage 

(18,19).  Further, social signal effect research of the social media platform Twitter, has revealed that 

increases in opinion polarization and exchange volume precede rising Bitcoin prices, and that 

emotional valence precedes opinion polarization and rising exchange volumes (6). Media coverage 

that exhibits varying optimism and pessimism may be captured through the fixed effects, as well as 

article length, writing style, and availability of information to different journalists (17).  

 

Sentiment analysis in the media can be particularly useful for computational finance, where digital 

traces of human behaviour offer a great potential to drive trading strategies (6).  This research 

therefore examines the news media and their reporting of cryptocurrency to identify popular 

discourses and underlying sentiment. By undertaking text analysis of N=4218 cryptocurrency articles 

published between 2018 and 2020, discourses in the international news media from over 60 countries 

are modelled utilising a Natural Language Processing method, specifically Latent Dirichlet 

Allocation (LDA) Topic Modelling (20). LDA is adopted to identify cryptocurrency discourses that 

may have a social signal effect on movements in the financial markets. 

 

 

2.2 Contributions of this article 
 

This study provides empirical evidence that key topics associated with cryptocurrency in the 

international news media from 2018-2020, are framed around the following key macro discourses: 

crypto related crime1, financial speculation and investment2, financial governance and regulation3, 

political economy (with reference to specific geographical areas)4, cryptocurrency actors and 

communities5 and specific crypto projects and their respective markets6.  

 

This research builds upon Burnie and Yilmaz’s (9) research into social media signals and Bitcoin 

metrics, but instead of determining which words on reddit matter as the bitcoin pricing dynamic 

 

 

 

 

 

 
1 (topics 1, 4, 5, 8, 13 and 14). 
2 (topics 5 and 11). 
3 (topics 3, 5, 8, 11). 
4 (topics 5 and 17). 
5 (topics 7 and 9). 
6 (topics 6 and 9). 



 

 

changes from one phase to another, this study takes a complementary next step looking at the broader 

perspective of overall sentiment in terms of which words matter7, and are involved in supporting 

macro discourses in international news media. Where past research has shown a clear connection 

between the role of the media and the market i.e. commonly used words and market behaviour (16–

19), discourses where words present context may have differing effects. This research identifies those 

key crypto discourses in a novel, and yet unexplored way.  

 

      2.3 LDA Topic Modelling 
 

Latent Dirichlet Allocation (LDA) topic modelling is one technique in the field of natural language 

processing text mining, that is a process to automatically identify topics present in a text object and to 

derive hidden patterns exhibited by a text corpus, based on probabilistic latent semantic analysis (21).  

Using Bayesian inference, a topic therefore, is a distribution over a fixed vocabulary, where 

unobserved (or latent) topics are assumed to be generated first before documents. Documents are 

generated from a mix of topics in different proportions, in this way it is understood as a generative 

process (22).  A key assumption of LDA topic modelling is that documents can exhibit multiple 

topics but only the number of topics is specified in advance, it is hence a generative process.   

 

Blei (22) argued for the use of topics modelling, claiming that the “utility of topic models stems from 

the property that the inferred hidden structure resembles the thematic structure of the collection”. 

Adopting probabilistic topic models for text analysis as an algorithmic solution, can be therefore very 

useful for the purpose for document clustering, organizing large blocks of textual data, information 

retrieval from unstructured text and feature selection (23).  This study adopted computational text 

analysis and human qualitative interpretation for the discourse analysis.  In the first instance, the 

quantitative work was performed using the Python programming language utilising Natural Language 

Processing (NLP) to undertake the unsupervised learning technique of Latent Dirichlet Allocation 

(LDA) (24) topic modelling.  No topics were given or ‘fixed’ to the model, as would have been the 

case in an alternative supervised approach.   

 

The unsupervised approach was used in this crypto study for finding and observing co-occurring 

groups of words, understood as thematically coherent “topics” in large clusters of texts. Topics can 

be defined as a repeating pattern of co-occurring terms in a corpus; however, the name can be 

misleading.  As Jacobs & Tschötschel (2019, p. 471) explained: “topics are clusters of words that 

reappear across texts, but the interpretation of these clusters as themes, frames, issues, or other latent 

concepts (such as discourses) depends on the methodological and theoretical choices made by the 

analyst”.  Iterative qualitative interpretation was then required from the researcher to undertake a 

discourse analysis, which presented as the most frequently co-occurring across the corpus; 

understood as the key topics.  Both computationally and qualitatively, the data was pre-processed 

before analysis, which broadly involved cleaning and text processing the data.  
 

 

 

 

 

 

 

 

 

 

 

 

 
7 This paper does not intend to undertake a strict sentiment analysis in terms of methodology but aims to provide a 

conceptual public understanding of cryptocurrency sentiment in the loosest way; or to put it another way, in a more 

general ‘every-day language’ sense. 
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3. Data Preparation 

3.1 Data Collection and preparation 

 

To construct a suitable corpus of documents for analysis, the researcher manually collected and 

downloaded media articles in the form of text files from traditional media outlets. The articles were 

retrieved from across 60 countries globally, covering the broad theme of ‘cryptocurrency’. 4218 news 

articles written in the English language were drawn from the Nexis news database and ‘News API’ 

(26), using the query ‘cryptocurrency’.  

 

3.2  Natural Language Pre-Processing Stage 

After the text had been collected and collated, the text was pre-processed in Python using the SpaCy 

(27), Gensim (28) and Pandas (29) python packages. Pre-processing was a prerequisite prior to 

conducting the Natural Language Processing (NLP) on the text. The NLP stage essentially consisted 

of four broad steps; 1.  to load the input data (crypto text articles), 2. to pre-process the data, 3. to 

transform documents into bag-of-words vectors and finally 4. to train the LDA model. 

SpaCy is a free, open-source library for advanced Natural Language Processing (NLP) in Python.  

SpaCy explains that it is “...designed specifically for production use and helps you build applications 

that process and “understand” large volumes of text. It can be used to build information extraction or 

natural language understanding systems, or to pre-process text for deep learning” (27). SpaCy was 

used to ‘parse and tag’ a given document. This was where the trained pipeline and its statistical 

models were applied, enabling SpaCy to make predictions of which tag or label was most likely to 

apply in the context. One of SpaCy trained components included binary data that was produced by 

showing the corpus enough examples for it to make predictions that generalized across the language 

– for example, a word following “the” in English was most likely to be a noun. 

 

Part of the pre-processing stage was to train the phraser which automatically detected common 

phrases (multiword expressions) from a stream of sentences.  This process included lemmatizing the 

text articles (assigning the base forms of words (30)) using SpaCy, tokenizing the text articles 

(segmenting the text into words and punctuation marks etc (31)) and to compute bigrams (multi word 

expressions or common phrases) using Gensim (28).   

 

 

4 Methodology 

4.1  NLP Stage 

 

Gensim was used to vectorise the sets of tokens into a doc-term matrix which were then used to 

determine the LDA model.  Therefore, after the text was converted from text to tokenised documents, 

the ‘tokens’ were stored in a dictionary format to create a map between words and their integer id’s, 

in an ID-to-word fashion. This then allowed for the tokenised documents to be converted to vectors. 

An algorithm (doc2bow) was then applied to count the number of occurrences of each distinct word, 

converting the word to its integer and returning the result as a sparse vector. In the first trial, the LDA 

model was then set up and run over an arbitrary 20 topics in the first instance, (Source code available 

at github.com/kellyann88/Crypto_NLP) (32). 

 

    4.2 Determining the Number of Topics in the LDA Model 

 

An assumption about Latent Dirichlet Allocation is that the number of topics is assumed known and 

fixed (22). The Bayesian non-parametric topic model  (33) provides a solution where the number of 



 

 

topics is determined by the collection during posterior inference, and, new documents can exhibit 

previously unseen topics (22). Therefore, the Gensim implementation of LDA was adopted.  Topic 

coherence was used as an intrinsic evaluation metric in this study. This metric was used to 

quantitatively justify the model selection.  Topic coherence measures score a single topic by 

measuring the degree of semantic similarity between high scoring words in the topic  These 

measurements help distinguish between topics that are semantically interpretable topics and topics 

that are artifacts of statistical inference (34).  

 

Human inference is superior for topic interpretability, as “human topic rankings serve as the gold 

standard for coherence evaluation” (35). However human evaluations can be a lengthy and time-

consuming process. Therefore, quantitative topic coherence measures aided in the process for this big 

data study. As there is no “correct” number of topics per se in topic modelling, some results may 

identify better topics than others. In this study, it was then a reiterative process to conduct various 

trials of number of topics to identify the optimal number.  To find the optimal number of topics, LDA 

trials based on different values of number of topics were undertaken, in order to select the one that 

produced the highest coherence score alongside initiative assessment. 

 

4.3  Coherence Scores 

 

A graph of coherence scores is presented in figure 1.  It was qualitatively apparent from topic model 

results that the optimal number of topics in the LDA model trials was 18 topics; this was the 3rd 

highest coherence score (see figure 1). The top three coherence scores were extremely close in value8 

and a decision was taken by the researcher to commence with the 18-topic model.  The LDA model 

was then run, passing in the default alpha and beta values to calculate coherence.  

 

 

5 Results 

5.1  18-Topic LDA Model 

 

In a two-step process, this topic modelling algorithm estimated the distribution of topics over a set of 

documents, and a probability distribution of words for each of the 18 topics shown in figure 2. 

Therefore, the number next to each topic represents the topic-word probability distribution across the 

corpus. For every word then there is a proportion expressed as a score aligned to each topic, this is a 

distinguishing characteristic of Latent Dirichlet Allocation, the documents in the selection share the 

same set of topics, but each document exhibits those topics in different proportion (22).  The 18-topic 

model was run using the default alpha and beta scores. The model produced top topics, as presented 

in figure 2. 

 
6 Discussion 
 
How can Discourse Sentiment Affect Price? 
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Google trend popularity along with social media (reddit) analysis has shown the link between words 

and Bitcoin metrics (1–8). Google search term frequency has been used as a proxy for attractiveness 

(or popularity) of crypto to discover potential price drivers.  Sovbetov’s research (36) in particular, 

observed the attractiveness proxied by Google search term frequency finding significant coefficients 

for Bitcoin, Ethereum, Litecoin and Monero at 10% significant level. It indicated that 1 unit increase 

in Google trend popularity of Bitcoin, Ethereum, Litecoin, and Monero leads 1.27, 0.24, 0.07, and 

0.05 units increases in their prices in long-run respectively (36).  If google search terms alone can 

prove to have this affect, it is likely that use of terms together can provide a narrative effect when 

words are linked in a contextualised manner. In the following discussion, the NLP text analysis 

results are explored thematically in terms of their discourse and their respective market reactions 

 
6.1   Cryptocurrency and Crime Discourse 

 
Topics relating to crypto-crime were identified in topics 1, 5, 8, 13 and 149.    

 

    6.1.1 The Quadriga Scandal (Topic 1) 
 

The LDA output shown below identified terms which relate to crypto crime within topic 1. 

 
TOPIC 1 | 0.002*"quadrigacx" + 0.001*"court_appoint" + 0.001*"payment_processor" + 0.001*"bank_draft" + 

0.001*"vancouver_base" + 0.001*"scotia_supreme" + 0.001*"owe" + 0.001*"ceo_and_sole" + 0.001*"pass_code" + 

0.001*"quadrigacx_user"  

 

The first word; ‘quadrigacx’ refers to media reports on Canada's largest cryptocurrency exchange. In 

2019 the exchange ceased operations and the company was declared bankrupt with C$215.7 million 

in liabilities and about C$28 million in assets, with the FBI and Royal Canadian Mounted Police 

investigating due to the mysterious death of Quadriga’s CEO-Gerald Cotton (37).  

 

This particular crime-related cryptocurrency case associated with Quadriga, was heavily reported on 

by the media some 70 times by Canadian Press outlets including ‘The Globe and Mail’ between the 

dates of November 2018 and May 2020. As an example of potential market effect of this negative 

sentiment in terms of crypto-crime and the crypto-markets, 3 of these 70 articles were published on 

27/08/2019, where Bitcoin price appears to fall -1.80% on publication date and -4.47% the following 

day after publication of the articles. 

 

 

Date Price Open High Low Vol. Change % 

Aug 28, 2019 9,729.4 10,184.7 10,271.3 9,629.6 580.29K -4.47% 

Aug 27, 2019 10,184.8 10,372.2 10,387.6 10,060.2 419.81K -1.80% 

Aug 26, 2019 10,371.8 10,136.0 10,568.2 10,136.0 568.77K 2.32% 

Highest: 10,568.2 Lowest: 9,629.6 Difference: 938.7 Average: 10,095.3 Change %: -4.0 

(38). 

 

Similarly, 3 articles published in Canadian press outlets earlier during the year of 2019, on 

23/02/2019 was preceded by a -8.86% drop in Bitcoin price on 24/02/2019. 

 

 

 

 

 

 

 
 

https://en.wikipedia.org/wiki/Cryptocurrency_exchange
https://en.wikipedia.org/wiki/Canadian_dollar


 

 

Date Price Open High Low Vol. Change % 

Feb 24, 2019 3,755.2 4,120.5 4,194.2 3,738.7 977.78K -8.86% 

Feb 23, 2019 4,120.4 3,965.2 4,152.6 3,939.4 727.85K 3.91% 

Feb 22, 2019 3,965.2 3,937.4 3,983.1 3,931.7 649.55K 0.73% 

Highest: 4,194.2 Lowest: 3,738.7 Difference: 455.5 Average: 3,946.9 Change %: -4.6 

(38). 

 

3 Canadian articles pertaining to the Quadriga case were published earlier in the same month, on the 

05/02/2019, where the following day the price of Bitcoin dropped -1.85%. 

 

Date Price Open High Low Vol. Change % 

Feb 06, 2019 3,404.3 3,468.5 3,478.0 3,383.9 514.21K -1.85% 

Feb 05, 2019 3,468.4 3,463.0 3,485.9 3,450.3 460.95K 0.16% 

Feb 04, 2019 3,462.8 3,459.0 3,479.7 3,437.1 503.92K 0.11%  

(38). 

 
    

These examples serve to illustrate that whilst a statistical correlation should not be drawn with such 

limited data10, there is some evidence that cases such as the Quadriga crypto scandal can play into 

narratives of crypto-crime which may cause negative market confidence. After each group of articles 

were published in these specific instances in the Canadian press, the price of Bitcoin dropped each 

time in varying percentages. While there are many factors that can cause price fluctuations in 

financial markets, the function of the media, is a consistent source of information and sentiment (17). 

Sentiment therefore remains a candidate for causes of crypto volatility, due to investor behaviour 

reacting to negative news gaining high media coverage (18,19).  The weight of the negative 

sentiment in the Canadian press may reflect the fact that North America is the third-most active 

region by cryptocurrency volume moved on-chain, just behind Northern & Western Europe (NWE) 

(39). Therefore, news concentrated in this area may target large audiences in the crypto sector, which 

in turn affect a larger amount of investor behaviour in these regions.   

 

 

 

 

6.1.2 Crypto Ransom (Topic 8) 
 
The LDA output shown below identified terms which relate to crypto crime within topic 8. 

 
TOPIC 8 | 0.004*"hagen" + 0.001*"anne_elisabeth" + 0.001*"tom_hagen" + 0.001*"ransom_note" + 

0.001*"disappearance" + 0.000*"falkevik_hagen" + 0.000*"mr_hagen" + 0.000*"oslo" + 0.000*"hagen_lawyer" + 

0.000*"char"  

 

This topic solely relates to the media coverage of a criminal case involving ‘Mr Tom Hagen’, a 

wealthy businessman from Oslo, Norway whose wife ‘Anne Elisabeth’, who reportedly disappeared 

under mysterious circumstances during 2018. A ransom note was allegedly left at the scene 

demanding 9 million euros in the cryptocurrency Monero (40). Investigators believed Hagen invented 

a cryptocurrency ransom to cover up the murder of his wife and he was subsequently arrested (41). 

 

 

 

 

 

 
10 Research would benefit from further statistical analysis on the relationship between themed discourse, sentiment, 

and crypto price. 
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News outlets, Huffpost.com and the United Kingdom ‘the times’ news outlets covered the Hagen 

story during April and May 2020 with 3 articles. Unlike the Bitcoin negative sentiment market 

impact from the Quadriga scandal, the Hagen story appeared to have little impact on the Monero 

market, with in fact a slight increase in Monero’s value the day after publication on the 29/04/2020. 

Indicating that the story gained public attention and visibility but didn’t infer a devaluation of 

cryptocurrency. 

 

Date Open High Low Close* Adj Close** Volume  

Apr 29, 2020 62.53 66.98 62.08 66.55 66.55 146,559,090  

Apr 28, 2020 62.39 63.79 61.61 62.50 62.50 110,007,751  

Apr 27, 2020 61.22 62.51 61.22 62.39 62.39 97,849,93  

(42). 

 

The cryptocurrency Monero, was covered 13 times by journalists, in a range of countries including 

Mexico, South Africa, Kenya, UK, Thailand, Bahrain and Nigeria. Renowned for its privacy 

functions, criminals often use Monero in different kinds of malware and DDOS extortion attacks to 

launder money (40). Of the crime news articles published, Monero was implicated for its use on the 

platform ‘Wall Street Market”, allegedly the secondly largest illegal sales market on the dark web 

where drugs such as cocaine and heroin, cannabis and amphetamines were traded, as well as forged 

documents and malicious software (43).  The German police arrested three men in April 2019, 

suspected of managing the platform, where agents seized bitcoin and Monero, as well as seizing 

550,000 euros in cash (44). After release of this article on 03/05/2019, the following day the price of 

Monero rose from $64.37 to $67.02. 

 

Date Open High Low Close* Adj Close** Volume 

May 04, 2019 $67.02 $68.35 $65.23 $67.79 $37,095,216 $1,149,800,512 

May 03, 2019 $64.37 $68.40 $64.17 $67.02 $42,073,269 $1,136,650,882 

May 02, 2019 $64.99 $65.82 $63.34 $64.41 $40,766,958 $1,092,119,266 

(42) 

 

 

6.1.3 Bitcoin Extortion (Topic 14) 
 

The LDA output shown below identified terms which relate to crypto crime within topic 14. 

 
TOPIC 14 | 0.003*"accuse" + 0.001*"crore" + 0.001*"arrest" + 0.001*"r_crore" + 0.001*"kotadiya" + 0.001*"bhatt" + 

0.001*"surat" + 0.001*"patel" + 0.001*"police" + 0.001*"bhardwaj"  

 

This topic relates to a criminal case covered by the ‘Indian Express’ news outlet in India. A Surat- 

based businessman Shailesh Bhatt was kidnapped by suspect Inspector Anant Patel and who extorted 

Bhatt for Bitcoins worth over Rs 9.45 crore (45).  Kotadiva who was also declared a proclaimed 

offender in the Rs 9 crore bitcoin extortion case of Surat, was subsequently arrested by the 

Ahmedabad Crime Branch (46). This case was published in an article on the 08/07/2018. Again, as in 

the previous crime related Monero example, the day after publication of this negative sentiment, the 

price of Monero increased from $135.28 to $137.93. 

 

 

Date Open High Low Close* Adj Close** Volume 

Jul 09, 2018 $137.93 $141.16 $135.48 $135.73 $33,160,900 $2,200,247,171 

Jul 08, 2018 $135.28 $140.01 $134.49 $138.12 $25,550,900 $2,238,474,381 

Jul 07, 2018 $133.83 $135.63 $130.73 $135.61 $27,346,900 $2,197,415,127 



 

 

 

 

6.2  Cryptocurrency Financial Speculation and Investment 
 

6.2.1 Crypto Valley of Asia – CEZA (Topic 5) 
 

The LDA output shown below identified terms which relate to financial speculation and investment 

within topic 5. 

 

TOPIC 5 | 0.001*"ceza" + 0.001*"iceland" + 0.001*"lambino" + 0.000*"salerno" + 0.000*"char" + 

0.000*"economic_zone" + 0.000*"cagayan_economic" + 0.000*"zone_authority" + 0.000*"raul_lambino" + 

0.000*"ihe"  

 
Cagayan Economic Zone Authority (CEZA) is a freeport area that offers a wide spectrum of business 

undertakings from beach resorts, world-class golf courses and modern township projects to 

manufacturing, online gaming and financial technology services for cryptocurrency and bitcoin 

companies (47). Raul Lambino, administrator, and CEO of CEZA, pledged transparency, no 

corruption and smooth operations in a bid to attract investment and companies to the area. Asian 

media outlets such as the Manila Bulletin, Businessworld and the Philippine Star reported on the 

development of the CEZA zone during 2018 until 20th September 2019, where the various media 

outlets reported the rise in tax payments to the government owned corporation, due to development 

and plans for Chinese businesses to invest $3.9 billion into the CEZA economy. However, in 

September 2019 the Philippine Star reported that Mike Gerald David, spokesperson and chief fintech 

and cryptocurrency business officer at CEZA, had stated in a press conference that the agency was 

suspending the operation of all crypto licensees in Manila by freezing them (48). Nine articles were 

published by Asian press covering the CEZA development between the dates of 27/06/18 and 

11/01/2020. 

 

 

Date Open High Low Close* Adj Close** Volume 

Sep 21, 2019 $10,183.65 $10,188.10 $10,000.71 $10,019.72 $13,425,266,806 $179,853,287,294 

Sep 20, 2019 $10,266.32 $10,285.87 $10,132.19 $10,181.64 $14,734,189,639 $182,738,947,696 

Sep 19, 2019 $10,200.50 $10,295.67 $9,851.69 $10,266.41 $19,937,691,247 $184,240,949,577 

 

The day after publication of the CEZA suspension of crypto licences, the price of Bitcoin fell from 

$10,266.32 to $10,183.65. Since the freezing of licences, the CEZA website claims that CSEZFP will 

be the first economic zone in Asia to regulate, license and propagate offshore financial technology 

solutions enterprises and offshore virtual currency exchanges (49).  The 2019 CEZA coverage of the 

development of the economic zone donning headlines such as “Crypto Valley of Asia is a haven for 

foreign investors” (47) would have engendered trust and provided positive sentiment to potential 

foreign crypto based investors investing in the area with the promise of state governance, 

transparency and protection (48). However, undermining this speculative narrative with one of fear of 

devaluation and suspicion with the state’s freezing of crypto licenses some months later, appeared to 

correspond with a market downturn in Bitcoin price. 

 

The growth of all crypto activity however in Central and Southern Asia11 from December 2019 to 

June 2020 rose by an increase in crypto transactions. The value received by Central and Southern 

 

 

 

 

 

 
11 Including Oceania. 
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Asia12 rose from 2 billion in December 2019 to over 4 billion in June 2020 (39).  This two-fold 

increase in crypto trading value occurred whilst investor behaviour responded to a regulatory 

narrative of crypto licence suspension which had an influential effect on crypto markets, in this case 

specifically Bitcoin’s price.  A regional increase in trading at this level could suggest a 

disproportionate level of media influence on investor behaviour compared with other regions.  If for 

example, there is an increase in crypto trading in a particular region coinciding with a regional media 

narrative acting as an amplified social signal affecting regional investor sentiment, this could result in 

a disproportionate market effect, for example on price formation which appears to be evidenced by 

Bitcoin’s price volatility in the case of Asia’s reporting on the CEZA crypto friendly investment 

zone.  

 

The market effect may have been regional but in fact could go beyond that region affecting the wider 

crypto market globally. Just as in the Canadian case with the Quadriga Scandal, the weight of the 

negative sentiment correlated with a downturn in Bitcoin price which may have been driven by the 

fact that North America is the third-most active region by cryptocurrency volume moved on-chain 

(39). Thus, this may have also been true in the Asian case where negative sentiment again emanated 

and amplified from regional press coverage, in a geographical area where crypto activity is rising in 

volume, contributed to falling Bitcoin prices post publication of each article on the CEZA suspension 

of crypto licences.  Under reaction of stock prices to news such as earnings announcements, and 

overreaction of stock prices to a series of good or bad news is well documented by Barberis et al (50) 

as regularities among investor behaviour in how beliefs are formed. As with equities, in a similar 

vein this could also hold for the crypto markets, where an over-reaction to media reporting as in the 

case studies above led to a volatile price drop in the Bitcoin market. 

 
 
 

5 Conclusion 
 

To conclude, this study provided empirical evidence that key topics associated with cryptocurrency 

in the international news media from 2018-2020, were framed around the following key macro 

discourses: crypto related crime13, financial speculation and investment14, financial governance and 

regulation15, political economy (with reference to specific geographical areas)16, cryptocurrency 

actors and communities17 and specific crypto projects and their respective markets18. LDA topic 

modelling was used as a computational methodology to identify and model data driven discourses of 

cryptocurrency in the news media and the potential ‘social signal’ effects this had on the 

cryptocurrency markets during the given period.  This contributes to the current research and 

understandings around Cryptocurrency (9,36), where past research has revealed a clear connection 

between the role of the media and the market i.e. commonly used words and market behaviour (16–

19).  

 

Developing upon previous crypto studies, this article provided some specific examples from a limited 

number of discourses, showing how they might have differing effects on the crypto markets, with 

 

 

 

 

 

 
12 Including Oceania. 
13 (topics 1, 4, 5, 8, 13 and 14). 
14 (topics 5 and 11). 
15 (topics 3, 5, 8, 11). 
16 (topics 5 and 17). 
17 (topics 7 and 9). 
18 (topics 6 and 9). 



 

 

possible correlations between discourse sentiment and crypto price volatility, particularly in the case 

of Bitcoin over Monero. Whilst discourse may have played a role in crypto markets, this study 

discovered that a potential important factor in the effect of the media on crypto markets may be 

driven and amplified dependent upon the geographical source of the news.  Use of existing data from 

the ‘Geography of Cryptocurrency’ report and historical price data complemented the analysis to 

contextualise discourses and consider the potential weight of sentiment depending on crypto activity 

in their respective regions. Further research could give more time and consideration to modelling 

theses crypto discourses to generate statistical trends among the specific discourses identified, to 

uncover relationships between discourse, source of news and price volatility based upon sentiment. 

This would also positively add to the budding literature on the role of the media and crypto markets. 
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7 Figures 
 

 

 

 
 

 

Figure 1. LDA Model Coherence Scores. 
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TOPIC 0 | 0.027*"ph" + 0.003*"vh" + 0.002*"group" + 0.002*"victor_harbor" + 0.002*"club" + 0.002*"centre" + 

0.002*"carrickalinga_house" + 0.002*"goolwa" + 0.002*"market" + 0.001*"pt_elliot"  

 

TOPIC 1 | 0.002*"quadrigacx" + 0.001*"court_appoint" + 0.001*"payment_processor" + 0.001*"bank_draft" + 

0.001*"vancouver_base" + 0.001*"scotia_supreme" + 0.001*"owe" + 0.001*"ceo_and_sole" + 0.001*"pass_code" + 

0.001*"quadrigacx_user"  

 

TOPIC 2 | 0.006*"year" + 0.005*"people" + 0.005*"company" + 0.005*"use" + 0.004*"work" + 0.004*"time" + 

0.004*"money" + 0.003*"know" + 0.003*"day" + 0.003*"like"  

 

TOPIC 3 | 0.000*"patent" + 0.000*"commend" + 0.000*"philips" + 0.000*"hku_space" + 0.000*"asia_leadership" + 

0.000*"legal_team" + 0.000*"wuxi" + 0.000*"chong_sing" + 0.000*"jeepney" + 0.000*"kokila_alagh"  

 

TOPIC 4 | 0.001*"maren" + 0.000*"axe" + 0.000*"ueland" + 0.000*"bobby" + 0.000*"khayali" + 0.000*"esalen" + 

0.000*"rodney" + 0.000*"ejjoud" + 0.000*"jespersen" + 0.000*"ueland_and_jespersen"  

 

TOPIC 5 | 0.001*"ceza" + 0.001*"iceland" + 0.001*"lambino" + 0.000*"salerno" + 0.000*"char" + 

0.000*"economic_zone" + 0.000*"cagayan_economic" + 0.000*"zone_authority" + 0.000*"raul_lambino" + 0.000*"ihe"  

 

TOPIC 6 | 0.016*"bitcoin" + 0.008*"cryptocurrency" + 0.008*"blockchain" + 0.007*"use" + 0.006*"cryptocurrencie" + 

0.006*"company" + 0.006*"year" + 0.006*"market" + 0.006*"new" + 0.005*"technology"  

 

TOPIC 7 | 0.016*"wright" + 0.005*"nakamoto" + 0.004*"north_korea" + 0.002*"north_korean" + 0.002*"craig_wright" 

+ 0.001*"satoshi" + 0.001*"mr_freeman" + 0.001*"andresen" + 0.001*"wright_claim" + 0.001*"pty_ltd"  

 

TOPIC 8 | 0.004*"hagen" + 0.001*"anne_elisabeth" + 0.001*"tom_hagen" + 0.001*"ransom_note" + 

0.001*"disappearance" + 0.000*"falkevik_hagen" + 0.000*"mr_hagen" + 0.000*"oslo" + 0.000*"hagen_lawyer" + 

0.000*"char"  

 

TOPIC 9 | 0.000*"char" + 0.000*"bitcoin_btc" + 0.000*"let_have_a_baby" + 0.000*"million_yuan" + 

0.000*"global_stablecoin" + 0.000*"eur_million" + 0.000*"facebooks" + 0.000*"week_edition" + 

0.000*"today_where_satoshi" + 0.000*"satoshi_nakaboto"  

 

TOPIC 10 | 0.014*"good_morning" + 0.010*"property" + 0.009*"euro" + 0.008*"income" + 0.008*"thank" + 

0.008*"box" + 0.007*"rent" + 0.006*"greeting_and_a_lot" + 0.006*"declare" + 0.005*"return"  

 

TOPIC 11 | 0.001*"oil_and_gas" + 0.001*"intercontinental_exchange" + 0.000*"loeffler" + 0.000*"char" + 

0.000*"energy_sector" + 0.000*"sugarbud" + 0.000*"security_filing" + 0.000*"kolochuk" + 0.000*"kelly_loeffler" + 

0.000*"corporate_governance"  

 

TOPIC 12 | 0.000*"char" + 0.000*"shop_locally" + 0.000*"teach_young" + 0.000*"stitcher" + 

0.000*"second_be_decentralisation" + 0.000*"retailer_which_own_no_inventory" + 

0.000*"undermine_by_communication" + 0.000*"chairman_of_wandisco" + 0.000*"unassailable_have_be_superseded" 

+ 0.000*"bygone_age"  

 

TOPIC 13 | 0.000*"â" + 0.000*"manifesto" + 0.000*"tarrant" + 0.000*"char" + 0.000*"mass_murderer" + 

0.000*"australian_academic" + 0.000*"pseudocommando" + 0.000*"ammunition_belt" + 0.000*"tarrant_life" + 

0.000*"regular_guy"  

 

TOPIC 14 | 0.003*"accuse" + 0.001*"crore" + 0.001*"arrest" + 0.001*"r_crore" + 0.001*"kotadiya" + 0.001*"bhatt" + 

0.001*"surat" + 0.001*"patel" + 0.001*"police" + 0.001*"bhardwaj"  

 

TOPIC 15 | 0.000*"char" + 0.000*"gramatik" + 0.000*"epigram" + 0.000*"data_source" + 0.000*"muvhango" + 

0.000*"napier" + 0.000*"bitcoin_btc" + 0.000*"ada" + 0.000*"skeem_saam" + 0.000*"isidingo"  

 

TOPIC 16 | 0.000*"gv" + 0.000*"sept" + 0.000*"oct" + 0.000*"char" + 0.000*"nando" + 0.000*"camping" + 

0.000*"macaron" + 0.000*"hulme" + 0.000*"info" + 0.000*"admission"  

 

TOPIC 17 | 0.009*"venezuela" + 0.007*"petro" + 0.004*"maduro" + 0.003*"bolivar" + 0.003*"oil" + 

0.003*"venezuelan" + 0.002*"venezuelans" + 0.002*"sovereign_bolivar" + 0.002*"economic" + 0.002*"hyperinflation"  

Figure 2. LDA Topics. 


