
i

An Explainable Artificial Intelligence

Approach Based on Deep Type-2 Fuzzy

Logic System

Ravikiran Chimatapu

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science and Electronic

Engineering

University of Essex

2021

ii

Acknowledgements

I would like to thank the following people for their contributions to this PhD and

my career, for which I will always be indebted:

Professor Hani Hagras, the academic supervisor, I would like to extend my sincere

gratitude and thanks for his supervision, exceptional guidance, and support.

Dr Gilbert Owusu, one of the industrial supervisors, I would like to thank for the

opportunities given to me with respect to this PhD. I would also like to thank him for

his guidance and support.

Dr Andrew Starkey, one of the industrial supervisors, I would like to thank him for

his exceptional guidance on evolutionary algorithms and fuzzy logic. I would also like

to thank him for his supervision, guidance and support.

I would like to thank British Telecom for supporting this PhD.

Finally, I would like to thank my family and friends, for their love, support and

guidance.

iii

Publications Arising from this Work

Journal Papers

• J. M. Mendel, R. Chimatapu, and H. Hagras, "Comparing the performance

potentials of singleton and non-singleton type-1 and interval type-2 fuzzy

systems in terms of sculpting the state space," IEEE Transactions on Fuzzy

Systems, vol. 28, no. 4, pp. 783-794, 2019.

Conference Papers

• R. Chimatapu, H. Hagras, M. Kern, and G. Owusu, "Hybrid Deep Learning

Type-2 Fuzzy Logic Systems For Explainable AI," proceedings of the 2020

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020:

IEEE, pp. 1-6.

• R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Enhancing Human

Decision Making for Workforce Optimisation Using a Stacked Auto

Encoder Based Hybrid Genetic Algorithm," proceedings of the

International Conference on Innovative Techniques and Applications of

Artificial Intelligence, 2018: Springer, pp. 63-75.

• R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Stacked Auto

Encoder Based Hybrid Genetic Algorithm for Workforce Optimization,"

proceedings of the 10th Computer Science and Electronic Engineering

(CEEC), 2018: IEEE, pp. 236-241.

• R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Interval type-2 fuzzy

logic based stacked autoencoder deep neural network for generating

explainable ai models in workforce optimization," Proceedings of the 2018

iv

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018:

IEEE, pp. 1-8. (Shortlisted for the Best Student Paper Award in FUZZ-

IEEE 2018)

• R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "A Big-Bang Big-

Crunch Type-2 Fuzzy Logic System for Generating Interpretable Models in

Workforce Optimization," proceedings of the 2018 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), 2018: IEEE, pp. 1-8.

Book Chapters

• R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Explainable AI and

Fuzzy Logic Systems," in Theory and Practice of Natural Computing,

Lecture Notes in Computer Science book series, Springer, pp.3-20,

November 2018.

Patents

R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, “Explainable Machine Learning

Systems for Telcom Optimisation “, PCT/EP2020/057529,

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020193329&_cid=P20-KIP8FK-

18085-1

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020193329&_cid=P20-KIP8FK-18085-1
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020193329&_cid=P20-KIP8FK-18085-1

v

Abstract

Artificial intelligence (AI) systems have benefitted from the easy availability of

computing power and the rapid increase in the quantity and quality of data which has

led to the widespread adoption of AI techniques across a wide variety of fields.

However, the use of complex (or Black box) AI systems such as Deep Neural

Networks, support vector machines, etc., could lead to a lack of transparency. This lack

of transparency is not specific to deep learning or complex AI algorithms; other

interpretable AI algorithms such as kernel machines, logistic regressions, decision

trees, or rules-based algorithms can also become difficult to interpret for high

dimensional inputs. The lack of transparency or explainability reduces the effectiveness

of AI models in regulated applications (such as medical, financial, etc.), where it is

essential to explain the model operation and how it arrived at a given prediction.

The need for explainability in AI has led to a new line of research that focuses on

developing Explainable AI techniques. There are three main avenues of research that

are being explored to achieve explainability; first, Deep Explanations, which involves

the modification of existing Deep learning models to add explainability. The methods

proposed to do Deep explanations generally provide details about all the input features

that affect the output, generally in a visual format as there might be a large number of

features. This type of explanation is useful for tasks such as image recognition, but in

other tasks, it might be hard to distinguish the most important features. Second, Model

induction, which involves methods that are model agnostic, but these methods might

not be suitable for use in regulated applications. The third method is to use existing

interpretable models such as decision trees, fuzzy logic, etc., but the problem with them

is that they can also become opaque for high dimensional data.

vi

Hence, this thesis presents a novel AI system by combining the predictive power of

Deep Learning with the interpretability of Interval Type-2 Fuzzy Logic Systems. The

advantages of such a system are, first, the ability to be trained via labelled and

unlabelled data (i.e., mixing supervised and unsupervised learning). Second, having

embedded feature selection abilities (i.e., can be trained by hundreds and thousands of

inputs with no need for feature selection) while delivering explainable models with

small rules bases composed of short rules to maximize the model’s interpretability.

The proposed model was developed with data from British Telecom (BT). It

achieved comparable performance to the deep models such as Stacked Autoencoder

(SAE) and Convolution Neural Networks (CNN). In categorical datasets, the model

outperformed the SAE by 2%, performed within 2-3% of the CNN and outperformed

Multi-Layer Perceptron (MLP) and IT2FLS by 4%. In the regression datasets, the

model performed slightly worse than the SAE, MLP and CNN models, but it

outperformed the IT2FLS with a 15% lower error. The proposed model achieved

excellent interpretability in a survey where it was rated within 2% of the highly

interpretable IT2FLS. It was also rated 20% and 17% better than Deep learning XAI

tools LIME and SHAP, respectively. The proposed model shows a small loss in

performance for significantly higher interpretability, making it a suitable replacement

for the other AI models in applications with many features where interpretability is

paramount.

vii

Table of Contents

Acknowledgements .. ii

Publications Arising from this Work .. iii

Abstract .. v

List of Figures .. xiv

List of Tables ... xx

List of Acronyms ... xxiv

Chapter 1. Introduction .. 1

1.1 Aims of the Thesis .. 4

1.2 Thesis Layout .. 5

Chapter 2. Explainable Artificial Intelligence .. 7

2.1 Deep Explanations .. 9

2.1.1 Model Simplification ... 10

2.1.2 Feature Relevance .. 12

2.2 Interpretable Models ... 15

2.2.1 Linear/Logistic Regression .. 16

2.2.2 Decision Trees ... 17

2.2.3 Bayesian Models .. 19

2.2.4 K-Nearest Neighbours ... 20

2.2.5 Fuzzy Logic ... 22

2.3 Model Induction .. 24

viii

2.3.1 Local Interpretable Model-Agnostic Explanations (LIME)............... 24

2.3.2 Anchor Local Interpretable Model-Agnostic Explanations 27

2.3.3 SHAP ... 29

2.3.4 Partial Dependence Plot ... 32

2.3.5 Individual Conditional Expectation ... 33

2.3.6 Interpretable Mimic Learning .. 34

2.4 Hybrid Deep Learning and Fuzzy Logic Systems .. 36

2.4.1 Fuzzy Restricted Boltzmann Machine ... 37

2.4.2 Fuzzy Deep Neural Network.. 38

2.4.3 Fuzzy Deep Learning ... 40

2.4.4 Takagi Sugeno Deep Fuzzy Network .. 41

2.4.5 Fuzzy Deep Belief Network ... 42

2.4.6 Active Fuzzy Deep Belief Network ... 43

2.4.7 Pythagorean Fuzzy Deep Boltzmann Machine 43

2.5 Summary ... 45

Chapter 3. An Overview on Fuzzy Logic .. 47

3.1 Uncertainty .. 48

3.2 Type-1 Fuzzy Logic Systems .. 50

3.2.1 Linguistic Variables ... 51

3.2.2 Membership Functions ... 52

3.2.3 Fuzzy Set Theoretic Operations ... 54

ix

3.2.4 Rules .. 56

3.2.5 Fuzzifier ... 59

3.2.6 Fuzzy Inference Engine ... 60

3.2.7 Defuzzifier ... 61

3.3 Type-2 Fuzzy Logic Systems .. 63

3.3.1 General Type-2 Fuzzy Sets .. 63

3.3.2 z-slices Based General Type-2 Fuzzy Sets .. 66

3.3.3 Interval Type-2 Fuzzy Sets .. 68

3.3.4 Interval Type-2 Fuzzy Logic Systems ... 70

3.3.5 Type-Reduction + Defuzzification .. 71

3.3.6 Direct Defuzzification .. 76

3.4 Fuzzy Rule-Based Classification Systems .. 78

3.4.1 Scaled Support and Scaled Confidence ... 78

3.4.2 Calculate Output Class ... 80

3.4.3 Similarity Metric .. 81

3.5 Design Methods for Fuzzy Logic Systems ... 84

3.5.1 Wang Mendel Method ... 84

3.5.2 Enhanced Wang-Mendel Method .. 91

3.6 Summary ... 94

Chapter 4. An Overview of Selected Optimization Algorithms 95

4.1 Big Bang Big Crunch (BB-BC) .. 95

x

4.1.1 Implementation of the Big Bang-Big Crunch Algorithm 99

4.2 Genetic Algorithms ... 99

4.2.1 Genetic Operators .. 100

4.2.2 Implementation of Genetic Algorithm ... 102

4.3 Gradient Descent Optimization Algorithm ... 103

4.3.1 Adaptive Learning Rate ... 105

4.3.2 Implementation of Gradient Descent Algorithm 106

4.4 Summary ... 107

Chapter 5. Overview of the Datasets used in the Research 108

5.1 Classification Problems .. 109

5.1.1 BT Customer Service (BTCS) ... 109

5.1.2 CLL Identification (CLL) .. 110

5.1.3 IDA 2016 (IDA) ... 110

5.1.4 Epileptic Seizure (ES) .. 111

5.1.5 PD Speech (PDS) ... 112

5.1.6 Santander CTP (SCTP) .. 112

5.2 Regression Problems ... 113

5.2.1 Wi-fi Localization (WL) .. 113

5.2.2 Swiss Premium (SP) .. 114

5.2.3 CT Scan Region (CTSR) ... 115

5.2.4 BT PWA (BTP) .. 116

xi

5.2.5 Song year (SY) ... 117

5.3 Summary ... 118

Chapter 6. The Proposed Deep Type-2 Fuzzy Logic System 119

6.1 Model Representation ... 122

6.1.1 Representation of the Type-1 models .. 122

6.1.2 Representation of IT2 Models.. 128

6.2 Layer Wise Training of The D2FLS ... 133

6.2.1 Fitness Function ... 133

6.2.2 Hidden Layer Training ... 134

6.2.3 Optimization Method for the Final Layer .. 140

6.3 Experiments and Results ... 145

6.3.1 Training Parameters ... 145

6.3.2 Deep Type 2 Fuzzy Logic system Vs Deep Neural Networks 148

6.3.3 D2FLS vs Shallow Neural Networks and an IT2FLS 153

6.3.4 Comparison between the Three-Step Training process and Single

Step Training process .. 155

6.3.5 Comparison Between D2FLS trained using the various Membership

Function Types .. 157

6.3.6 Comparison of the performance of the BB-BC against Genetic

Algorithms ... 160

6.3.7 Deep Type-2 FLS vs Deep Type-1 FLS .. 163

6.4 Summary ... 165

xii

Chapter 7. Deep Type-2 FLS trained using a Stacked Autoencoder 168

7.1 Autoencoder Training ... 169

7.2 Pretraining D2FLS .. 171

7.3 Optimization Method for the Final Layer ... 176

7.4 Experiments and Results ... 180

7.4.1 D2FLS vs Fuzzy Stacked Autoencoder ... 180

7.4.2 D2FLS Comparison between The Two Training Methods 183

7.4.3 Effectiveness of Pre-training on the D2FLS 187

7.5 Summary ... 189

Chapter 8. Local Interpretability Enhancement for Deep Type-2 Fuzzy

Logic Systems 191

8.1 Rule-Based Explanations .. 192

8.1.1 Regression Datasets ... 195

8.1.2 Classification Datasets ... 196

8.2 Feature Importance Explanations.. 196

8.2.1 Regression Datasets ... 198

8.2.2 Categorical Datasets ... 199

8.3 Survey ... 201

8.4 Summary ... 204

Chapter 9. Enhanced Deep Type-2 Fuzzy Logic System for Global

Interpretability 205

xiii

9.1 Global Interpretability at Modular Level .. 208

9.1.1 Modular Rule-Based Explanation .. 208

9.1.2 Modular Feature Importance Explanations 211

9.2 Enhanced Deep Type-2 Fuzzy Logic System ... 214

9.2.1 Hidden layer training ... 215

9.2.2 Optimization Method for the Final Layer .. 217

9.2.3 Extracting rules .. 218

9.3 Experiments and Results ... 220

9.3.1 Comparison between a D2FLS pre-trained as an FAE vs Enhanced

D2FLS pre-trained as an FAE ... 220

9.3.2 Comparison between a D2FLS pre-trained as FAE and Enhanced

D2FLS pre-trained using SAE ... 224

9.4 Summary ... 227

Chapter 10. Conclusions and Future Work .. 229

10.1 Conclusions ... 229

10.2 Future work .. 234

Bibliography .. 235

xiv

List of Figures

Figure 2-1: Existing AI techniques and XAI methods [16]8

Figure 2-2: CNN explanation via decision trees [23] ...11

Figure 2-3: Deep Taylor Decomposition [28] ..13

Figure 2-4: Linear Regression with one independent variable [32]16

Figure 2-5: Decision Tree [32] ...18

Figure 2-6: Bayesian network for the car start problem [36]19

Figure 2-7: K-Nearest neighbour [37] ..21

Figure 2-8: A Typical Interval Type-2 Fuzzy Logic System [1]22

Figure 2-9: Interval Type-2 Fuzzy Set [1] ..23

Figure 2-10: LIME Algorithm: Generated sample data for training local model

[32] ...26

Figure 2-11: Anchors generated for keywords “not” and “bad” [41]27

Figure 2-12: SHAP explanations [43] ...30

Figure 2-13: ICE plot of survival probability by Age [32]34

Figure 2-14: Interpretable Mimic Learning ..35

Figure 2-15: Fuzzy Restricted Boltzmann machine [54] ..38

xv

Figure 2-16: Fuzzy Deep Neural Network [58] ..39

Figure 2-17: Fuzzy Deep Learning [59] ...40

Figure 2-18: Takagi Sugeno Deep Fuzzy Network [60] ...41

Figure 2-19: Fuzzy Deep Belief Network [62] ...42

Figure 2-20: Pythagorean Fuzzy Deep Boltzmann Machine [65]44

Figure 3-1: Type-1 Fuzzy Logic System [38] ...50

Figure 3-2: Membership Functions for Pressure [38] ...52

Figure 3-3: Types of Membership Function a) Triangular b) Trapezoidal c)

Gaussian d) Singleton ..53

Figure 3-4: Fuzzy set theoretical operations a) Fuzzy sets A and B b) A union B c)

A intersect B d) B complement [38] ..56

Figure 3-5: a) Singleton Fuzzification b) Non-singleton Fuzzification [76]60

Figure 3-6: a) Type-1 Membership Function b) Blurred Type-1 Membership

Function c) Footprint of Uncertainty [38] ...64

Figure 3-7: (a) Side view of a general type-2 fuzzy set, with three zLevels on the

third dimension (b) Tilted read/below view of the same set, indicating the position of

the three zSlices. (c) Side view of the same zSlices version in (a), with I=3. (d) Tilted

rear/below view of the same set, showing the zSlices [80]. ..65

xvi

Figure 3-8: (a) Front view of a general type-2 set F . (b) Third dimension at x’ of a

zSlices-based type-2 fuzzy set with I=4 [80] ..66

Figure 3-9: Type -2 Fuzzy Logic System ...70

Figure 3-10: An Example to Illustrate Similarity Metric ..82

Figure 3-11: Division of Domain Intervals [93] ...85

Figure 3-12: The form of a Fuzzy Rule Base [93]. ...89

Figure 4-1: 2D depiction of the initial population of candidate solutions in BB-BC

algorithm ..96

Figure 4-2: 2D depiction of the candidate solutions in the second Big Bang Phase

in BB-BC algorithm ...97

Figure 4-3: Flow Chart for the Big Bang Big Crunch Algorithm98

Figure 4-4: Pseudocode for the BB-BC algorithm ...99

Figure 4-5: Single Point Crossover [69] .. 101

Figure 4-6: Multi-Point Crossover [69] ... 102

Figure 4-7: Flow Chart of a Genetic Algorithm .. 103

Figure 4-8: Genetic Algorithm Pseudo Code ... 103

Figure 4-9: Gradient Descent Pseudo Code [101] ... 106

Figure 6-1: A Deep Type-2 Fuzzy Logic System Architecture 120

https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211946
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211946

xvii

Figure 6-2: Layer Wise Training D2FLS ... 121

Figure 6-3: Fuzzy Autoencoder Architecture .. 122

Figure 6-4: Representation of a Trapezoidal Type-1 Membership Function 124

Figure 6-5: Representation of a Triangular Type-1 Membership Function 125

Figure 6-6: Representation of a Gaussian Type-1 Membership Function 126

Figure 6-7: Representation of a Footprint of uncertainty (FOU) for Trapezoidal

MFs ... 129

Figure 6-8: Representation of a Footprint of uncertainty (FOU) for Triangular MFs

 .. 130

Figure 6-9: Representation of the FOU of a Gaussian IT2 MF 131

Figure 6-10: Training Algorithm for IT2FLS .. 134

Figure 6-11: Fuzzy Set Generated by D2FLS Training for MSLCL1 2 feature of

the BT PWA dataset ... 152

Figure 6-12: Fuzzy Set Generated by D2FLS Training for Contractor 2 feature of

the BT PWA dataset ... 152

Figure 6-13: Examples of IT2 Fuzzy Sets Generated for D2FLS during Training

where (a) (d) are Trapezoidal MF, (b) (e) are Triangular MF, and (c) (f) are Gaussian

MF for Contractor 0 and MSLCL1 2 features respectively of the BT PWA dataset 159

Figure 7-1: Fuzzy Stacked Autoencoder [116] .. 168

https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211947
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211947
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211948
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211948
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211949
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211949
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211950
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211950
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211951
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211951
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211952
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211952
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211952
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211953
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211953
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211954
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211954

xviii

Figure 7-2: Stacked Autoencoder Training .. 169

Figure 7-3: Fuzzy Sets Generated by D2FLS SAE Training for (a) Loans 1 feature

and (b) MSLCL2 2 feature of the BT PWA dataset ... 185

Figure 8-1: Rule-Based Explanation depicting the Rule contributions to the outputs

of the D2FLS layers .. 193

Figure 8-2: Rule Contributions for the Intermediate Variable H00 193

Figure 8-3: Feature Importance Scores .. 197

Figure 8-4: SHAP explanation for Sparse Stacked Autoencoder 201

Figure 8-5: LIME explanation for Sparse Stacked Autoencoder 202

Figure 8-6: Survey Plot .. 202

Figure 9-1: Rule-Based Explanation .. 208

Figure 9-2: Rule-Based Explanation for one hidden output 209

Figure 9-3: Rule Base Explanation for ILU HH Actual is High module 209

Figure 9-4: Modular Simple Explanation for Positive Outputs 212

Figure 9-5: Modular Simple Explanation for Negative Outputs 213

Figure 9-6: Enhanced Deep Type-2 Fuzzy Logic System. The Dotted Rectangles

indicate the two FLSs that are constrained to use the same Linguistic Labels for the

Consequents as the Antecedents of subsequent FLS .. 214

https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211960
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211960
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211964
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211964

xix

Figure 9-7: Fuzzy Sets Generated by Enhanced D2FLS FAE Training for (a)

Loans 0 feature and (b) Rank 0 feature of the BT PWA dataset 223

xx

List of Tables

Table 5-1: Summary of Datasets used in the Experiments 108

Table 6-1: Comparison of the performance of the D2FLS vs Stacked Autoencoder

vs CNN in Categorical Datasets with Average Recall as Fitness function 147

Table 6-2: Comparison of the performance of the D2FLS vs Stacked Autoencoder

vs CNN in Regression Datasets using Mean Absolute Error as the Fitness Function

 .. 148

Table 6-3: Comparison of the performance of the D2FLS vs Stacked Autoencoder

vs CNN in Regression Datasets using Root Mean Square Error as the Fitness

Function .. 149

Table 6-4: Snapshot of Rule base of the Hidden Layer of the D2FLS on the BT

PWA Dataset .. 150

Table 6-5: Snapshot of Rule base of the Output Layer of the D2FLS on the BT

PWA Dataset .. 151

Table 6-6: Comparison of the performance of the D2FLS vs Multi-layer

perceptron vs IT2FLS in Classification Datasets using Average Recall as the Fitness

Function .. 154

Table 6-7: Comparison of the performance of the D2FLS vs Multi-layer

perceptron vs IT2FLS in Regression Datasets using MAE as the Fitness Function 155

https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211874
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211874
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211874
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211875
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211875
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211875
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211879
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211879
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211879
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211879
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211880
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211880
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211880

xxi

Table 6-8: Comparison for the Three-Step Training Process and the Single Step

Training Process for training the D2FLS with Mean Absolute Error as the Fitness

Function .. 155

Table 6-9: Comparison of performance of D2FLS for difference types of MFs on

Categorical Datasets with Average Recall as the Fitness Function 157

Table 6-10: Comparison of performance of D2FLS for difference types of MFs on

Regression Datasets with Mean Absolute Error as the Fitness Function 158

Table 6-11: Comparison Between D2FLS Trained using BB-BC and Genetic

Algorithm on Categorical Datasets with Average Recall as the Fitness Function ... 160

Table 6-12: Comparison Between D2FLS Trained Using BB-BC and Genetic

Algorithm on Regression Datasets with Mean Absolute Error as the Fitness Function

 .. 161

Table 6-13: Impact of number of Generations on D2FLS trained using Genetic

Algorithm .. 162

Table 6-14: D2FLS optimized by Genetic Algorithm using a single step training

with MAE as fitness function ... 163

Table 6-15: Deep Type-2 FLS vs Deep Type-1 FLS on Classification Datasets 164

Table 6-16: Deep Type-2 FLS vs Deep Type-1 FLS on Regression Datasets 165

Table 7-1: Comparison between D2FLS and FSAE on Categorical Datasets with

Average Recall as Fitness Functions .. 181

https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211882
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211882
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211882
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211883
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211883
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211883
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211885
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211885
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211885
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211886
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211886
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211886
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211887
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211887
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211887
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211888
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211888
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211889
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211889

xxii

Table 7-2: Comparison between D2FLS and FSAE on Regression Datasets with

Mean Absolute Error as the fitness function .. 181

Table 7-3 : D2FLS Pretrained using FAE vs D2FLS Pretrained using SAE on

Classification Datasets with Average Recall as the fitness function 182

Table 7-4: D2FLS Pretrained using FAE vs D2FLS Pretrained using SAE on

Regression datasets with MAE as the fitness function ... 183

Table 7-5: Snapshot of Rule base of the Hidden Layer of the D2FLS trained using

SAE on the BT PWA Dataset ... 184

Table 7-6: Snapshot of Rule base of the Output Layer of the D2FLS pre-trained

using SAE on the BT PWA Dataset ... 186

Table 7-7: Comparison of D2FLS with hidden layers pre trained using FAE

against D2FLS without pretraining on Classification Datasets with fitness function

Average Recall.. 187

Table 7-8: Comparison of D2FLS with hidden layers pre trained using FAE

against D2FLS without pretraining on Regression datasets with MAE as the fitness

function ... 188

Table 8-1: Survey Results .. 203

Table 9-1: Comparison of the D2FLS with the Enhanced D2FLS on Categorical

Datasets with Average Recall as the fitness function ... 220

https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211891
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211891
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211891
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211896
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211896
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211896
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211896
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211897
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211897
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211897
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211897
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211898
https://d.docs.live.net/00569d59b8070ad4/UniFolder/Thesis/Ravi_thesis_Viva_Corrections.docx#_Toc75211898

xxiii

Table 9-2: Comparison of the D2FLS with Enhanced D2FLS on the Regression

dataset with Mean average error as the fitness function ... 221

Table 9-3: Rules of the Hidden Layer of a D2FLS with five outputs 222

Table 9-4: Rules of the Final Layer of a D2FLS ... 224

Table 9-5: Comparison of the D2FLS pre-trained using FAE with the Enhanced

D2FLS pre-trained using SAE on Categorical Datasets with Average Recall as the

fitness function.. 225

Table 9-6: Comparison of the D2FLS FAE with Enhanced D2FLS SAE on the

Regression dataset with Mean average error as the fitness function 226

xxiv

 List of Acronyms

AI Artificial Intelligence

API Application Programming Interface

BB-BC Big Bang Big Crunch

BTCS BT Customer Service

BTP BT Preferred Work Area

CART Classification and Regression Trees

CLL Chronic Lymphocytic Leukemia

CNN Convolutional Neural Network

CRED Cnn-Rnn Earthquake Detector

CTSR Computerized Tomography Scan

DARPA Defense Advanced Research Projects Agency

DBM Deep Boltzmann Machine

DBN Deep Belief Network

Deep LIFT Deep Learning Important FeaTures

DNN Deep Neural Network

EEG electroencephalogram

ES Epileptic Seizure

FAE Fuzzy Autoencoder

FDBN Fuzzy Deep Belief Network

FDL Fuzzy Deep Learning

FDNN Fuzzy Deep Neural Network

FL Fuzzy Logic

FLC Fuzzy Logic Controller

FOU Footprint of Uncertainty

FRBCS Fuzzy Rule Based Categorical System

FRBM Fuzzy Restricted Boltzmann Machine

FS Fuzzy System

FSAE Fuzzy Stacked Autoencoder

xxv

GA Genetic Algorithm

GBT Gradient Boosted Trees

ICE Individual Conditional Expectation

IDA Intelligent Data Analysis

IEEE Institute of Electrical and Electronics Engineers

IT2FLS Interval Type-2 Fuzzy Logic System

KM Karnik Mendel

KNN K-Nearest Neighbour

LIME
Local Interpretable Model-Agnostic

Explanations

LRP Layer wise Relevance Propagation

MAE Mean Absolute Error

MF Membership Function

ML Machine Learning

MLP Multi Layer Perceptron

PDP Partial Dependence Plot

PDS Parkinson’s Disease Speech

PFDBM Pythagorean Fuzzy Deep Boltzmann Machine

RBM Restricted Boltzmann Machine

RMSE Root Mean Squared Error

SAE Stacked Autoencoder

SCTP Santander Customer Prediction

SHAP SHapley Additive exPlanations

SP Swiss Premium Prediction

SVM Support Vector Machine

SY Song Year

TSDFN Takagi Sugeno Deep Fuzzy Network

TSFLS Takagi Sugeno Fuzzy Logic System

UCI University of California Irvine

VGG Visual Geometry Group

WA Work Area

xxvi

WL WiFI Localization

WM Wang Mendel Method

XAI Explainable Artificial Intelligence

1

Chapter 1. Introduction

Artificial Intelligence (AI) is the programmed ability of machines to mimic

cognitive functions such as learning, problem-solving, etc., that usually require human-

level intelligence [1]. AI comprised of all the Machine Learning (ML) techniques such

as search and optimization, symbolic and logical reasoning, statistical learning methods

and behaviour-based approaches. The recent explosion in computing power, coupled

with the rapid rise in the quantity and quality of data available for research have led to

the rapid adoption of AI techniques across a wide variety of fields. There are huge

incentives for adopting AI, such as product/process cost reduction, consistency,

repeatability, improved efficiency, enhanced decision making, as well as helping in the

development of new products and services [1]. AI is a significant disruptor that is

transforming many industries; it is also helping in spawning new technologies and

trends that can transform our lives, such as self-driving cars, AI assistants, etc.

As AI technology matures, it can propel economic growth, transforming the way in

which we work with computers [1]. Hence, regulators and participants hope that AI

will be inclusive and beneficial to everyone. However, the use of complex AI

algorithms such as deep learning, random forests, support vector machines (SVMs),

etc., could result in a lack of transparency thus creating "black box" models [1, 2]. This

lack of transparency is not specific to deep learning, or complex AI algorithms, other

interpretable AI algorithms such as kernel machines, logistic regressions, decision trees

or rules-based algorithms can also become very difficult to interpret for high

dimensional inputs [3]. The difficulty in interpreting these AI models can be a huge

barrier in the adoption of AI systems in regulated applications such as financial,

medical, justice etc., where the reliability of the model must be guaranteed.

2

There is a growing consensus that there is a need to develop technologies that

mitigate this problem[4]. The UK Parliament house of lords AI select committee, for

example, in their report they mention that "We believe it is not acceptable to deploy

any artificial intelligence system which could have a substantial impact on an

individual's life unless it can generate a full and satisfactory explanation for the

decisions it will take" [5]. The European Parliament has gone further by putting in a

clause in the General Data Protection Regulation to address the lack of transparency in

AI systems. The clause emphasizes the right of all individuals to obtain "meaningful

explanations of the logic involved when automated decision making takes place" [6].

The National Institute of Standards and Technology, U.S. Department of Commerce,

has emphasised the need for explainable AI while putting forth four principles that may

be used to establish a framework to guide real-world applications of AI [7].

The Financial Stability Board, which is an international agency that monitors global

financial systems, has warned that the use of opaque models (such as Deep Learning

techniques) can lead to the lack of interpretability or 'auditability' which can contribute

to macro-level risks [8]. The financial stability board stressed that further progress in

the interpretation of algorithms outputs and decision is an essential condition not only

for risk management but also for engendering greater trust from the general public as

well as regulators [8].

The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence (AI)

and Autonomous Systems (AS) Drives, a program of the IEEE initiated to address

ethical issues raised by using AI system, document on Ethically Aligned Design

mentions that “A key concern over autonomous systems is that their operation must be

transparent to a wide range of stakeholders, for different reasons. For users,

3

transparency is important because it builds trust in the system by providing a simple

way for the user to understand what the system is doing and why. For validation and

certification of an autonomous system, transparency is important because it exposes

the system’s processes for scrutiny”[9].

The European Banking Authority, in its report on Big data and advanced analytics,

mentions that “Lack of explainability could represent an important risk in the case of

AI/ML models developed by external third parties and then sold as opaque black box

packages. The institution acquiring the package needs to have enough means, including

explanations, to validate the results produced by the package without being strongly

dependent on the external provider” [10].

The lack of transparency in AI has led to a new line of research which focuses on

developing AI techniques that are explainable [11]. Although a large body of research

has been conducted there are still many challenges in achieving explainable AI

techniques, such as.

• The need to develop explainable models that would adapt according to the

user profile (level of expertise, domain knowledge, cultural background,

interests and preferences and other contextual variables) and the explanation

request setting (justification, teaching, audit, etc.) [12] [13].

• The trade-off between performance and interpretability that is,

interpretability reduces as the performance of the system increases [14].

• The need to develop explainable models that can deal with inputs with a

large number of features as many, otherwise, explainable model falter in

these situations [3] [15].

4

To overcome the first challenge, semantic representation of the predictions that use

natural language seems to be the way forward [16]. Furthermore, to overcome the trade-

off between performance and interpretability, a hybrid modelling approach that

combines high-performance models with interpretable models has been suggested [14].

Embedding feature selection within the model, such as in Stacked autoencoders, which

can be considered as being one way to overcome the third problem.

From the discussion above a possible approach to solve these challenges is to

combine Deep Learning training techniques with Fuzzy Logic Systems (FLS). Where

the Deep Learning will help improve the performance of the AI model and add

embedded feature selection, the FLS can be used to model the uncertainties in the data

and express the logic behind the AI model as human-understandable IF-Then rules with

linguistic labels. Hence, this thesis will explore a possible method of achieving

explainable AI using a combination of Deep Learning and Type-2 Fuzzy Logic

Systems.

1.1 Aims of the Thesis

The thesis aims to investigate and implement an explainable AI technique to solve

real-world problems. The core aim is to combine the predictive power and embedded

feature selection capability of Deep Learning techniques with the interpretability of

Fuzzy Logic Systems. The remaining aims of this thesis are as follows

• To investigate the suitability of the model to solve real-world problems.

• To investigate the most suitable training method for the new explainable AI

technique

5

• To investigate the most suitable optimization algorithm for the new explainable

AI technique

• To investigate and develop local explanations that are understandable to all

audience that might use these explanations

• To investigate and develop global explanations that can provide a holistic

understanding of the new Explainable AI Technique.

1.2 Thesis Layout

This thesis is structured as follows; Chapter 2 will give an overview of Explainable

AI and the three main methods, Deep Explanations, Interpretable AI and Model

Induction, that are being explored to achieve Explainable AI. It will present the case

for combining Deep Learning and Fuzzy Logic. It will also explore the techniques that

have been used to combine these two AI techniques.

Chapter 3 will give an overview of the Fuzzy logic system and the two major

subtypes type-1 fuzzy logic and type-2 fuzzy logic and the various operators and

components of these systems.

Chapter 4 will give an overview of optimization algorithms. It describes some of the

algorithms such as Big bang big crunch, Genetic Algorithms and gradient descent

algorithms.

Chapter 5 will give a list of problems or datasets used to evaluate the AI models

explored in this thesis. The problems were chosen with an emphasis on choosing real-

world datasets with a large number of features. The problems are divided into

Classification and Regression datasets based on the type of outputs or targets for these

problems.

6

Chapter 6 presents the proposed Deep Type-2 Fuzzy Logic system detailing the

training method used to train this AI model. It will also evaluate this AI model against

two deep learning techniques. We will also evaluate some of the optimization

algorithms and training techniques that could be used to train the AI model.

Chapter 7 presents an alternative training method to train the Deep Type-2 Fuzzy

Logic System using Stacked autoencoders. It will also present Fuzzy Stacked

Autoencoders and evaluate them against the model presented in the previous chapter

Chapter 8 presents two methods for extracting locally interpretable explanations

from the Deep Type-2 Fuzzy Logic system. It also evaluates these explanations by

conducting a survey where these explanations are compared against the explanations

provided by LIME and SHAP and an Interval Type-2 Fuzzy Logic System.

Chapter 9 expands the two methods presented in the previous chapter to provide

global explanations at the modular level. It will also present an enhancement to the

Deep type-2 fuzzy logic system to extract global rules from it.

Chapter 10 presents the conclusion of the thesis and discusses potential future work.

7

Chapter 2. Explainable Artificial Intelligence

An Explainable Artificial Intelligence (XAI) or transparent AI or interpretable AI is

one which produces explanations or reason for its actions which can be clearly

understood by its users. Explainability will allow AI systems to provide increased

transparency and fairness by providing an auditable record of all factors related to a

given prediction [6]. Explainability will also ensure that algorithmic decision making

is fair and ethical while enabling businesses to meet compliance requirements [1].

XAI is at the intersection of several fields of active research with an emphasis on

the following.

• Transparency: AI models are used to support decision making [14]; hence, it is

vital to ensure that all parties involved in the decision making and the people

affected by these decisions can understand them.

• Fairness: Explainability allows us to provide a clear understanding of the

relations which affect the result, allowing for a fair analysis of the model by

highlighting any bias in the data. Hence, XAI allows us to avoid unfair or

unethical use of AI models.

• Interactivity: The model should be interactive, i.e., it allows the end-users the

ability to tweak and interact with the model to ensure success [14].

• Confidence: Explanations provided by an AI system will allow us to assess the

reliability of the AI system, thereby gaining confidence and trust in the system.

• Causality: Since an AI model learns from data, it can discover correlations

among this data. Although this might not be enough to unveil the cause-and-

8

effect relationships, it could provide a first intuition of the causal relationships

between the inputs and the outputs.

The transparency in AI rarely comes for free; there are often trade-offs between

accuracy and transparency, and these trade-offs are likely to grow as AI systems

become even more complex. Hence, the goal of XAI systems should be to create

explainable models that provide interpretability while maintaining high accuracy [1,

14].

The explanations provided by these systems should not be restricted to AI experts;

they should provide explanations that can be easily understood by the lay user which

will allow domain experts to test and augment the AI systems with their expert

knowledge. Empowering them to determine when to trust or distrust a given AI model

[1, 12] [13].

Figure 2-1: Existing AI techniques and XAI methods [4]

9

As we can see from Figure 2-1, complex AI models such as Deep Neural networks

have historically performed better than simple interpretable models such as decision

trees or rule-based systems [14]. XAI is a DARPA program that is expected to enable

“third-wave AI systems” [4]. The goal of the XAI program is to enable a new suite of

techniques that are more explainable while retaining the high level of performance of

the AI models [4]. According to a DARPA report [4], the XAI explains individual

decisions, enables understanding of overall strengths and weaknesses, and conveys an

understanding of how the system will behave in the future and how to correct the

system’s mistakes. From Figure 2-1, there are three main methods suggested in the

report. In the following sections, we provide an introduction to the three methods

suggested to achieve XAI as well as some of the representative works that use these

methods. We will also present a fourth method to achieve XAI, in which we propose

to combine high-performance complex AI systems such as Deep learning with

interpretable systems such as Fuzzy Logic.

2.1 Deep Explanations

Deep Explanations involve the modification of existing Deep learning models to add

explainability. The goal here is to increase the explainability of the Deep Learning

models without losing their accuracy. Several approaches have been proposed to

achieve deep explanations [14]; these can be classified into two broad categories which

are presented below.

10

2.1.1 Model Simplification

2.1.1.1 Rule Extraction

The most common method used to achieve model simplification is by rule

extraction; one work that uses this method is Deep Red [17] where the behaviour of the

neural network is modelled as decision rules. This method is based on CRED [18],

which uses the C4.5 algorithm to induce rules in a shallow neural network with one

hidden layer. The authors of Deep Red extend the approach presented in CRED to Deep

neural networks by using the C4.5 algorithm to extract rules for each hidden layer based

on the preceding layer. Once the rules are extracted for all the layers, they are merged

to obtain the rule set.

Some of the other methods that use rule extraction include RxREN [19], where, in the

first step, insignificant neurons are removed from the network and rules are extracted

using the remaining neurons, In [20] the neural network is trained using a Genetic

Algorithm[21]. The significant neurons are then identified, and the rules are extracted

using these neurons, [22], where rules are extracted using a sampling and query-based

approach.

One point to note here is that the rules can become complex as the number of input

attributes and the number of layers increases. Pruning is used to simplify these rules,

but if the rules are aggressively pruned the model behaviour, and the rules diverge, i.e.,

the rules can not accurately predict the model behaviour.

2.1.1.2 Interpreting Neural Networks via Decision Trees

Another method that is used to achieve model simplification is to extract Decision

Trees from neural networks. In [23], for example, the authors propose a method to

11

construct a decision tree (depicted in Figure 2-2) to explain the CNN predictions

semantically and quantitatively. The rationale behind the CNN predictions is

summarised into decision modes (tree nodes on the decision tree). Each decision mode

represents predictions that trigger the same filters and have the same contribution to

the output [23].

The decision tree represents all possible decision modes of the CNN in a coarse to

fine manner. Nodes near the tree root represent the most common decision modes or

characteristics that are shared by many inputs (Most generic rationales as shown in

Figure 2-2). Nodes near leaves represent decision modes that are shared by fewer inputs

(Most specific rationales as shown in Figure 2-2) [23].

To do this, CNN is trained using filter loss functions that push the filter to represent

object parts of images. Then, each filter is assigned a specific part name. Finally, the

Figure 2-2: CNN explanation via decision trees [23]

12

decision modes are mined to explain how CNN uses the parts/filters for predictions,

and a decision tree is constructed [23].

• Some of the other methods that use decision trees to interpret neural

networks are TREPAN [24] which uses queries to induce decision trees that

approximate the neural network,

• Tree Regularization [25] is a regularisation technique that favours models

whose decision boundaries can be approximated by decision trees.

• Soft Decision Trees [26] is a technique where the inputs and output of a

neural network are used to train a decision tree.

One point to note here is that the decision tree only provides an approximate

explanation for the neural network prediction. Furthermore, as the number of inputs

increases the number of nodes in the decision tree increases rapidly, which might lead

to decision trees that are difficult to interpret.

2.1.2 Feature Relevance

Feature Relevance involves calculating the importance of the input features to the

final output. There are a variety of methods that have been proposed for calculating

feature relevance. Some of the most popular methods are presented below.

2.1.2.1 Deep Taylor Decomposition

Deep Taylor Decomposition [27] produces a decomposition of the neural network

output on the input features. The idea here is to calculate how much each input

contributes to the output. This is done by redistributing the predicted output into the

input features by performing a backward pass on the network using a predefined set of

rules [27, 28]. i.e., by redistributing the output to the neuron in the previous layer, then

13

redistributing this value to its input neurons in the previous layer and so on, (depicted

in Figure 2-3).

In Figure 2-3, the output that can be redistributed from arbitrary neuron
jx to the

collection of neurons ()i ix that are inputs to this neuron can be defined as a first-order

Taylor expansion. Hence, the propagation rule for the Deep Taylor expansion can be

expressed as follows.

' ''

[] []
i ij

f i f j

j i i ji

x w
x x

x w

+

+
=


 (2.1)

Where ijw+
are the weights between the neurons i in layer l and neuron j in layer

1l + , the + sign indicates that all the weights are forced to be positive.

One point to note here is that this method shows all the features and their

contribution. In cases where there are many input features, it can become tough to

Figure 2-3: Deep Taylor Decomposition [28]

14

distinguish the most important features. The second point to note here is that methods

such as Deep Taylor Decomposition which rely on gradients, which only measure the

susceptibility of the output to changes in the input and might not necessarily coincide

with those areas on which the network bases its decision [29]. The last point here is

that the algorithm can be challenging to understand to a lay user and they would need

the help of an expert to understand it.

2.1.2.2 Layer wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) [30] uses the idea of relevance

redistribution. It starts with a relevance score at the output and backpropagates it

through the network by calculating the relevance score for each subsequent layer of the

network using the relevance score and parameters from the previous layer. The formula

for calculating the relevance score is given below

i ij

i j

j i ij

i

x w
R R

x w
=

+



 (2.2)

Where, ix is the activation value of the neuron in layer l ,
ijw weight of the

connection between neuron i in layers l and neuron j in layer 1l + ,
jR is the

relevance score for each neuron in layer 1l + and iR is the relevance score for each

neuron in layer l .

Like the Deep Taylor decomposition, LRP shows all the relevant input features and

their relevance scores. This means that it can become difficult to distinguish the most

important feature when there are many relevant input features [15].

15

2.1.2.3 Deep LIFT

Another example of feature relevance is Deep LIFT [31], where the activation of

each neuron is compared to a reference activation, and the difference between these

two values is used to calculate a score. This score is used to calculate the feature

importance by backpropagating these values from the output to the input features. The

reference values for all hidden units are calculating during a forward pass of the neural

network, using a baseline input. The relevance values for each of the neuron layers is

calculated using the following formula.

ˆ

ˆ

i ij i ij

i j

j i ij i ij

i i

x w x w
R R

x w x w

−
=

+

 

 (2.3)

Where ix is the activation value of the neuron in layer l , ˆ
ix is the reference activation

value of the neuron in layer l ,
ijw weight of the connection between neuron i in layers

l and neuron j in layer 1l + ,
jR is the relevance score for each neuron in layer 1l +

and iR is the relevance score for each neuron in layer l .

One point to note here is that this method shows all the features and their

contribution. In cases where there are many input features, it can become extremely

hard to distinguish the most important features. Another point here is that the algorithm

can be difficult to understand to a lay user and they would need the help of an expert

to understand it.

2.2 Interpretable Models

The second approach to achieving XAI is to use models that are inherently

interpretable or explainable. Some of these models are listed below.

16

2.2.1 Linear/Logistic Regression

Linear Regression is used to predict the target output as a weighted sum of the

feature inputs. Logistic Regression is an extension of linear regression for classification

model used to predict a dependent variable which is binary in nature [32].

Linear Regression can be used to model the relationship between a target y and the

input features
1 2(, ,...,)pX x x x= . The learned relationship between them can be written

as follows [32] [33].

0 1 1 ... p py x x   = + + + + (2.4)

Where the predicted output is the weighted sum of its p input features, the

coefficients represent the learned feature weights. An example of linear regression

with a single independent variable (1p =) is depicted in Figure 2-4. For a single

independent variable equation (2.4) can be simplified to the equation of a line.

Figure 2-4: Linear Regression with one independent variable [32]

17

For logistic regression/classification, the right side of the equation is wrapped into

the logistic function. This forces the output to assume only values between 0 and 1 [32]

[33].

()

() ()

0 1 1

1
(1)

1 exp((...))

i

i i

p p

P y
x x  

= =
+ − + + +

 (2.5)

The model assumes that the input and the output variable have a linear relationship.

This makes it easy to create explanations for these models as long as the size of the

inputs is limited. However, as the number of input features increases, it becomes

difficult to understand the explanations. Hence, linear/logistic regression models

require feature selection for inputs with a large number of features. Another problem

with these models is that they can only be used to represent linear relationships.

Moreover, any nonlinear input or interaction must be handcrafted and provided to the

model.

2.2.2 Decision Trees

Decision trees are hierarchical structures where the data is split multiple times based

on certain cut off values for the input features. These split-off data are formed into

subsets which form the nodes of the decision tree. The final subsets are called terminal,

or leaf nodes and the intermediate subsets are called intermediate nodes (depicted in

Figure 2-5). The average outcome of these nodes is used to predict the outcome of the

leaf nodes.

There are various algorithms that can be used to train a decision tree. The algorithm

that is most commonly used to train decision trees is the classification and regression

trees (CART) algorithm [34]. In CART, the following formula describes the

relationship between the output y and the input features x [32].

18

1

ˆˆ () { }
n

i i

i

y f x c I x R
=

= =  (2.6)

Where each instance falls into exactly one leaf node (=subset iR). { }iI x R is the

identity function that returns one if x is in the subset iR otherwise it returns 0. If an

instance falls into a leaf node iR , the predicted outcome is ˆ
iy c= , where lc is the

average of all training instances in leave node iR [32].

Decision trees have been used in a variety of context due to their interpretability,

even experts from fields other than computation and AI are comfortable interpreting

their outputs [35]. However, their poor generalization ability in comparison to other AI

models makes them difficult to recommend in scenarios where predictive performance

is a design driver. Tree ensembles can overcome this problem, but they have poor

Figure 2-5: Decision Tree [32]

19

interpretability which means post hoc models have to be used. Another problem with

decision trees is that as the number of input features increases the number of nodes in

the tree increases, which means that decision trees can become very hard to interpret

for inputs with a large number of features[3]. Hence, decision trees require feature

selection for inputs with a large number of features.

2.2.3 Bayesian Models

A Bayesian model represents the probabilistic relationship between a set of

variables. This means that Bayesian models can convey a clear representation of the

relationship between the input features and the target outputs [14]. They usually take

the form of a probabilistic acyclic graphical model whose edges represent the

probabilistic relationship between a set of variables [14]. Formally, if an edge (A,B)

exists in the graph connecting random variables A and B, it means that P(B|A) is a

Figure 2-6: Bayesian network for the car start problem [36]

20

factor in the joint probability distribution. Bayesian networks also satisfy the local

Markov property, which means that a variable is conditionally independent of its non-

descendent variables. Hence, the Joint probability distribution can be written as follows

[36].

1 1 1

1

(,..., |) (| ,..., ,) (| ,)
n

n i i i i

i

p x x p x x x p x  −

=

= =  (2.7)

Where for every variable ix there will be a subset 1 }{ ,..,i nx x  such that ix and

1,.., nx x are conditionally independent.

 For example, Figure 2-6 represents a Bayesian network for the car start problem.

Where P (Turn Over | Battery, Gauge) = P(Turn Over | Battery) since Turnover is

conditionally independent of Gauge, given Battery. P (Start | Fuel, Turn Over, Battery,

Gauge) = P (Start | Fuel, Turn Over) since Start is conditionally independent of Battery

and Gauge given Fuel and Turn over, etc.

This means that Bayesian Networks are easy to understand when the number of

variables is small, but as the number of variables increases, the network becomes more

and more complex. This means that explanations extracted from very large Bayesian

networks can be hard to understand. Hence, Bayesian networks require feature

selection for inputs with a large number of features.

2.2.4 K-Nearest Neighbours

K-Nearest Neighbours (KNN) deals with classification problems in a

methodologically simple way: it predicts the class of a test sample by voting the classes

of its K nearest neighbours (where the neighbourhood relation is deduced by a measure

of the distance between samples). When used in the context of regression problems,

21

the voting is replaced by an aggregation (e.g. average) of the target values associated

with the nearest neighbours [14]. The assumption here is that similar objects exist in

close proximity to each other. A commonly used metric for regression problems is

Euclidean distance. For classification problems, other metrics such as the overlap

metric or Hamming distance can be used [37].

For example, in Figure 2-7 we are trying to identify the class of green

square(unknown), assuming that k=4, among the four nearest neighbours of the

unknown, three members are class A and only one member who belongs to class B is

close to the unknown. Hence, the unknown object is assigned to Class A.

In terms of model explainability, it is important to observe that predictions generated

by KNN models rely on the notion of distance and similarity between examples, which

Figure 2-7: K-Nearest neighbour [37]

22

can be tailored depending on the specific problem being tackled. One must keep in

mind that KNN’s class of transparency depends on the features, the number of

neighbours and the distance function used to measure the similarity between data

instances [14]. A very high K impedes a full simulation of the model performance by

a human user. Similarly, the usage of complex features or distance functions would

hinder the decomposability of the model, restricting its interpretability [14].

2.2.5 Fuzzy Logic

Fuzzy Logic systems are rule-based systems which can be used to model imprecise

and uncertain data. They try to mimic human thinking, although rather than trying to

represent the brain’s architecture as is done with a neural network, the focus is on how

humans think in an approximate rather than precise way [1]. This is done by modelling

uncertainty into if-then rules that describe a given behaviour into a human-readable

format.

A good example would be a decision that a human might take while driving a car

which could be the following rule “If the distance to the car ahead is low and the road

is slightly slippery Then slow down”. The numerical meanings of “low”, “close” and

“slow down” will differ from driver to driver. Furthermore, if a driver were to be

interviewed about the numerical values associated with these linguistic labels, they

Figure 2-8: A Typical Interval Type-2 Fuzzy Logic System [1]

23

would struggle to quantify them. Amazingly, humans are nevertheless able to

communicate with these ill-defined and vague linguistic labels and do not query the

exact values when they discuss them. In fact, these uncertain concepts allow humans

to be able to perform very sophisticated tasks such as driving cars or underwriting

financial applications [1].

A Typical Fuzzy Logic System (FLS) is depicted in Figure 2-8; it contains five

components: fuzzifier, rule base, inference engine, type-Reducer and a defuzzifier. A

T1FLS is very similar to the system depicted in Figure 2-8, the only difference being

that there is no type-Reducer in a T1FLS and it employs type-1 fuzzy sets in the input

and output of the FLS [38].

The IT2FLS works in the following way: the crisp inputs in the data are first

fuzzified into an input type-2 fuzzy set. A type-2 fuzzy set is also characterized by a

membership function, but unlike a type-1 MF, the type-2 fuzzy sets are three

dimensional and include a Footprint of Uncertainty (FOU). An interval type-2 fuzzy

set [39], depicted in Figure 2-9, is used to represent the inputs and outputs of the

IT2FLS. As seen in Figure 2-9, the membership for an Interval Type-2 fuzzy set outputs

an interval, [0.6,0.8] rather than the crisp number produced by Type-1 fuzzy sets.

Once the inputs are fuzzified, the inference engine then activates the rule base using

the input type-2 fuzzy sets and produces the output type-2 fuzzy sets. There is no

Figure 2-9: Interval Type-2 Fuzzy Set [1]

24

difference between the rule base of a T1FLS and a type-2 FLS except that the fuzzy

sets are interval type-2 fuzzy sets instead of type-1 fuzzy sets.

In the final step, the output type-2 sets produced in the previous steps are converted

into a crisp number. There are two methods for doing this; the first method is the

conventional two-step process where the output type-2 sets are converted into type-

reduced interval type-1 sets followed by defuzzification of the type reduced sets. The

second method is the direct defuzzification process which was introduced because of

the computational complexity of the first method. There are different types of type

reduction and direct defuzzification [38].

It is important to note that the number of rules and the number of antecedents per

rule have a bearing on the interpretability of the model. As the number of rules and

antecedents increase the model becomes less and less interpretable and reducing the

number and size of rules by optimisation can improve the interpretability but

sometimes at the cost of accuracy. Fuzzy Logic will be discussed in much more detail

in Chapter 3.

2.3 Model Induction

For AI models that are not inherently interpretable, one method to make them

interpretable is to use model induction through model agnostic methods. These

methods are designed such that any model can be plugged in with the intent of

extracting explanations.

2.3.1 Local Interpretable Model-Agnostic Explanations (LIME)

LIME [40] is a locally interpretable surrogate model, where an interpretable AI

model is trained to approximate the predictions of a black-box model. LIME

25

explanations are locally interpretable, i.e., the model is trained to provide good

explanations for individual predictions, but it does not have to provide good

explanations globally. This kind of accuracy is also called local fidelity [32].

Mathematically, local surrogate models with interpretability constraint can be

expressed as follows [32].

 ()exp () arg min (, ,)x
g G

lanation x L f g g


= + (2.8)

Where f is the prediction of the original model (e.g. Deep Neural Network), g is

the prediction of the interpretable model (e.g. decision tree) with x as the size of the

neighbourhood around instance x , ()g is the model complexity and L is the loss

function. LIME is used to optimize the loss part with the complexity and size of

neighbourhood determined by the user. The complexity of the model is generally kept

low by using a low number of features to create the interpretable model.

For training the local surrogate model LIME models the behaviour of the underlying

black-box model by inducing perturbations on the input, i.e., add small variation to the

input data. LIME generates a new sample dataset (depicted as black dots in Figure

2-10) using these new inputs for the corresponding original black box model prediction

(depicted as a yellow dot in Figure 2-10). The new sample dataset is weighted based

on the proximity to the original target input, in the figure the size of the dots increases

as they get closer to the black box model prediction. These weighted samples are then

used to train an interpretable model to provide explanations. The interpretable model

can be anything such as decision trees, fuzzy logic, etc. The interpretable model is

trained on a reduced the number of features to reduce the complexity of the model.

26

Increasing the number of features improves the fidelity of the local surrogate but at the

cost of explainability.

LIME uses an exponential smoothing kernel to define the weight or proximity of the

new inputs to the original target input. The kernel width defines the size of the

neighbourhood, i.e., the new inputs must be within the neighbourhood to influence the

interpretable model. Determining the kernel width is a design parameter that greatly

influences the fidelity of the model. Hence, it has to be chosen with care as changes to

the kernel width have a great influence on the explanations [32]. The next problem with

LIME is that the explanations are not consistent, i.e., when the same process is repeated,

the explanations provided can vary greatly [32].

Figure 2-10: LIME Algorithm: Generated sample data for training local model [32]

27

2.3.2 Anchor Local Interpretable Model-Agnostic Explanations

Anchor Local Interpretable Model-Agnostic Explanations (aLIME) [42] [41] is a

method where model agnostic explanations are provided by easy to understand if-then

rules, and these rules are called anchors. An Anchor is a rule that sufficiently "anchors"

the prediction locally, i.e., changes to variables other than the anchors does not change

the prediction. Like LIME, the aLIME approach uses a perturbation-based strategy to

generate if-then rules or anchors as local explanations for predicting the behaviour of

black-box models. These rules are reusable since they are scoped: anchors include the

notion of coverage, stating precisely to which other, possibly unseen, instances they

apply [32]. An anchor can be formally defined as follows [32] [41].

(|) () ()[1] , () 1

xD z A f x f zE A x=  = (2.9)

Where x represents the prediction being explained, A represents a set of

antecedents, i.e., a rule or anchors, such that () 1A x = when all the feature predicates

of A correspond to x ’s feature values, f represents the AI model being explained,

which can be queried to get the predictions for x and its perturbations. (. |)xD A

Figure 2-11: Anchors generated for keywords “not” and “bad” [41]

28

indicates the distribution of neighbours x matching A . 0 1  specifies a threshold

and only rules that achieve a local fidelity greater than  are considered valid [32].

For example, in Figure 2-11, x = “This movie is not bad”, ()f x = Positive, () 1A x =

where {" "," "}A not bad= . Let (. |)D A denote the conditional distribution when the

rule A applies (e.g. similar texts where “not” and “bad” are present, Figure 2-11

bottom) [41]. Then the anchor A is easy to apply: if words “not” and “bad” are present,

then the model will predict positive and if either (or both) words are not present then

the model prediction is unknown.

Although anchors mathematical description may seem straightforward, generating

particular rules is infeasible as it would require evaluating
() ()1f x f z=

 for all (. |)z D A

[32]. Therefore, the authors propose to introduce a probabilistic definition (equation

(2.10)) where anchors satisfy the precision constraint with high probability.

(|) () ()(()) 1 () [1]

xD z A f x f zP prec A with prec A E  =  − = (2.10)

If multiple anchors satisfy the criterion, the anchor which describes a larger part of

the search space is preferred, i.e., one with larger coverage [41].

The main advantage of the aLIME approach over LIME is that it uses IF-Then rules

which are easy to interpret (even for laypersons) [32]. However, the IF-Then rules

anchor model presented in [41], use crisp logic and thus will struggle with variables

which do not have clear, crisp boundaries, like income, age, etc. Also, the approach in

[41] will not be able to handle models generated from a big number of inputs.

Furthermore, explaining the prediction with just an anchor IF-Then rule does not give

a full picture about the decision as for example in case of classification problems, there

29

are always pros and cons which humans weigh in their minds and take a decision

accordingly [1].

2.3.3 SHAP

SHAP (SHapley Additive exPlanations) [43] ranks importance or relevance each

feature has to the prediction or output of the model to be explained. It is based on

calculating the contribution of input features to each prediction using Shapely values

(Game Theory) [44]. Shapely values tell us how to distribute the prediction among the

features fairly. SHAP specifies the explanation as [44]:

 0

1

(') '
M

j j

j

g z z 
=

= + (2.11)

where g represents the explanation model, ' {0,1}Mz  represents the simplified

feature vector, M represents the maximum feature size and
j R  represents the

feature attribution for a feature j , the Shapley values. The simplified features used here

could be individual features or groups of features depending on the type of data; for

example, for image data, super pixels are used as the simplified features.

To calculate the Shapley values, we simulate that only some features values are

playing ("present") and some are not ("absent") creating the simplified feature vector

[32]. A linear model is then trained to represent these values, to calculate the
j

(shapely values). In the simplified feature vector, when the feature values are present,

then the value of that feature is picked from the input x for which the explanation is

being generated. When the feature values are absent, they are replaced by random

values from some of the other inputs to the original model.

30

One method for calculating the shapely values is by using Kernel SHAP. Kernel

SHAP calculates the shapely values in 5 steps listed below [32].

• A Sample simplified feature vector is created , {1,.... }' {0, } .1 ,M

kz k K  (1 =

feature present in coalition, 0 = feature absent).

• A prediction is generated for each 'kz by first converting 'kz to the original feature

space (1’s are replaced by the feature values from x (original input for which we

are generating the explanation), 0’s are replaced by feature values from a random

input) and then applying the model f : (('))x kf h z

• Compute the weight for each 'kz with the SHAP kernel.

• Fit weighted linear model.

• Return Shapley values
j , the coefficients from the linear model.

The intuition behind this is: We can learn about individual features by studying their

effects in isolation. If a simplified feature vector consists of a single feature, we can

learn about that features' isolated main effect on the output prediction. If a simplified

feature vector consists of all but one feature, we can learn about that features' total

effect (main effect plus feature interactions). The SHAP kernel is defined as follows:

Figure 2-12: SHAP explanations [43]

31

(1)

(')
(| ' |) | ' | (| ' |)

x

M
z

M choose z z M z


−
=

−
 (2.12)

Where M represents the maximum simplified feature vector size and | ' |z

represents the number of features present in instance 'z . Lundberg and Lee show that

a linear regression with this kernel weight yields Shapley values [43] [32].

The linear model g is trained by optimizing the following loss function L:

 2

'

(, ,) [((')) (')] (')x x x

z Z

L f g f h z g z z 


= − (2.13)

where Z represents the training data. The estimated coefficients of the model, the
j

are the Shapley values.

The main advantage of SHAP is that SHAP has a solid theoretical foundation in

game theory. If the prediction is fairly distributed among the feature values, then we

get contrastive explanations that compare the prediction with the average prediction.

The disadvantages of SHAP are that first, it takes a long time to calculate the SHAP

values, so it is impractical to use it for many instances. The second disadvantage is that

it ignores the correlation between the input features; this could lead it to put emphasis

on unlikely data points [32]. The third disadvantage is that when the inputs have many

features, it can become very hard to distinguish between the features using the feature

importance scores.

32

2.3.4 Partial Dependence Plot

The partial dependence plot (PDP) shows the effect of one or two features on the

output of a machine learning model[45]. A partial dependence plot can show the

relationship between an input feature and the output. For example, when applied to a

linear regression model, partial dependence plots always show a linear relationship

between the selected features and the output [32].

The partial dependence function for regression is defined as [32]:

 ˆ ˆ ˆ() [(,)] (,) ()
s cx s x s c s c cf x E f x x f x x dP x= =  (2.14)

The sx represents the features that are being plotted in the PDP and cx represents

the rest of the input features. Usually, only one or two features are plotted in the PDP

represented by the set S. The feature(s) in S are those features for which we want to

know the effect on the prediction. PDP is drawn by marginalizing the output predictions

over the distribution of the features in set C so that the plot only shows the relationship

between the input features in set S and the output predictions. This allows us to create

plots that are only dependent on the input features represented in the set S [32].

The partial function ˆ ()
sx sf x is estimated by calculating averages in the training data,

also known as the Monte Carlo method [32]:

1

1ˆ ˆ() (,)
s

n
i

x s s c

i

f x f x x
n =

=  (2.15)

Where i

cx represents the features which are marginalised over the output

predictions. n is the number of records in the dataset.

33

In classification problems, the partial dependence plot displays the probability of a

certain class. An easy way to deal with multiple classes is to draw one plot per class

[32].

One of the drawbacks of the PDP is that we can only draw two features per plot.

This means that for inputs with many features, we will have to create a large number

of PDP plots. This means that PDP becomes extremely hard to understand for inputs

with a large number of features. The second major drawback is that the features for

which the plots are being created are assumed not to be correlated to the rest of the

features. If the features are correlated, then the plot might contain points that are

unlikely[32].

2.3.5 Individual Conditional Expectation

ICE (Individual Conditional Expectation) [46] plots are equivalent to PDP for

individual instances. An ICE plot (depicted in Figure 2-13) visualises each individual

instance or prediction as a line, compared to one line overall in PDP. A PDP (depicted

as the Yellow line in Figure 2-13) is the average of all lines of an ICE plot.

The values for a line on the ICE plot can be computed by keeping all other features

the same, creating variants of this instance by replacing the values (generally from a

grid) and fetching the predictions for the new input from the black box [32].

PDPs can show the average relationship between a feature and the model

predictions. This only works well if the interactions between the features for which

the PDP is calculated and the other features are weak. In the case of interactions, the

ICE plot will provide much more insight [32].

34

The advantage of Individual conditional expectation curves is that they are more

intuitive to understand than partial dependence plots as one line represents the

predictions for one instance if we vary the feature of interest. They can also uncover

heterogeneous relationships, unlike PDPs [32].

The disadvantage of ICE plots is that they can only display one feature meaningfully

because plotting the third dimension requires the use of a three-dimensional plot and

we would not be able to distinguish the features of the plot. Multiple ICE plot for each

feature can be drawn, but as the number of features increases, it becomes increasingly

difficult to understand.

2.3.6 Interpretable Mimic Learning

Another approach to model induction is Interpretable mimic learning [47]. The idea

behind this approach (depicted in Figure 2-14) is to use knowledge distillation to

transfer the knowledge of the DNN or another black-box model to a simpler, more

interpretable model. This is done by training the student/mimic model on the soft labels

Figure 2-13: ICE plot of survival probability by Age [32]

35

generated from the outputs of the parent/base model. The soft label, in contrast to a

hard label from the raw data, is a real value output of the teacher model, whose values

are usually in the range [0,1] [47].

Figure 2-14: Interpretable Mimic Learning

The authors note that a shallow neural network is not as accurate as a Deep network

when trained on the same training data. However, the accuracy of the shallow neural

network trained on soft labels is similar to or better than the deep model [47]. The

authors suggest that this is because some potential noise and error in the training data

(input features or labels) may affect the training efficacy of simple models [47]. The

teacher model may eliminate some of these errors, thus making learning easier for the

student model. Soft labels from the teacher model are usually more informative than

the original hard label (i.e. 0/1 in classification tasks), which further improves the

student model [47].

The authors choose gradient boosting trees (GBT) as the student model. Gradient

boosting machines are a method which trains an ensemble of weak learners to optimize

a differentiable loss function by stages[47]. This is done to ensure that the student

model retains the accuracy of the original DNN.

We must note here that GBT is an ensemble of decision trees. This means that,

although it retains some of the interpretability of the decision trees, it is a much more

36

complex to interpret. Furthermore, it becomes more complex to interpret as the size of

the DNN increases.

2.4 Hybrid Deep Learning and Fuzzy Logic Systems

Semantic representation of the predictions such as the use of natural language seems

to be the best way of generation explanations [16]. One way of generating these types

of explanations is to use IF-Then rules, which are intuitive to humans and usually

require low effort to comprehend and apply [42]. However, IF-Then rules that use crisp

logic will struggle with variables that have noisy boundaries, such as income, age, etc.

Furthermore, explaining the prediction with just an IF-Then rule does not give a full

picture about the decision as an example in case of classification problems, there are

always pros and cons which humans weigh in their minds and take a decision

accordingly. Also, another major problem with crisp logic is the inability to understand

the model behaviour in the neighbourhood of the instance and how the prediction can

change if certain features are changed, etc[1].

From the above discussion, offering users if-then rules that include linguistic labels

appears to be an approach that can facilitate the explainability of a model. The AI

technique that satisfies these conditions is the fuzzy logic system (FLS). However,

when there are many features in the input data FLS can become opaque as modelling

such data will require many rules. There are, of course, methods to mitigate this

problem using methods such as [48, 49] but they still require feature selection to be

effective [1].

37

A good way to mitigate the problems mentioned about is to combine connectionist

and symbolic paradigms [14, 50], i.e., combining high performance AI models such as

deep learning with fuzzy logic systems. There are several advantages to this approach.

• Since fuzzy logic systems use linguistic IF-Then rules, it makes the system

inherently interpretable.

• The system can be trained using both labelled and unlabelled data.

• The system can handle the uncertainties inherent in the data since it uses fuzzy

logic.

• Since the system is composed of transparent rules and membership functions,

which can be relatively easily changed, if there are any problems.

• There is no need for feature selection for inputs with a large number of features.

Combining multiple machine learning algorithms to solve problems has been an

active branch of AI research for several years [50, 51]. Deep learning has been

combined with many AI algorithms such as random forests[52], decision trees [53]

etc, including with FLSs. In the following sections, we introduce some of the

techniques or method that have combined Deep learning with Fuzzy logic in the

literature.

2.4.1 Fuzzy Restricted Boltzmann Machine

A Fuzzy Restricted Boltzmann Machine (FRBM) [54] is a neural network where the

connection weights and bias of the network are fuzzy parameters (depicted in Figure

2-15). The FRBMs can then be stacked to create a Deep Network. This method

provides several advantages over a Restricted Boltzmann Machine (RBM). First, the

FRBM is better than RBM in modelling probabilities; specifically, the RBM is treated

38

as a special case of FRBM when no uncertainty exists in the FRBM model. Second,

the FRBM model is more robust when compared to an RBM as it has the inherent

ability to models uncertainty; it will be more robust when encountering noisy data.

These advantages spring from the fuzzy extension of the connection weights and bias

of the neural network layers [54]. The Interval type-2 versions of the FRBM have been

proposed in [55, 56] These advantages spring from the fuzzy extension of the

connection weights and bias of the neural network layers [54], which are shown to

outperform the FRBM.

The main drawback of this system and its IT2 versions is that it does not enhance

the interpretability of the Deep Neural Network and only uses the uncertainty

modelling capabilities of the Fuzzy logic. This means that the weights and biases

cannot be directly used to gain insight into the relative importance of the inputs or

underlying relationships between the inputs and the predicted outputs [57]. Additional

tools such as the methods described in Sections 2.1 or 2.3 have to be used to gain insight

into the model and provide explanations for the predictions.

2.4.2 Fuzzy Deep Neural Network

Fuzzy Deep Neural Network (FDNN) [58] is a method where the neural network

representation and a fuzzy representation are trained at the same time. As depicted in

Figure 2-15: Fuzzy Restricted Boltzmann machine [54]

39

Figure 2-16, The outputs of these two representations are combined and become the

input for the next set of layers called the fusion layer. According to the authors, there

are several advantages to using Fuzzy Deep Neural Network, first, since a fuzzy

representation of the data is used the uncertainties in the data. Second, since the nodes

in the various layers interact with each other in uncertain ways, the fuzzy representation

will be able to account for these uncertainties. Third, since the parameters that represent

the relationship between nodes from adjacent layers are fuzzy numbers and the learning

process of the fuzzy representation is extended to the wider network, it results in an

improvement in the fitness of the joint probability distribution. This, when combined

with the inherent advantages of Deep learning, the authors have shown that the FDNN

has superior performance when dealing with noisy or uncertain datasets [58].

The main drawback of FDNN is that even though the fuzzy layers are interpretable,

the neural network layers are difficult to interpret. So, when the output of the two

different layers is combined, the model becomes opaque. Further, since the FDNN uses

Figure 2-16: Fuzzy Deep Neural Network [58]

40

fusion layers, the methods described in Section 2.1 cannot be used to provide an

explanation for the outputs. So, the methods used in Section 2.3 have to be used to

provide explanations for the FDNN. Hence, this method can only be used to enhance

the performance of Deep learning and not its interpretability.

2.4.3 Fuzzy Deep Learning

Fuzzy Deep Learning (FDL) (depicted in Figure 2-17) is a model proposed by

Seonyeong Park and colleagues in [59]. In their paper they propose a four-layer system

where the first layer calculates the membership grades of the inputs using membership

functions, the second layer calculates the firing level of the rules using the t-norm

operation, the third layer computes linear regression functions by normalizing weights

and finally, the fourth layer provides the output by summing the outcomes according

to all fuzzy if-then rules [59]. The main difference between this technique and the

neuro-fuzzy techniques is the use of the linear regression function in the third layer.

The authors show that this new method outperforms other traditional methods in

predicting tumour movement during radiotherapy [59].

Figure 2-17: Fuzzy Deep Learning [59]

41

There are multiple drawbacks to this method, such as it can only be used for

supervised learning, and there is no mention of how the output is connected to the

inputs. So, there are improvements required before this method can be used for XAI

applications.

2.4.4 Takagi Sugeno Deep Fuzzy Network

The Takagi Sugeno Deep Fuzzy Network (TSDFN) (depicted in Figure 2-18), was

proposed by Shreedhar Kumar Rajurkar and Nishchal Kumar Verma in [60]. The

authors explain their concepts using a three-layered TSDFN where the layers are input,

hidden and output. They propose that the number of nodes in the hidden layer may vary

based on the applications and each node in the hidden layer is a Takagi Sugeno Fuzzy

Logic System (TS FLS). Furthermore, the output layer is a single node or multiple

nodes depending on the desired output, and these nodes are also TS FLS systems. This

system is trained using a backpropagation algorithm.

Figure 2-18: Takagi Sugeno Deep Fuzzy Network [60]

42

The system exhibits some level of interpretability, but since multiple layers are used,

we do not know what the output of the hidden layers or input of the output layer

represents. Another problem is that of rule explosion, i.e., the number of rules and

membership functions increases exponentially as the number of features in the input

increases. Which means that it becomes difficult to interpret as the number of input

features increases. Hence, there are improvements needed before this system can be

used for XAI applications.

2.4.5 Fuzzy Deep Belief Network

The Fuzzy Deep Belief Network (FDBN) (depicted in Figure 2-19), was proposed

by Shusen Zhou and colleagues in [62]. The authors propose a system where they first

train a Deep Belief Network (DBN) using greedy layer-wise pre-training [61]. Then

two membership functions are created based on the mapping results of the trained

Figure 2-19: Fuzzy Deep Belief Network [61]

43

DBN. Once the membership functions are trained, they are used to activate the (n-1)

layer of the DBN.

The authors claim that this method provides comparable performance to other AI

algorithms [62]. The biggest drawback of this method is that it does not introduce any

interpretability to the Deep Belief Network it uses fuzzy inputs to improve the accuracy

of the DBN. Hence, this system cannot be used for XAI applications.

2.4.6 Active Fuzzy Deep Belief Network

Active learning is a machine learning technique that selects the most informative

samples for labelling and uses them as training data [63]. Active FDBN combines

Active learning with FDBN systems [62]. Where first the FDBN is trained using a

labelled dataset and all the unlabelled data. Once the first FDBN is trained, the

unlabelled data set is analysed, and some of the unlabelled data is converted into

labelled data based on a set of criteria [62]. After that, the FDBN is retrained using the

newly labelled and the unlabelled data. The authors have shown that using this method

improves the performance of the FDBN. This method has the same drawback as the

FDBN method, i.e. it is not interpretable hence cannot be used for XAI applications.

2.4.7 Pythagorean Fuzzy Deep Boltzmann Machine

The Pythagorean Fuzzy Deep Boltzmann Machine (PFDBM), was proposed by Yu-

Jun Zheng and his colleagues [64]. In this system, the weights in a Deep Boltzmann

Machine are replaced with Pythagorean Fuzzy Numbers [65] represented by the

weights in Figure 2-20.

The authors claim that this algorithm provides competitive performance when

compared to other algorithms in the field of passenger profiling [1]. They put forth

44

three reasons for using fuzzy logic in their model. First, fuzzified neural networks can

handle inputs with fuzzy (labelled) or incomplete features [66], which are inevitable in

passenger profilers [64]. Second, fuzzy parameters can improve the representation

ability of DBM by supporting fuzzy probability distribution [67] over cross-layer units,

as the principle of incompatibility asserts that high precision is incompatible with high

complexity in dealing with complex systems, such as passenger profilers. Thirdly, the

parameter learning of fuzzy DBM has a larger space than its crisp counterpart and thus

will be more helpful in utilizing the merits of deep learning [64].

Mathematically the PFDBM can be represented as follows, given 1[, ,]L= θ W W

denotes the fuzzy parameters of the PFDBM shown in Figure 2-20, the fuzzy energy

state 1{ , , , }Lv h h of the model is defined as follows.

 11 1 1

2

(, , , ,)
L

T T
lL l l

l

E −

=

 = − −v h h θ v W h h W h (2.16)

.

Figure 2-20: Pythagorean Fuzzy Deep Boltzmann Machine [65]

45

 This method has a major drawback in that it does not utilize the interpretability of

Fuzzy models and only tries to solve the uncertainty and incompleteness of the training

data. This means that the weights and biases cannot be directly used to gain insight into

the relative importance of the inputs or underlying relationships between the inputs and

the predicted outputs [57]. Moreover, additional tools such as the methods described in

Sections 2.1 or 2.3 have to be used to gain insight into the model and provide

explanations for the predictions. Hence, this method cannot be used as-is for XAI

applications, and it will need further research to input interpretability into the algorithm

[1].

2.5 Summary

This chapter defines and explains the need for Explainable AI, and it also explains

the three main methods that are being explored to achieve Explainable AI, Deep

Explanations, Interpretable Models and Model induction.

It explains that the methods used to achieve Deep Explanations, provide details

about all the input features that affect the output and that there is no structure to these

details. This might be useful in image recognition, but in other problems, it might be

hard to distinguish the most important features.

It explores the various existing interpretable models such as decision trees, fuzzy

logic etc, and explains how they have lower performance when compared to their

opaque counterparts and that they can also become opaque for inputs with a large

number of features.

46

It explores the various model induction methods in the literature and explains that

these methods are not suitable for use in regulated applications as they are generally

achieved using surrogate models.

It suggests an alternative to the above methods, combining the predictive power and

embedded feature selection of the Deep Learning models with the explainability of

Fuzzy Logic Systems. It explores the various methods that have been used in the

literature to achieve this. It highlights that these methods have primarily focused on

increasing the performance of Deep learning by taking advantage of the uncertainty

modelling capability of fuzzy logic while not enhancing the explainability of the

system.

The next chapter will describe the Fuzzy Logic Systems in detail.

47

Chapter 3. An Overview on Fuzzy Logic

Fuzzy Logic (FL) was first introduced by Lotfi Zadeh in his 1965 seminal paper

‘Fuzzy Sets’ [68]. Zadeh describes Fuzzy sets as the non-binary classification of

elements to classes; i.e., instead of classifying an element of a set as either belonging

to a class or not, there is instead a degree of membership to that class [69].

An example of non-binary classification might be “height” if there are three classes

that define the term height, short, average and tall. One way to classify people as tall

could be to say that anyone over 1.9 meters is tall. However, what about someone who

is 1.89 meters? Should this person be classified as average? This classification would

also change based on the context such as gender, age, location etc. In these situations,

we use a non-binary classification or fuzzy sets to determine the degree of membership

to class rather than use true or false to determine the class.

Zadeh goes on to state that such imprecisely defined classes exist throughout the

real world and play an essential part in human reasoning and decision-making

particularly when it comes to pattern recognition, communication and abstraction [69].

Fuzzy sets and systems are now widely used in many industries and fields to solve

practical problems and are subjects of intense research by academics all over the world.

Furthermore, Fuzzy rule-based systems, which are derived from fuzzy sets, have been

demonstrated as a powerful design methodology [38].

A rule-based fuzzy logic system (FLS) processes its inputs nonlinearly, and an

essential facet of FLSs is modelling imprecise and uncertain data and representing it

with a set of if-then rules to describe a given behaviour in human-readable form. A

48

Fuzzy rule has the structure “IF p THEN q”, in which p is called the rule’s antecedent

and q is called the rule’s consequent.

An example of a fuzzy rule is “IF service is good and food is delicious THEN tip is

high”. Here the terms “good”, “delicious” and “high” are called linguistic labels, and

these values can be hard to define as everyone has different ideas about what a linguistic

label constitutes. So, we use fuzzy sets and membership functions that describe them

to define these linguistic labels. Two main types of fuzzy sets are used in this thesis,

type-1, and type-2. Type-1 fuzzy sets are described by membership functions that are

totally certain, whereas type-2 fuzzy sets are described by membership functions that

are themselves fuzzy. The latter can be used to quantify the different kinds of

uncertainties that can occur [38].

A FLS that is described entirely in terms of type-1 fuzzy sets is called a type-1 FLS,

whereas a FLS that is described using at least one type-2 fuzzy set is called a type-2

FLS. Type-1 FLSs are unable to directly handle rule uncertainties because they use

type-1 fuzzy sets that are certain. Type-2 FLSs, on the other hand, can be used in

circumstances where it is difficult to determine the exact membership functions of a

fuzzy set [38].

3.1 Uncertainty

Fuzzy logic has been designed to handle uncertainty in many forms. In general,

uncertainty comes in many guises and is independent of the kind of fuzzy logic, or any

kind of methodology, one uses to handle it [70] [38].

The following are the sources of uncertainty that can occur in FLS [38].

49

• Uncertainty about the meaning of the words used in the rules.

• Uncertainty about the consequents used in the rules.

• Uncertainty about the measurements that activate the FLS.

• Uncertainty about the data, eg., missing or unreliable data, that are used to

tune the parameters of the FLS.

Uncertainty about the meaning of words might arise because words mean different

things to different people [71], which means that FL must somehow use this uncertainty

when it computes with words [38]. Type-1 FLS handles uncertainties about the

meaning of words by modelling the words as type-1 membership functions. Once type-

1 membership functions are chosen, all uncertainty associated with it disappears [38].

On the other hand, Type-2 FLS handles uncertainties about the meaning of words by

modelling the uncertainties. Although this is also totally precise, it includes a footprint

of uncertainty that provides new degrees of freedom that allows type-2 FLS to handle

uncertainty in new ways [38].

Uncertainty about the consequents arises because consequents are sometimes

obtained from experts, by means of knowledge mining, or are extracted directly from

data. Because experts do not all agree, a survey of experts usually leads to a histogram

of possibilities for the consequent of rules. This type of uncertainty can be handled by

a type-2 FLS [38].

Uncertainty in measurement can occur due to noise, as measurements are usually

corrupted by noise, they can also occur due to the limitation of the measuring (for

example, sensor resolution) system [38] [72]. Uncertainty in measurement can be

50

handled within the framework of a FLS by modelling them as fuzzy sets (either type-1

or type-2) [38].

Finally, a FLS contains many parameters whose values must be set before the FLS

is operational. One of the ways to do this is to make use of a set of data or training set.

This set usually contains input-output pairs, and if these pair are generated from

measurements, then they contain the same uncertainty as the measurements that trigger

an FLS [38]. This means that the FLS must be trained using unreliable data. This type

of uncertainty can be handled by using type-2 FLS [38].

3.2 Type-1 Fuzzy Logic Systems

A fuzzy logic system (FLS) can be defined as a nonlinear mapping of an input

feature vector into a scalar output. In a fuzzy logic system (depicted in Figure 3-1) the

crisp inputs in the data are first fuzzified into an input fuzzy set; singleton fuzzification

is commonly used as it simplifies the computation. Once the inputs are fuzzified, the

inference engine then activates the rule base using the input fuzzy sets and produces

the output fuzzy sets. In the final step, the output fuzzy sets produced in the previous

steps are converted into a crisp number. Crisp numbers are real numbers with no

Figure 3-1: Type-1 Fuzzy Logic System [38]

51

uncertainty associated with them. These numbers are essential for engineering

applications, as an example in control systems. For example, the speed of a motor in

Rotations per minute, the temperature in Celsius etc, are all examples of crisp number

and they are needed as either inputs or outputs to the fuzzy logic system [69] [38].

3.2.1 Linguistic Variables

Zadeh describes linguistic variables as “variables whose values are not numbers but

words or sentences in natural or artificial language. The motivation for the use of words

or sentences rather than numbers is that linguistic characterizations are, in general, less

specific than numerical ones.” [68].

This means that numerical values can be classified under certain linguistic variables

and still retain its contextual meaning. Given we use classification rather than true or

false in fuzzy logic, a numerical value may be classified into two or more linguistic

labels, but with different degrees of membership [69].

In fuzzy logic systems, a linguistic variable is fully characterised by a quintuple (

, , , ,u X U g m), where u is the name of the variable, X is the set of linguistic terms of

the linguistic variable u . g is the syntactic rule for generating the linguistic terms, and

m is the rule that assigns the linguistic term x X its meaning, ()m x , is the fuzzy set

on U , that is, : ()m X F U→ , where ()F U denotes the set of fuzzy sets of U . u is

generally referred to as the linguistic variable [38].

We can use an example to illustrate: Let pressure (p) be interpreted as a linguistic

variable. One might interpret this linguistic variable as the following terms p(pressure)

= [weak, low, okay, strong, high] each term in the variable p(temperature) is

characterised by a set in the universe of discourse U = [100 psi, 2300 psi]. We might

52

interpret weak pressure as below 300 psi, low pressure as between 300 psi and 1000

psi, okay pressure as pressure between 700 and 1500 psi, strong pressure as between

1300 and 2000 psi and high pressure as above 1700 psi.

These terms can be characterised as fuzzy sets whose membership functions are

shown in Figure 3-2. Measured pressure (p) values lie along the x-axis. In Figure 3-2,

a vertical line from any measured value intersects at most, two linguistic labels or

membership functions (see Membership Functions). For example, when p = 300 psi

pressure can be described by the linguistic labels weak and low, but to different degrees

of membership [38].

3.2.2 Membership Functions

Membership functions are functions that quantify the degree of membership of a

numerical value to a linguistic term. Membership functions have the mathematical

notation ()F x [38].

The most common geometric shapes used for defining membership functions are

piecewise linear functions such as triangular or trapezoidal, Gaussian, bell-shaped,

some of these are shown in Figure 3-3. Membership functions can be defined using a

Figure 3-2: Membership Functions for Pressure [38]

53

variety of methods. Membership functions are sometimes chosen by the user based on

their experience. The membership functions chosen this way vary quite drastically

depending on the user’s experiences, perspectives, cultures, etc. Other method include

polling a set of people, clustering using methods such as fuzzy c means clustering [73],

designed using optimisation procedures [74], etc.

Triangular Membership Functions are defined using the following formula [38].

() / ()

() (; , ,) () / ()

0

A A

x a b a if a x b

x x a b c c x c b if b x c

if x cor x a

 

− −  


= = − −  
  

 (3.1)

Trapezoidal Membership functions are defined using the following formula [38].

() / ()

1
() (; , , ,)

() / ()

0

A A

x a b a if a x b

if b x c
x x a b c d

d x d c if c x d

if x d or x a

 

− −  


 
= = 

− −  
  

 (3.2)

Gaussian Membership functions are defined using the following formula [38].

Figure 3-3: Types of Membership Function a) Triangular b) Trapezoidal c) Gaussian d) Singleton

[69]

54

2
()

() (; ,) exp
2

A A

x m
x x m  



 − 
= = −  

   

 (3.3)

Greater resolution is achieved by using more linguistic terms or membership

functions. Membership functions are designed to overlap with each other. By doing

this, we are able to distribute our decisions over more than one input class, which helps

to make FL systems robust [69]. Membership functions are generally scaled between

zero and unity, to ensure that the variables are normalised [69]. The choice of

membership functions generally depends on the user’s preferences. However, we can

use the partition theory put forward in [75] to determine the type of MFs to use,

generally larger number of partitions indicates more degrees of freedom which might

mean better performance.

3.2.3 Fuzzy Set Theoretic Operations

Fuzzy set theoretical operations, union, intersection and complement, are defined in

terms of their membership functions [38] (depicted in Figure 3-4).

Let A and B be two subsets of X. The union of A and B, denoted by 𝐴 ∪ 𝐵, contains

all the elements in either A or B, i.e. [38].

1

()
0

A B

if x Aor x B
x

if x Aand x B
 

 
= 

 
 (3.4)

The intersection of A and B denoted 𝐴 ∩ 𝐵, contains all the elements that are

simultaneously in A and B, i.e. [38].

1

()
0

A B

if x Aand x B
x

if x Aor x B
 

 
= 

 
 (3.5)

Let A denote the complement of A; it contains all the elements, not in A, i.e. [38],

55

1
()

0A

if x A
x

if x A



= 


 (3.6)

From these facts, it is easy to show that [38]:

() max[(), ()]A B A BA B x x x    = (3.7)

() min[(), ()]A B A BA B x x x    = (3.8)

() 1 ()AA
A x x  = − (3.9)

In fuzzy logic, union, intersection and complement are defined in terms of their

membership functions. Let fuzzy sets A and B be described by their membership

functions 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥). One definition of fuzzy union leads to the membership

function [38]:

() max[(), ()]A B A Bx x x   = (3.10)

Moreover, one definition of the fuzzy intersection leads to the membership function

[38]:

() min[(), ()]A B A Bx x x   = (3.11)

Fuzzy intersection can also be defined as the product of the two membership

function as [38]:

() () ()A B A Bx x x   = (3.12)

56

Additionally, the membership function of the fuzzy compliment is [38]:

() 1 ()AA
x x = − (3.13)

3.2.4 Rules

Fuzzy logic systems are rule-based systems. There are two main types of rule

structures that are used in Fuzzy logic, one structure is attributed to Zadeh, and the

other is attributed to Takagi and Sugeno [38]. In either case, the rules are expressed as

a collection of IF-THEN statements. The IF-part of the rule is its antecedent, and the

THEN part of a rule is its consequent.

Suppose a fuzzy logic system has p inputs
1 1,..., p px X x X  and one output y Y

. Let us suppose it has M rules, where the
thl Zadeh rule has the form [38]:

1

1 1: ,..., 1,...,l l l

p pR IF x isF and and x isF THEN y isG l M= (3.14)

Figure 3-4: Fuzzy set theoretical operations a) Fuzzy sets A and B b) A union B c) A intersect B d)

B complement [38]

57

This rule represents a fuzzy relation between the input space
1,...., pX X . and the

output space, Y of the fuzzy logic system [38].

It is possible to cast “nonobvious” rules into complete rules [38]. Six such rules are

summarised in the below section

3.2.4.1 Incomplete IF rules

Suppose we have created a rule base where there are p inputs, where some of the

rules have only a subset of m antecedents, e.g. [38].

1 1: ,..., ,m mR IF x isF and and x isF THEN yisG (3.15)

Such rules are called incomplete IF rules and apply regardless of
1,...,m px x+

. They

can be put into the format of the complete IF rule by treating the unnamed antecedents

(e.g.,
1,...,m px x+

) as elements of the fuzzy set IN-COMPLETE (IN for short) where, by

definition 𝜇𝐼𝑁 (𝑥)=1 for all 𝑥 ∈ 𝑋, i.e. [38].

1 1

1 1 1

(,..., ,)

(,..., ,)

m m

m m m p

IF x is F and and x is F THEN y is G

IF x is F and and x is F and x is IN and x is IN THEN y is G+

(3.16)

3.2.4.2 Mixed Rules

Not all rules use the “and” connective; some use the “or” connective, and some use

a mixture of both. The latter rules are called mixed rules. These rules can be

decomposed into a collection of equivalent rules, using standard techniques from crisp

logic. Suppose, for example; we have the rule [38]:

1 1 1 1(,...,) (....),m m m m p pIF x isF and and x isF or x isF and x isF THEN yisG+ +
 (3.17)

58

This rule can be expressed as the following two rules [38]:

1

1 1

2

1 1

: ,..., ,

: ,

m m

m m p p

R IF x isF and and x isF THEN yisG

R IF x isF and and x isF THEN yisG+ +

 (3.18)

Observe that both rules are Incomplete IF rules.

3.2.4.3 Fuzzy Statement Rules

Some rules do not appear to have antecedents; they are statements involving fuzzy

sets. Hence, they are called fuzzy statement rules. For example, 𝑦 𝑖𝑠 𝐺 is such a rule.

Clearly, this is an extreme case of an incomplete IF rule, and can therefore be

formulated as [38]:

1 ,pIF x is INand and x isIN THEN yisG (3.19)

3.2.4.4 Comparative Rules

Some rules are comparative, e.g. [38]

𝑇ℎ𝑒 𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑒 𝑥 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑒 𝑦.

Such rules must first be formatted into IF-THEN rules; the preceding rule can be

expressed as follows [38]:

𝐼𝐹 𝑥 𝑖𝑠 𝑆, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵.

Where S is a fuzzy set representing smaller, and B is a fuzzy set representing bigger

[38].

59

3.2.4.5 Unless Rules

Rules are sometimes stated using the connective “unless”; such rules are called

unless rules and can be put into the required format by using logical operators. For

example, the rule [38]:

1 1 ... p pyisGunless x isF and and x isF (3.20)

can be expressed as [38]:

1 1(...),p pIFnot x isF and and x isF THEN yisG (3.21)

3.2.4.6 Quantifier Rules

Rules sometimes include the quantifiers “some” or “all”; such rules are called

quantifier rules. Because of the duality between propositional logic and set theory, rules

with the quantifier “some” means that we have to apply the union operator to the

antecedents or consequents to which the “some” applies, whereas rules with the

quantifier “all” mean we have to apply the intersection operator to the antecedents or

consequents to which the “all” applies [59].

3.2.5 Fuzzifier

The fuzzier maps a crisp point 1(,...,)nx x x X=  into a fuzzy set xA in U. There are

two types of fuzzifiers: Singleton and Non-singleton [38].

A Singleton fuzzifier is one in which (') 1
iX ix = and () 0

iX ix = for i ix X and

'i ix x [38]. Singleton fuzzifier is the most commonly used fuzzifier.

A non-singleton fuzzification in one in which measurement 'i ix x= is mapped into

a fuzzy number [38]. For which (') 1
iX ix = and ()

iX ix decreases from unity as ix

60

moves away from 'ix [38]. Non-singleton fuzzifiers are used in instances where the

inputs are noisy or uncertain.

Conceptually, the non-singleton fuzzifier implies that the given input value 𝑥𝑖′ is the

most likely value to be the correct one from all the values in its immediate

neighbourhood; however, because the uncertainty in the input due to noise,

neighbouring points are also likely to be the correct, but to a lesser degree [38]. Figure

3-5 illustrates singleton and non-singleton fuzzification.

Figure 3-5: a) Singleton Fuzzification b) Non-singleton Fuzzification [76]

3.2.6 Fuzzy Inference Engine

In the fuzzy inference engine (which is labelled inference engine in Figure 3-1),

fuzzy logic principles are used to interpret fuzzy IF-THEN rules into a mapping

between the fuzzy input sets in 𝑋1 × … × 𝑋𝑝 to fuzzy output sets in Y. Each rule is

interpreted as a fuzzy implication (Mamdani implication [77] is used here). We treat

the fuzzy inference engine as a system, one that maps fuzzy set into fuzzy sets [38].

When Zadeh rules and Mamdani fuzzy system is used, then the fuzzy inference can

be expressed as follows [38]:

1(,) [()] ()l l l l
i

p

i iA G F G
x y T x y  =→

=  (3.22)

61

In (3.22), 1 ()l
i

p

i iF
T x= is called the firing strength of the rule. There are three widely

used connectives to calculate firing strength. If all connectives in a rule are “And” then

the minimum (3.23) or the product membership degrees can be used (3.24) (t-norm)

[38]:

() min[(), ()]A B A Bx x x  →  (3.23)

() () ()A B A Bx x x  → = (3.24)

If all the rule connectives are “Or” then the maximum membership degree can be

used (3.25) (t-conorm) [38]:

() max[(), ()]A B A Bx x x  →  (3.25)

3.2.7 Defuzzifier

Defuzzification produces a crisp output for FLS from the fuzzy sets that are the

outputs of the inference engine [38]. One criterion we use for the choice of a defuzzifier

is its computational simplicity. Since we use population-based optimization to optimise

the FLS, the FLS is called frequently during the optimisation process. This means that

complex defuzzification will lead to much more computational resources being used.

Some defuzzification methods are as follows:

3.2.7.1 Centroid Defuzzifier

The centroid defuzzifier combines the output fuzzy sets using union (i.e. a t-conorm,

e.g. maximum) and then find the centroid of this set [38]. i.e.,

1

1

(| ')
(')

(| ')

N

i B ii
c N

B ii

y y x
y x

y x





=

=

=



 (3.26)

62

Unfortunately, the centroid defuzzification is usually difficult and time-consuming

to compute as we have to first compute the union of the fuzzy sets.

3.2.7.2 Height Defuzzifier

The height defuzzifier [78], also called the centre average defuzzifier, replaces each

rule output fuzzy set with a singleton having maximum membership in the rule’s

consequent membership set, then calculating the centroid of the type-1 set comprised

of these singletons. The output of a height defuzzifier is given as [38]:

1

1

(| ')
(')

(| ')

l

l

N l l

Bi
h N l

Bi

y y x
y x

y x





=

=

=



 (3.27)

This is very easy to use because the centres of gravity of commonly used

membership functions are known ahead of time. For example, regardless of whether

minimum or product inference is used, the centre of gravity of 𝐵𝑙 for [69]:

• A symmetric triangular consequent membership function is at the apex of the

triangle.

• A Gaussian consequent membership function is at the centre value of the

Gaussian function.

• A symmetric trapezoidal membership function is at the midpoint of its support.

3.2.7.3 Centre-Of-Sets Defuzzifier

In centre-of-sets defuzzification [79], each rule consequent is replaced set by a

singleton located at its centroid, whose amplitude equals the firing level, and then the

centroid of the type-1 set comprised of these singletons. The expression of the output

of the Centre-of-sets defuzzifier is given as [38]:

63

1 1

1 1

() (') (')
(')

() ()

M Ml l l l

l l
COS M Ml l

l l

COG G f x c f x
y x

f x f x

= =

= =

= =
 

 
 (3.28)

3.3 Type-2 Fuzzy Logic Systems

Type-1 fuzzy logic systems have limited capabilities in modelling and minimizing

uncertainties in the data [69]. As discussed, uncertainty comes in many guises and is

independent of the kind of fuzzy system or methodology one uses to handle it. Two

important aspects of uncertainties are linguistic and random. The former is associated

with words, and the fact that words can mean different things to different people, and

the latter is associated with unpredictability. Probability theory is used to handle

random uncertainty, and fuzzy systems are used to handle linguistic uncertainty, and

sometimes FLSs can also be used to handle both kinds of uncertainty, because a fuzzy

system may use noisy measurements or operate under random disturbances [69].

Adding uncertainty to the type-1 membership functions means that the membership

grade is no longer a crisp number; it is its own set in the range [0, 1]. Calculating all 𝑥

∈ 𝑋 creates a three-dimensional membership function, a type-2 membership function

that characterises a type-2 fuzzy set.

3.3.1 General Type-2 Fuzzy Sets

Consider the transition from ordinary sets to fuzzy sets. When we cannot determine

the membership of an element in a set as 0 or 1, we use fuzzy sets of type 1. Similarly,

When the circumstances are so fuzzy, we have trouble determining the membership

grade even as a crisp number [0,1] we use fuzzy sets of type-2, a concept that was first

introduced by Zadeh in 1975 [38].

64

A type-2 set can also be described as a type-1 fuzzy set where the degree of

membership is fuzzy. Figure 3-6 a. shows a type-1 membership function, where the

membership is blurred by shifting the triangle on the x-axis, but not necessarily by the

same amount, this would generate Figure 3-6 b. This means that the degree of

membership is no longer a single value but is represented by a fuzzy set; whose degree

of membership takes on values wherever the vertical line intersects the blurs.

Calculating all x X creates a three-dimensional membership function, a type-2

membership function that characterises a type-2 fuzzy set [38].

 A type-2 fuzzy set denoted F , is characterised by a type-2 membership function

(,)
F

x u , where x X and [0,1]xu J  , i.e., [80]

{((,), (,)) | , [0,1]}xF
F x u x u x X u J=      (3.29)

In which (,) [0,1]
F

x u  . F can also be expressed as [38, 80]

(,) / (,), [0,1]

x

xF

x X u J

F x u x u J
 

=   (3.30)

Figure 3-6: a) Type-1 Membership Function b) Blurred Type-1 Membership Function c) Footprint

of Uncertainty [38]

65

Where  denotes union over all admissible x and u [38]. An example of a general

type-2 fuzzy set is depicted in Figure 3-7 (a) and (b). xJ is called the primary

membership of x in F . At each value of x say 'x x= , the two-dimensional (2-D) plane,

whose axes are u and (',)
F

x u , is called a vertical slice of F . It is (',)
F

x x u = , for

'x X and ' [0,1]xu J   , i.e., [38, 80]

'

' '(',) (') () / [0,1]

x

x xF F

u J

x x u x f u u J 


=  =  (3.31)

Figure 3-7: (a) Side view of a general type-2 fuzzy set, with three zLevels on the third dimension (b)

Tilted read/below view of the same set, indicating the position of the three zSlices. (c) Side view of the

same zSlices version in (a), with I=3. (d) Tilted rear/below view of the same set, showing the zSlices

[80].

66

Where '0 () 1xf u  , and (')
F

x is referred to as a secondary MF[80].

3.3.2 z-slices Based General Type-2 Fuzzy Sets

Recently there have been several methods that have been proposed to limit the

complexity of general type-2 fuzzy logic such as an alpha plane based representation

presented in [81] or geometric representation presented in [82]. One of these methods,

a zSlices based representation [80], is presented in this section.

A zSlice is formed by slicing a general type-2 fuzzy set in the third dimension (z)

at level iz . This slicing action will result in an interval set in the third dimension with

Figure 3-8: (a) Front view of a general type-2 set F . (b) Third dimension at x’ of a zSlices-based

type-2 fuzzy set with I=4 [80]

67

height iz . As such, a zSlice iZ is a fuzzy set with its membership grade
(,)iZ x u

 in the

third dimension equal to iz , where 0 1iz  . Thus, the zSlice iZ can be written as

follows [80]:

[,]

/ (,)

i i i

i i i

x X u l r

Z z x u
 

=   (3.32)

Where, at each x value (depicted in Figure 3-8 (a)), zSlicing creates an interval set

with height iz and domain i xJ , which ranges from il to ir , as shown in Figure 3-8 (b),

1 i I  , where I is the number of zSlices (excluding 0Z) and /iz i I= [80].

A general type-2 fuzzy set F can be seen as equivalent to an infinite collection of

zSlices. In a discrete universe of discourse F can be represented as follows [80]:

0

I

i

i

F Z
=

= (3.33)

The summation sign in (3.33) does not represent the arithmetic addition but denotes

the set theoretical operation union. If the maximum operation is used to represent the

union operation, whenever a u value is attached to more than one iz values, the

maximum iz is chosen and attached to the given u value. Hence, the (')
F

x at 'x of

the zSlices-based general type-2 fuzzy set F shown in Figure 3-8 (b) can be expressed

as follows [80]:

 0 [,]

'

(') /

() / , [0,1]

i i i

i
i x

I

i iF
i u l r

i x

u J

x z u

max z u J


= 



=

=

 


 (3.34)

68

Where 0 i I  . It is worth noting that at 'x , (')
F

x is a type-1 fuzzy set.

3.3.3 Interval Type-2 Fuzzy Sets

There are many possible choices for secondary membership functions. When

() 1 [0,1]x xf u u J=    in equation (3.31), then the secondary membership functions

are interval sets, and, if it is true for x X  , we have an interval type-2 membership

function which characterizes an interval type-2 fuzzy set (IT2FS) [83]. An IT2 FS is

said to be maximally uncertain because all its secondary membership grades are the

same value. A general Type-2 fuzzy set is said to be less uncertain than an IT2 FS

because its secondary grades are not all the same.

Since all the secondary memberships of an interval type-2 fuzzy set are unity, an

interval type-2 fuzzy set is represented by its domain interval, which can be represented

by its left and right end-points [,]l r [83]. The two endpoints are associated with two

type-1 membership functions that are referred to as upper and lower membership

functions which are bound by a footprint of uncertainty FOU [83]. The upper

membership function and lower membership function are represented as ()
F

x and

()
F

x respectively.

It has been argued that using type-2 fuzzy sets to represent the inputs and outputs of

FLS has many advantages when compared to the type-1 fuzzy sets; some of these

advantages are as follows [84]:

• As the type-2 fuzzy sets membership functions are fuzzy and contain a footprint

of uncertainty, then they can model and handle the linguistic and numerical

uncertainties associated with the inputs and outputs of the FLS. Therefore, FLSs

69

that are based on type-2 fuzzy sets will have the potential to produce a better

performance than the type1 FLCs when dealing with uncertainties [83].

• Using type-2 fuzzy sets to represent the FLS inputs and outputs will result in

the reduction of the FLS rule base when compared to using type-1 fuzzy sets,

as the uncertainty represented in the footprint of uncertainty in type-2 fuzzy sets

lets us cover the same range as type-1 fuzzy sets with a smaller number of labels

and the rule reduction will be greater when the number of the FLS inputs

increases [38].

• Each input and output will be represented by a large number of type-1 fuzzy

sets, which are embedded in the type-2 fuzzy sets [38]. The use of such a large

number of type-1 fuzzy sets to describe the input and output variables allows

for a detailed description of the analytical control surface as the addition of the

extra levels of classification give a much smoother control surface and

response. In addition, according to Karnik and Mendel [85], the type-2 FLS can

be thought of as a collection of many different embedded type-1 FLSs.

• It has been shown in [86] that the extra degrees of freedom provided by the

footprint of uncertainty enables a type-2 FLS to produce outputs that cannot be

achieved by type1 FLSs with the same number of membership functions. It has

been shown that a type2 fuzzy set may give rise to an equivalent type-1

membership grade that is negative or larger than unity. Thus, a type-2 FLS can

model more complex input-output relationships than its type-1 counterpart and,

thus, can give better control response.

70

3.3.4 Interval Type-2 Fuzzy Logic Systems

A Typical IT2FLS is depicted in Figure 3-9; it contains five components: fuzzifier,

rule base, inference engine, type-Reducer and a defuzzifier. The main difference

between an IT2FLS and a type-1 FLS is that the output fuzzy sets of the inference

engine have to be type-Reducer to output a crisp value. Furthermore, it employs IT2

fuzzy sets in the input and output of the FLS [38].

The IT2FLS works in the following way: the crisp inputs in the data are first

fuzzified into an input interval type-2 fuzzy set; singleton fuzzification is commonly

used in IT2FLS as it simplifies the computation. Once the inputs are fuzzified, the

inference engine then activates the rule base using the input interval type-2 fuzzy sets

and produces the output interval type-2 fuzzy sets. There is no difference between the

rule base of a T1FLS and a type-2 FLS except that the fuzzy sets are interval type-2

fuzzy sets instead of type-1 fuzzy sets. In the final step, the output interval type-2 sets

produced in the previous steps are converted into a crisp number. There are two

methods for doing this; the first method is the conventional two-step process where the

output type-2 sets are converted into type-reduced type-1 fuzzy sets followed by

defuzzification of the type reduced sets. The second method is the direct defuzzification

Figure 3-9: Type -2 Fuzzy Logic System

71

process which was introduced because of the computational complexity of the first

method [38].

3.3.5 Type-Reduction + Defuzzification

In engineering applications, it is desirable to get the output of a fuzzy logic system

as a crisp number. In type-1 FLS this is achieved by defuzzification of the output type-

1 fuzzy sets. For Interval type-2 fuzzy logic system, there are two main methods for

achieving this. (a) Map the IT2 fuzzy set directly to a number also called direct

defuzzification. (b) Map the IT2 fuzzy sets into type-1 fuzzy sets and then map them

into a number, Type-Reduction + Defuzzification [38]. In this section, we describe one

the method that can be used for Type-Reduction + Defuzzification.

 Type-reduction + defuzzification must reduce to defuzzification when the

uncertainties of a T2 FS disappear. Consequently, the type-reduction methods are

extensions of type-1 defuzzification methods, and, once a type-reduction method is

applied to IT2 FS, then it is relatively easy to apply the same to general type-2 fuzzy

sets. The starting point for type-reduction is for IT2 FSs, for which each weighted

average is a special kind of interval weighted average [38].

Given

 [,], 1,2,....,i i i ix X x x i N  = (3.35)

 [,], 1,2,....,i i i iw W w w i N  = (3.36)

Where i ix x and i iw w , and iX and iW represent sets of intervals. We can

compute the interval weighted average as follows.

72

 1

1

[,]

n

i ii
IWA l rn

ii

X W
Y y y

W

=

=

= =



 (3.37)

Where IWAY is completely defined by its two endpoints, ly and ry . Because

(1,..,)iX i n= appear only in the numerator, the smallest and largest value of each iX

is used to find ly ()ry , i.e., [38]:

 1

[,]

1

min
i i i

n

i ii
l nw c d

ii

a w
y

w

=

 

=

=



 (3.38)

 1

[,]

1

max
i i i

n

i ii
r n

w c d
ii

b w
y

w

=

 

=

=



 (3.39)

Where the notations under min and max in (3.38) and (3.39) mean that i ranges

from 1 to n and each iw ranges from ic and id [38].

It is well known that the equations in (3.38) and (3.39) can be rewritten as follows

[38].

1 1

1 1

L n

i i i ii i L
l L n

i ii i L

a d a c
y

d c

= = +

= = +

+
=

+

 

 
 (3.40)

1 1

1 1

R n

i i i ii i R
r R n

i ii i R

b c b d
y

c d

= = +

= = +

+
=

+

 

 
 (3.41)

Where L and R are switch points. There is no closed form solution for L and R

, hence to calculate ly and ry , iterative algorithms such as Karnik Mendel(KM)

algorithm are used.

73

3.3.5.1 Karnik-Mendel Algorithm

The KM Algorithm for computing ly is as follows[38]:

Step 1: Initialize iw by setting () / 2, 1,2,....i i iw c d i n= + =

 1

1 1

' (,....,)
n n

n i i i

i i

y y w w a w w
= =

= =  (3.42)

Step 2: Find {1,2,...., 1}k n − such that 1'k ka y a + 

Step 3: Set i iw d= when i k , and i iw c= when 1i k + , and then compute

 1 1

1 1

()

k n

i i i ii i k
l k n

i ii i k

a d a c
y k

d c

= = +

= = +

+
=

+

 

 
 (3.43)

Step 4: Check if () 'ly k y= . If yes, stop and set () ()l ly k y L= and call k L. If no, go

to Step 5.

Step 5: Set ' ()ly y k= and go to Step 2.

The KM Algorithm for calculating ry is as follows [38]:

Step 1: Initialize iw by setting () / 2, 1,2,....i i iw c d i n= + =

 1

1 1

' (,....,)
n n

n i i i

i i

y y w w b w w
= =

= =  (3.44)

Step 2: Find {1,2,...., 1}k n − such that 1'k kb y b + 

Step 3: Set i iw c= when i k , and i iw d= when 1i k + , and then compute

74

 1 1

1 1

()

k n

i i i ii i k
r k n

i ii i k

b c b d
y k

c d

= = +

= = +

+
=

+

 

 
 (3.45)

Step 4: Check if () 'ry k y= . If yes, stop and set () ()r ry k y R= and call k R. If no,

go to Step 5.

Step 5: Set ' ()ry y k= and go to Step 2.

3.3.5.2 Centre of Sets Type Reduction

The Centre-of-Sets type reduction[39] is described in this section. Regardless of

which type-reduction method is used, the type-reduced set is also an interval set and

has the following structure [38]:

[,]TR l rY y y= (3.46)

Recall that the COS defuzzifier for a type-1 fuzzy system replaces each rule

consequent T1 FS by a singleton located at its centroid, with an amplitude equal to the

firing level.

Similarly, in the COS type-reducer each rule consequent IT2 FS, iG , by the support

of its centroid, [(), ()]i i

l rc G c G , and assigns a secondary MF of 1/ [('), (')]i if x f x to

it, where [('), (')]i if x f x are the firing intervals for the thi rule [38]. Hence, from (3.40)

, (3.41) and (3.28) COS type-reduction is as follows [38]:

1 1

1 1

() (') () (')
(')

(') (')

L Mi i i i

l lCOS i i L
l L Mi i

i i L

c G f x c G f x
y x

f x f x

= = +

= = +

+
=

+

 

 
 (3.47)

75

1 1

1 1

() (') () (')
(')

(') (')
r

R Mi i i i

r rCOS i i R

R Mi i

i i R

c G f x c G f x
y x

f x f x

= = +

= = +

+
=

+

 

 
 (3.48)

Where ()i

lc G and ()i

rc G are the left and right endpoints of the centroid of the IT2

consequent,
if and

if are the upper and lower firing levels of the thi rule [38], and the

switch points L and R can be calculated using the KM algorithm (described in section

3.3.5.1).

Please note that to compute the (')COS

ly x and (')COS

ry x one must first compute the

centroid of each rule’s IT2 consequent set, [(), ()]i i

l rc G c G . Which can be done by using

the below equations [38]:

 1 1

1 1

() ()
()

() ()

L n

i i i iGi i LG
l L n

i ii i LG G

x x x x
c G

x x

 

 

= = +

= = +

+
=

+

 

 
 (3.49)

 1 1

1 1

() ()
()

() ()

R n

i i i ii i RG G
r R n

i ii i RG G

x x x x
c G

x x

 

 

= = +

= = +

+
=

+

 

 
 (3.50)

 Where, ()iG
x and ()iG

x are the upper and lower membership function of

the IT2 consequent set at ix , and, the switch points L and R can be calculated using

the KM algorithm (described in section 3.3.5.1). The centroids only need to be

calculated once as these centroids do not depend on the input to the fuzzy system.

Next, the intervals calculated using (3.47) and (3.48) are averaged to get the crisp

output.

(') (')

2

l r
COS

y x y x
Y

+
= (3.51)

76

3.3.6 Direct Defuzzification

The main motivation for direct defuzzification is to avoid the iterative computation

needed to perform the type-reduction. Another motivation is to obtain a formula for

crisp output of the IT2FLS that can be used in some sort of mathematical analysis [38].

Nie Tan method [87], is formulated using the vertical slice representation of an IT2

FLS from (3.31). For an IT2 FLS, each vertical slice is an embedded type-1 fuzzy set

that can be easily type reduced. The intuition behind the Nie Tan method is that the

computational overhead of type reduction can be reduced by first type reducing

individual vertical slices, before defuzzifying the resulting type-1 fuzzy set to obtain

the centroid of the IT2 FLS [87].

Consider an IT2 FLS that is represented by a collection of vertical slices [87], i.e.,

'

1/ ()

x

j

j j

u J

F x x


=  (3.52)

where j denotes the
thj vertical slice in equation (3.30).

Suppose the continuous vertical slice is discretized into jn points, then the centroid

of each vertical slice can be computed as follows [87]:

1

1
() ()

jn

i

j j

ij

x x
n

 
−

=  (3.53)

For IT2 FS, the average of a vertical slice that comprises jn discrete points is the

mean of the upper and lower membership functions [87]:

1

() (() ())
2

j j jx x x  = + (3.54)

77

Similarly, the combined fired-output set B can be defuzzified by computing the

centre of gravity of the average of its lower and upper MFs [38], i.e.,

1

1

[(| ') (| ')]1
(') [(| ') (| ')]

2 [(| ') (| ')]

N

i B Bi
NT NB B

B Bi

y y x y x
y x COG y x y x

y x y x

 
 

 

=

=

+ 
= + = 

  +




 (3.55)

The procedure for computing the crisp output of the IT2FLS using the Nie Tan

method is as follows [87].

1. Interval type-2 fuzzy consequent sets are reduced to the crisp output using

equation (3.55).

2. The firing set for each rule is then obtained using the meet operation as per

normal.

3. An IT2 FS representing the output of the fuzzy inference engine is constructed

using the extended sub start composition. Then the crisp output is calculated

using the equation (3.55).

Mendel and Liu [88] prove that (')NTy x (3.55) is a first-order Taylor series

approximation of the actual defuzzified value of B when using the centroid type -

reduction + defuzzification [38]. This means that the Nie Tan direct defuzzification

method gives a close approximation of the centroid type-reduction + defuzzification.

In addition, we can see that this direct defuzzification depends on only the upper and

lower firing levels and so we do not have to perform complex iterative computations.

In addition, when all IT2 MF uncertainties disappear in (3.55), it reduces to the correct

type-1 defuzzification formula. Hence, in this thesis, we use Nie-tan defuzzification for

all the regression datasets.

78

3.4 Fuzzy Rule-Based Classification Systems

Classification problems involve assigning an input vector 1,.. ,. nx x to a class hC

from a predefined set of classes 1,..., MC C C= . In fuzzy rule-based classification

systems (FRBCS) these inputs are mapped to the output using rules. The fuzzy rule in

the FRBCS can be written as follows [89].

1:j j j

l n n h hRule R If x is A and and x is A then yisClassC withCF (3.56)

Where 1,.. ,. nx x represents the input vector,
j

nA represents the linguistic label for

the antecedent pattern i and hCF is the rule weight.

3.4.1 Scaled Support and Scaled Confidence

In FRBCS, where the rules are generated from data and not from expert knowledge,

many of the rules of the FRBCS system will have the same antecedents but the

conflicting consequents [89], to resolve this conflict, two measures are generally used.

• Confidence: It is the conditional probability that, if the antecedents are true,

then the consequent is true [90].

• Support: It is a measure of how general a given rule is and can be considered to

be the probability of occurrence of records with given antecedents and

consequent in a particular data set [90].

The confidence and support measure can cause problems in skewed datasets, i.e., in

datasets, where the number of training records for one class vastly outnumber the

number of training records for the other classes. To overcome these problems, Scaled

Confidence and Scaled Support [91] are used in this thesis.

79

To calculate the scaled confidence and support, we first need to calculate the scaled

firing strength of the rules. The scaled firing strength is calculated by dividing the firing

strength of a rule is calculated by dividing the firing strength of the rule by the sum of

firing strength of all the rules that have different antecedents but the same consequent.

The upper and lower scaled firing strengths are calculated using the following formulas.

h

jt
jt

jt

j Class

f
fs

f


=


 (3.57)

h

jt

jt

jt

j Class

f
fs

f


=


 (3.58)

Where
jtf and

jtf represent the upper and lower firing levels of the rules.

h

jt

j Class

f


 and
h

jt

j Class

f


 represent the sum of firing strength of all the rules that have

hClass as their consequent.

The scaled confidence ()q qA C→ for rules where the class qC is the consequent class

for the antecedents qA (where there are m conflicting rules with the same antecedents

and conflicting consequents) could be written as follows [89]:

1

()

()
()

s h

jt

s

x ClassC

q q m jt

sj

fs x

c A C
fs x



=

→ =




 (3.59)

1

()

()
()

s h

jt

s

x ClassC

q q m jt

sj

fs x

c A C
fs x



=

→ =




 (3.60)

80

Here The scaled confidence can be viewed as measuring the validity of ()q qA C→

[89].

The scaled support for the same can be written as follows [89].

()

() s h

jt

s

x ClassC

q q

fs x

s A C
m


→ =


 (3.61)

()

() s h

jt

s

x ClassC

q q

fs x

s A C
m


→ =


 (3.62)

Here the support can be viewed as measuring the coverage of training patterns by

()q qA C→ [89].

These two values can then be used to calculate the scaled dominance or the weights

of the rules using the below formulas [89].

() (). ()q q q q q qd A C c A C s A C→ = → → (3.63)

() (). ()q q q q q qd A C c A C s A C→ = → → (3.64)

3.4.2 Calculate Output Class

To determine the output of the FRBCS, the relative importance of each of the

possible output classes has to be calculated, and the class with the highest importance

score is the output class for an input vector.

To calculate the importance of each output consequent or class. The upper and lower

importance score for each of the output classes is calculated using the below formulae

[89].

81

()* ()
()

(()* ())

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


 (3.65)

()* ()
()

(()* ())

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


 (3.66)

Where ()j pf x and ()j pf x represent the upper and lower firing levels for the rule j

for input ()px , (()* ())j p

j h q qMax f x d A C → and (()* ())j p

j h q qMax f x d A C →

represent the maximum product of the upper or lower firing level and the upper or

lower weight for the rules.

Finally, the upper and lower importance scores of the output classes are averaged

using (3.67) to get the class importance score.

() ()
()

2

p p
p h h

h

Zclass x Zclass x
Zclass x

+
= (3.67)

The class with the highest hZclass will be the class predicted for the input vector ()px

.

3.4.3 Similarity Metric

In case the incoming input vector ()px does not trigger any of the existing rules, we

need to decide the output class for the input. The first step in this process is to build all

possible from the given input vector, using the matched fuzzy sets [92].

82

Figure 3-10: An Example to Illustrate Similarity Metric

Suppose we have a classification problem with two inputs 1x and 2x , and that the

input vector ()px will match the fuzzy sets as shown in Figure 3-10. Then from Figure

3-10, we can generate four different rules: 1 { , }R Small Medium= , 2 { , }R Small Large=

, 3 { , }R Medium Medium= and 4 { , }R Medium Large= . Each rule will have an

associated firing strength but no consequent.

To find the consequent of these rules, we need to find the rule that is closest to each

of the generated rules. In order to do this, we calculate a similarity measure between

each of the generated rules and each of the X rules stored in the rule base. Let the

linguistic labels that fit the input vector ()px be written as

1 2(, ,..,)inputr input r input r inputnrv v v v= where r is the index of the thr generated rule. Let the

linguistic label corresponding to any given rule in the rule base be 1 2(, ,..,)j j j jnv v v v=

. Then the similarity of the rule can be calculated using the below [89]:

1 1

1

2 2

2

(1

* (1 *....* (1

input r j

inputlr j

input r j inputnr jn

v v
Similarity

V

v v v v

V Vn



 −
= −  
 

 −  − 
− −    

  

 (3.68)

83

Where 1,..., nV V represents the number of linguistic labels representing each

variable. Each rule in the rule base will have a similarity value associated with each of

the r generated rules. For each of the generated rule, this similarity value is used to

choose the consequent or output class [89].

To predict the output class. The upper and lower importance score for each of the

output classes is calculated using the below formulae [89].

()* ()
()

(()* ())

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


 (3.69)

()* ()
()

(()* ())

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


 (3.70)

Where ()j pf x and ()j pf x represent the upper and lower firing levels of the most

similar rule in the rule base and ()q qd A C→ and ()q qd A C→ represent the upper and

lower scaled dominance of the most similar rule in the rule base.

Finally, the upper and lower importance score is used to calculate the total

importance score of the class.

() ()

2

p p

h h
hr

Zclass x Zclass x
Zclass

+
= (3.71)

The class with the highest hrZclass will be the class associated with the input vector

()px .

84

3.5 Design Methods for Fuzzy Logic Systems

This section describes two design methods that can be used to create fuzzy logic

systems using examples.

3.5.1 Wang Mendel Method

Wang and Mendel developed a well-known method for developing fuzzy systems

from examples, combining both expert knowledge and numerical data examples [93].

They proposed a four-step generalised method for constructing fuzzy systems by

generating rules from examples. This method leads to a fuzzy system with the number

of rules smaller than the number of training data pairs, and it is widely used as it is

simple to implement [38].

Given a set of desired input-output data pairs [38]:

(1) (1) (1) (2) (2) (2) () () ()

1 2 1 2 1 2(, :),(, :),.., (, :)n n nx x y x x y x x y (3.72)

Where 𝑥1and 𝑥2 are inputs and 𝑦 is an output. This simple two input-one output

example is used to explain the intricacies of the Wang Mendel method; extending this

to a multi input-multi output system is straightforward. The Wang and Mendel

approach consists of the following five steps [93]:

 Step 1 – Divide the input and output spaces into fuzzy regions.

Let the domain intervals 1 2 1, :x x y be represented by 1 1[,]x x− +
, 2 2[,]x x− +

, and [,]y y− +

respectively, where “domain interval” of a variable means that the value of the variable

most probably be present in this interval (the value of the variable can lie outside the

interval). Divide each domain interval into 2N + 1 regions (N can be different for

85

different variables, and the lengths of these regions can be equal or unequal), denoted

by SN (Small N), …, S1 (Small 1), CE (Centre), B1 (Big 1), …, BN (Big N), and assign

each region a fuzzy membership function [93].

Figure 3-11 shows an example where the domain interval for the variable 1x is

divided into five regions (N = 2), the domain region for the variable 2x is divided into

seven regions (N = 3), and the domain interval of the output y is divided into five

Figure 3-11: Division of Domain Intervals [93]

86

regions (N = 2). The shape of each membership function in this example is triangular;

with one vertex at the centre of the region that has a degree of membership 1; the other

two vertices lie at the centres of the two neighbouring regions, respectively, and have

a degree of membership zero. Of course, other divisions and other shapes of

membership functions are possible [93].

 Step 2 – Generate fuzzy rules from given data pairs.

First, determine the degree of membership for the given input
(1) (1) (1)

1 2, :x x y in

different regions. For example,
(1)

1x in Figure 3-11, has degree 0.8 in B1, degree 0.2

in B2 and zero degrees in all other regions. Similarly,
(1)

2x in Figure 3-11, has degree 1

in CE, and zero degrees in all other regions [93].

Second, assign a given
(1)

1x ,
(1)

2x and
(1)y to the region with the maximum degree

of membership. For example,
(1)

1x in Figure 3-11, is assigned to be B1, and
(1)

2x is

assigned to be CE [93].

Finally, we obtain one rule from the one pair of desired input-output data, e.g. [93].

(1) (1) (1) (1) (1)

1 2 1 2

(1)

(, ; [(0.8 1,max), (0.7 1,max);

(0.9 ,max)]

x x y x in B x in S

y inCE


 (3.73)

IF x1 is B1 and x2 is S1, THEN 𝑦 is CE [93].

(2) (2) (2) (2) (2)

1 2 1 2

(2)

(, ; [(0.6 1,max), (1 ,max);

(0.7 1,max)]

x x y x in B x inCE

y in B


 (3.74)

IF x1 is B1 and x2 is CE, THEN y is CE [93].

87

The rules generated in this way are “and” rules, i.e., rules in which conditions of the

IF part must be met simultaneously for the result of the THEN part to occur [93].

Step 3 – Assign a degree to each rule

After generating the rules using the method in Step 2, it is highly likely that there

will be some conflicting rules, i.e., rules that have the same antecedents but a different

consequent. One way to resolve this conflict is to assign a degree to each rule generated

from data pairs and pick the rule with the maximum degree from this group. In this

way, not only is the conflict resolved, but the number of rules is also greatly reduced

[93].

We use the following product strategy to assign a degree to each rule: for the rule:

“IF 𝑥1 is A and 𝑥2 is B, THEN 𝑦 is C” the degree of this rule, denoted by D(Rule), is

defined as [93]:

 1 2() () () ()A B cD Rule m x m x m y= (3.75)

As examples, Rule 1 has degree [93]

 1 1 1 2(1) () () ()B S CED Rule m x m x m y= (3.76)

 = 0.8 × 0.7 × 0.9 = 0.504

(see Figure 3-11) and Rule 2 has degree [93]

 1 1 2 1(2) () () ()B CE BD Rule m x m x m y= (3.77)

 = 0.6 × 1.0 × 0.7 = 0.42

88

In practice, we often have some prior information about the data pair. For example,

if we let an expert check given data pairs, the expert may suggest that some are very

useful and crucial, but others are very unlikely and may be caused just by measurement

errors. Therefore, we can assign a degree to each data pair that represents our belief of

its usefulness. In this sense, the data pairs constitute a fuzzy set, i.e. the fuzzy set is

defined as the useful measurements; a data pair belongs to this set to a degree assigned

by a human expert [93].

Suppose the data pair (
(1) (1) (1)

1 2, :x x y) has degree m(1), then we redefine the degree of

Rule 1 as [93].

(1)

1 1 1 2(1) () () ()B S CED Rule m x m x m y m= (3.78)

i.e., the degree of a rule is defined as the product of the degrees of its components

and the degree of the data pair that generates this rule. This is important in practical

applications because real numerical data have different reliabilities, e.g., some real data

can be very bad (“wild data”). For good data, we assign higher degrees, and for bad

data, we assign lower degrees. In this way, human experience about the data is used in

a common base as other information. If one emphasises objectivity and does not want

a human to judge the numerical data, our strategy still works by setting all the degrees

of the data pairs equal to unity [93].

Step 4 – Create a combined fuzzy rule base

 The form of a fuzzy rule base is illustrated in Figure 3-12. We will fill the boxes of

the base with fuzzy rules according to the following strategy: a combined fuzzy rule

base is assigned rules from either those generated from the numerical or linguistic rules

89

(we assume that a linguistic rule also has a degree that is assigned by the human expert

and reflect the experts belief of the importance of the rule); if there is more than one

rule in one box of the fuzzy rule base, use the rule that has maximum membership

degree.

In this way, both numerical and linguistic information is codified into a common

framework – the combine fuzzy rule base. If a linguistic rule is an “and” rule, it fills

only one box of the fuzzy rule base; but, if a linguistic rule is an “or” rule (i.e., a rule

for which the THEN part follows if any condition of the IF part is satisfied), it fills all

the boxes in the rows or columns corresponding to the regions of the IF part. For

example, suppose we have the linguistic rule:

“IF 𝑥1is S1 or 𝑥2 is CE, THEN 𝑦 is B2” for the fuzzy rule base of Figure 3-12;

then we fill the seven boxes in the column of S1 and the five boxes in the row of CE

Figure 3-12: The form of a Fuzzy Rule Base [93].

90

with B2. The degree of all the B2’s in these boxes equal the degree of this “or” rule

[93].

Step 5 – Determine a mapping based on the combined fuzzy rule base.

We use the following defuzzification strategy to determine the output control 𝑦 for

given inputs (𝑥1, 𝑥2): first, for given inputs (𝑥1, 𝑥2), we combine the antecedents of the

ith fuzzy rule using product operation to determine the degree, 𝑚𝑂𝑖𝑖
 , of the output

control corresponding to (𝑥1, 𝑥2), i.e. [93],

1 2

1 2() ()i i i

i

O I I
m m x m x= (3.79)

Where 𝑂𝑖 denotes the output region of Rule i and
i

jI denotes the input region of Rule

i for the jth component, e.g., Rule 1 gives [93].

1

1 1 1 2() ()CE B Sm m x m x= (3.80)

Then we use the following centroid defuzzification formula to determine the output

[93].

 1

1

i

i

K i i

Oi

K i

Oi

m y
y

m

=

=

=



 (3.81)

Where 𝑦̅𝑖 denotes the centre value of region 𝑂𝑖 (the centre of a fuzzy region is

defined as the point that has the smallest absolute value among all the points which the

membership function for this region has membership value equal to one), and K is the

number of fuzzy rules in the combined fuzzy rule base [93].

91

3.5.2 Enhanced Wang-Mendel Method

Wang [94] introduced three rule extraction methods that are variations of the WM

method described in the previous section. The variations are used to solve different

problems for different purposes [38].

The first method is used to extract specific rules which target a specific region and

rules with different resolutions with flexible choices of the MFs [38]. Specifically,

given m input variables 1(,...,)i imx x selected from 1(,...,)nx x fall into the fuzzy region

characterized by “IF 1ix is 1iA and,…, and imx is imA ” where the membership functions

for the fuzzy sets 1iA ,.., imA are given, the problem is to determine the fuzzy set B in

the fuzzy IF-THEN rule [94]:

 1 ... ,i il im imIF x is A and and x is A THEN y is B (3.82)

Step 1: For each input-output pair (;)p px y , p = 1,2,…,N, compute.

1

()
ij

m
p p

A ij

j

w x
=

= (3.83)

 Where ijA are the fuzzy sets in (3.82). If
1

0
N p

p
w

=
= , then no rule in the form

(3.82) will be generated; the method stops. Otherwise, view pw as a weight of
py and

compute the weighted average

 1

1

N
p p

p

N
p

p

y w

av

w

=

=

=





 (3.84)

92

Step 2: A fuzzy IF-THEN rule in the form of (3.82) is generated with B

determined according to the following two cases.

Case 1: Among the K fuzzy sets
1,..., kB B defined in the output space R , find the

*jB such that

 * () ()j jB B
av av  (3.85)

For 1,2,..,j K= . The B is chosen as *jB .

Case 2: Compute the weighted “variance”

 1

1

| |
N

p p

p

N
p

p

y av w

w


=

=

−

=





 (3.86)

And the fuzzy set B is the fuzzy set with triangular membership functions

 () (; ,)B y y av  = (3.87)

Step 3: Compute the degree of confidence(doc) of the rule generated in Step 2.

Specifically, in Case 1 the doc is defined as

*

, 1

1 ()
max | | jBN p q

p q

doc av
y y




=

 
= −  − 

 (3.88)

And in Case 2 it is defined as

, 1

1
max | |N p q

p q

doc
y y



=

= −
−

 (3.89)

93

The second method can be used to extrapolate the rules over regions not covered by

the data. The details of the method are detailed below [94].

Step 1: For each extrapolating rule, determine how many neighbours it has from the

set of data-generated rules. Find the group of extrapolating rules that have the

maximum number of such neighbours and call this group the max-group.

Step 2: For each rule in the max-group, compute

 1

1

b
r r r

c
l r
c b

r r

r

y doc dis

y

doc dis

=

=

=



 (3.90)

Where l is the index of the rule, b is the number of neighbours this rule has from

the data-generated rules,
r

cy and rdoc is the distance between the input centre of this

rules and its neighbour rule r . The extrapolating rules in this max group are generated

as

 1 1 ... ,l l l

i i im imIF x is A and and x is A THEN yis B (3.91)

Where
l

ijA are fuzzy sets corresponding to the entry of the extrapolating rule in the

rule table, and lB is a triangular fuzzy set () (; ,)l

l l

cB
y y y  = with

l

cy given in (3.90)

and l computed as

 1

1

| |
b

r l r

c c
l r

b
r

r

y y doc

doc

 =

=

−

=



 (3.92)

Step 3: Compute the degree of confidence of the extrapolating rule (3.91) as

94

, 1

1
max | |

l
l

b k t

k t c c

doc
y y



=

= −
−

 (3.93)

Where k,t run over all the neighbour rules are the r in (3.90) and (3.92).

Step 4: View the extrapolating rules generated in Step 2 as the same of the data-

generated rules and go to Step 1 to repeat the process until all the extrapolating rules

are generated. The extrapolating rules plus the data-generated rules form a complete

fuzzy rule set.

3.6 Summary

This chapter provided an overview of the Fuzzy Logic Systems explaining the

different stages from the crisp input, to fuzzification, rule inference, the various

defuzzification methods and the crisp output.

This chapter described the Type-1 and Type-2 Fuzzy sets and presented the many

advantages of using type-2 fuzzy sets to represent the inputs and outputs of the FLS. It

went on the describe the difference between the type-1 and type-2 FLS and explained

the additional steps required, such as type-reduction. It then described the Fuzzy rule-

based classification systems built using scaled confidence and support, that are required

in cases where the classification data is skewed.

It also explained the similarity metric that allows the FLS to generate output in no

rules fired situations that might be caused because of the short rules and small rule-

bases that are used to preserve the interpretability of the FLS.

The next chapter gives an overview of the optimisation algorithms

95

Chapter 4. An Overview of Selected Optimization

Algorithms

Optimisation is a process by which a large number of feasible solutions to a problem

are systematically examined until we find the best solution. An objective or fitness

function is used to determine the goodness or fitness of the solutions, and objectives

are often cost, distance, time and other such factors.

We use stochastic search principles (where randomness is introduced into the

algorithms so that a given input can produce different outputs depending on the system

variables) to all the optimization algorithms to find globally optimal solutions more

reliably [69].

4.1 Big Bang Big Crunch (BB-BC)

Big Bang Big Crunch method [95] is based on the idea that randomness can be seen

as energy dissipating into the environment while convergence to an optimal point can

be seen as gravitational attraction. These ideas are used as the basis for BB-BC

algorithm where randomness is used to create totally new candidate solutions by

creating disorder and convergence is used to pick the optimal solutions from this

disorder.

BB-BC is similar to a Genetic Algorithm [95] in that both of these methods use

randomness to generate their initial population. The creation of the initial population is

referred to as the Big Bang Phase where the candidate solutions are spread uniformly

across the solution space (depicted in Figure 4-1)

96

The population size is generally kept fixed throughout the optimization process.

However, the population size can be increased or decreased depending on the fitness

of the solutions or the number of iterations.

The Big bang phase is followed by a Big Crunch phase. The Big Crunch phase is

represented by a convergence operator which reduces the number of solutions to one,

which is termed as the centre of mass. The centre of mass can be calculated using the

following formula.

 1

1

1

1

n

i

i i
c n

i i

x
f

x

f

=

=

=





 (4.1)

Where ix represents the individual candidate solution, if is the fitness of the thi

solution and n is the population size of the Big Bang Phase.

After the Big Crunch phase, the algorithm will create a new generation of candidates

to be used in the next iteration. There are various ways to achieve this; the simplest

way to do this is to generate a new generation randomly. This method has no benefits

Figure 4-1: 2D depiction of the initial population of candidate solutions in BB-BC algorithm

97

as the knowledge gained in the previous step is lost. The BB-BC algorithm retains the

knowledge from each generation by generating the new generation of candidate

solutions around the optimal point or centre of mass that was discovered in the previous

step. This is achieved by generating the new candidates using a normal distribution

operation around the centre of mass and also by reducing the standard deviation of the

normal distribution function as the number iterations increases [95] (depicted in Figure

4-2)

After the second Big Bang phase, the centre of mass is recalculated using the new

candidate solutions. This process of, Big Bang followed by Big Crunch, is repeated

until the stopping criteria are met. The knowledge gained in each Big Crunch phase is

transmitted to the next Big Bang Phase in the form of the centre of mass and the

standard deviation of the candidate solutions.

As the number of iterations increases the standard deviation becomes smaller and

smaller, eventually reaching zero as the number of iterations reaches infinity. Thus, the

new generation candidates who will be located far from the centre of mass will be

Figure 4-2: 2D depiction of the candidate solutions in the second Big Bang Phase in BB-BC

algorithm

98

selected with decreasing probability thus potentially moving the centre of mass towards

itself if it has higher fitness value than the remaining candidate solutions [95]. Thus

ensuring the global convergence property of the BB-BC algorithm [95].

A summary of the BB-BC algorithm is presented below [95]:

• The initial generation of n candidates is randomly generated while respecting

the limits of the search space.

• Calculate the fitness of all the candidate solutions generated in the previous

step.

• Find the centre of mass using equation (4.1) or the best-fit individual among

the candidate solutions is chosen.

• Calculate the new generation of candidate solutions around the centre of mass

chosen in the previous step using the below equation.

new c

lr
x x

k
= + (4.2)

Figure 4-3: Flow Chart for the Big Bang Big Crunch Algorithm

99

where cx is the centre of mass, l is the upper limit of the search space, r is the

random number generated and k is the number of iterations completed.

• Return to step 2 if the stopping criteria are not met.

4.1.1 Implementation of the Big Bang-Big Crunch Algorithm

The flow chart for the BB-BC algorithm is show in Figure 4-3, and the pseudocode

is presented in Figure 4-4.

4.2 Genetic Algorithms

Genetic Algorithms are based on the theory of evolution, i.e., the population of

individuals evolves over time to adapt to a given environment. This means that

individuals that are more suitable to the environment are more likely to survive and

reproduce [96].

Genetic Algorithm is an iterative procedure that is implemented in the following

way:

Figure 4-4: Pseudocode for the BB-BC algorithm

100

An initial population of individuals or chromosomes is generated either randomly

or by using some method to embed prior knowledge into the population. Included prior

knowledge is known to improve the rate of convergence of the genetic algorithm.

A fitness function is used to evaluate or determine the fitness of all the individuals

in the population. The fitness function is designed based on the objectives of the

optimisation process.

Then a new generation of individuals is generated by first selecting certain

individuals from the population (usually depends on the fitness of the individual), and

then the next generation of individuals are generated. The next generation is then

evaluated for fitness, and if the stopping criteria are met, we stop the evaluation. Else,

these individuals are used to produce the next generation of offspring’s. This process

is repeated until the stopping criteria are met.

4.2.1 Genetic Operators

4.2.1.1 Selection

In genetic algorithms, selecting the individual or chromosome that will produce the

next generation of individuals is crucial. The selection process is generally proportional

to the fitness of the individuals. There are many methods that are commonly used to

accomplish this, Fitness proportional selection and Tournament selection are the most

popular methods [69, 97, 98]

• Fitness Proportional Selection: In this method, the probability that a particular

individual i is selected depends on the following equation

101

1

1
i

i i

f
p

f
i

=


 (4.3)

Where f represents the fitness of a particular individual. Therefore the

probability of an individual being selected is proportional to their fitness [21].

Hence, the selection process involves randomly generating a number and

selecting individuals based on their fitness proportion and its correlation to the

random number.

• Tournament Selection: The most common way in which tournament selection

takes place is by randomly selecting k individuals from the population, and

the fittest individual from these k individuals is selected [21].

4.2.1.2 Crossover

Crossover is the process in which the chromosomes of two individuals are merged

by cutting the chromosomes at some chosen points [21]. The most common crossover

techniques are below.

• Single Point Crossover: In this method, a single point is chosen for the

crossover point. The chromosome after the chosen point is swapped between

the two parent chromosomes to generate the new individuals. The single point

crossover is illustrated in Figure 4-5.

Figure 4-5: Single Point Crossover [69]

102

• Multi-Point Crossover: In this method, n points are chosen for the crossover

points. The sections of the chromosomes between the n chosen points are

swapped between the chromosomes of the two parents to create the new

individuals. This process is illustrated in Figure 4-6.

4.2.1.3 Mutation

Mutation allows undirected jumps within the search space [69]. Mutation is used to

maintain the genetic diversity of the population, and it is designed to occur very rarely

with a probability that is set to below 10%. The mutation operator is generally

interpreted as flipping a bit or generating a random bit [21]. In the case of real-valued

formulations, mutation is generally interpreted as randomly generating a value within

the search space of the problem to be solved [69].

4.2.2 Implementation of Genetic Algorithm

The flow chart of a genetic algorithm is shown in Figure 4-7, and the pseudo-code

for implementing a genetic algorithm is presented in Figure 4-8

Figure 4-6: Multi-Point Crossover [69]

103

4.3 Gradient Descent Optimization Algorithm

Gradient Descent is one of the most popular optimization algorithms which are used

for optimizing Neural Networks and Deep Learning algorithms. In this thesis, the

Figure 4-7: Flow Chart of a Genetic Algorithm

Figure 4-8: Genetic Algorithm Pseudo Code

104

gradient descent algorithm is used to train the stacked autoencoder, which is then used

to pre-train the proposed Deep Type-2 fuzzy logic system. The training method using

gradient descent is described in Chapter 7.

Gradient descent is an iterative algorithm that works on the principle of error-

correction learning, and it is implemented in the following way:

In the initial step, the weights and bias of the neural network are generated randomly.

The weight and bias values are either uniformly distributed between 0 and 1 or -1 and

1 based on the algorithm. Next, a single or multiple training data pairs are presented to

the network, and an error is calculated using a cost function, which is chosen based on

the type of problem that is being solved.

The error values are then used to identify the gradient of the cost function, which is

then used to update the weights and bias of the network based on the learning rate using

the following equation [99].

 1 . ()t t J   + = −  (4.4)

Where  is a constant that represents the learning rate, ()J  represents the

gradient of the cost function.

This process is repeated until all the training data pairs are presented to the network.

The presentation of all the training data pairs to the network is termed as an epoch.

After each epoch, the performance of the network is evaluated against a validation

dataset and then checked against the stopping criteria. The epochs are repeated until

the stopping criteria are satisfied.

105

4.3.1 Adaptive Learning Rate

The learning rate is one of the most difficult hyperparameters to set because it

significantly affects performance [100]. Using momentum in the algorithm somewhat

mitigates this problem but at the expense of adding another hyperparameter. The

solution to this problem is to automatically adapt the learning rate throughout the

training process [100]. One of the most popular algorithms that use adaptive learning

rate is described below.

4.3.1.1 Adam

Adaptive Moment Estimation (Adam) [101] is one of the most popular and recent

adaptive learning algorithms. It is designed to combine the advantages of two other

popular adaptive learning algorithms: AdaGrad [102] and RMSProp [103]. It is

considered the best overall choice among the gradient descent algorithms [99]. Adam

stores the exponentially decaying average of the past gradients as follows.

 1 1 1(1) ()t tm m J  −= + −  (4.5)

Where 1 is a hyperparameter and the authors suggest a default value of 0.9.

Adam also stores the decaying average of past squared gradients as follows.

 2 1 2(1) ()t tv v J  −= + −  (4.6)

Where 2 is another hyperparameter, and the authors suggest a default value of

0.999.

As the tm and tv are initialized to zero, these values are biased towards zero. To

counteract this effect, the authors have suggested the following correction.

106

1

ˆ
1

t
t t

m
m


=

−
 (4.7)

2

ˆ
1

t
t t

v
v


=

−
 (4.8)

This yields the final weight update function as follows.

 1
ˆ

ˆ
t t t

t

m
v


 + = −

+
 (4.9)

Where the value e is initialized to a small value such as 810− to ensure that there is

no divide by zero error.

4.3.2 Implementation of Gradient Descent Algorithm

The pseudo-code for the gradient descent algorithm used is presented in Figure 4-9.

The Adam algorithm is used for updating the weights and bias.

Figure 4-9: Gradient Descent Pseudo Code [101]

107

4.4 Summary

This chapter gave an overview of the optimization algorithms that are used in this

thesis. These algorithms are Big Bang Big Crunch and genetic algorithms (GAs) which

are used to train the proposed Deep Type-2 Fuzzy Logic System. The Stochastic

Gradient Descent, which is used to train the stacked autoencoder and the outputs of

hidden layers of this model is then used to train the proposed algorithm as an alternative

training method.

The next chapter gives an overview of the problems or datasets used to evaluate the

models examined in this thesis.

108

Chapter 5. Overview of the Datasets used in the

Research

In this chapter, we will introduce all the datasets we use to test our XAI models.

These datasets were collected with the goal of finding large real-world datasets with a

high number of attributes/features to test the embedded feature selection capability of

the proposed models presented in this thesis. We also collected datasets with a large

number of instances and used a part of each dataset to pre-train the proposed models

unsupervised, and then the models were retrained (supervised training) using the rest

of the dataset.

Another goal was finding datasets from a variety of fields to check the applicability

of our models to solve these problems. Hence, we collected datasets from a variety of

fields such as Communication, Medical, Financial, Automotive etc.

We collected six datasets that relate to classification. We also collected five datasets

that relate to regression. These datasets were collected from a variety of sources such

as, BT, who provided us with two of these datasets one for classification and another

for regression problems. The second source was the UCI machine learning repository

[104], where we were able to identify four classification and three regression datasets.

Table 5-1: Summary of Datasets used in the Experiments

Dataset Type No of

Attributes

No of

Records

Records for

Unsupervised

Training

Records for

Supervised

Training

BT Customer

Service

Classification 500 100,000 50000 50000

CLL Identification Classification 3000 100000 50000 50000

IDA 2016 Classification 171 76000 16000 60000

Epileptic Seizure Classification 178 11500 1500 10000

PD Speech Classification 754 756 110 646

Santander CTP Classification 200 400000 200000 200000

Wi-fi Localization Regression 522 21100 2100 19000

Swiss Premium Regression 199 53,000 25000 28000

CT Scan Region Regression 385 53500 8000 45500

Song year Regression 90 500000 50000 450000

BT PWA Regression 44 30000 5000 25000

109

The third source was Kaggle, where we were able to identify two of their open-source

datasets [105] [106]. The datasets are summarised in Table 5-1

5.1 Classification Problems

In this section, we present the list of datasets we used to perform classification to

test the performance of our model in classification tasks.

5.1.1 BT Customer Service (BTCS)

The dataset is supplied by BT, and the data is about predicting whether a customer

is contacting BT to report problems with their broadband connection or not. If the

problem is related to their connection, i.e., slow connection, broadband not working

etc, then an engineer will be sent to fix the issue. If the problem is not related to the

connection itself, the problem could be about issues that could be solved over a phone

call without the need for an engineer visit.

Suppose the customer’s problem can be predicted in advance based on the

customers' historical behaviour or demographic information. The customer’s problem

can be dealt with appropriately without the need for any unnecessary engineer visits to

the customers' premises. This would be a huge cost saving for both the customer and

BT as engineer visits are expensive. This would also lead to a more pleasant customer

experience as many trivial problems can be resolved more quickly over a phone call

leading to improved customer experience.

The data consists of 500 attributes including anonymised demographic information,

services usage, previous fault details, broadband speeds, etc. with about 100,000

records. We used 50000 records for unsupervised training and 50,000 records for

supervised training.

110

5.1.2 CLL Identification (CLL)

The dataset is about identifying Chronic Lymphocytic Leukemia (CLL) using

aberrant chromatin features. CLL is a type of cancer, and it has been identified that

there is a link between aberrant chromatin features and CLL. However, how they are

related is still an open question. So, they collected genomic sequence from a set of

healthy individuals and individuals with CLL. The goal of this analysis is to identify

how the aberrant chromatin features relate to CLL. XAI is one method that can be used

to identify this connection if the AI models can predict CLL using this dataset and

predictions of the model can be interpreted then the relationship between the inputs and

output can be explored using the explanations provided by the AI. Further experiments

would be needed to confirm that there is a relationship. This dataset points towards one

of the major uses of XAI systems.

 The dataset has about 100000 records and 3000 inputs [107]. We used 50000

records for unsupervised training and 50000 records for supervised training.

5.1.3 IDA 2016 (IDA)

The data is collected from heavy Scania trucks in everyday usage. The data is

collected from the Air Pressure system (APS), which generates pressurised air which

is used in various functions on the truck, such as braking and gear changes. The data

consists of a subset of all available data, selected by experts.

The data consists of truck failures, and the goal is to identify the truck failures which

are related to the APS. i.e., the dataset’s positive class consists of component failures

for a specific component of the APS system. The negative class consists of trucks with

failures for components not related to the APS.

111

The dataset has 76000 records with 171 attributes [104]. We use 16000 of these

records for unsupervised training and 60000 records for the supervised training.

5.1.4 Epileptic Seizure (ES)

The dataset is a pre-processed dataset commonly used for epileptic seizure detection.

The data has 178 data points, and each data point is the value of the EEG recording at

a different point in time [108].

The original dataset from the reference consists of 500 files, with each file

representing a single subject/person. Each file is a recording of brain activity for 23.6

seconds. The files are then converted into time-series by sampling the files into 4097

data points. Each data point is the value of the EEG recording at a different point in

time. So, we have a total of 500 individuals, with each individual having 4097 data

points [108].

Everyone’s data is divided into 23 parts, each part contains 178 data points for 1

second, and each data point is the value of the EEG recording at a different point in

time. So now we have 23 x 500 = 11500 pieces of information(row), each information

contains 178 data points for 1 second(column). The last column represents the target,

where the positive class represents the list of records where there is an epileptic seizure,

and the Negative class represents the list of records where there is no problem [108]

[104].

We used 1500 records for unsupervised training and 10000 records for the

supervised training.

112

5.1.5 PD Speech (PDS)

This dataset is gathered from a study where the data was gathered from 188 patients

with Parkinson’s Disease (107 men and 81 women) with ages ranging from 33 to 87.

The control group consists of 64 healthy individuals (23 men and 41 women) with ages

varying between 41 and 82. During the data collection process, the microphone is set

to 44.1 kHz and following the physician examination, the sustained phonation of the

vowel “a” was collected from each subject with three repetitions [109].

Various speech signal processing algorithms including Time-Frequency Features,

Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features,

Vocal Fold Features and TWQT features have been applied to the speech recordings of

Parkinson's Disease (PD) patients to extract clinically useful information for PD

assessment. The data has about 756 records with 754 attributes [109].

We used 110 records for unsupervised training and 646 records for the supervised

training.

5.1.6 Santander CTP (SCTP)

This dataset is from Santander. In this dataset, the goal is to identify which

customers will make a specific transaction in the future, irrespective of the amount of

money transacted. The data provided has the same structure as the real data that

Santander has available to solve this problem. Once the customers who are likely to

make a transaction are identified, we can use this information in a variety of ways. For

example, if a transaction, that the model thinks is unlikely, happens then we might add

additional checks to make sure it is the customer making this transaction. This could

potentially identify and stop fraudulent transactions. This could also be used in targeted

113

marketing, by approaching the customers who are likely to make a transaction, leading

to a higher chance of a product sale, etc.

The dataset consists of around 400,000 records with 200 features [105]. It is a binary

classification task, and the dataset is skewed with only 20098 positive records while

the rest of the records are negative. We used 200,000 records for unsupervised training

and 200000 records for supervised training.

5.2 Regression Problems

Regression is a statistical measure that attempts to determine the strength of the

relationship between one or more dependent variables and a series of independent

variables. Here we list a set of datasets we use for performing regression analysis for

testing the ability of our model.

5.2.1 Wi-fi Localization (WL)

 This dataset is from an indoor user localization problem [110] [104]. Many

applications need to know the location of a user in the world to provide their services.

This means that automatic user localization has been a hot topic of research. The goal

of the Automatic user localization is the estimation of the position of the user using an

electronic device, usually a mobile phone. This problem can be solved easily when the

user is outdoor thanks to the availability of GPS sensors on most mobile phones.

However, this problem becomes much more difficult when the user is indoor, mainly

due to the loss of GPS signal in indoor environments.

This database is focused on WLAN fingerprint-based solutions (also known as Wi-

Fi Fingerprinting). Wi-Fi Fingerprinting can be characterized by the detected Wireless

Access Points (WAPs) and the corresponding Received Signal Strength Intensities

114

(RSSI). The database was collected in 2013 at the Universität Jaume I by 20 different

users using 25 android devices. This dataset consists of around 21,000 training records

with 529 attributes.

• The first 520 of these attributes are the Wi-Fi fingerprint of 520 WAPs.

• Attribute 521 is the Longitude

• Attribute 522 is the Latitude

• Attribute 523 is the Floor where the datum was collected.

• Attribute 524 is the building (0 to 2)

• Attribute 525 is the Internal ID number to identify the Space (office, corridor,

classroom) where the datum was collected.

• Attribute 526 is the Relative position with respect to Space (1 - Inside, 2 -

Outside in Front of the door).

• Attribute 527 is the User identifier.

• Attribute 528 is the Android device identifier.

• Attribute 529 is the time when the datum was collected.

We use 522 of the above attributes in our experiments and ignore attributes 523 to

529.

We used around 2100 records for unsupervised training and 19000 records for

supervised training.

5.2.2 Swiss Premium (SP)

This dataset is collected from the statistics published by the Swiss government. It

consists of information about insurers, regions, healthcare information and

demographic information. The goal of this data is to predict health insurance premiums

115

that will be charged. This is valuable because the premiums are communicated yearly

at the end of September. However, if these figures could be predicted earlier, the

consumers would have more time to plan for a possible change. This is helpful as

Switzerland has one of the world’s highest health insurance premium rates. With the

use of XAI, we can also identify the features or factors that influence the premium

rates. This is helpful as it allows the consumers to be informed about their lifestyle

choices that could lead to higher premiums. For example, smokers could be charged

higher premiums as they are more likely to get respiratory diseases.

This dataset consists of around 53,000 records with 199 inputs. We used 25000

records for unsupervised training and the other 28000 records for supervised training.

For more details about this dataset, please refer to the following [106].

5.2.3 CT Scan Region (CTSR)

This dataset is about finding the relative location of computerized tomography (CT)

slices on the axial axis. This data was used in [111] [112].

This dataset consists of 53500 CT images from 74 different patients. Each CT scan

is represented by two histograms; the first histogram describes the location of the bone

structure in the image, while the second histogram represents the location of the air

incursion in the body. These to histograms are combined to form the final data vectors.

The output was constructed manually by annotating ten different locations on the CT

scan with known locations.

There are 385 attributes for each record; the first 240 attributes are the histogram

that represents the location of the bone structure. The attributes from 241 to 385 are the

histogram that represents the air incursions. The output is a value in the range 0 to 180,

116

with 0 representing the top of the head and 180 representing the soles of the patient's

feet [104].

We used 8000 records for unsupervised training and the rest of the records for

supervised training.

5.2.4 BT PWA (BTP)

This dataset is collected from British Telecom in the UK. The data was collected

from around 520 Work Areas (WA) over a one-year period. Each datum contains

performance information for each of the WA over a one-week period. With the

following Attributes.

• Rank: Relative rank to the other WAs in the week where the performance was

measured

• Missed Appointments: Number of tasks per day which could not be completed

within the appointed time period

• Productivity: average productivity of the engineers working in the WA for the

particular week being examined

• Service Level CL1: Percentage of high priority tasks completed on time

• Service Level CL2: Percentage of low priority tasks completed on time

• Travel: average travel time of the engineers

• Contractors: average number of contractors employed in the WA per week

• On day Utilization: Utilization of engineers per day measured at the end of each

day

• Economic Utilization

• Overtime: average overtime per day by engineers in the WA

117

• Loans: average number of engineers loaned per day from other WAs

To predict the future performance of the WA at time interval t, we use the

performance data at previous time intervals, i.e., 𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3, 𝑥𝑡−4 where xt

contains the 11 abovementioned performance measures. The target is to predict the

Rank of the WA at time interval t.

The data consists of around 30000 records and 44 attributes, and the data was used

in the following paper [48] [96].

5.2.5 Song year (SY)

This dataset is a subset of the million song dataset [104] [113]. The target is to

predict the year in which a song was released by analysing its audio features. Songs are

mostly western, commercial tracks ranging from 1922 to 2011.

There are 90 attributes, 12 of these attributes represent the timbre average, and these

features are extracted from the ‘timbre’ features from The Echo Nest API, currently

owned by Spotify. These values are high-level abstractions of the spectral surface,

ordered by degree of importance. For completeness, however, the first dimension

represents the average loudness of the segment; the second emphasizes brightness;

third is more closely correlated to the flatness of a sound; fourth to sounds with a

stronger attack; etc. The average and covariance are taken over all segments of the

songs; each segment is described by the 12-dimensional timbre vector. The rest of the

78 attributes are covariance over all the segments.

We used around 50000 records for unsupervised training and the other 450000

records for supervised training.

118

5.3 Summary

The Chapter presents the six categorical and five regression datasets used in the

experiments for the rest of the thesis. It explains that these datasets were chosen because

they are high dimensional and can be used to test the embedded feature selection

capability of the proposed model. It explains that real-world datasets were chosen from

BT and other sources to test the ability of the model to solve real-world problems.

The chapter also explains how a part of the datasets will be used for unsupervised

training while the rest of the data will be used for supervised training of the proposed

model.

The next chapter introduces the proposed system in detail.

119

Chapter 6. The Proposed Deep Type-2 Fuzzy Logic

System

One of the problems of modelling datasets with many features using Fuzzy Logic

Systems (FLS) is that the number or amount of rules required is very large, and this

reduces the interpretability of the system. For example, for a system with 30 features if

we use three antecedents per rule, then the number of possible rules in the rule base

will be 30 143 2*10= rules. Such a large rule base presents us with two main problems.

Firstly, the computational complexity involved in calculating all the rules for each

prediction means that such a system will be slow. Secondly, although the individual

rules will be intelligible to the end-users of these systems, the sheer number of rules

means that these models effectively become opaque.

One way to resolve this is to reduce the number of rules. Some of the rules in the

full set will be redundant and reducing the number of rules will not impact the accuracy

of the model initially. However, as more and more rules are removed the accuracy of

the model will reduce. Another challenge is that given that the system is operating on

a reduced ruleset, there will be situations where none of the rules is fired, and thus no

output is produced. There are a few methods to mitigate this problem; one such method

is presented in [48, 49] where the similarity of rules, i.e., for each of the rules in the

FLS, similar rules are created by checking if using the other membership functions or

linguistic labels of the antecedents trigger the rules, and based on the distance between

the linguistic labels, the firing levels are calculated. However, there will still be a need

120

to perform feature selection for such systems to operate, and there is no way to learn

from unlabelled data (input data with no target outcome).

Hence, we propose a Deep Type-2 Fuzzy Logic System (D2FLS) (depicted in Figure

6-1). This system comprises of two or more interval type-2 FLSs where the output of

the first FLS is used as the input of the second FLS and the output of the second FLS

is used as the input of the third FLS etc. This system is inspired by Stacked

autoencoders (SAE) or multi-layer neural networks [61]. The goal here is for each of

FLSs to aggregate the input features into more complex compound features that

become the outputs of the FLS, thereby reducing the number of features in the

subsequent FLS layers. This process is repeated by each of the FLSs in the D2FLS until

we generate the final output. The advantage of such a system is that the total number

of rules required to represent the whole model will be low, which helps in reducing the

computational complexity of the system. Furthermore, since the number of rules will

be small, the system will be more interpretable than an equivalent FLS which will have

a larger number of rules.

Figure 6-1: A Deep Type-2 Fuzzy Logic System Architecture

121

The training of the D2FLS presents a few problems, as there are multiple FLSs, we

cannot use single-pass methods such as Wang Mender(WM) [38] [93] described in

Section 3.5.1 to train the D2FLS because we do not have a simple way of determining

the outputs of the hidden layer in advance (we only know the inputs and outputs of the

final layer in advance). For the same reason, we cannot train the hidden layer

separately. Hence, we propose to train the D2FLS using greedy layer-wise training [61]

similar to a Stacked autoencoder (depicted in Figure 6-2). In detail, for a D2FLS with

three FLS as depicted in Figure 6-1, we will train the first layer as a Fuzzy autoencoder

(FAE) (depicted in Figure 6-3). Next, we discard the decoder and use the output of the

Figure 6-2: Layer Wise Training D2FLS

122

encoder part of the FAE as the input for the second layer and train that layer as an FAE.

Finally, we will add the final layer to the encoders of the first two FAEs and train the

three FLSs in a supervised way to get the final output. The idea behind this approach

is to use unsupervised training of the FAEs to learn essential features or combine

features. The details of the training method are presented in the following sections.

6.1 Model Representation

A key issue in Genetic algorithms and BB-BC algorithm is the choice of the

encoding scheme, i.e., how to represent a solution to the problem, in this case, an FLS,

as a chromosome [69]. The choices are generally binary or floating-point. In our case,

we use floating-point numbers to represent the D2FLS, and the details of the

representation are presented in the following sections.

6.1.1 Representation of the Type-1 models

We encode the parameters of a type-1 FLS as real-valued numbers. There are three

sets of parameters that can be used to characterise the type-1 FLS, first the membership

Figure 6-3: Fuzzy Autoencoder Architecture

123

functions or linguistic variables that represent the input or antecedents, second the

membership functions or the linguistic variables that represent the outputs or

consequents and the third set of values represent the rules of the FLS. The MFs for the

antecedents and the consequents are represented using the same encoding.

6.1.1.1 Membership Function Representation

The representation of the parameters of the membership functions changes based on

the type of membership function; hence, below, we show the representation for the

three types of membership functions.

6.1.1.1.1 Trapezoidal Membership function representation

A trapezoidal MF can be defined using the following formula.

() / ()

1
() (; , , ,)

() / ()

0

j j

x a b a if a x b

if b x c
x x a b c d

d x d c if c x d

if x d or x a

 

− −  


 
= = 

− −  
  

 (6.1)

Where [0,1]x X = , then the parameters of the linguistic variable M, which is

defined by j trapezoidal membership functions, can be represented in the following

format.

 1 1 2 2, , , ,.., ,j jM b c b c b c= (6.2)

We can see from (6.2) that each fuzzy set is represented by two parameters, b, and

c. The parameters a and c of the thk membership function can be defined using the

parameters b and c as follows:

1

1

k k

k k

a c

d b

−

+

=

=
 (6.3)

124

Where 1 1, 0a b = and , 1j jc d = as depicted in Figure 6-4.

In other words, from Figure 6-4, we can see that two values represent each fuzzy set

and the start and endpoints of the MFs are anchored to the previous and the next MF,

respectively. The start of the first MF and the end value of the last MF are set to 0 and

1 respectively. So, the first membership function is represented by four values, it starts

at 0, the top two vertices are represented by 1b and 1c , and the final vertex at the end

is represented by 2b . The four vertices of the second membership function are

represented by start= 1c , top= 2b and 2c , and end = 3b etc.

6.1.1.1.2 Triangular MF Representation

A Triangular Membership Functions is defined using the following formula [38].

() / ()

() (; , ,) () / ()

0

j j

x a b a if a x b

x x a b c c x c b if b x c

if x cor x a

 

− −  


= = − −  
  

 (6.4)

Figure 6-4: Representation of a Trapezoidal Type-1 Membership Function

125

Where [0,1]x X = then the linguistic variable M which is defined by j Triangular

membership functions can be represented in the following format.

 1 2, ,.., jM b b b= (6.5)

We can see from (6.5) that each fuzzy set is represented by one parameter, b. The

parameters a and c of the thk membership function can be defined using the parameter

b as follows.

1k ka b −= (6.6)

Where 1 1, 0a b = and , 1j jb c = as depicted in Figure 6-5.

In other words, from Figure 6-5, we can see that each fuzzy set is represented by

one value and the start and endpoints of the MFs are anchored to the values of previous

and the next MF, respectively, and the start of the first MF and the endpoint of the last

MF are set to 0 and 1, respectively. So, the first membership function is represented by

Figure 6-5: Representation of a Triangular Type-1 Membership Function

126

three values, and it starts at 0, the top of the triangle is represented by 1b , and the final

vertices at the end is represented by 2b . The three vertices of the second membership

function are represented by start= 1b , top= 2b and end = 3b etc.

6.1.1.1.3 Gaussian Membership Function Representation

A Gaussian Membership function is defined using the following formula [38].

2
()

() (; ,) exp
2

j j

x m
x x m  



 − 
= = −  

   
 (6.7)

Where [0,1]x X = , then the linguistic variable M, which is defined by j Gaussian

membership functions (depicted in Figure 6-6), can be represented in the following

format.

 1 1 2 2, , , ,...., ,j jM m m m  = (6.8)

Figure 6-6: Representation of a Gaussian Type-1 Membership Function

127

We can see from (6.8) that each fuzzy set is represented by two-parameter the mean

and standard deviation of the gaussian MF.

6.1.1.2 Rules Representation

Each Rule of the FLS has two components the antecedents of the rule and the

consequents of the rule. The antecedents and consequents of each rule of the FLS are

encoded using the below representation.

1 1

1 2 1 2 1, ,.., , , ,..,a a

l bR r r r r c c= (6.9)

Where lR represents the thl rule of the FLS with a antecedents and b consequents

per rule. Each antecedent is represented by 2 points; the first point represents the thi

input feature or linguistic variable; the second point represents the
thj membership

function of that linguistic variable. The consequents are represented by a single point

which represents the
thj membership function of the thb consequent.

6.1.1.3 FLS Representation

Finally, to represent the parameters of an FLS, we combine the parameter

representations of the MFs from (6.2), (6.5) or (6.8), based on the type of MF chosen,

and rules from (6.9) to get the following representation.

 1 1,.., ,.., , ,..,i i k lN M M M R R+= (6.10)

Where iM represents the membership functions for the i input features or

antecedents of the FLS and i kM + represents the MFs for the thk output or consequent

of the FLS using (6.2), (6.5) or (6.8).

128

6.1.2 Representation of IT2 Models

The representation of the parameters of an IT2 FLS is very similar to the type-1 FLS

parameter representation explained in the previous section the only difference is that

each of the fuzzy sets or MFs will have a Footprint of Uncertainty (FOU) value. The

rules of the IT2 models and T1 models are identical.

6.1.2.1 Membership Function Representation

6.1.2.1.1 Trapezoidal IT2 MF representation

An IT2 fuzzy set can be represented by its left and right endpoints. The two

endpoints are associated with two type-1 MFs that are referred to as upper and lower

membership. For a trapezoidal MF, these two MFs can be defined by adding a small

FOU to (6.1) as follows.

() / ()

1
() (; , , ,)

() / ()

0

j j

x a b a if a x b

if b x c
x x a b c d

d x d c if c x d

if x d or x a

 

 − −  


 
= = 

− −  
  

 (6.11)

() / ()

1
() (; , , ,)

() / ()

0

j j

x a b a if a x b

if b x c
x x a b c d

d x d c if c x d

if x dor x a

 

− −  


 
= = 

− −  
  

 (6.12)

 Where [0,1]x X = , ()j x is the upper membership function, / 2a a FOU= + ,

/ 2b b FOU= + , / 2c c FOU= + and / 2d d FOU= + . ()j x is the lower membership

function, / 2a a FOU= + , / 2b b FOU= + , / 2c c FOU= + and / 2d d FOU= + .

129

Hence, the parameters of the linguistic variable M, which is defined by j IT2

trapezoidal MFs (depicted in Figure 6-7), can be represented by modifying the

representation of the type-1 Trapezoidal MF in (6.2) as follows.

 2 1 21 1 22 , , , ,,.., , ,..,, jj jT b c b c c fb f f= (6.13)

Where jf represents the FOUs of the
thj fuzzy set. Here, we add one FOU for each

of the fuzzy sets.

6.1.2.1.2 Triangular IT2 MF Representation

An IT2 fuzzy set can be represented by its left and right endpoints. The two

endpoints are associated with two type-1 MFs that are referred to as upper and lower

membership. For IT2 Triangular MF (depicted in Figure 6-8) the two endpoints can be

defined by modifying (6.4) as follows.

Figure 6-7: Representation of a Footprint of uncertainty (FOU) for Trapezoidal MFs

130

() / ()

() (; , ,) () / ()

0

j j

x a b a if a x b

x x a b c c x c b if b x c

if x c or x a

 

 − −  


= = − −  
  

 (6.14)

() / ()

() (; , ,) () / ()

0

j j

x a b a if a x b

x x a b c c x c b if b x c

if x cor x a

 

− −  


= = − −  
  

 (6.15)

 Where [0,1]x X = , ()j x is the upper membership function, / 2a a FOU= + ,

/ 2b b FOU= + and / 2c c FOU= + . ()j x is the lower membership function,

/ 2a a FOU= + , / 2b b FOU= + and / 2c c FOU= + .

Hence, the parameters of the linguistic variable M, which is defined by j IT2

triangular MFs(depicted in Figure 6-8), can be represented by modifying the

representation of the type-1 Triangular MF in (6.5) as follows.

 1 2 1 22 , ,. , .., , ,, . jj f fT b b b f= (6.16)

Figure 6-8: Representation of a Footprint of uncertainty (FOU) for Triangular MFs

131

Where jf represents the FOUs of the
thj fuzzy set. Here we add one FOU for each

of the fuzzy sets.

6.1.2.1.3 Gaussian IT2 MF representation

An IT2 fuzzy set can be represented by its left and right endpoints. The two

endpoints are associated with two type-1 MFs that are referred to as upper and lower

membership. Thus, an IT2 Gaussian MF with uncertain standard deviation (depicted in

Figure 6-9) can be defined as follows.

2
()

() (; ,) exp
2

j j

x m
x x m  



 − 
= = −  

   
 (6.17)

2

()
() (; ,) exp

2
j j

x m
x x m  



  −
= = −  

   

 (6.18)

Figure 6-9: Representation of the FOU of a Gaussian IT2 MF

132

Where [0,1]x X = , ()j x is the upper membership function, FOU = + . ()j x

is the lower membership function and  = .

Hence, the parameters of the linguistic variable M which is defined by j IT2

Gaussian MF with uncertain standard deviation (depicted in Figure 6-9) can be

represented by modifying the representation of the type-1 Gaussian MF in (6.8) as

follows.

1 1 2 2 1 2, , , ,...., , , , ,...,j j jM m m m f f f  = (6.19)

In Figure 6-9 an input with three fuzzy sets is represented, we can see that the

standard deviation represented in j is used as the standard deviation for the lower MF

and we add the FOU to this value to get the standard deviation of the upper MF.

6.1.2.2 IT2 FLS representation

 To represent the IT2 FLS, we combine the MF representation in (6.13), (6.16) or

(6.19) based on the type of MF and the representation of the rules in (6.9) to get the

following representation.

 1 12 ,.., 2 ,.., ,2 ,..,i i k lT T T T R R+= (6.20)

Where 2iT represents the membership functions for the i input features or linguistic

variables FLS and 2i kT + represents the MFs for the thk output or consequent of the FLS

using (6.13), (6.16) or (6.19).

133

6.2 Layer Wise Training of The D2FLS

As discussed previously, we train the Membership Functions and the rulebase of the

D2FLS using a method similar to the greedy layer-wise training method used for

training Autoencoders [61]. This training method (depicted in Figure 6-2) can be

divided into two phases; in the first phase, we train the hidden FLSs as a Fuzzy

Autoencoders using unsupervised data. We then train the FLSs one layer at a time until

we have trained all the FLS layers except the final output layer. In the second phase,

we add the final output layer to the encoders of all the hidden layers and retrain the

whole D2FLS using supervised data. The details of the training are given in the

following subsections.

6.2.1 Fitness Function

6.2.1.1 Average Recall

We used Average Recall as the fitness function to train all the models for all the

classification datasets.

2

positive negative

avg

Recall Recall
Recall

+
= (6.21)

 positive

tp
Recall

tp fn
=

+
 (6.22)

Where True positive tp is the number of correct positive predictions, and False

negative fn is the number of incorrect negative predictions.

 negative

tn
Recall

tn fp
=

+
 (6.23)

134

Where True Negative tn is the number of correct negative predictions, and False

Positive fp is the number of incorrect positive predictions.

6.2.1.2 Mean Absolute Error

We used Mean Absolute Error (MAE) as the fitness function or cost function for the

regression datasets.

 1

ˆ| |
n

i i

i

y y

MAE
n

=

−

=


 (6.24)

Where iy is the desired output, iy is the actual output of the model and n is the

number of inputs.

6.2.2 Hidden Layer Training

A Fuzzy Autoencoder (FAE), depicted in Figure 6-3, comprises of 2 FLSs that are

trained to attempt to map its input to its output, i.e., the output of the first FLS (encoder)

is the input for the second FLS (decoder) and the output of the second FLS is the

Figure 6-10: Training Algorithm for IT2FLS

135

reconstructed input of the first FLS. The idea here is to provide a set of constraints to

force the FAE to prioritize and learn the most useful properties of the input data and to

make sure the system does not merely learn the identity function. The constraints that

we add to the FAE are as follows.

• Restrict the number of outputs of the encoder, and we will call it the hidden

layer.

• We reduce the number of consequents or outputs of the encoder when compared

to the inputs.

• We restrict the number of rules in the rule base of the 2 FLS that comprise the

FAE

• We force the FAE to use the same linguistic labels for the consequents of the

encoder and the antecedents of the decoder.

• We force the FAE to use the same linguistic labels for the antecedents of the

encoder and the consequents of the decoder.

These constraints reduce the number of parameters that must be trained in the FAE

during the optimization process. This simplifies the training process allowing it to be

trained much more quickly and efficiently. The intuition behind this idea is derived

from Autoencoders in neural networks [100]. The two parts of the FAE are represented

as follows:

 ()ph f x= (6.25)

Where h is a vector that represents the output of the encoder ()f x

 ˆ ()px g h= (6.26)

136

Where x̂ is the output of the decoder, i.e., the reconstructed input.

To optimize the FAE, the MFs and the rule base of the FAE are optimized using an

optimization algorithm and the training is divided into three steps, depicted in Figure

6-10. The goal of the optimization algorithm is to minimize a cost function such as

MAE (6.24), which is modified as follows:

1 1

1

ˆ| |k k
p

i

p

h h

MAE

− −

=

−

=


 (6.27)

Where 1ˆkh − is the reconstructed input of the 1thk − encoder, p is the number of

instances in the training data and 0h is the input vector of the training dataset.

6.2.2.1 Optimize Type 1 FAE

To optimize the type-1 FAE, we use an optimisation algorithm such as BB-BC

(described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). The first

step in these algorithms is to encode the parameters (to be tuned) of the two FLS

(encoder and decoder) that comprise the FAE into individuals. Each individual

represents a possible solution to the optimization problem.

There are three sets of parameters to be tuned for each of the FLS of the FAE, the

MFs that describe the input features or linguistic variables, the MFs that describe the

output linguistic variables and the rules of the FLS. In this step, we train all these

parameters, which are encoded into the individual as real numbered values as follows.

1 1 11 ,.., ,.., , ,.., , ,..,e e d d

i i kT mF lAE M M M R R R R += (6.28)

137

Where iM represents the membership functions for the i input features or linguistic

variables of the FLS and i kM + represents the MFs for the thk output or consequent of

the FLS using (6.2), (6.5) or (6.8).
e

lR and
d

mR represents the l and m rules of the

encoder and decoder, respectively using (6.9).

For example, if the BB-BC algorithm is used as the optimization algorithm, the

training of the FAE is performed using the following steps.

Step 1: N individuals are initialised by randomly generating values for each of the

parameters of 1FAET in (6.28).

Step 2: The N individuals are then decoded into FAEs using (6.28) , and the fitness

of these individuals is calculated using the cost function in (6.27).

Step 3: The best individual among these N FAEs is selected, and the stopping

criteria are checked against this solution. If this FAE satisfies the stopping criteria, then

the optimization algorithm is stopped, and further steps of the training process are

performed on this FAE.

Step 4: Else, a new generation of N individuals is generated by mutating this

individual using (4.2) , and the steps from Step 2 are repeated.

6.2.2.2 Transform T1MFs to IT2MFs

In the second step, we train the FOU of the MFs of the antecedents and the

consequents using an optimization algorithm such as BB-BC (described in Chapter 4.1)

or Genetic algorithm (described in Chapter 4.2). To do this, we add a FOU to the

representation of the MFs of the antecedents and the consequents of the FAE trained in

138

the previous step. The representation of the FAE in (6.28) is modified using (6.13),

(6.16) or (6.19) (based on the type of MFs) as follows.

1 1 12 ,.., 2 ,.., 2 ,.., , ,..,, e e d d

e i i k l mT T T T R R R R+= (6.29)

Where 2iT represents the membership functions for the i input features or linguistic

variables FLS and 2i kT + represents the MFs for the thk output or consequent of the FLS

using (6.13), (6.16) or (6.19). Since we only train the parameters of the MFs and their

FOUs in this step, the parameters of the MFs are encoded into an individual as follows.

 12 2 ,.., 2 ,.., 2i i kFAEIT T T T += (6.30)

The FOUs of the FAE are then trained. For example, if the BB-BC algorithm is used

as the optimization algorithm, the training of the FOUs of the FAE is performed using

the following steps.

Step 1: 1N − individuals are generated by randomly generating values within the

search space for each of the parameters in 2FAEIT . The final individual is generated by

choosing the parameters from the type-1 FAE, trained in the previous step of the

training (the FOUs of this individual are set to zero).

Step 2: N individuals are then decoded into the MFs of the FAEs using (6.30), the

rules are then added to these FAEs by choosing them from the type-1 FAE trained in

the previous step.

Step 3: The fitness of the N FAEs are calculated using the cost function (6.27). The

best individual among these N individuals is selected, and the stopping criteria are

checked against this individual. If this FAE satisfies the stopping criteria, then the

139

optimization algorithm is stopped, and further steps of the training process are

performed on this FAE.

Step 4: Else, a new generation of N individuals are generated by mutating this

solution using (4.2) and the steps from Step 2 are repeated.

6.2.2.3 Optimizing the Rule Base of the IT2 FAE

In the third step, we retrain the rules of the FAE generated in the previous section.

The rules of the FAE are encoded using the representation described in Section 6.1.1.2

using (6.9) as follows.

 1 1,..., , ,...,e e d d

FAERules l mR R R R = (6.31)

Where
e

lR and
d

mR represent the rules (encoded using (6.9)) of the encoder and

decoder, respectively.

The rules of the FAE are then retrained using an optimization algorithm such as BB-

BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining

of the rules is performed using the following steps.

Step 1: One individual is generated by encoding the rules of the FAE generated in

the previous step into a real-valued solution using (6.31). Along with this, 1N −

individuals are generated by mutating the first individual.

Step 2: The N individuals are then decoded into the rules of the FAE using (6.31).

The MFs and their FOUs generated in the previous section are then added to the FAE.

140

Step 3: The fitness of these N FAEs are calculated using the cost function in (6.27).

The best solution among these N FAEs is selected, and the stopping criteria are

checked against this solution. If this FAE satisfies the stopping criteria, then the

optimization algorithm is stopped, and further steps of the training process are

performed on this FAE

Step 4: Else, a new generation of N Individuals is generated by mutating this solution

using (4.2) , and the steps from Step 2 are repeated.

6.2.3 Optimization Method for the Final Layer

To train the full D2FLS, as depicted in Figure 6-2, we start by stacking the encoders

of the n FAEs trained in the previous phase. We then add another FLS, which will act

as the final output layer of the D2FLS. The output of the D2FLS can then be represented

as follows.

1 1(((...(()...))n n

py f e e e x−= (6.32)

Where ne represent the encoder of the thn FAE, f represents the final output layer

and px is the input vector.

We use an optimization algorithm to retrain all the layers using the three-step

training process depicted in Figure 6-10. The goal of the optimization algorithm is to

minimise a cost function such as MAE (6.24), which is modified as follows:

1

ˆ| |
p

i

p

y y

MAE =

−

=


 (6.33)

141

Where ŷ is the predicted output of the D2FLS from equation (6.32), y is the actual

output from the training dataset, n is the number of instances in the training dataset.

6.2.3.1 Optimize the Type 1 D2FLS

In this step, we train the final layer as a Type-1 FLS while at the same time retrain

the MFs and rules of the encoders. First, the parameters of the encoders of the n FAEs

trained in the previous phase are encoded using (6.20) and the MFs and rules of the

final layer FLS are added to these (depicted in Figure 6-2) and encoded in the following

format.

1

2 1 1,.., , ,.., , ,..,n f f f f

D FLS e e o p gT T M M R R += (6.34)

Where
n

eT represents the membership functions, and the Rules of the thn encoders

created using (6.20),
f

o pM + represents the membership functions for the o input features,

p consequents of the final layer and
f

gR represents the g rules of the final layer.

The D2FLS is then trained using an optimization algorithm such as BB-BC

(described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the training of

the D2FLS is performed using the following steps.

Step 1: N individuals are generated, the initial values of the three parameters of the

final layer of the D2FLS in (6.34) are randomly generated as real numbered values.

These values are then added to the parameters of the encoders generated in the previous

phase.

142

Step 2: The N individuals are then decoded into D2FLSs using (6.34) , and the fitness

of these individuals is calculated using the cost function in (6.33) and the best solution

among these N D2FLS is selected.

Step 3: The stopping criteria (number of generations and target fitness) are checked

against the individual selected in the previous step. If this individual satisfies the

stopping criteria, then the optimization algorithm is stopped, and further steps of the

training process are performed on this D2FLS.

Step 4: If the stopping criteria (number of generations and target fitness) are not

satisfied, a new generation of N individuals are generated by mutating the individual

selected in Step 2 using (4.2) and then the steps from Step 2 are repeated.

6.2.3.2 Transform the T1MFs of the D2FLS into IT2MFs

 In this step, we transform the type-1 MFs of the final layer into interval type-2 MFs

by adding a FOU to each of the fuzzy sets. This is similar to the way we added the

FOUs while training the FAEs, and the FOUs are depicted in Figure 6-7 or Figure 6-8

or Figure 6-9 based on the type of MF. We also retrain the FOUs of the encoder created

during the training of the FAEs. The FOUs are added to the MFs of the final layer, and

these parameters are encoded in the following format.

1

2 2 1,.., , 2 ,.., 2n f f

D FLSIT e e o pT T T T += (6.35)

Where
n

eT represents the IT2 representation of the MFs of the n encoders from

(6.30) and 2 f

o pT + represents IT2 MFs for the o antecedents and p consequents of the

final layer using (6.13) or (6.16) depending on the type of MF used.

143

The FOUs of the D2FLS are then trained using an optimization algorithm such as

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the training of

the FOUs of the D2FLS is performed using the following steps.

Step 1: N individuals are generated by randomly generating the FOUs of the

antecedents and the consequents of the final layer of the D2FLS and added to the

D2FLS generated in the previous section and their parameters encoded using (6.35).

Step 2: The real-valued representation of the N individuals is then decoded into MFs

of the D2FLS using (6.35). The rules are then added to these D2FLS by choosing them

from the type-1 D2FLS trained in the previous step.

Step 3: The fitness of the N D2FLSs are calculated using the cost function in (6.33)

and the best D2FLS among these is selected

Step 4: The stopping criteria (number of generations and target fitness) are checked

against the individual selected in the previous step. If this D2FLS satisfies the stopping

criteria, then the optimization algorithm is stopped, and further steps of the training

process are performed on this D2FLS

Step 5: If the stopping criteria (number of generations and target fitness) are not

satisfied a new generation of the N candidate solutions are generated by mutating

real-valued representation of the individual selected in Step 2 using (4.2) and then the

steps from Step 2 are repeated.

144

6.2.3.3 Optimizing the rule base for the D2FLS

In the final step, we retrain the rules of all the layers. The parameters for this step

are encoded in the following format to create the candidate solutions.

1 1

2 1 1,..., ,.., , ,...,e e en f f

D FLSRules l l gR R R R R = (6.36)

Where
e

lR and
f

gR represent the l rules of the encoder and g rules of the final layer,

respectively.

The rules of the D2FLS are then retrained using an optimization algorithm such as

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining

of the rules of the D2FLS is performed using the following steps.

Step 1: The rules of the D2FLS generated in the previous step are encoded into real-

valued solution using (6.36). And N individuals are generated by mutating this

solution.

Step 2: The N individuals are then decoded into the rules D2FLS, then the MFs

and their FOUs generated in the previous section are added to the D2FLS. The fitness

of these individuals is calculated using the cost function in (6.33) , and the best

individual among these is selected.

Step 3: The stopping criteria (number of generations and target fitness) are checked

against the individual selected in the previous step. If this D2FLS satisfies the stopping

criteria, then the optimization algorithm is stopped, and further steps of the training

process are performed on this D2FLS.

145

Step 4: If the stopping criteria (number of generations and target fitness) are not

satisfied a new generation of the N individuals are generated by mutating the

individual selected in Step 2 using (4.2) and then the steps from Step 2 are repeated.

6.3 Experiments and Results

To test the proposed Deep Type-2 Fuzzy logic system, we use the datasets in Table

5-1 and compare the performance of our proposed system against the following AI

models Stacked Autoencoder (SAE), Convolutional Neural network (CNN), Multi-

Layer Perceptron (MLP) and Interval Type-2 FLS (IT2FLS).

Next, we aim to compare the various types of Membership function and choose the

best MF type. We will also compare the BB-BC algorithm against the GA to evaluate

the differences when using the two algorithms and the best algorithm of the two will

then be used in the experiments.”

6.3.1 Training Parameters

For the experiments, we used the following training parameters for the Categorical

datasets, and we used Average Recall (6.21) as the fitness function

1. SAE was trained using greedy layer-wise training [61]. We used two hidden

layers with 400 and 30 neurons each. Adam Algorithm [101] was used for

training the SAE, and we set the learning rate as 0.001, beta one as 09 and

beta two as 0.999 and trained it for 200 epochs.

2. CNN was trained using the Adam algorithm [101]. We created a custom VGG

net [114] with six convolutional layers with 32 filters and kernel size 3 in the

first two layers, 64 filters in the next two and 128 filters in the last two layers.

We added a max-pooling layer after every two convolutional layers. These were

146

then connected to the output layer. We used Dropout [115] to reduce the chance

of overfitting. And we used the same parameters as SAE for the Adam

algorithm.

3. We created a Multi-layer perceptron with one hidden layer with 65 neurons in

the hidden layer and an output layer. And we used Adam Algorithm for training

the MLP with the same parameters as the Sparse Stacked Autoencoder.

4. IT2FLS was trained using the three-step training method proposed for training

the FAE. We used 200 rules and three antecedents per rule. We used BB-BC

algorithm with 500 generations and 30 candidates per generation.

5. D2FLS was trained using the proposed layer-wise training method. With two

layers and with each layer having 100 rules and three antecedent per rule. The

hidden layer was trained with 50 consequents. We used BB-BC algorithm with

500 generations and 30 candidates per generation.

Similarly, for the regression datasets, we used the following training parameters,

and we used Mean Absolute Error (MAE) as the fitness function (6.24).

1. SAE was trained using greedy layer-wise training [61]. We used two hidden

layers with 100 and 30 neurons each. Adam Algorithm [101] was used for

training the SAE, and we set the learning rate as 0.001, beta one as 09 and beta

two as 0.999 and trained it for 500 epochs.

2. CNN was trained using the Adam algorithm [101]. We created a CNN with four

layers: the first layer is a convolutional layer with 100 filters and a kernel size

of 5, The second layer is a Max pooling layer with a pool size of 3, The third

layer is a fully-connected layer with 16 neurons and finally the output layer. We

147

used Dropout [115] to reduce the chance of overfitting. And we used the same

parameters as SAE for the Adam algorithm.

3. We created a Multi-layer perceptron with one hidden layer with 65 neurons in

the hidden layer and an output layer. And we used Adam Algorithm for training

the MLP with the same parameters as the Sparse Stacked Autoencoder.

4. IT2FLS was trained using the three-step training method proposed for training

the FAE. We used 200 rules and three antecedents per rule. We used BB-BC

algorithm with 500 generations and 30 candidates per generation.

5. D2FLS was trained using the proposed layer-wise training method. With two

layers and each layer is trained with 100 rules and three antecedent per rule.

The hidden layer was trained with 30 consequents. We used BB-BC algorithm

with 500 generations and 30 candidates per generation.

Table 6-1: Comparison of the performance of the D2FLS vs Stacked Autoencoder vs CNN in

Categorical Datasets with Average Recall as Fitness function

Data Set
AI

Model
Run 1 Run 2 Run 3 Run 4 Run 5 Average

Standard

Deviation

Santander

CTP

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24

SAE 65 67.7 66.02 62.34 62.77 64.77 2.01

CNN 67.56 67.31 69.84 67.48 69.99 68.44 1.21

CLL

Identification

D2FLS 62.8 59.78 61.25 62.37 63.31 61.903 1.26

SAE 57.21 56.09 58.42 57.65 57.02 57.28 0.76

CNN 69 68.5 67.9 69.24 68.92 68.71 0.47

BT Customer

Data

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7

SAE 75.95 75.06 76.51 75.84 72.03 75.08 1.59

CNN 73.91 75.85 83.25 76.21 75.8 77.004 3.22

PD Speech

D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84

SAE 70.13 66.56 68.2 67.75 64.48 67.43 1.87

CNN 77.08 77.38 76.69 77.38 78.08 77.32 0.46

IDA2016

D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55

SAE 87.45 88.54 86.72 87.81 84.84 87.07 1.26

CNN 80.29 83.36 84.37 78.55 80.76 81.47 2.12

EpiSeizure

D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65

SAE 90.6 91.22 89.8 89.48 90.32 90.29 0.61

CNN 94.03 92.68 92.48 90.73 89.03 91.79 1.73

148

6.3.2 Deep Type 2 Fuzzy Logic system Vs Deep Neural Networks

The aim of these experiments is to compare the performance of the D2FLS against

two Deep Neural Networks, a Stacked Autoencoder and a Convolutional neural

network. The goal is to see if our D2FLS model performs reasonably well when

compared to the state-of-the-art Deep Neural Networks.

We tabulate the performance of the D2FLS, SAE and CNN over five training runs

on the Categorical datasets in Table 6-1. The results of the training runs are presented

as Average Recall (equation (6.21)) in columns (3-7). The mean and standard deviation

of the five training runs is displayed in the eighth and ninth columns of the table,

respectively. Where a result is in bold (column 8), it indicates that the row contains the

AI model with the best performance for the dataset.

From Table 6-1, we can see that the CNN provided the best performance in four of

the six datasets and the D2FLS and SAE provide the best performance in one each of

Table 6-2: Comparison of the performance of the D2FLS vs Stacked Autoencoder vs CNN in

Regression Datasets using Mean Absolute Error as the Fitness Function

Data Set
AI

Model
1 2 3 4 5 Average Std

Wi-Fi

Localization

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

SAE 0.0558 0.0559 0.0479 0.0401 0.0463 0.0492 0.006

CNN 0.0494 0.037 0.0477 0.0422 0.0435 0.044 0.0044

Swiss

Premium

Prediction

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

SAE 0.0277 0.0258 0.0274 0.0294 0.0269 0.0275 0.0012

CNN 0.0237 0.0259 0.0255 0.0271 0.0263 0.0257 0.0011

CT Scan

Region

Prediction

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

SAE 0.031 0.0374 0.0298 0.0345 0.0298 0.0325 0.003

CNN 0.045 0.045 0.0454 0.0451 0.0458 0.0453 0.0003

Predict Song

Year

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

SAE 0.072 0.072 0.0663 0.0658 0.066 0.0684 0.0029

CNN 0.0745 0.0752 0.0745 0.0689 0.0691 0.0724 0.0028

BT PWA

D2FLS 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

SAE 0.0384 0.0379 0.0374 0.038 0.038 0.0379 0.0003

CNN 0.0381 0.0383 0.041 0.0374 0.0379 0.0385 0.0013

149

the selected datasets. This is intuitive considering that CNN is the state-of-the-art AI

algorithm for a variety of classification problem. The relevant point here is that in four

of the datasets (Santander CTP, BT Customer Data, EpiSeizure and PD Speech) the

difference between the performance of the D2FLS and the best algorithm is within 4-5

per cent. The D2FLS performance is 2-3% lower than the CNN and 2-3% better than

the performance of the SAE. This indicates that the performance of the D2FLS is

comparable to the performance of the best DNN algorithms.

Similarly, Table 6-2 shows the results of five training runs with Mean Absolute

Error as the fitness function(equation (6.24)) in columns (3-7). The mean and standard

deviation of the five training runs is displayed in the eighth and ninth columns of the

table, respectively. We have also highlighted in bold the model with the best average

MAE for each of the datasets.

From Table 6-2, we can see that the SAE performs the best in three of the datasets,

and CNN provides the best performance in the other two datasets. But the difference in
Table 6-3: Comparison of the performance of the D2FLS vs Stacked Autoencoder vs CNN in

Regression Datasets using Root Mean Square Error as the Fitness Function

Data Set
AI

Model
1 2 3 4 5 Average Std

Wi-Fi

Localization

D2FLS 0.1546 0.1346 0.1486 0.1362 0.1222 0.1392 0.0113

SAE 0.0726 0.0553 0.0607 0.0674 0.0592 0.063 0.0062

CNN 0.0644 0.0564 0.0584 0.0629 0.0671 0.0618 0.0039

Swiss

Premium

Prediction

D2FLS 0.0569 0.078 0.0681 0.0663 0.0708 0.068 0.0068

SAE 0.0398 0.0367 0.0356 0.0396 0.0366 0.0377 0.0017

CNN 0.0395 0.0413 0.0391 0.0394 0.0413 0.0401 0.001

CT Scan

Region

Prediction

D2FLS 0.1425 0.14 0.1262 0.126 0.1397 0.1349 0.0072

SAE 0.0542 0.0577 0.0559 0.0576 0.0558 0.0562 0.0013

CNN 0.0737 0.0737 0.0732 0.0732 0.0735 0.0734 0.0002

Predict Song

Year

D2FLS 0.1095 0.1115 0.1088 0.1106 0.1094 0.11 0.001

SAE 0.1005 0.1029 0.1011 0.1009 0.1007 0.1012 0.0009

CNN 0.1044 0.1028 0.1028 0.1022 0.1039 0.1032 0.0008

BT PWA

Data Test

D2FLS 0.0749 0.0796 0.0687 0.0743 0.0844 0.0764 0.0053

SAE 0.0546 0.0538 0.0541 0.0544 0.0543 0.0542 0.0003

CNN 0.0555 0.0559 0.0547 0.0543 0.0569 0.0554 0.0009

150

performance between the SAE and CNN is small. The D2FLS has a higher error on

average when compared to the SAE and the CNN for the regression datasets.

To make sure that the Mean Absolute Error fitness function is not affecting the

results, we conducted another experiment on the Regression datasets by retraining all

the data models using a different fitness function. In this case, the Root Mean Squared

Error (RMSE) represented below in equation (6.37).

 2

1

1
ˆ()

n

i i

i

RMSE y y
n =

= − (6.37)

Where iy is the desired output, iy is the actual output of the model and n is the

number of inputs.

The result of five training runs using RMSE as the fitness function are tabulated in

Table 6-3. With mean and standard deviation over these training runs in the eighth and

ninth columns of the table, respectively. Where a result is in bold (column 8), it

indicates that the row contains the AI model with the best performance for the dataset.

Table 6-4: Snapshot of Rule base of the Hidden Layer of the D2FLS on the BT PWA Dataset

 Antecedents Consequents

ID 1 2 3 H00 H01 H02 H03 H04

1 High MSLCL1 2
Mid CONTRACTOR

2
Low RANK 0 Low High

Very
Very

Low

Mid
Very

Low

2
High MISSAPP

2
Low RANK 0

Low ON DAY

UTILISATION 3

Very
Very

Low

Low High Low
Very
Very

Low

3

Low

CONTRACTOR
1

High MSLCL2 3
Mid ECONOMIC

UTILISATION 2

Very

Low
High

Very

Very
Low

Low High

4
High ON DAY

UTILISATION 2

Low ECONOMIC

UTILISATION 1
Low MSLCL2 0

Very

Very
Low

Very

Very
Low

Mid High High

5 Low MSLCL2 1

Low

ON_DAY_UTILISA

TION 1

Low ECONOMIC

UTILISATION 3
Low

Very

Very

Low

Mid Mid Low

6 Low MSLCL2 3 High TRAVEL 0 Mid MISSAPP 0 High Low High
Very

Low
High

7
Mid CALC

PROD 1
Mid MSLCL2 2 Mid RANK 0 Low High High Low High

8 Mid MSLCL2 0 Mid MSLCL2 3 Low LOANS 2 Low High

Very

Very

Low

Very
Low

Very

Very

Low

151

From Table 6-3, we can see that the SAE provides the best performance in four of

the datasets, and CNN has the best performance in one of the datasets. This is similar

to the behaviour seen when using the MAE as the fitness function; the only difference

is in the Swiss Premium Prediction dataset where the CNN outperformed by the SAE.

We can also see that the D2FLS has a higher error on average across the five datasets,

which is very similar to the performance loss when using MAE as the fitness function.

This means that changing the fitness function has only a small effect on the relative

performance of the three models.

A snapshot of the rule base generated by one of the runs on the BT PWA dataset is

shown in Table 6-4 and Table 6-5. Table 6-4 contains a snapshot of the rules (8 out of

100 rules) of the Hidden Layer of the D2FLS, it shows that the rules are short and

comprise of three antecedents and five consequents that form the five outputs of the

hidden layer (H00, H01, H02, H03, H04). Membership functions for the first two of

Table 6-5: Snapshot of Rule base of the Output Layer of the D2FLS on the BT PWA Dataset

 Antecedents Consequent

ID 1 2 3 PWA Performance

1 Low H02 Mid H00 High H03 Very Very Low

2 High H00 Mid H03 Mid H01 Low

3 Low H00 High H01 Mid H02 High

4 Mid H03 High H02 Low H01 Very Very Low

5 Mid H02 High H00 Mid H03 Low

6 Low H03 Low H01 High H00 Very Very Low

7 High H02 High H01 Mid H00 High

8 High H01 Mid H02 High H03 High

9 Low H02 Low H00 Low H03 Very Low

10 Mid H00 High H02 Low H03 Very Very Low

11 High H02 Mid H03 Low H00 High

12 High H00 Mid H01 Low H03 Low

13 High H00 Low H02 High H03 Very Low

14 Low H00 Low H03 Mid H01 Very Low

15 Low H03 Mid H00 Mid H01 High

152

the antecedents of the first rule in Table 6-4 are depicted in Figure 6-11 and Figure

6-12. Table 6-5 contains a snapshot of the rules of the output layer of the D2FLS, and

the rules of the output layers are also short and comprise of three antecedents and one

consequent for the output. The inputs to the output layer (H00, H01, H02, H03, H04)

of the D2FLS are synthetic variables created during the training.

Figure 6-11: Fuzzy Set Generated by D2FLS Training for MSLCL1 2 feature of the BT PWA

dataset

Figure 6-12: Fuzzy Set Generated by D2FLS Training for Contractor 2 feature of the BT PWA

dataset

153

The rules of both the layers are kept short (3 antecedents per rule) to maximise the

interpretability of the model while also maintaining the accuracy of the predictions. We

can then use these rules and membership functions to interpret the predictions of the

D2FLS. Compared to the SAE and CNN, which are difficult to interpret using just the

weight and biases used to define them. External tools and modifications such as the

methods described in Chapter 2.1 and Chapter 2.3 are required to interpret the SAE and

CNN. But these methods have limitations such as difficulty in interpreting the

explanations in case of inputs with a large number of features. Hence, in cases where

the interpretability of the AI model is essential, we can choose D2FLS over SAE or

CNN without losing too much of predictive accuracy of the AI model.

6.3.3 D2FLS vs Shallow Neural Networks and an IT2FLS

In this experiment, we compare the performance of the D2FLS against a Multilayer

perceptron and an Interval Type-2 Fuzzy Logic System. The goal is to see if our D2FLS

model performs reasonably well when compared to these two shallow AI models.

Table 6-6, contains the results of five training runs on classification datasets. The

results of the training runs are presented as Average Recall (equation (6.21)) in columns

(3-7). The mean and standard deviation of the five training runs is displayed in the

eighth and ninth columns of the table. Where a result is in bold (column 8), it indicates

that the row contains the AI model with the best performance for the dataset.

Table 6-6 shows that the D2FLS provided the best performance in three of the four

datasets, and the MLP provides the best performance in two of the remaining datasets.

The D2FLS outperforms the IT2FLS in all the datasets, and the performance

improvement is more than 4% in three of the datasets and about 2% in the other two

154

datasets with an average improvement of about 5%. The D2FLS outperforms the MLP

in three of the datasets with about 9% improvement in performance. In the other two

datasets where the MLP outperforms the D2FLS, the performance difference is only

about 2%. The D2FLS performs better than the MLP overall with about 5% increased

performance.

Table 6-7 displays the results of the five training runs on the regression datasets. We

display the MAE over the testing data on the regression dataset in columns (3-7). The

mean and standard deviation of the five training runs is displayed in the eighth and

ninth columns of the table. Where a result is in bold (column 8), it indicates that the

row contains the AI model with the best performance for the dataset.

Table 6-7 shows that the MLP provides the best performance, and the D2FLS has

the next best fitness when compared to the MLP. The D2FLS outperforms the IT2FLS

in all four of the selected datasets. The D2FLS has at least 6% lower error rate when

Table 6-6: Comparison of the performance of the D2FLS vs Multi-layer perceptron vs IT2FLS

in Classification Datasets using Average Recall as the Fitness Function

Data Set
AI

Model
1 2 3 4 5 Average

Standard

Deviation

Santander

CTP

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24

MLP 65.3 62.41 59.88 64.1 65.09 63.36 2.02

IT2FLS 56.92 59.44 58.1 56.9 58.14 57.9 0.94

BT

Customer

Data

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7

MLP 75.63 74.34 73.44 75.24 73.05 74.34 0.99

IT2FLS 60.23 61 60.62 60.66 59.88 60.48 0.38

PD Speech

D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84

MLP 66.37 66.87 61.81 60.12 63 63.63 2.61

IT2FLS 69.41 63.6 71.85 61.83 68.11 66.96 3.71

IDA2016

D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55

MLP 83.32 85.23 82.97 81.48 82.59 83.12 1.22

IT2FLS 89.64 91.54 90.05 91.33 89.84 90.48 0.79

EpiSeizure

D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65

MLP 84.53 80.31 82.16 79.97 83.76 82.14 1.81

IT2FLS 89.73 88.76 88.54 90.67 89.11 89.36 0.77

155

compared to the IT2FLS with the highest improvement in fitness seen in the Wi-Fi

Localization dataset with a 30% lower error. And the D2FLS has 15% lower error on

average when compared to the IT2FLS.

6.3.4 Comparison between the Three-Step Training process and Single Step

Training process

Table 6-8: Comparison for the Three-Step Training Process and the Single Step Training Process

for training the D2FLS with Mean Absolute Error as the Fitness Function

Data Set
Training

Method
Run 1 Run 2 Run 3 Run 4 Run 5 Average Std

Wi-Fi

Localization

TS

Training
0.106 0.116 0.1049 0.1022 0.098 0.105 0.00589

SS

Training
0.147 0.148 0.149 0.178 0.154 0.155 0.0115

Swiss

Premium

Prediction

TS

Training
0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

SS

Training
0.067 0.082 0.065 0.069 0.081 0.0729 0.0072

CT Scan

Region

Prediction

TS

Training
0.095 0.091 0.089 0.084 0.09 0.0897 0.00334

SS

Training
0.117 0.136 0.13 0.126 0.126 0.127 0.0062

BT PWA

TS

Training
0.048 0.057 0.051 0.045 0.057 0.0519 0.00474

SS

Training
0.078 0.05 0.106 0.063 0.077 0.0748 0.0187

Table 6-7: Comparison of the performance of the D2FLS vs Multi-layer perceptron vs IT2FLS

in Regression Datasets using MAE as the Fitness Function

Data Set
AI

Model
1 2 3 4 5 Average Std

Wi-Fi

Localization

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

MLP 0.0387 0.0367 0.042 0.0389 0.0377 0.044 0.0044

IT2FLS 0.129 0.1551 0.116 0.1188 0.1655 0.1369 0.0199

Swiss

Premium

Prediction

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

MLP 0.0262 0.0258 0.0263 0.0265 0.0265 0.0257 0.0011

IT2FLS 0.0507 0.0512 0.0582 0.0518 0.0515 0.0527 0.0028

CT Scan

Region

Prediction

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

MLP 0.0353 0.0352 0.0359 0.0355 0.0333 0.0453 0.0003

IT2FLS 0.1048 0.0935 0.0904 0.088 0.1012 0.0956 0.0064

Predict Song

Year

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

MLP 0.0749 0.0753 0.0691 0.0673 0.0671 0.0724 0.0028

IT2FLS 0.08 0.086 0.081 0.0793 0.0831 0.0819 0.0024

156

The aim of this experiment is the test the effectiveness of the three-step training

process (TS Training), depicted in Figure 6-10, proposed as the training method for

training each layer of the D2FLS. We compare this training method to an alternative

by combining all the steps of the TS training and train each layer in a single step(SS

Training) by encoding the layer using the representation in (6.20) and training the MFs

and FOUs of the antecedents and consequents along with the rules in a single step.

For the TS training process, we use BB-BC as the training algorithm with 500

generations and 30 particles per step. For the SS training process, we again use the BB-

BC algorithm with 500 generations and 90 particles to train the D2FLS. We use these

parameters for the optimization algorithm to ensure that the two training methods use

a similar amount of CPU time.

The result of training the two methods over five training runs on four regression

datasets is tabulated in Table 6-8. The results of the training runs are presented as Mean

Absolute Error (equation (6.24)) in columns 3-7. The mean and standard deviation of

the five training runs is displayed in the eighth and ninth columns of the table. Where

a result is in bold, it indicates that the row contains the training method with the best

performance for the dataset.

The results presented in Table 6-8 show that the D2FLS trained using the TS training

method performs better than the D2FLS trained using SS training method in all four

datasets. Using the TS training method for the four datasets reduces the MAE by 47%

on average across the four datasets. This supports the choice of the TS Training method,

and it is utilised in all the other experiments.

157

6.3.5 Comparison Between D2FLS trained using the various Membership

Function Types

The aim of this experiment is to test the impact of the various types of MF on the

proposed D2FLS model. The MF type, which provides the best results, is then used in

the rest of the experiments.

There are mainly three types of Membership functions that were tested; they are

Triangular MF, Trapezoidal MF and Gaussian MF (depicted in Figure 6-7, Figure 6-8

and Figure 6-9). Figure 6-13 depicts, examples of the three types of IT2 MFs generated

during training. Average Recall and Mean absolute error are used as the fitness

functions the categorical and regression datasets, respectively. In all the cases, the BB-

BC algorithm is used as the optimization algorithm with 500 generations and 30

particles per step.

Table 6-9: Comparison of performance of D2FLS for difference types of MFs on Categorical

Datasets with Average Recall as the Fitness Function

Data Set
Type of

MF
1 2 3 4 5 Average

Standard

Deviation

Santander

CTP

Trapezoidal 64.39 61.4 63.7 61.39 62.04 62.584 1.24

Triangular 61.07 62.6 61.09 61.23 63.05 61.807 0.84

Gaussian 52.59 53.79 53.48 53.24 52.89 53.197 0.42

BT

Customer

Data

Trapezoidal 73.53 71.82 72.63 71.49 70.83 72.061 0.7

Triangular 68.24 71.87 70.99 70.56 71.98 70.73 1.35

Gaussian 59.66 59.86 60.02 60.08 59.8 59.885 0.15

PD Speech

Trapezoidal 77.64 70.17 70.3 74.5 74.51 73.425 2.84

Triangular 58.94 68.17 65.74 67.99 70.43 66.253 3.95

Gaussian 56.98 60.37 57.29 57.46 58.42 58.103 1.23

IDA2016

Trapezoidal 92.07 91.94 92.56 92.73 93.5 92.559 0.55

Triangular 91.73 89.17 92.98 94.4 92.78 92.213 1.58

Gaussian 94.79 92.34 91.73 92.95 87.93 92.954 1.32

EpiSeizure

Trapezoidal 90.6 92.45 91.34 90.78 91.46 91.325 0.65

Triangular 87.68 87.32 80.7 86.004 88.22 85.983 2.74

Gaussian 80.16 79.43 75.13 80 78.85 78.714 1.85

158

We tabulate the performance of the D2FLS when using the three types of MFs over

five training runs on the Categorical datasets in Table 6-9. The results of the training

runs are presented as Average Recall (equation (6.21)) in columns (3-7). The mean and

standard deviation of the five training runs is displayed in the eighth and ninth columns

of the table. Where a result is in bold, it indicates that the row contains the results for

the Membership functions type with the best performance for the dataset.

We can see from Table 6-9 that the Trapezoidal MFs provide the best performance

in four of the five datasets while the Gaussian MFs perform the best in one of the

datasets (IDA 2016). The Triangular MFs provide slightly worse performance than the

Trapezoidal MFs, about 3% loss in performance on average. While the Gaussian MFs

perform the worst in four of the five datasets, about 10% loss is performance on average

when compared to Trapezoidal MFs.

Table 6-10: Comparison of performance of D2FLS for difference types of MFs on Regression

Datasets with Mean Absolute Error as the Fitness Function

Data Set Type of MF Run 1 Run 2 Run 3 Run 4 Run 5 Average Std

Wi-Fi

Localization

Trapezoidal 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

Triangular 0.1105 0.1256 0.1486 0.1525 0.1477 0.1369 0.0163

Gaussian 0.2345 0.2393 0.2366 0.2474 0.2418 0.2399 0.0045

Swiss

Premium

Prediction

Trapezoidal 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

Triangular 0.0596 0.065 0.0659 0.0581 0.0543 0.0606 0.0043

Gaussian 0.1499 0.1499 0.1641 0.1579 0.1499 0.1543 0.0058

CT Scan

Region

Prediction

Trapezoidal 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

Triangular 0.1101 0.1136 0.1184 0.1217 0.1361 0.12 0.009

Gaussian 0.122 0.1335 0.188 0.1359 0.1036 0.1366 0.0281

Predict Song

Year

Trapezoidal 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

Triangular 0.0797 0.0785 0.08 0.0752 0.0751 0.0777 0.0021

Gaussian 0.0987 0.0882 0.1553 0.0859 0.0903 0.1037 0.0262

BT PWA

Trapezoidal 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

Triangular 0.0642 0.0551 0.0556 0.0496 0.0625 0.0574 0.0053

Gaussian 0.0776 0.0856 0.0746 0.0788 0.0729 0.0779 0.0044

159

Figure 6-13: Examples of IT2 Fuzzy Sets Generated for D2FLS during Training where (a) (d) are

Trapezoidal MF, (b) (e) are Triangular MF, and (c) (f) are Gaussian MF for Contractor 0 and MSLCL1 2

features respectively of the BT PWA dataset

160

Similarly, we tabulate the performance of the D2FLS for the Regression datasets in

Table 6-10. The results of the training runs are presented as Mean Absolute Error

(equation (6.24)) in columns (3-7). The mean and standard deviation of the five training

runs is displayed in the eighth and ninth columns of the table. Where a result is in bold,

it indicates that the row contains the results for the Membership functions type with the

best performance for the dataset.

From Table 6-10, we can see that the Trapezoidal MFs provide the best performance

for all the regression datasets. The use to Triangular MFs and Gaussian MFs led to

about 21% and 79% larger rate of error, respectively. Examples of the membership

functions generated are depicted in Figure 6-13.

This result indicates that the Trapezoidal MFs is the best MF to use in D2FLS for

the selected datasets. This might be because Trapezoidal MFs generally provide higher

degrees of freedom compared to the Triangular and Gaussian MFs [75]. Hence, we use

Trapezoidal MFs for the rest of the experiments.

6.3.6 Comparison of the performance of the BB-BC against Genetic Algorithms

Table 6-11: Comparison Between D2FLS Trained using BB-BC and Genetic Algorithm on

Categorical Datasets with Average Recall as the Fitness Function

Data Set Optimization

Method

Run 1 Run 2 Run 3 Run 4 Run 5 Average Std

Santander

CTP

BB-BC 64.39 61.4 63.7 61.39 62.04 62.584 1.24

GA 54.83 54.34 55.38 55.32 55.27 55.029 0.39

BT

Customer

Data

BB-BC 73.53 71.82 72.63 71.49 70.83 72.061 0.7

GA 67.46 67.39 73.48 72.64 74.35 71.062 3.02

PD Speech
BB-BC 77.64 70.17 70.3 74.5 74.51 73.425 2.84

GA 61.59 61.53 60.5 55.78 64.68 60.816 2.88

IDA2016
BB-BC 92.07 91.94 92.56 92.73 93.5 92.559 0.55

GA 89.29 90.98 90.28 92.3 89.13 90.394 1.17

EpiSeizure
BB-BC 90.6 92.45 91.34 90.78 91.46 91.325 0.65

GA 82.68 83.19 82.84 82.8 84.43 83.19 0.64

161

The aim of these experiments is to evaluate the differences when using the BB-BC

algorithm or Genetic Algorithm (GA) for training the D2FLS. The best algorithm can

then be used for further experiments.

Average Recall is used as the fitness function for all categorical datasets and Mean

absolute error is used for all the regression datasets. In all the cases where BB-BC

algorithm is used as the optimization algorithm, its parameters are 500 generations and

30 particles per step. Similarly, The GA was run for 150 generations, with 100

individuals per generation with a crossover probability of 0.4 and a mutation rate of

0.1. These values are chosen to ensure that both the BB-BC and GA are trained for the

same amount of time.

We tabulate the performance of the D2FLS trained using the BB-BC and GA over

five training runs on the Categorical datasets in Table 6-11. The results of the training

runs are presented as Average Recall (equation (6.21)) in columns (3-7). The mean and

standard deviation of the five training runs is displayed in the eighth and ninth columns

of the table. Where a result is in bold (column 8), it indicates that the row contains the

optimization algorithm with the best performance for the dataset.

Table 6-12: Comparison Between D2FLS Trained Using BB-BC and Genetic Algorithm on

Regression Datasets with Mean Absolute Error as the Fitness Function

Data Set
Optimization

Method
Run 1 Run 2 Run 3 Run 4 Run 5 Average Std

Wi-Fi

Localization

BB-BC 0.106 0.116 0.1049 0.1022 0.098 0.105 0.0058

GA 0.2743 0.2221 0.2176 0.1837 0.1815 0.2158 0.0337

Swiss

Premium Pred

BB-BC 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004

GA 0.1406 0.1373 0.1365 0.1355 0.1273 0.1354 0.0044

CT Scan

Region Pred

BB-BC 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003

GA 0.171 0.1772 0.1577 0.1676 0.1565 0.166 0.0079

Predict Song

Year

BB-BC 0.076 0.0741 0.074 0.074 0.079 0.075 0.002

GA 0.1085 0.1144 0.1136 0.0853 0.0963 0.1036 0.0112

BT PWA
BB-BC 0.048 0.057 0.0511 0.045 0.057 0.0519 0.005

GA 0.1086 0.1014 0.1391 0.102 0.1199 0.1142 0.0141

162

We can see from Table 6-11 that the D2FLS trained using BB-BC algorithm perform

significantly better than the GA in all five of the categorical datasets with a 6% higher

average recall on average.

Similarly, we tabulate the performance of the D2FLS for the Regression datasets in

Table 6-12. The results of the training runs are presented as Mean Absolute Error

(equation (6.24)) in columns (3-7). The mean and standard deviation of the five training

runs is displayed in the eighth and ninth columns of the table. Where a result is in bold,

it indicates that the row contains the results for the optimization algorithm with the best

performance for the dataset.

From Table 6-12, we can see that the D2FLS trained using BB-BC algorithm

perform significantly on all five of the Regression datasets with a 49% smaller error on

average when compared to the GA.

We then investigated why the performance of the GA is lower than the BB-BC

algorithm. First, we conducted an experiment to check if increasing the number of

generations will improve performance. We ran the GA for 150 and 200 generations

with 100 individuals in each generation on the BT PWA Data dataset. The results of

this are tabulated in Table 6-13. From Table 6-13, we can see that running the GA for

Table 6-13: Impact of number of Generations on D2FLS trained using Genetic Algorithm

Number of Generations 150 200

0.108567 0.118009

0.101369 0.138971

0.139087 0.129255

0.102 0.120627

0.119919 0.130588

Average 0.114189 0.12749

Standard Dev. 0.014123 0.007504

163

longer does not improve the performance. This might be because of the multiple steps

used during the training.

Hence, In the next experiment, we checked the effect of training the D2FLS in a

single step. i.e., we trained the FOU along with the MFs and rules of the D2FLS at the

same time. The results of this training over a variety of generations are tabulated in

Table 6-14. As we can see, the performance of the D2FLS improves as we increase the

number of generations. This indicates that increasing the number of generations will

provide improved performance. But even after training for 500 generations, the

performance of the Single Step training process is lower than the three-step training

process we used for other experiments; the three-step process is run for 100 generations

per step, i.e., 100 generations per step which gives us a total of 300 generations.

Therefore, we stopped any further investigation as the number of generations required

to get similar performance to the BB-BC from GA seems to be too high. Hence, we

decided to use BB-BC algorithm for all the other experiment.

6.3.7 Deep Type-2 FLS vs Deep Type-1 FLS

In this experiment, we compare the performance of a Deep Type-2 FLS against a

Type-1 version of the same model, i.e., the FOU of the D2FLS are not trained. The

goal is to see how much the predictive accuracy of the D2FLS can be improved by

adding Interval Type-2 fuzzy sets.

Table 6-14: D2FLS optimized by Genetic Algorithm using a single step training with MAE as

fitness function

Number of

Generations
Run 1 Run 2 Run 3 Run 4 Run 5 Average

Standard

Dev

100 0.1819 0.1886 0.1773 0.1791 0.1816 0.1817 0.0038

200 0.1848 0.1671 0.168 0.1805 0.1713 0.1743 0.0071

300 0.1687 0.1782 0.181 0.1511 0.1691 0.1696 0.0105

400 0.1566 0.1544 0.1713 0.1482 0.1724 0.1606 0.0096

500 0.1396 0.1594 0.1491 0.1677 0.1482 0.1528 0.0098

164

The D2FLS and its Type-1 counterpart are trained using BB-BC, with Average

recall as the fitness function, five times. And the Average Recall on the testing data of

the categorical datasets along tabulated in Table 6-15. The mean and standard deviation

of the five training runs is displayed in the eighth and ninth columns of the table. Where

a result is in bold (column 8), it indicates that the row contains the Type of FLS with

the best performance for the dataset.

From Table 6-15, we can see that the Deep Type-2 Fuzzy logic system outperforms

its Type-1 counterpart in all the selected classification datasets. This is logical as the

D2FLS is trained by adding FOUs to an optimised Type-1 system; hence, the D2FLS

system will perform at least as well as its type-1 counterpart. The main point to note

here is the magnitude of the performance improvement when the Type-1 version of the

system is converted into the IT2 version. As we can see, there is almost 9 per cent

improvement in the PD Speech dataset and 12 per cent improvement in the BT

Customer Data dataset. With an average performance improvement of 4.3% by

switching from Type-1 to Interval Type-2 system in Classification datasets.

Table 6-15: Deep Type-2 FLS vs Deep Type-1 FLS on Classification Datasets

Data Set

Type of

Fuzzy

Set

1 2 3 4 5 Average Std

Santander

CTP

IT2 64.39 61.4 63.7 61.39 62.04 62.584 1.24

Type-1 57.74 59.66 60.49 62.36 59.58 59.97 1.5

CLL

Identification

IT2 62.8 59.78 61.25 62.37 63.31 61.9 1.26

Type-1 61.13 54.18 61.81 62.06 62.01 60.24 3.05

BT Customer

Data

IT2 73.53 71.82 72.63 71.49 70.83 72.061 0.7

Type-1 59.8 59.98 62.07 61.36 58.31 60.3 1.31

PD Speech
IT2 77.64 70.17 70.3 74.5 74.51 73.425 2.84

Type-1 62.77 68.85 58.76 67.82 66.09 64.86 3.68

IDA2016
IT2 92.07 91.94 92.56 92.73 93.5 92.559 0.55

Type-1 92.63 91.37 91.99 93.14 91.87 92.2 0.62

EpiSeizure
IT2 90.6 92.45 91.34 90.78 91.46 91.325 0.65

Type-1 89.7 89.52 89.89 92.31 89.48 90.18 1.08

165

Similarly, the D2FLS and its type-1 counterpart are trained using BB-BC with MAE

as the fitness function five times each. The MAE on the testing data of the regression

datasets is tabulated in Table 6-16. The mean and standard deviation of the five training

runs is displayed in the eighth and ninth columns of the table. Where a result is in bold

(column 8), it indicates that the row contains the Type of FLS with the best performance

for the dataset.

From Table 6-16, we can see that similar to the classification datasets the D2FLS

outperforms its type-1 counterpart in all the selected regression datasets. The D2FLS

provides about 47% lower error when compared to its Type-1 counterpart with the best

improvement in the Swiss Premium Prediction dataset where it has less than half the

error. This indicates that using Interval type-2 Fuzzy sets provides a significant

improvement over type-1 fuzzy sets.

6.4 Summary

This chapter discussed the Deep Type-2 Fuzzy Logic System and a novel training

method to train this AI model. It discussed the shortcomings of the IT2FLS system for

Table 6-16: Deep Type-2 FLS vs Deep Type-1 FLS on Regression Datasets

Data Set
Type of

Fuzzy set
1 2 3 4 5 Average Std

Wi-Fi

Localization

IT2 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

Type-1 0.119 0.1106 0.1343 0.1137 0.1366 0.1228 0.0107

Swiss

Premium Pred

IT2 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

Type-1 0.1188 0.1361 0.1104 0.1156 0.147 0.1256 0.0138

CT Scan

Region Pred

IT2 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

Type-1 0.1215 0.1258 0.1114 0.0958 0.1081 0.1125 0.0106

Predict Song

Year

IT2 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

Type-1 0.0747 0.083 0.0784 0.078 0.0812 0.0791 0.0029

BT PWA
IT2 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

Type-1 0.0579 0.052 0.0581 0.0833 0.0631 0.0629 0.0108

166

datasets with a large number of features and the suitability of the D2FLS for these

datasets. To fully evaluate the proposed system, we compared it against SAE, CNN,

MLP and IT2FLS.

The results show that in the classification datasets the proposed D2FLS provides 2%

improvement when compared to the SAE on average and it was within 2% of the

performance of the CNN. The results also show the D2FLS has about 4-5% higher

performance compared to the MLP and the IT2FLS. This shows that the D2FLS is

competitive against state-of-the-art Deep Learning algorithms in categorical datasets

and outperforms the MLP and IT2 FLS in the categorical datasets.

In the regression datasets, the results show that the proposed D2FLS has shown

higher error on average when compared to the MAE of the SAE, MLP and CNN,

respectively. The D2FLS has better performance when compared to the IT2FLS (15%

lower error).

The chapter also shows the interpretability of the D2FLS in the form of the

membership functions and snapshots of the rules of the D2FLS. The interpretability of

the D2FLS will be further evaluated through a survey in Chapter 8.3. The D2FLS

comprises of a small number of rules with a small number of antecedents per rule, thus

maximising the interpretability of the model. The SAE, CNN and MLP models, on the

other hand, require external tools or modifications to provide explainability, but these

tools have their own limitations and might not always be suitable.

This chapter also discusses the impact of using IT2 MFs in the D2FLS and the results

show that the use of IT2 MFs has a significant effect on the performance of the D2FLS.

167

With about 5% improvement in performance in the categorical datasets and 47% lower

error rate when compared to its Type-1 counterpart in regression datasets.

This chapter also explored the use of GA to train the D2FLS. The results show that

the D2FLS trained using BB-BC has a 4.3% higher average recall in the categorical

datasets and about 47% lower MAE in the regression datasets when compared to the

D2FLS trained using a GA.

In the next chapter, we discuss an alternative training method for the D2FLS by

extending the training method used to train a Fuzzy Stacked Autoencoder (FSAE).

168

Chapter 7. Deep Type-2 FLS trained using a Stacked

Autoencoder

An alternative to the training method described in section 6.2 is to first train a

stacked autoencoder and use the outputs at the intermediate layers of these

autoencoders to pre-train the hidden layers of the D2FLS. A final output layer is then

added to it, and the whole model is trained.

The inspiration for this training method comes from the Fuzzy Stacked Autoencoder

(FSAE) [116], depicted in Figure 7-1, in which the final layer of a stacked autoencoder

is replaced by an FLS. The way this is done is by first training the hidden layers of the

FSAE as SAEs using a greedy layer-wise training algorithm [61]. Once the system is

trained the last layer of the stacked autoencoder is replaced by a Fuzzy Logic System

(T1/IT2 FLS) and trained using an optimization algorithm like BB-BC using the output

of n-1 layer of the SAE as the input.

There is one advantage to using this method over the training method presented in

the previous chapter. Since, we use gradient descent algorithms to train the stacked

autoencoder, the training is much faster than random search-based algorithms such as

BB-BC. The disadvantage is that this training method is much more complex than the

Figure 7-1: Fuzzy Stacked Autoencoder [116]

169

method presented in the previous chapter. This training method consists of three

phases: the first phase is the training of the SAE, the second phase is pretraining of the

hidden layers of the D2FLS and finally in the third phase the final or output layer is

added to the D2FLS and all the hidden layers are retrained. The details of this training

method are presented in the following sections.

7.1 Autoencoder Training

An autoencoder is a neural network that is designed to reconstruct an approximation

of the input at the output, i.e., the target output of the network is the input. The idea

here is to constrain the network in such a way that the autoencoder is forced to learn

the important characteristics of the inputs. Some of the ways in which we will constrain

Figure 7-2: Stacked Autoencoder Training

170

the network is by restricting the number of neurons in the hidden layers which will

force the network to learn a sparse representation, add noise to the inputs etc. These

constraints are used to ensure that the autoencoder does not merely learn the identity

function of the input.

Mathematically the autoencoder can be represented as follows, given a set of

training samples 1 2[, ,..,]px x x where px R , the autoencoder first encodes the input px

to a hidden representation kh , then it decodes the hidden representation to ˆ
px as shown

below.

 1 1()pkh f W x b= + (7.1)

 2 2
ˆ ()kp hx g W b= + (7.2)

Where 1W and 1b represent the weights and bias of the encoder layer, 2W and 2b

represent the weights and bias of the decoder layer. The weights and bias of the encoder

and decoder are shared in the autoencoder. We use the Adam algorithm [101]

(described in 4.3.1.1) to train the autoencoder. It is a Stochastic Gradient Descent

algorithm which calculates the adaptive learning rates based on estimates of the first

and second-order moments of the gradients [101].

As depicted in Figure 7-2, once the first autoencoder is trained, the decoder is

discarded, and the output of the encoder is used to train the second layer of the neural

network as an autoencoder. This process is repeated for all the hidden layers, and once

this is done the final layer is added to the network and the whole network is retrained

using supervised learning.

171

7.2 Pretraining D2FLS

Once the SAE is trained the outputs of the hidden layers of the SAE are used to pre-

train the hidden layers of the D2FLS. i.e., the inputs and outputs of the first hidden

layer of the SAE are used to train the first hidden layer of the D2FLS. Next, the inputs

and outputs of the second hidden layer of the SAE are used to train the second hidden

layer of the D2FLS etc. This process is repeated until all the hidden layers of the D2FLS

are pre-trained.

Let kF be thk the layer of the D2FLS to be trained and given the training samples

1 2[, ,..,]px x x where px R . The D2FLS SAE pretraining can be represented as follows.

 1()k k kh F h −= (7.3)

Where kh is the output of the thk layer of the SAE trained in the previous phase,

1kh − is the output of the 1thk − layer of the SAE. When 1k = and 1k ph x− = for the

training samples.

To optimize the hidden layers, the MFs and rule base are optimized using the BB-

BC algorithm and the training is divided into three steps, this is similar to the way FAEs

are trained, and the process is depicted in Figure 6-10. The goal of the optimization

algorithm is to minimize a cost function such as MAE (6.24), which is modified as

follows:

1

ˆ| |k

i

p

kh h

M
p

AE =

−

=


 (7.4)

172

Where ˆ
kh is the output of the hidden layer of the D2FLS, kh is the desired output

which is the output of the thk hidden layer of the SAE, p is the number of instances in

the training data.

7.2.1.1 Optimize Hidden layer as Type 1 FLS

To optimize the type-1 Hidden FLS, we use an optimisation algorithm such as BB-

BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). The

first step in these algorithms is to encode the parameters (to be tuned) of the hidden

FLS into individuals. Each individual represents a possible solution to the optimization

problem.

There are three sets of parameters to be tuned for the hidden FLS, the MFs that

describe the input features or linguistic variables, the MFs that describe the output

linguistic variables and the rules of the FLS. In this step, we train all these parameters,

which are encoded into the individual as real numbered values as follows.

1 1 1,.., ,.., , ,..,i i k lHLT M M M R R += (7.5)

Where iM represents the membership functions for the i input features or linguistic

variables of the FLS and i kM + represents the MFs for the thk output or consequent of

the FLS using (6.2), (6.5) or (6.8). lR represents the l rules of the FLS using (6.9).

For example, if the BB-BC algorithm is used as the optimization algorithm, the

training of the FAE is performed using the following steps.

Step 1: N individuals are initialised by randomly generating values for each of the

parameters of 1HLT in (7.5).

173

Step 2: The N individuals are then decoded into an FLS using (6.28), and the fitness

of these individuals is calculated using the cost function in (7.4).

Step 3: The best individual among these N FLS is selected, and the stopping criteria

are checked against this solution. If this FLS satisfies the stopping criteria, then the

optimization algorithm is stopped, and further steps of the training process are

performed on this FLS.

Step 4: Else, a new generation of N individuals are generated by mutating this

individual using (4.2) , and the steps from Step 2 are repeated.

7.2.1.2 Transform T1MFs to IT2MFs

In the second step, we train the FOU of the MFs of the antecedents and the

consequents using an optimization algorithm such as BB-BC (described in Chapter 4.1)

or Genetic algorithm (described in Chapter 4.2). To do this, we add an FOU to the

representation of the MFs of the antecedents and the consequents of the hidden FLS

trained in the previous step. The representation of the FLS in (7.5) is modified using

(6.13), (6.16) or (6.19) (based on the type of MFs) as follows.

1 12 ,.., 2 ,.., ,2 ,..,i i k lT T T T R R+= (7.6)

Where 2iT represents the membership functions for the i input features or linguistic

variables FLS and 2i kT + represents the MFs for the thk output or consequent of the FLS

using (6.13), (6.16) or (6.19). Since we only train the parameters of the MFs and their

FOUs in this step, the parameters of the MFs are encoded into an individual as follows.

 12 2 ,.., 2 ,.., 2i i kHLIT T T T += (7.7)

174

The FOUs of the hidden FLS are then trained. For example, if the BB-BC algorithm

is used as the optimization algorithm, the training of the FOUs of the hidden FLS is

performed using the following steps.

Step 1: 1N − individuals are generated by randomly generating values within the

search space for each of the parameters in 2HLIT . The final individual is generated by

choosing the parameters from the type-1 hidden FLS, trained in the previous step of

the training (the FOUs of this individual are set to zero).

Step 2: N individuals are then decoded into the MFs of the FLS using (7.7), the

rules are then added to these FLSs by choosing them from the type-1 hidden FLS

trained in the previous step.

Step 3: The fitness of the N FLSs are calculated using the cost function in (7.4).

The best individual among these N individuals is selected, and the stopping criteria

are checked against this individual. If this FLS satisfies the stopping criteria, then the

optimization algorithm is stopped, and further steps of the training process are

performed on this FLS.

Step 4: Else, a new generation of N individuals are generated by mutating this

solution using (4.2) and the steps from Step 2 are repeated.

7.2.1.3 Optimize the Rule Base of the Hidden Layer

In the third step, we retrain the rules of the hidden FLS generated in the previous

section. The rules of the FLS are encoded using the representation described in Section

6.1.1.2 using (6.9) as follows.

 1,...,HLRules lR R = (7.8)

175

Where lR represent the l rules of the hidden FLS.

The rules of the FLS are then retrained using an optimization algorithm such as BB-

BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining

of the rules is performed using the following steps.

Step 1: One individual is generated by encoding the rules of the hidden FLS

generated in the previous step into a real-valued solution using (7.8). Along with this,

1N − individuals are generated by mutating the first individual.

Step 2: The N individuals are then decoded into the rules of the hidden FLSs using

(7.8). Then the MFs and their FOUs generated in the previous section are added to the

FLSs.

Step 3: The fitness of these N FLSs are calculated using the cost function in (7.4).

The best solution among these N FLSs is selected, and the stopping criteria are

checked against this solution. If this hidden FLS satisfies the stopping criteria, then the

optimization algorithm is stopped, and further steps of the training process are

performed on this hidden FLS

Step 4: Else, a new generation of N Individuals are generated by mutating this

solution using (4.2) , and the steps from Step 2 are repeated.

176

7.3 Optimization Method for the Final Layer

To train the full D2FLS, we use the hidden layers trained using the method explained

in the previous section and added another FLS that will act as the final output layer of

the D2FLS. The output of the D2FLS can then be represented as follows.

1 1(((...(()...))n n

py f h h h x−= (7.9)

Where nh represent the thn hidden FLS, f represents the final output layer and px

is the input vector.

We use an optimization algorithm to retrain all the layers using the three-step

training process depicted in Figure 6-10. The goal of the optimization algorithm is to

minimise a cost function such as MAE (6.24), which is modified as follows:

1

ˆ| |
p

i

p

y y

MAE =

−

=


 (7.10)

Where ŷ is the predicted output of the D2FLS from equation (7.9), y is the actual

output from the training dataset, n is the number of instances in the training dataset.

7.3.1.1 Optimize the Type 1 D2FLS

In this step, we stack the hidden layers trained in section 7.2 and add a final layer.

We train the final layer as a Type-1 FLS while at the same time, we retrain the MFs

and rules of the hidden layers using the BB-BC algorithm. In this step, the inputs and

outputs are extracted directly from the data. The parameters of the MFs and rules of the

D2FLS are represented in the following format.

177

1 2

2 1 1 1, ,.., , ,.., , ,..,n f f f f

D FLST h h h o p gT T T M M R R += (7.11)

Where
n

hT represent the MFs and rules of the n hidden layers created using (6.20).

f

o pM + represents the MFs for the o input features, p consequents of the final layer

and
f

gR represents the g rules of the final layer.

The D2FLS is then trained using an optimization algorithm such as BB-BC

(described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the training of

the D2FLS is performed using the following steps.

Step 1: N individuals are generated, the initial values of the three parameters of the

final layer of the D2FLS in (7.11) are randomly generated as real numbered values.

These values are then added to the parameters of the encoders generated in the previous

phase.

Step 2: The N individuals are then decoded into a D2FLS using (7.11) , and the

fitness of these individuals is calculated using the cost function in (7.10) and the best

solution among these N D2FLS is selected.

Step 3: The stopping criteria (number of generations and target fitness) are checked

against the individual selected in the previous step. If this individual satisfies the

stopping criteria, then the optimization algorithm is stopped, and further steps of the

training process are performed on this D2FLS.

178

Step 4: If the stopping criteria (number of generations and target fitness) are not

satisfied, a new generation of N individuals are generated by mutating the individual

selected in Step 2 using (4.2) and then the steps from Step 2 are repeated.

7.3.1.2 Transform T1MFs of the final layer to IT2MFs

In this step, we add the FOU to the MFs of the antecedents and consequent

membership functions of the final layer generated in the previous steps and retrain

FOUs of all the layers using the BB-BC algorithm. The parameters for the FOUs are

encoded using and represented as follows.

1 2

2 2 1, ,.., , 2 ,.., 2n f f

D FLST h h h o pT T T T T += (7.12)

Where
n

hT represents the IT2 representation of the MFs of the h encoders from

(6.30) and 2o p

fT + represents the MFs and FOUs of the o antecedents and the p

consequents (6.20).

The FOUs of the D2FLS are then trained using an optimization algorithm such as

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the training of

the FOUs of the D2FLS is performed using the following steps.

Step 1: N individuals are generated by randomly generating the FOUs of the

antecedents and the consequents of the final layer of the D2FLS and added to the

D2FLS generated in the previous section and their parameters encoded using (7.12).

Step 2: The real-valued representation of the N individuals is then decoded into MFs

of the D2FLS using (7.12). The rules are then added to these D2FLS by choosing them

from the type-1 D2FLS trained in the previous step.

179

Step 3: The fitness of the N D2FLSs is calculated using the cost function in (7.12)

and the best D2FLS among these is selected

Step 4: The stopping criteria (number of generations and target fitness) are checked

against the individual selected in the previous step. If this D2FLS satisfies the stopping

criteria, then the optimization algorithm is stopped, and further steps of the training

process are performed on this D2FLS

Step 5: If the stopping criteria (number of generations and target fitness) are not

satisfied a new generation of the N candidate solutions are generated by mutating

real-valued representation of the individual selected in Step 2 using (4.2) and then the

steps from Step 2 are repeated.

7.3.1.3 Optimizing the Rule Base of the D2FLS

In this step, we retrain the rules of all the hidden layers and the final layer using BB-

BC algorithm. The parameters for this step are encoded in the following format to

create the candidate solutions of the BB-BC algorithm.

1 1

2 1 1,..., ,.., , ,...,h h hn f f

D FLSRules l l gR R R R R = (7.13)

Where
hn

lR represents the rules of the n hidden layer and
f

gR represents the g rules

of the final layer.

The rules of the D2FLS are then retrained using an optimization algorithm such as

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining

of the rules of the D2FLS is performed using the following steps.

180

Step 1: The rules of the D2FLS generated in the previous step are encoded into real-

valued solution using (7.13). And N individuals are generated by mutating this

solution.

Step 2: The N individuals are then decoded into the rules of the D2FLS, then the

MFs and their FOUs generated in the previous section are added to the D2FLS. The

fitness of these individuals is calculated using the cost function in (7.12) , and the best

individual among these is selected.

Step 3: The stopping criteria (number of generations and target fitness) are checked

against the individual selected in the previous step. If this D2FLS satisfies the stopping

criteria, then the optimization algorithm is stopped, and further steps of the training

process are performed on this D2FLS.

Step 4: If the stopping criteria (number of generations and target fitness) are not

satisfied a new generation of the N individuals are generated by mutating the

individual selected in Step 2 using (4.2) and then the steps from Step 2 are repeated.

7.4 Experiments and Results

7.4.1 D2FLS vs Fuzzy Stacked Autoencoder

In this experiment, we compare the performance of the D2FLS against the FSAE.

In [96] FSAE is shown to have performance that is between an IT2FLS and an SAE,

so, this is an interesting comparison as we can use this to learn how the D2FLS stacks

up against the IT2FLS and SAE models trained using the methods described in [96].

181

The D2FLS model is trained on the classification datasets using BB-BC algorithm

with 500 generations and 30 particles per step. The FSAE model is trained using a

greedy layer-wise training [61]. We used two hidden layers with 400 and 30 neurons

each. Adam Algorithm [101] was used for training the SAE, and we set the learning

rate as 0.001, beta one as 09 and beta two as 0.999 and trained it for 200 epochs. The

final layer of the FSAE is trained using BB-BC with 500 generations and 30 particles

per step.

Table 7-1: Comparison between D2FLS and FSAE on Categorical Datasets with Average Recall

as Fitness Functions

Data Set AI Model 1 2 3 4 5 Average Std

Santander

CTP

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24

FSAE 78.39 77.4 76.92 78.28 78.05 77.81 0.56

CLL

Identification

D2FLS 62.8 59.78 61.25 62.37 63.31 61.9 1.26

FSAE 56.19 56.33 86.94 86.61 87.28 74.67 15.03

BT Customer

Data

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7

FSAE 70.79 72.66 72.13 65.04 64.24 68.97 3.6

PD Speech
D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84

FSAE 73.13 64.85 73.73 76.1 79.85 73.53 4.94

IDA2016
D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55

FSAE 93.64 94.74 96.47 94.92 96.58 95.27 1.12

EpiSeizure
D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65

FSAE 95.32 95.13 96.34 96.51 95.87 95.83 0.54

Table 7-2: Comparison between D2FLS and FSAE on Regression Datasets with Mean Absolute

Error as the fitness function

Data Set
AI

Model
1 2 3 4 5 Average Std

Wi-Fi

Localization

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

FSAE 0.0384 0.0457 0.0658 0.0577 0.0438 0.0503 0.01

Swiss

Premium Pred

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

FSAE 0.0534 0.0767 0.0629 0.0584 0.0652 0.0633 0.0078

CT Scan

Region Pred

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

FSAE 0.0561 0.0486 0.055 0.06 0.0581 0.0556 0.0039

Predict Song

Year

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

FSAE 0.0738 0.0727 0.074 0.0775 0.0763 0.0748 0.0018

BT PWA
D2FLS 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

FSAE 0.0436 0.04 0.048 0.046 0.0455 0.0446 0.0027

182

The results of training the two models with Average Recall as the fitness function

over five training runs on the categorical datasets is tabulated in Table 7-1. The mean

and standard deviation of the five training runs is displayed in the eighth and ninth

columns of the table. Where a result is in bold, it indicates that the row contains the AI

model with the best performance for the dataset.

We can see from Table 7-1 that the FSAE performance better than the D2FLS in

five of the datasets while the D2FLS outperforms it in only one of the datasets. The

highest performance difference is in the Santander CTP and CLL Identification

datasets, where the FSAE performance the best. The FSAE also outperforms the CNN

and the SAE (hidden layers of the model used as inputs to the FSAE) in these datasets

(from Table 6-2). If we do not consider these two datasets, the performance difference

is small within 2-3 % of each other.

Similarly, the results of training the two models with Mean Absolute Error as the

fitness function over five training runs on the regression datasets is tabulated in Table

7-2. The mean and standard deviation of the five training runs is displayed in the eighth

Table 7-3 : D2FLS Pretrained using FAE vs D2FLS Pretrained using SAE on Classification

Datasets with Average Recall as the fitness function

Data Set
Training

Method
1 2 3 4 5 Average Std

Santander

CTP

D2FLS FAE 64.39 61.4 63.7 61.39 62.04 62.584 1.24

D2FLS SAE 62.93 58.91 60.18 61.71 61.53 61.05 1.38

CLL

Identification

D2FLS FAE 62.8 59.78 61.25 62.37 63.31 61.9 1.26

D2FLS SAE 62.47 62.96 62.3 62.23 57.12 61.42 2.16

BT Customer

Data

D2FLS FAE 73.53 71.82 72.63 71.49 70.83 72.061 0.7

D2FLS SAE 60.34 64.43 59.93 65.19 60.28 62.04 2.28

PD Speech
D2FLS FAE 77.64 70.17 70.3 74.5 74.51 73.425 2.84

D2FLS SAE 70.21 72.55 77.03 65.79 72.14 71.55 3.64

IDA2016
D2FLS FAE 92.07 91.94 92.56 92.73 93.5 92.559 0.55

D2FLS SAE 94.69 92.28 95.27 94.99 95.31 94.51 1.14

EpiSeizure
D2FLS FAE 90.6 92.45 91.34 90.78 91.46 91.325 0.65

D2FLS SAE 90.71 89.76 90.39 92.11 90.25 90.64 0.79

183

and ninth columns of the table. Where a result is in bold, it indicates that the row

contains the results of the AI model with the best performance for the dataset.

 Again, we see similar results in that the FSAE outperforms the D2FLS in four of

the five datasets. But the average increase in error when using the D2FLS is only about

14% which is a relatively small performance difference.

The small loss in performance between the D2FLS and FSAE is reasonable

considering that the FSAE has lower interpretability than the D2FLS and that we

generally get better performance if we use the Deep learning counterparts such as SAE

and CNN.

7.4.2 D2FLS Comparison between The Two Training Methods

In this experiment, we compare the performance of the D2FLS when it is pre-trained

as an FAE (D2FLS FAE) against a D2FLS when it is pre-trained using the hidden layers

Table 7-4: D2FLS Pretrained using FAE vs D2FLS Pretrained using SAE on Regression datasets

with MAE as the fitness function

Data Set
Training

Method
1 2 3 4 5

Averag

e
Std

Wi-Fi

Localization

D2FLS

FAE
0.106 0.116 0.1049 0.1022 0.098 0.105 0.0059

D2FLS

SAE
0.1241 0.1127 0.1073 0.1231 0.1075 0.115 0.0073

Swiss

Premium Pred

D2FLS

FAE
0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.0041

D2FLS

SAE
0.0474 0.0533 0.0503 0.058 0.0586 0.0535 0.0043

CT Scan

Region Pred

D2FLS

FAE
0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.0033

D2FLS

SAE
0.0932 0.0803 0.0906 0.096 0.0883 0.0897 0.0053

Predict Song

Year

D2FLS

FAE
0.076 0.0741 0.074 0.074 0.079 0.075 0.0022

D2FLS

SAE
0.0731 0.0746 0.0728 0.0747 0.0768 0.0744 0.0014

BT PWA

D2FLS

FAE
0.048 0.057 0.0511 0.045 0.057 0.0519 0.0047

D2FLS

SAE
0.0476 0.0523 0.0468 0.0644 0.0646 0.0551 0.0079

184

of an SAE (D2FLS SAE). The goal of this experiment is to find the best pretraining

method for the proposed D2FLS model.

We tabulate the results of the D2FLS trained using both the training methods five

times on the classification datasets using BB-BC in Table 7-3. The results of the

training runs are presented as Average Recall (equation (6.21)) in columns (3-7). The

mean and standard deviation of the five training runs is displayed in the eighth and

ninth columns of the table, respectively. Where a result is in bold (column 8), it

indicates that the row contains the D2FLS training method with the best performance

for the dataset

From Table 7-3, we can see that the D2FLS FAE outperforms the D2FLS SAE in

five of the six of the datasets. The D2FLS SAE performs better in only one dataset, but

the performance difference between the two methods is small. The biggest difference

Table 7-5: Snapshot of Rule base of the Hidden Layer of the D2FLS trained using SAE on the BT

PWA Dataset

 Antecedents Consequents

ID 1 2 3 H00 H01 H02 H03 H04

1 Mid LOANS 1 Low MSLCL2 2 High MSLCL2 3 Very High High High Low Very Low

2 Mid MSLCL1 0 Mid MISSAPP 3
Low ECONOMIC

UTILISATION 3
Very High Mid High High Very High

3
High ECONOMIC

UTILISATION 2
Mid CONTRACTOR 1 Low TRAVEL 1 Mid Low Mid High Very Low

4 Low MSLCL1 1
Low ON DAY

UTILISATION 2

Mid ON DAY

UTILISATION 1
High Very High Very Low Very High Very High

5 Mid MSLCL1 2 High TRAVEL 3 High CALC PROD 3 Low Very Low Very Low Very High Low

6 High MSLCL2 3 Mid MISSAPP 3
Low ECONOMIC

UTILISATION 0
Low Very Low

Very

High
Mid High

7 Mid MISSAPP 3 Low OT HOURS 1 Mid MSLCL2 2 Very High Very Low
Very

High
Mid Low

8 High RANK 3
High ON DAY

UTILISATION 1
Low MSLCL2 0 Very High High

Very

High
High Low

9 High OT HOURS 3 Low MSLCL2 0
High ON DAY

UTILISATION 2
Low High High Mid High

10
Mid ON DAY

UTILISATION 3
Low MISSAPP 0 Low MSLCL2 2 Very High Low High Very High High

11 Mid TRAVEL 3
Mid ECONOMIC

UTILISATION 3
Low MSLCL2 2 Mid Mid High Very High Very Low

12 High CALC PROD 0 Low TRAVEL 2 High OT HOURS 1 Mid Low Low Very High Mid

13
High ON DAY

UTILISATION 0
Mid MISSAPP 2 Low TRAVEL 2 Very Low Low Low High Very High

14 Mid RANK 1 Low MSLCL2 3 Mid TRAVEL 3 Very Low Mid High High High

15
Low ECONOMIC
UTILISATION 3

Mid RANK 2 Mid CALC PROD 3 Very Low Very Low High Low Mid

185

between the two training methods is in the BT Customer Dataset where the D2FLS

FAE outperforms the D2FLS SAE by about 10%, but the difference in performance

between the two training methods is only about 2% performance on average.

We tabulate the results of D2FLS trained using both the training methods five times

on the regression datasets using BB-BC is tabulated in Table 7-4. The results of the

training runs are presented as Mean Absolute Error (equation (6.24)) in columns (3-7).

The mean and standard deviation of the five training runs is displayed in the eighth and

ninth columns of the table, respectively. Where a result is in bold (column 8), it

indicates that the row contains the D2FLS training method with the best performance

for the dataset.

Table 7-4 shows that like the classification datasets the D2FLS FAE outperforms

the D2FLS SAE method in four of the five regression datasets. The D2FLS FAE has

only about 6% lower error rate compared to D2FLS SAE on average.

A snapshot of the rule base generated for D2FLS trained using SAE on the BT PWA

dataset is shown in Table 7-3 and Table 7-6. Table 7-3 contains a snapshot of the rules

Figure 7-3: Fuzzy Sets Generated by D2FLS SAE Training for (a) Loans 1 feature and (b) MSLCL2 2

feature of the BT PWA dataset

186

(15 out of 100 rules) of the Hidden Layer of the D2FLS; it shows that the rules are short

and comprise of three antecedents and five consequents that form the five outputs of

the hidden layer (H00, H01, H02, H03, H04). Membership functions for the first two

antecedents of the first rule in Table 7-3 are depicted in Figure 7-3 (a) and (b). Table

7-6 contains a snapshot of the rules of the output layer of the D2FLS, and the rules of

the output layers are also kept short and comprise of three antecedents and one

consequent for the output. The inputs to the output layer (H00, H01, H02, H03, H04)

of the D2FLS are synthetic variables created during the training.

Comparing the D2FLS FAE rules in Table 6-4 and Table 6-5, and the rules of the

D2FLS trained using both the methods provide similar interpretability and the small

performance difference between the two training methods means that both the training

methods are viable and can be chosen based on the user preference. As an example, the

alternative training method presented in this chapter outperformed the training method

Table 7-6: Snapshot of Rule base of the Output Layer of the D2FLS pre-trained using SAE on the

BT PWA Dataset

 Antecedents Consequent

Rule

No
1 2 3

PWA

Performance

1 High H01 High H02 Mid H03 Mid

2 Low H00 Mid H01 Low H03 Mid

3 Low H01 Mid H00 Mid H02 Low

4 Mid H02 Mid H00 High H03 Very Low

5 Low H01 Mid H03 Low H00 High

6 High H02 High H01 Mid H00 Mid

7 Mid H00 High H01 High H03 Very Low

8 High H02 Low H03 High H01 Very Low

9 High H01 Mid H02 Mid H03 Mid

10 Low H02 Mid H01 Low H00 Low

11 High H02 Low H01 High H00 Low

12 Mid H02 Low H01 Low H00 Low

13 Low H02 Mid H01 Low H00 Very Very Low

14 Mid H03 High H01 Mid H00 Mid

15 High H01 Mid H03 Mid H00 Low

187

presented in the previous chapter by 2% in the IDA 2016 dataset, the change in average

recall was from 92.5 to 94.5%. While the D2FLS FAE outperformed the D2FLS SAE

in the BT Customer dataset by about 10% in the BT Customer dataset.

The performance of the FSAE is better than the D2FLS and since the alternative

training method is an extension of the FSAE we believe there is scope for further

improvement in the performance of the D2FLS when trained using SAE.

7.4.3 Effectiveness of Pre-training on the D2FLS

In this experiment, we aim to verify the effectiveness of pretraining on the D2FLS

for the selected datasets. This raises an interesting question, why do we need to pretrain

the D2FLS? as we can train the D2FLS without any pretraining and directly train the

D2FLS as a multilayer Fuzzy Logic System.

We tabulate the results of the D2FLS FAE and a D2FLS trained without any pre-

training, trained five times on the classification datasets using BB-BC in Table 7-7.

The results of the training runs are presented as Average Recall (equation (6.21)) in

Table 7-7: Comparison of D2FLS with hidden layers pre trained using FAE against D2FLS

without pretraining on Classification Datasets with fitness function Average Recall

Data Set Pre-Training 1 2 3 4 5 Average Std

Santander

CTP

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24

No Pretraining 60.06 59.66 61.53 60.86 60.75 60.57 0.65

CLL

Identification

D2FLS 62.8 59.78 61.25 62.37 63.31 61.9 1.26

No Pretraining 59.4 59.78 61.85 61.55 61.8 60.87 1.06

BT Customer

Data

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7

No Pretraining 59.9 60.8 59.23 60.41 60.43 60.15 0.54

PD Speech
D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84

No Pretraining 71.92 68.85 70.78 71.49 64.33 69.48 2.78

IDA2016
D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55

No Pretraining 91.37 91.99 90.45 92.74 92.81 91.87 0.88

Epi Seizure
D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65

No Pretraining 88.87 87.07 87.44 90.14 87.02 88.11 1.22

188

columns (3-7). The mean and standard deviation of the five training runs is displayed

in the eighth and ninth columns of the table, respectively. Where a result is in bold

(column 8), it indicates that the row contains the D2FLS pre-training method with the

best performance for the dataset.

From Table 7-7, we can see that the D2FLS pre-trained using FAE always

outperforms the D2FLS with no pre-training in all the selected classification datasets.

The best improvement is in the BT Customer Dataset, where pretraining provides a

12% improvement in performance. In PD Speech, Epi Seizure, and the Santander CTP

datasets pre-training improves the performance by about 2-4%. In the IDA 2016

dataset, pre-training improves performance by less than 1%. While the overall

improvement in performance in the selected classification datasets is about 4% on

average.

Similarly, we tabulate the results of the D2FLS FAE and a D2FLS trained without

any pre-training, trained five times on the Regression datasets using BB-BC in Table

Table 7-8: Comparison of D2FLS with hidden layers pre trained using FAE against D2FLS

without pretraining on Regression datasets with MAE as the fitness function

Data Set Average Std

Wi-Fi

Localization

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

No

Pretraining
0.1157 0.1106 0.157 0.1563 0.2003 0.148 0.0326

Swiss

Premium

Pred

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

No

Pretraining
0.0429 0.0607 0.0538 0.0658 0.0527 0.0552 0.0078

CT Scan

Region Pred

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

No

Pretraining
0.0935 0.1014 0.0968 0.0961 0.0999 0.0976 0.0028

Predict Song

Year

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

No

Pretraining
0.0822 0.083 0.0751 0.0755 0.0747 0.0781 0.0037

BT PWA

D2FLS 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

No

Pretraining
0.0629 0.0668 0.0528 0.064 0.0455 0.0584 0.008

189

7-8. The results of the training runs are presented as MAE (equation (6.24)) in columns

(3-7). The mean and standard deviation of the five training runs is displayed in the

eighth and ninth columns of the table, respectively. Where a result is in bold (column

8), it indicates that the row contains the D2FLS pre-training method with the best

performance for the dataset

From Table 7-8, we can see that pre-training improves the performance in all the

selected regression datasets. With the most improvement seen in the Wi-Fi localization

dataset, about 40% lower error rate in the pre-trained model. The next significant

improvement is in Swiss premium prediction and BT PWA datasets with about 17%

and 12.5% lower error rate in the pre-trained model. The improvement is smaller in the

other two datasets with an overall average improvement of about 17% lower error rate.

This indicates that pre-training provides significant benefits over a simple multi-

layer fuzzy logic system.

7.5 Summary

This chapter presented the Fuzzy Stacked Autoencoder and an alternative to the

D2FLS training method we presented in the last chapter. It demonstrated that the two

training methods perform similar to each other. With the D2FLS FAE outperforming

the D2FLS SAE in classification dataset by an average of 2% and in the regression

datasets the D2FLS FAE has about 6% lower error on average. With both the methods

providing similar interpretability, the choice of the training method depends on the

dataset that is being used. As an example, the alternative training method presented in

this chapter outperformed the training method presented in the previous chapter by 2%

in the IDA 2016 dataset, the change in average recall was from 92.5 to 94.5%. While

190

the D2FLS FAE outperformed the D2FLS SAE in the BT Customer dataset by about

10%.

The chapter also shows that pretraining offers significant benefits. The chapter

shows that pretraining improves the performance of the D2FLS by 4% in classification

datasets. And pre-trained D2FLS has 17% lower error rate in regression dataset.

The next chapter discusses the proposed methods for achieving local interpretability

in the D2FLS.

191

Chapter 8. Local Interpretability Enhancement for

Deep Type-2 Fuzzy Logic Systems

The D2FLS proposed in the previous two chapters is a rule-based system and can

be considered interpretable. However, the intermediate variables connecting the

various modules or layers of the D2FLS are with only limited semantic support; that

is, they are synthetic variables. For example, consider one of the rules of the output or

final layer of a D2FLS from Table 7-6 (displayed in (8.1)).

02 00 03IF H is Mid and H is Mid and H is HighTHEN PWAPerformanceisVery Low

(8.1)

The rule itself is quite simple with only three inputs, however, given that the user

does not know what H02, H00 and H03 mean, they cannot interpret such a rule in

isolation, so the user will need to analyse the D2FLS system as a whole. The user will

have to inspect the rules of all the layers of the D2FLS to understand H02, H00 or H03.

Consequently, the rules of the D2FLS could be challenging to understand for a lay user.

Hence, there is the need to provide linguistic meaning to the intermediate variables

such as H02, H00 and H03. This is related to the idea of cointension; cointension refers

to a relation between concepts, such that two concepts are cointensive if they refer to

the same objects[117-119]. Therefore, a knowledge base will be interpretable if its

semantics are cointensive with the knowledge that a user builds in his/her mind after

reading the knowledge representation, expressed in natural language [117-119].

Hence, in this chapter, we propose a method to provide linguistic meaning to the

intermediate variables for individual predictions. We note that interpretability is a fluid

192

concept and depends on the target audience [13]. For example, machine learning

experts may be able to interpret the output based on the firing levels of the rules, but a

layman may be more comfortable with a small number of weighted features as an

explanation [40]. Hence, we also propose to create another set of explanations for each

of the input-output pairs. We designate these two explanations as rule-based

explanations and feature importance, respectively. The algorithms for creating these

explanations are for a two-layer D2FLS, but they can be easily extended for multiple

layers.

Additionally, since we use the algorithm of the model itself to generate the

explanations, these explanations are more accurate when compared to model agnostic

methods such as LIME [32] and SHAP [43] where the algorithms are independent of

the model used. Since simple algorithms are used to generate these explanations, they

are much easier to understand and verify when compared to complex algorithms used

to generate explanations for DNN such as LRP [30], Deep Lift [31] etc.

8.1 Rule-Based Explanations

As explained previously, one of the problems with D2FLS rules is that the linguistic

variables or labels of the intermediate variables that connect the various layers of the

D2FLS are synthetic variable (created using data). This results in increased complexity

in interpreting the rules of the D2FLS as the rules of all the layers must be analysed as

a whole.

One way to reduce this complexity is by naming the intermediate variables or the

outputs of each layer based on the features that contributed most to that output; these

names are termed compound inputs. This is done by finding the rule which contributed

193

the most to an output and the antecedents of this rule are used to name this variable. As

the rule contribution can change based on the input, the linguistic label for the

intermediate variables will also change based on the prediction. Hence, these

explanations are locally interpretable and might not be valid at a global level.

The contribution of the rules to the output is calculated based on the product of the

firing level and centroid of the consequent of the rule. This calculation changes based

on the type of problem, for regression datasets the rule contributions are described in

Section 8.1.1. In the case of classification datasets, the rule contributions are described

in section 8.1.2.

For example, in Figure 8-1, we depict a local explanation for a two-layer D2FLS

with the first layer having five outputs or intermediate variables designated H00, H01,

H02, H03 and H05.

The output H00 of the first layer is a compound input consisting of Low Rank 0,

Low on Day Utilisation 3 and Low MSLCL2 2 because this rule contributes the most

Figure 8-1: Rule-Based Explanation depicting the Rule contributions to the outputs of the D2FLS

layers

Figure 8-2: Rule Contributions for the Intermediate Variable H00

194

(84%) to this output or consequent. There are six other rules that contribute to this

output (depicted in Figure 8-2), but their contribution is much smaller.

Similarly, all the outputs of the first layer can be named as compound inputs, using

the contributions depicted in Figure 8-1, as follows.

• H00=Low Rank 0, Low on Day Utilisation 3 and Low MSLCL2 2

• H01=Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2

• H02=Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2

• H03=Low Rank 0, High MISSAPP 0 and Low on Day Utilisation 3

• H04=Low Rank 0, Mid Rank 2 and Low MSLCL1 2

These compound inputs are then used to find the relationship between the first and

second layers of the D2FLS. For example, in Figure 8-1, the first rule of the output

layer, which contributes 77% to the output, has three antecedents or inputs H00, H03

and H02. Which can be interpreted as compound inputs (Low Rank 0, Low on Day

Utilisation 3 and Low MSLCL2 2), (Low Rank 0, High MISSAPP 0 and Low on Day

Utilisation 3) and (Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2)

respectively.

We can use the same method for the second rule (22% contribution) which has three

antecedents H01, H02 and H00. These three inputs to the second rule are named as

follows (Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2), (Low on Day

Utilisation 3, Low MSLCL1 3 and Low Travel 2) and (Low Rank 0, Low on Day

Utilisation 3 and Low MSLCL2 2) etc.

 The rule that contributed the most to the final output can then be used to determine

the input features that contribute the most to the output. As depicted in Figure 8-1, we

195

can say that the output (PWA performance) is High because of Low Rank 0, Low on

Day Utilisation 3, Low MSLCL2 2, Low Rank 0, High MISSAPP 0, Low MSLCL1 3

and Low Travel 2.

The above example illustrates how the rule contributions can be used to provide a

simple explanation for the output based on the rules of the various layers of the D2FLS.

In the following sections, we describe the algorithm used to calculate the rule

contributions.

8.1.1 Regression Datasets

To calculate these rule contribution values for regression datasets, we use the

following equations.

 *g g

n n nR F c= (8.2)

*g g

n n nR F c= (8.3)

Where nF and nF represent the upper and lower firing levels of the nth rule and
g

nc

represents the centroid of the
thg consequent of the nth rule of the fuzzy layer.

() / 2g g g

navg n nR R R= + (8.4)

1

/ *100
n

g g g

nval navg navg

n

R R R
=

=  (8.5)

We use Equation (8.5) to calculate the rule contribution values for each of the rule

and consequent combinations for all the layers.

196

8.1.2 Classification Datasets

To calculate these rule contribution values for classification datasets, we must

modify the equations (8.2) and (8.3) for the final layer to the following.

 * *
g g

g
n nn nR F C S= (8.6)

 * *
g gg

n nn nR F C S= (8.7)

Where nF and nF represent the upper and lower firing levels of the nth rule,
g

nC and

g

nC represent the upper and lower confidence of the
thg consequent of the nth rule of the

final layer,
g

nS and
g

nS represent the upper and lower support of the
thg consequent of

the nth rule of the final layer. All other equations remain the same between regression

and classification problems.

8.2 Feature Importance Explanations

 Interpretability is a fluid concept and depends on the target audience, and, a lay user

might not be comfortable with the rule-contribution based explanations provided in the

previous section and may be more comfortable with a small number of weighted

features as an explanation [40]. Hence, in this section, we detail a method to generate

a simple explanation which shows the relationship between the input features and the

output as Feature importance scores.

Essentially, we would show how much a feature influences the output. For example,

in Figure 8-3 we see that the most important feature is Low Travel 2 (i.e., Travel 2

feature having a Low Linguistic Label) and the second most important input feature is

Low MSLCL1 3 (i.e. the feature Mean Service Level CL1(MSLCL1) 3 having a Low

197

Linguistic Label) and the third most important input feature is Low on Day Utilization

3 (i.e. the feature On Day Utilization having a Low Linguistic Label) etc.

From these feature importance score, in Figure 8-3, it becomes immediately

apparent which features are the most important to a particular output. These feature

importance scores are similar to the DNN explanation methods such as LRP [30], Deep

Lift [31] etc. (detailed in Chapter 2.1.2)

The advantage of the proposed method is that the feature importance also provides

linguistic label along with the importance score, that is, from Figure 8-3 we can easily

deduce that low travel, Low MSLCL1 3 or Low on Day Utilization 3 leads to High

PWA Performance, while the methods described in Chapter 2.1.2 only provide an

importance score for each of the relevant features, and the features must be examined

in detail to understand how changes to the input affect the output.

Figure 8-3: Feature Importance Scores

198

Another advantage is that these feature importance scores are generated using the

AI model algorithm itself, which allows the users to quickly verify the validity of the

generated score by using the algorithms described in the next two sections, if required.

The calculation of these feature importance scores changes based on the type of

problem being solved. For Regression and Classification tasks, the calculations are

described in the next two sections.

8.2.1 Regression Datasets

To calculate the feature importance scores for regression datasets, we use Algorithm

1. The idea here is to calculate the contribution of each input feature to the output by

using the rule firing levels and the membership grades of various layers of the D2FLS.

In the case of a two-layered D2FLS, this is done by finding the rule that contributes the

most to the output in the output layer. Then the contribution of the feature to each of

the outputs in the hidden layer is calculated. The max of the product of these two values

gives us the feature importance score.

The algorithm is used to calculate the feature importance score for each feature for

each of the outputs of the D2FLS, that is, in case of a single output system there will

be a single importance score for feature x, and, in case of a system with two outputs

there will be two importance scores for feature x. Once the feature importance scores

are calculated for all the features, we normalize the values between 0 and 100 for each

output and display them, as shown in Figure 8-3.

199

Algorithm 1: Simplified Explanations, our proposed algorithm for calculating the feature

importance score. This algorithm is valid for Regression problems

For g = 1 to number of consequents of the final layer

 For i=1 to number of inputs

 , 0g g

i iI I  (upper and lower feature importance scores)

 For b = 1 to number of antecedents/inputs of the final layer

max max, 0b bR R 

 For n=1 to number of rules

 If n rule contains antecedent b

 *b g

n n nR F c= (Upper firing level, centroid)

 *b g

n n nR F c= (Lower Firing Level, centroid)

max maxmax(,)b b b

nR R R=

max maxmax (,)b b b

nR R R=

 next n

 For l=1 to number of rules of hidden layer

 If l rule contains input feature i

max* * * ()i b b l

l l l aR F c R x=

max* * * ()i b b l

l l l aR F c R x=

 max (,)g g i

i i lI I R=

 max(,)g g i

i i lI I R=

 next l

 next b

 () / 2g g g

iavg i iI I I= + (feature importance score per output)

 next i

next g

Return I

8.2.2 Categorical Datasets

To calculate the feature importance scores for categorical datasets, we use

Algorithm 2. Like the previous section, the idea here is to calculate the contribution of

each input feature to the output by using the rule firing levels and the membership

grades of the input features. This is done by finding the rule whose vote contributes the

most to the category of the output in the output layer. Then like the regression

algorithm, the contribution of the feature to each of the outputs in the hidden layer is

200

calculated. The max of the product of these two values gives us the feature importance

score.

The algorithm is used to calculate the feature importance score for each feature for

each of the outputs of the D2FLS, that is, for each output of the system there will be a

and importance score for each of the features. Once the feature importance scores are

calculated for all the features, we normalize the values between 0 and 100 per output

and display them, as shown in Figure 8-3.

Algorithm 2: Simplified Explanations, our proposed algorithm for calculating the feature

importance score for Classification problems.

For g = 1 to number of consequents of the final layer

 For i=1 to number of inputs

 , 0g g

i iI I  (upper, lower feature importance scores)

 For b = 1 to number of antecedents/inputs of the final layer

max max, 0b bR R 

 For n=1 to number of rules

 If n rule contains antecedent b

 * *b g g

n n n nR F C S= (upper firing level, confidence and support)

 * *b g g

n n n nR F C S= (lower firing level, confidence and support)

max maxmax(,)b b b

nR R R=

max maxmax (,)b b b

nR R R=

 next n

 For l=1 to number of rules of hidden layer

 If l rule contains input feature i

max* * * ()i b b l

l l l aR F c R x=

max* * * ()i b b l

l l l aR F c R x=

 max (,)g g i

i i lI I R=

 max(,)g g i

i i lI I R=

 next l

 next b

 () / 2g g g

iavg i iI I I= + (feature importance score per output)

 next i

next g

Return I

201

8.3 Survey

In the previous sections, we examined two methods of extracting local explanations

from the D2FLS described in Chapter 6. In this section, we evaluate these explanations.

To evaluate the explainability of an AI system, we must consider the audience that will

consume or examine these explanations. Hence, in this section, we conduct a survey

with participants divided into three different sets, each representing a different type of

audience.

• AI Experts: The first set of participants is experts with experience in researching

AI algorithms. So, these participants are able to understand the intricacies of

how the underlying AI algorithms work.

• Domain Experts: The second set of participants are experts in one or more of

the fields from which the datasets used to build the AI models are selected. They

are experts who have experience and examining and taking decisions based on

the data used to build the AI models. So, these are the audience that is most

likely to use these explanations.

• Lay Users: The third set of participants are individuals with no experience in

the AI algorithms or the datasets.

We surveyed six individuals or subjects who are AI experts and two subjects who

are Domain experts and two more subjects who are lay users.

Figure 8-4: SHAP explanation for Sparse Stacked Autoencoder

202

We used SHAP [43] (depicted in Figure 8-4) described in Chapter 2.3.3 and Lime

[40] (depicted in Figure 8-5) described in Chapter 2.3.1, for generating the explanations

for the SAE. Then we use the methods described in this chapter to generate the

explanations for the D2FLS (depicted in Figure 8-1, Figure 8-2 and Figure 8-3) and

IT2FLS.

We generated the explanations for a small set of data using the 3 AI models, and

then we asked the participants of the survey to examine the explanations provided by

the four XAI methods. And then rank them based on how good they are on a scale of 1

to 10 (10 being the best and 1 being the worst).

Figure 8-5: LIME explanation for Sparse Stacked Autoencoder

Figure 8-6: Survey Plot

203

The results of the survey were tabulated in Table 8-1, and the average of these

responses are plotted in Figure 8-6. We can see from the results that the explanations

provided by the D2FLS are comparable (within 2%) to the explanations provided by a

highly interpretable AI model, IT2FLS. At the same time, the performance of the

D2FLS model is about 5% better than the IT2FLS in categorical datasets (From Table

6-6) and 15% lower error than the IT2FLS models in regression datasets (From Table

6-7). And the explanations provided by the D2FLS are better than the explanations

provided by popular model agnostic methods such as LIME and SHAP, 20% and 17%

respectively. At the same time, the performance of D2FLS model is only about 4-5%

lower than the SAE model in categorical datasets (From Table 6-1) and 40% higher

error in the regression datasets (From Table 6-2).

This shows that the D2FLS model, in conjunction with the explanation’s methods

detailed in this chapter, provides a significant improvement over DNN models in terms

of interpretability while showing only a small loss in performance.

Table 8-1: Survey Results

 Shap Tool Lime Tool D2FLS IT2FLS

AI Expert 8 8 9.5 9

AI Expert 8 6 7 9

AI Expert 7 6 7 9

AI Expert 6 7 8 8

AI Expert 3 6 10 10

AI Expert 8 9 10 10

Domain Expert 4 4 5 3

Domain Expert 8 9 10 9

Lay User 7 7 7 8

Lay User 4 4 6 6

Average 6.3 6.6 7.95 8.1

Standard dev. 1.9465 1.7764 1.8326 2.1318

204

8.4 Summary

This chapter introduced two methods of extracting locally interpretable explanations

from the D2FLS to decrease the complexity of interpreting the rules of the D2FLS.

This is to ensure that the D2FLS explanations are accessible to a broader audience. It

also discusses the need to tailor the explanations based on the audience who are likely

to examine these explanations and how this is accomplished using the two methods.

This chapter also evaluated the explanations provided by the D2FLS against popular

Deep learning XAI tools LIME, SHAP to interpret SAE and against explanations

provided by an IT2FLS. This was done by conducting a survey, in which three different

sets of the audience were asked to examine the explanations provided by these methods

and rank them according to how easy they are to understand.

The results of this survey show that the explanations provided by the D2FLS are

comparable to the explanations provided by the IT2FLS (with only about 2% lower

interpretability) while the performance of the D2FLS is 5% in categorical datasets and

15% lower error in regression datasets. It also provides explanations which are better

than the explanations provided by the tools LIME and SHAP, about 20% and 17%

better interpretability, respectively. At the same time, the performance of D2FLS model

is only about 4-5% lower than the SAE model in categorical datasets and 40% higher

error in the regression datasets. This is a small loss in performance compared for

significantly higher interpretability making D2FLS a suitable replacement for the other

AI models in applications where interpretability is paramount.

In the next chapter, we extend the explanation extraction methods to provide Global

Interpretability to the D2FLS.

205

Chapter 9. Enhanced Deep Type-2 Fuzzy Logic System

for Global Interpretability

In regulated applications such as financial, medical, justice etc., where the reliability

of the model must be guaranteed it might be necessary to build and use globally

interpretable AI models. An AI model is Globally Interpretable if the user can

comprehend the entire model [3]. To explain the global model output, you need to

understand the trained model, knowledge of the algorithm and the data. This level of

interpretability is about understanding how the model makes decisions, based on a

holistic view of its features and each of the learned components such as rules,

membership functions etc. Which features are essential and what kind of interactions

between them take place? Global model interpretability helps to understand the

distribution of your target outcome based on the features.

Global interpretability can, of course, be achieved by using interpretable models

such as decision trees, Bayesian rules, fuzzy logic, etc [12]. However, these models can

be less accurate when compared to the black box models, and they can also become

opaque for high dimensional inputs [3, 14].

The D2FLS proposed in the previous two chapters is a rule-based system and can

be considered globally interpretable. But, as discussed in Chapter 8, the intermediate

variables connecting the various modules or layers of the D2FLS are without any

semantic support; that is, they are synthetic variables (variables created using the data).

This means that the rules of a single layer of the D2FLS cannot be examined in

isolation, and the rules of all the layers of the D2FLS system have to be examined

together to gain an understanding of the model at the global level.

206

For example, consider one of the rules in of the output or final layer of a D2FLS

from Table 7-6 displayed in (9.1), where the output PWA performance is High.

IF H01 is Low and H03 is Mid and H00 is low

THEN PWA performance is High
 (9.1)

IF MSLCL2 3 is High and MISSAPP 3 is Mid and Eco Util 0is Low

THEN H00 is Low and H01 is Very Low and H02 is Very High

 and H03 is Mid and H04 is High

(9.2)

If we examine the rules of the hidden layer from Table 7-5, we see that the rule

which most closely matches the linguistic terms of the antecedents of the rule in (9.1)

is the rule displayed in (9.2). So, from these two rules, we can say that when MSLCL2

3 is High, and MISSAPP 3 is Mid, and ECONOMIC UTILISATION 0 is Low then the

PWA performance is High.

All the rules of the D2FLS in all its layers have to be examined to check for matching

linguistic terms to gain a global understanding of the D2FLS. This process can be a

time consuming and difficult for a lay user. Even if the user is able to analyse the rules,

they might not be able to remember all the complex interactions within the D2FLS

model well enough to be able to predict the behaviour of the model in all circumstances.

Such problems are encountered in a lot of algorithms which are Globally

interpretable when there are many features in the input. This means that global

interpretability is challenging to achieve in practice for inputs with many features. This

has led to a decline in research on globally interpretable models and a focus on local

interpretability [12]. A new set of methods have been proposed to gain global insight

into models by examining multiple instances of local explanations. One such method

is SP-LIME [40] where the input features which explain many different instances are

207

scored higher and based on these scores instances which are not redundant, i.e., which

share fewer features are picked and shown to the user. This method is described as

Local Interpretability for a Group of Predictions [32].

Hence, in this chapter, we propose to extract simple interpretable explanations at the

modular level to provide a holistic assessment of the D2FLS model, i.e., provide a

qualitative understanding of the relationship between the input features and the output

for the model at a modular level. The module, in this case, is determined by using the

linguistic terms of the antecedent or consequent MFs of the inputs and the outputs of

the D2FLS model which are then used to create a set of input-output pairs. We propose

to extend the two local explanations methods for D2FLS described in Chapter 8 by

calculating the average rule contribution and average feature importance score for the

input-output pairs of a module. The users of these models can then use the linguistic

labels to generate the explanations at a modular level and use these explanations to

make an informed decision on the feasibility of the model.

Another problem we encounter while trying to analyse the rules of the D2FLS is

that the linguistic terms of outputs of one layer and the linguistic terms of the inputs of

the next layer might not match. The solution to this is to examine the membership

functions that define these linguistic terms. But this is another layer of complexity for

a lay user to analyse. Hence, we propose a method to enhance the D2FLS to simplify

the process of analysing the rules of the D2FLS. We do this by constraining the D2FLS

during training to use the same membership functions for the consequents of a hidden

FLS in the D2FLS and the antecedents of subsequent FLS.

208

9.1 Global Interpretability at Modular Level

9.1.1 Modular Rule-Based Explanation

The Modular Rule-Based Explanation propose (depicted in Figure 9-1) is an

extension of the Rule-Based explanation discussed in Section 8.1. As explained

previously, to gain a global understanding of the D2FLS, all its rules across various

layers have to be examined. This process can be time-consuming and difficult for a lay

user. Even if the user can analyse the rule, they might not be able to remember all the

complex interactions within the D2FLS model well enough to be able to predict the

behaviour of the model in all circumstances.

One way to reduce this complexity is by extracting simple rule-based explanations

at the modular level. The module, in this case, is determined by using the linguistic

labels of the antecedent or consequent MFs of the inputs and the outputs of the model.

For example, for a categorical model that does binary classification as depicted in

Figure 9-1, there could be two modules based on the output categories—one positive

for broadband faults and another negative for when the output is not a broadband fault.

To calculate the rule that contributes the most to a module, a set of input-output pairs

is selected based on the linguistic variable of the input and output membership

functions. And the rule contribution is calculated for each rule for all the input-output

Figure 9-1: Rule-Based Explanation

209

pairs, and the average of these values is calculated for each rule and consequent using

(9.6).

For example, in Figure 9-1, we generated Modular Detailed Explanations for all the

input-output pairs where the linguistic term of the output is Negative. And we can see

that the output H00 of the first layer is named Low ILU HH actual, Low NPS

Interaction Sat Score, Low ILU HH num of residents because this rule contributes the

most (53%) to this output, there are six other rules that contribute to this output

(depicted in Figure 9-2), but their contributions are much smaller.

We can then use these compound inputs to find out the relationship between the

input features and the output. For example, in Figure 9-1, the rule which contributes

28% to the output is composed of 3 compound inputs (Low ILU HH Actual, Low NPS

Interaction Sat Score, Low ILU HH Resident Num), (Low NPS Interaction Sat Score,

Low ILU HH Actual, Low Calls P4) and (Low ILU HH Actual, Low NPS Interaction

Sat Score, Low ILU HH Resident Num).

Figure 9-2: Rule-Based Explanation for one hidden output

Figure 9-3: Rule Base Explanation for ILU HH Actual is High module

210

The above example illustrates how we can use a set of local interpretable

explanations to find out which inputs contribute to the output of a module. In this case,

the output is Negative because input feature ILU HH Actual is Low, ILU HH Resident

Num is Low, NPS Interaction Sat Score is Low and Calls P4 is Low.

We could examine this further by restricting the input feature ILU HH actual to

High. The rule-based explanation for this module is depicted in Figure 9-3. From this

explanation, we can see that when ILU HH actual is high, then the output is generally

“Positive” which confirms the idea that Low ILU HH Actual leads to an output of

“Negative” in this D2FLS model.

The above example illustrates how the average rule contributions can be used to

provide a simple rule-based explanation for the output of a module based on the rules

of the various layers of the D2FLS. In the following sections, we describe the algorithm

used to calculate the average rule contributions

9.1.1.1 Regression Datasets

For regression datasets, we calculate the rule contributions by using the below

equations

0

* /
j

n

avg n n

k

R F c j
=

= (9.3)

0

* /
j

n

avg n n

k

R F c j
=

= (9.4)

Where nF and nF represent the upper and lower firing levels of the thn rule and nc

represents the consequent of the thn rule. j represents the total number of inputs

selected.

211

We calculate the average rule firing strength across all the inputs in the dataset for

both the upper and the lower membership functions using the below equations.

() / 2n n n

avg avg avgR R R= + (9.5)

1

/ *100
n

g n n

nval avg avg

n

R R R
=

=  (9.6)

9.1.1.2 Classification Datasets

For classification problem we modify equations (9.3) and (9.4) as follows.

0

** /
j

n

av n ng n

k

R F C jS
=

= (9.7)

0

** /
j

n

av n ng n

k

R F C jS
=

= (9.8)

Where nF and nF represent the upper and lower firing levels of the nth rule,
g

nC and

g

nC represent the upper and lower confidence of the
thg consequent of the nth rule of the

final layer,
g

nS and
g

nS represent the upper and lower support of the
thg consequent of

the nth rule of the final layer. All other equations remain the same between regression

and classification problems.

9.1.2 Modular Feature Importance Explanations

In this section, we propose to extend the Feature Importance explanations provided

by the D2FLS from section 8.2. Similar to the Feature Importance explanations, we

propose to show the relationship between the inputs and the outputs. But in this case,

the inputs are a set of input-output data pairs selected based on a set of filter criteria

that can be selected by the user. These filter criteria are linguistic labels of the input

membership functions or the output membership functions. Essentially, we are trying

212

to find the features that contribute to a module of the model and assign importance to

these features. These modules are determined using the linguistic labels of the input

and output membership functions.

For example, in Figure 9-4, we generated Modular Feature Importance Explanations

for input-output pairs where the linguistic label of the output is positive. We see that

the model is accurate about 67% of the time and Number of Visits is High in 77% of

the inputs, Downloads is Medium in 99% of the inputs, and these two inputs are the

most important features. Similarly, in Figure 9-5, we generated the explanations for

input-output pairs where the linguistic label of the output is negative. We see that the

model is accurate 73% of the time, and ILU HH actual is the most important feature.

When we compare the two explanations in Figure 9-4 and Figure 9-5, we can see

Number of Visits is high in 77% of the inputs when the output is positive, and it is low

in 68% of the inputs when the output is negative. This indicates that the number of

visits is a vital input feature and that a high number of visits indicates that the output is

likely to be positive (We are trying to determine if there is a broadband fault).

Figure 9-4: Modular Simple Explanation for Positive Outputs

213

The above example illustrates how we can use the modular feature importance score

to understand which inputs contribute to the output at the modular level.

To calculate these values, we use the algorithms in section 8.2 to calculate the
g

iI

and
g

iI values for each of the input features. Once we get these values, we use the below

equations to calculate the average upper and lower importance score.

0

/g

iavg i

j
gI I j= (9.9)

0

/
j

g

iavg i

gI I j= (9.10)

In the final step, we calculate the final importance score for the module for each of

the features by taking the average of the upper and lower importance score using the

below equation.

() / 2i i i

avg avg avgI I I= + (9.11)

After calculating the
i

avgI value for all the features, we normalize the values and display

them, as shown in Figure 9-4.

Figure 9-5: Modular Simple Explanation for Negative Outputs

214

To calculate the feature linguistic label values, we use the below equations

1

()
j

k k

i iP x= (9.12)

1

()
j

k k

i iP x= (9.13)

Where, ()k

i x and ()k

i x are the upper and lower membership function for the

linguistic label k of the thi input feature. j is the number of input-output pairs. Finally,

we use the below equation to calculate the percentage value.

() / 2

*100
k k

k i i
i

P P
P

j

+
= (9.14)

9.2 Enhanced Deep Type-2 Fuzzy Logic System

As discussed earlier, one of the problems we encounter while trying to analyse the

rules of the D2FLS is that the linguistic terms of outputs of one layer and the linguistic

terms of the inputs of the next layer might not match. The solution to this is to examine

the membership functions that define these linguistic terms. But this is another layer of

complexity for a lay user to analyse.

Figure 9-6: Enhanced Deep Type-2 Fuzzy Logic System. The Dotted Rectangles indicate the two

FLSs that are constrained to use the same Linguistic Labels for the Consequents as the Antecedents of

subsequent FLS

215

Hence, in this section, we propose to enhance the D2FLS (as depicted in Figure 9-6)

by constraining the D2FLS during training to use the same linguistic labels for the

consequents of a hidden FLS in the D2FLS and the antecedents of subsequent FLS.

There are several advantages to this system.

• It reduces the number of parameters that need to be trained.

• It improves the readability of the rules of the various layers of the D2FLS.

The disadvantage of such a system is that it reduces the degree of freedom with

likely consequences to the performance of the model.

To achieve this, we modify the training methods of the D2FLS as follows. We still

use the two-stage layer-wise training method proposed in Section 6.2 with the

following modifications.

9.2.1 Hidden layer training

In the hidden layer training, we still use the same three-step training with the

following modifications to the representation of the FAE in the three steps.

9.2.1.1 Optimize Type 1 FAE

In the first step, we still train the Membership functions and rules of the two FLS

that comprise the FAE as a Type-1 FLSs using the same procedure that is described in

section 6.2.2.1. But the encoder part of the FAE is modified as follows.

1 1

1 1 1,.., , .., , ,..,n n n n n

e i i i k lN M M M M R R− −

+ += (9.15)

Where
1e

iM −
 represent the antecedent MFs which are the consequent MFs of the

encoder of the preceding FAE. And the FAE representation is modified as follows

216

1, ,..,n d d

n e mE N R R= (9.16)

Where
d

mR represents the rules of the decoder. We only train the rules of the decoder

as we add a constraint to share the linguistic variables between the encoder and decoder.

Note that we do not train the antecedent MFs, if there are any preceding hidden

layers, as they are the same as the consequent MFs of the preceding hidden layer.

9.2.1.2 Transform T1MFs to IT2MFs

In the second step, we still train the FOU of the membership functions of the

antecedents and the consequents using an optimization algorithm. And the FAE

representation changes as follows.

1 1

1 1 12 ,.., 2 , 2 .., 2 ,..,,n n n n n

e i i i k lT T T T T R R− −

+ += (9.17)

Where
12n

iT −
 represents the IT2 MFs of the thi input of FAE, which is shared with

the thi consequent of the 1n− FAE.

 1, ,..,2 n d d

n e mT RE R= (9.18)

Where
n

eT represents the parameters of the encoder of the thn layer. Only the MFs

and FOUs are optimized in this step, while the rules of the FAE are not modified.

Note that we do not train the antecedent MFs and FOUs, if there is a preceding

hidden layer, in this step as they have been trained during the training of the preceding

hidden layer.

217

9.2.1.3 Optimizing the Rule Base of the IT2 FAE

In the third step, there are no changes to the representation of the FAE in this step.

We retrain the rules of the IT2 FAE using the same procedure described in section

6.2.2.3.

9.2.2 Optimization Method for the Final Layer

Similar to the method described in Section 6.2.3, to train the full D2FLS, we start

by using the encoders of the FAE systems trained in the previous phase. We add another

FLS that will act as the final output layer of the FLS. We use an optimization algorithm

to retrain all the layers and like the optimization method used for training the FAE

depicted in Figure 6-10, i.e., we train it in 3 steps. In this part of the training process,

we use supervised training.

9.2.2.1 Optimize the Type 1 D2FLS

In this step, we train the final layer as a Type-1 FLS while at the same time retrain

the MFs and rules of the encoders using an optimization algorithm. The MFs and rules

of the two FLS are encoded in the following format.

1

1 1,.., , ,.., , ,..,n f f f f

all e e o o p nE N N M M R R+ += (9.19)

Where
n

eN represents the membership functions, and Rules of the n encoders

created using (9.15),
f

o pM + represents the membership functions for the p consequents

of the final layer and
f

nR represents the n rules of the final layer. For the o inputs of the

final layer, we use the consequent MFs of the preceding hidden layer.

218

9.2.2.2 Transform the T1MFs of the D2FLS into IT2MFs

In this step, we transform the type-1 MFs of the final layer into interval type-2 MFs

by adding a FOU to each of the fuzzy sets. This is similar to the way we added the

FOUs while training the FAEs, and it is depicted in Figure 6-7. We also retrain the

FOUs of the encoder created during the training of the FAEs. This encoded in the

following format.

1

1 1,.., , 2 ,.., 2 , ,..,n f f f f

f e e o o p nT T T T T R R+ += (9.20)

Where
n

eT represents the IT2 representation of the n encoders from (9.17) and 2 f

o pT +

represents IT2 MFs for the p consequents of the final layer which are built using

(6.13), (6.16) or (6.19) depending on the type of MF used. For the o inputs of the final

layer, we use the consequent MFs of the preceding hidden layer

9.2.2.3 Optimizing the rule base for the D2FLS

In the final step, we retrain the rules of the encoder and final layer using the BB-BC

algorithm. The parameters for this step are encoded in the following format to create

the candidate solutions.

1 1

1 1,..., ,.., , ,...,e e en f f

all l l nRL R R R R R= (9.21)

Where
e

lR and
f

nR represent the l rules of the encoder and n rules of the final layer,

respectively.

9.2.3 Extracting rules

To extract rules from the Enhanced D2FLS, we use the fact that the linguistic

variables of the inputs of a layer of the D2FLS are constrained to use the linguistic

219

variables of the preceding layer. This means that the rules of the two layers can be

combined by replacing each the linguistic variables of the antecedents of a layer of the

D2FLS with the antecedents of the rules of the preceding layer with a consequent that

matches the linguistic variable.

This can be explained more clearly using an example, in Table 9-3 and Table 9-4,

we have the rules of the hidden and final layer of a two-layer D2FLS system. The

hidden layer, in this case, has five outputs or consequents and the linguistic labels of

the consequents of the hidden layer and the antecedent of the final layer are the same.

In this case, for the first rule in Table 9-4, the first antecedent of the rule High H03

represents the fourth input of the final layer with the linguistic label high. Since the

linguistic label is shared with the consequents of the hidden layer, we can replace the

High H03 with the compound input created from the rules that have a High consequent

for the fourth output or consequent of the hidden layer. In this case, there are seven

rules (fourth to seventh, eleventh, twelfth and fourteenth rules) that have the High

consequent for the fourth output. We can choose the 4th rule in Table 9-3 to create the

compound input.

 () 03 2 0, 3, 0High H Mid MSLCL High CALC PROD Low RANK= (9.22)

Similarly, for the second antecedent, Low H02, we can replace it with the compound

inputs created from the rules that have Low linguistic label for the third output of the

hidden layer. In this case, there are three rules (second, third and ninth rules from Table

9-3).

 02 (Low CONT 2, High MSLCL1 1, Low MSLCL2 3)LowH = (9.23)

220

In a similar fashion for the third antecedent, Mid H01, we can replace it with the

compound inputs created from 12th and 13th rules of the hidden layer.

 01 (Mid MISSAPP 0,Low OT HOURS 3,High RANK 0)Mid H = (9.24)

When we combine the three together we can rewrite the first rule of the final layer

as IF (Mid MSLCL2 0, High CALC PROD 3, Low RANK 0) and (Low CONT 2, High

MSLCL1 1, Low MSLCL2 3) and (Mid MISSAPP 0, Low OT HOURS 3, High RANK

0) THEN y is Very High.

Similarly, we can use the same method to rewrite all the rules of the final layer.

9.3 Experiments and Results

9.3.1 Comparison between a D2FLS pre-trained as an FAE vs Enhanced D2FLS

pre-trained as an FAE

In this experiment, we compare the performance of the Enhanced D2FLS with the

D2FLS pre-trained as an FAE. The goal of this experiment is to find the loss in

performance of the Enhanced D2FLS due to the additional constraints that were added.

Table 9-1: Comparison of the D2FLS with the Enhanced D2FLS on Categorical Datasets with

Average Recall as the fitness function

Data Set Model 1 2 3 4 5 Average Std

Santander

CTP

D2FLS FAE 64.39 61.4 63.7 61.39 62.04 62.584 1.24

Enhanced

D2FLS FAE
60.6 59.32 58.03 59.42 60.12 59.5 0.87

BT Customer

Data

D2FLS FAE 73.53 71.82 72.63 71.49 70.83 72.061 0.7

Enhanced

D2FLS FAE
60.16 63.23 62.95 60 60.6 61.39 1.41

PD Speech

D2FLS FAE 77.64 70.17 70.3 74.5 74.51 73.425 2.84

Enhanced

D2FLS FAE
64.16 67.5 75.94 70.1 73.8 70.3 4.23

IDA2016

D2FLS FAE 92.07 91.94 92.56 92.73 93.5 92.559 0.55

Enhanced

D2FLS FAE
89.89 94.04 91.37 92.96 90.51 91.75 1.54

Epi Seizure

D2FLS FAE 90.6 92.45 91.34 90.78 91.46 91.325 0.65

Enhanced

D2FLS FAE
91.48 90.59 89.65 91.16 90.24 90.63 0.65

221

 We tabulate the results of the D2FLS FAE, and Enhanced D2FLS FAE trained five

times on the classification datasets using BB-BC in Table 9-1. The results of the

training runs are presented as Average Recall (equation (6.21)) in columns (3-7). The

mean and standard deviation of the five training runs is displayed in the eighth and

ninth columns of the table, respectively. Where a result is in bold (column 8), it

indicates that the row contains the AI Model with the best performance for the dataset

From Table 9-1, we can see that the D2FLS performs better than the Enhanced

D2FLS with about 3.6% higher performance on average in the classification datasets.

With the Enhanced D2FLS performing the worst in the BT Customer Data dataset with

about 10% lower performance. If we ignore the performance in the BT Customer Data

Table 9-2: Comparison of the D2FLS with Enhanced D2FLS on the Regression dataset with Mean

average error as the fitness function

Data Set Model 1 2 3 4 5 Average Std

Wi-Fi

Localization

D2FLS

FAE
0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

Enhanced

D2FLS

FAE

0.1166 0.1054 0.1315 0.1167 0.1063 0.1153 0.0094

Swiss

Premium

Pred

D2FLS

FAE
0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

Enhanced

D2FLS

FAE

0.0709 0.0641 0.0601 0.0469 0.0552 0.0594 0.0081

CT Scan

Region Pred

D2FLS

FAE
0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

Enhanced

D2FLS

FAE

0.1105 0.1039 0.0949 0.0938 0.0951 0.0997 0.0065

Predict Song

Year

D2FLS

FAE
0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

Enhanced

D2FLS

FAE

0.0785 0.0822 0.1038 0.0804 0.0781 0.0846 0.0097

BT PWA

D2FLS

FAE
0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

Enhanced

D2FLS

FAE

0.0554 0.0541 0.0452 0.0589 0.0558 0.0539 0.0046

222

dataset, then the average performance loss when using the Enhanced D2FLS is only

about 2%.

We tabulate the results of the D2FLS FAE, and Enhanced D2FLS FAE trained five

times on the regression datasets using BB-BC is tabulated in Table 9-2. The results of

the training runs are presented as Mean Absolute Error (equation (6.24)) in columns

(3-7). The mean and standard deviation of the five training runs is displayed in the

eighth and ninth columns of the table, respectively. Where a result is in bold (column

8), it indicates that the row contains the D2FLS training method with the best

performance for the dataset

From Table 9-2, we can see that the D2FLS performs better than the Enhanced

D2FLS in all the datasets with about 13% lower error on average across the regression

datasets.

Table 9-3: Rules of the Hidden Layer of a D2FLS with five outputs

 Antecedents Consequents

ID 1 2 3 H00 H01 H02 H03 H04

1 High MSLCL2 0 Low MSLCL1 3 Low TRAVEL 0 High High High Low High

2 Low CONT 2 High MSLCL1 1 Low MSLCL2 3 High High Low Low Low

3 Low TRAVEL 1 Low OT HOURS 3 High MSLCL1 0 High High Low Low High

4 Mid MSLCL2 0 High CALC PROD 3 Low RANK 0 Mid Low High High Low

5 High CONT 2 Mid OT HOURS 3 Low RANK 0 High High High High Low

6 High LOANS 2 High RANK 3 High ECO UTIL 0 High High High High Mid

7 Low LOANS 0 High RANK 0 High MSLCL1 0 High Low High High Low

8 High MISSAPP 0 Low ECO UTIL 1 High ECO UTIL 3 High High Mid Mid Low

9 Low ECO UTIL 3 Low CONTRACTOR 3 Low OT HOURS 3 High Low Low Low High

10 Low CALC PROD 0 Low OT HOURS 3 Low RANK 0 Mid High High Low Mid

11
Mid OT HOURS 0 High LOANS 1

High ON DAY UTIL
3

Low Low High High Mid

12 Mid MISSAPP 0 Low OT HOURS 3 High RANK 0 Mid Mid Mid High High

13 High MSLCL1 0 High OT HOURS 3 Low ECO UTIL 3 Low Mid High Low Low

14
High MISSAPP 0 High MSLCL2 0

Mid ON DAY UTIL

3
Mid Low High High High

15 High MSLCL1 3 Low RANK 0 Low TRAVEL 1 Mid Low High Low High

223

A snapshot of the rule base generated for Enhanced D2FLS trained using FAE on

the BT PWA dataset is shown in Table 9-3 and Table 9-4. Table 9-3 contains a snapshot

of the rules (15 out of 100 rules) of the Hidden Layer of the Enhanced D2FLS.

Membership functions for the first two of the antecedents of the seventh rule in Table

9-4 are depicted in Figure 9-7 (a) and (b). Table 9-4 contains a snapshot of the rules of

the output layer of the D2FLS.

If we observe the seventh rule in Table 9-3 and compare the consequents of this rule

with the antecedents of the seventh rule in Table 9-4. We can see that the linguistic

terms of the three antecedents, High H00, Low H01and High H02, match the linguistic

terms of the consequents. From this example, we can observe that when LOANS 0 is

Low and RANK 0 is High and MSLCL1 0 is High, the output of the Enhanced D2FLS

(PWA performance) will be High. To come to this conclusion, we only needed to

observe the rules. If we do the same exercise for the rules of the D2FLS FAE in Table

6-4 and Table 6-5. We need to do an additional check to make sure that the membership

functions of the linguistic terms in these tables are similar.

Figure 9-7: Fuzzy Sets Generated by Enhanced D2FLS FAE Training for (a) Loans 0 feature and

(b) Rank 0 feature of the BT PWA dataset

224

From these observations, we can see that the improved interpretability provided by

the Enhanced D2FLS comes at the cost of about 3% loss in performance in the

Categorical datasets and about 13 % higher error in regression dataset when compared

to the D2FLS. The Enhanced D2FLS could be an option for situations in which the

global interpretability of the Enhanced D2FLS is very important. And the Global

Interpretability at the modular level provided by the D2FLS is insufficient.

9.3.2 Comparison between a D2FLS pre-trained as FAE and Enhanced D2FLS

pre-trained using SAE

In this experiment, we compare the performance of the Enhanced D2FLS trained

using SAE with the D2FLS pre-trained as an FAE. The goal of this experiment is to

find if using SAE to pre-train the Enhanced D2FLS allows us to close the performance

gap between the two models.

Table 9-4: Rules of the Final Layer of a D2FLS

 Antecedents Consequent

Rule

No
1 2 3 0

1 High H03 Low H02 Mid H01 Very High

2 Mid H00 Mid H01 High H02 Mid

3 Low H00 Low H03 High H02 Very Low

4 Low H03 Mid H00 Mid H02 High

5 Mid H03 High H02 Low H00 Very High

6 Mid H03 High H02 High H00 High

7 High H02 High H00 Low H01 High

8 High H00 High H01 Low H03 Very High

9 Low H03 High H00 Mid H01 Low

10 High H03 Low H01 High H02 Very High

11 Low H00 Low H01 Low H02 Very High

12 High H00 Mid H02 High H03 Very High

13 High H03 High H02 Low H01 Very Low

14 Mid H01 Low H02 Low H00 Very Low

15 Low H00 Low H01 High H02 Very High

225

 We tabulate the results of the D2FLS FAE, and Enhanced D2FLS SAE trained five

times on the classification datasets using BB-BC in Table 9-5. The results of the

training runs are presented as Average Recall (equation (6.21)) in columns (3-7). The

mean and standard deviation of the five training runs is displayed in the eighth and

ninth columns of the table, respectively. Where a result is in bold (column 8), it

indicates that the row contains the AI Model with the best performance for the dataset

From Table 9-5, we can see that the D2FLS performs better than the Enhanced

D2FLS with about 2.5% higher performance on average in the classification datasets.

With the Enhanced D2FLS performing the worst in the BT Customer Data dataset with

about 10% lower performance. If we ignore the performance in the BT Customer Data

dataset, then the average performance loss when using the Enhanced D2FLS is only

about 0.5%. This shows that for Categorical datasets, the Enhanced D2FLS provides

an alternative that performance as well as the D2FLS with slightly improved

interpretability.

Table 9-5: Comparison of the D2FLS pre-trained using FAE with the Enhanced D2FLS pre-trained

using SAE on Categorical Datasets with Average Recall as the fitness function

Data Set Model 1 2 3 4 5 Average Std

Santander

CTP

D2FLS FAE 64.39 61.4 63.7 61.39 62.04 62.584 1.24

Enhanced

D2FLS FAE
60.93 57.92 60.51 60.35 63.62 60.67 1.82

BT Customer

Data

D2FLS FAE 73.53 71.82 72.63 71.49 70.83 72.061 0.7

Enhanced

D2FLS FAE
61.29 62.01 61.46 61.39 60.27 61.28 0.36

PD Speech

D2FLS FAE 77.64 70.17 70.3 74.5 74.51 73.425 2.84

Enhanced

D2FLS FAE
74.61 77.29 70.46 71.11 68.14 72.32 3.24

IDA2016

D2FLS FAE 92.07 91.94 92.56 92.73 93.5 92.559 0.55

Enhanced

D2FLS FAE
91.64 94.18 94.65 93.44 93.28 93.44 1.02

Epi Seizure

D2FLS FAE 90.6 92.45 91.34 90.78 91.46 91.325 0.65

Enhanced

D2FLS FAE
91.23 90.96 91.83 91.01 91.48 91.3 0.32

226

We tabulate the results of the D2FLS FAE, and Enhanced D2FLS SAE trained five

times on the regression datasets using BB-BC is tabulated in Table 9-6. The results of

the training runs are presented as Mean Absolute Error (equation (6.24)) in columns

(3-7). The mean and standard deviation of the five training runs is displayed in the

eighth and ninth columns of the table, respectively. Where a result is in bold (column

8), it indicates that the row contains the AI Model with the best performance for the

dataset

From Table 9-6, we can see that the D2FLS performs better than the Enhanced

D2FLS with about 16% lower error on average in the regression datasets. With the

Enhanced D2FLS performing the worst in the Wi-Fi Localisation dataset with about

28% higher error. If we ignore the performance in this dataset, then the D2FLS has

about 12% lower error when compared to the Enhanced D2FLS.

From these observations, we can see that in categorical datasets at least the

Enhanced D2FLS trained using SAE might be a viable alternative to the D2FLS FAE

Table 9-6: Comparison of the D2FLS FAE with Enhanced D2FLS SAE on the Regression dataset

with Mean average error as the fitness function

Data Set Model 1 2 3 4 5 Average Std

Wi-Fi

Localization

D2FLS FAE 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897

Enhanced

D2FLS SAE
0.1538 0.1278 0.1373 0.1199 0.137 0.1352 0.0114

Swiss

Premium

Pred

D2FLS FAE 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103

Enhanced

D2FLS SAE
0.0564 0.0501 0.056 0.0555 0.0524 0.0541 0.0025

CT Scan

Region Pred

D2FLS FAE 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337

Enhanced

D2FLS SAE
0.1009 0.0944 0.0865 0.1071 0.0875 0.0953 0.0079

Predict

Song Year

D2FLS FAE 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247

Enhanced

D2FLS SAE
0.0785 0.0822 0.1038 0.0804 0.0781 0.0846 0.0097

BT PWA

D2FLS FAE 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737

Enhanced

D2FLS SAE
0.0581 0.0599 0.0577 0.0638 0.0592 0.0598 0.0022

227

even with the additional complexity of training an SAE due to its slightly higher

interpretability.

9.4 Summary

This chapter discussed global interpretability and explained that it is challenging to

achieve in practise when there are a large number of features in the input. It discussed

alternatives such as SP-LIME, put forward to achieve global interpretability at the

module level. Hence, the two local interpretability methods for extracting explanations

from D2FLS proposed in the previous chapter were extended to provide Global

interpretability at the module level. The modules are created by filtering the input or

outputs using the linguistic variable that represents them to create a set of input-output

pairs.

It also discussed another problem that might be encounter while trying to analyse

the rules of the D2FLS. The problem is that the linguistic terms of outputs of one layer

and the linguistic terms of the inputs of the next layer might not match. It proposed a

method to enhance the D2FLS with the goal of simplifying the process of analysing the

rules of the D2FLS. This is done by constraining the D2FLS during training to use the

same membership functions for the consequents of a hidden FLS in the D2FLS and the

antecedents of subsequent.

The D2FLS was compared against this enhanced version trained using FAE. The

results show that the enhanced version has a 3% lower average recall in the categorical

datasets. And a 13% higher error in the regression dataset. The D2FLS was then

compared with the enhanced version trained using SAE. The results of this comparison

show that the enhanced D2FLS SAE performs with 0.5% of the D2FLS in the

228

categorical datasets, with one exception. This shows that the Enhanced D2FLS SAE is

a viable alternative to the D2FLS due to its superior readability of the rules even with

the more complex training process.

229

Chapter 10. Conclusions and Future Work

In this thesis, we presented a novel Deep Type-2 Fuzzy logic system by combining

the predictive accuracy and feature selection capabilities of Deep Learning with the

interpretability of Interval Type-2 Fuzzy Logic System. The proposed model is built

using easy to understand IF-Then rules that include linguistic labels similar to an

Interval Type-2 FLS. This is one of the main benefits of the proposed model; that is,

we could easily modify the system by changing the rules. Next, we presented two

methods of training the model; the first training method uses greedy layer-wise training

to train the model using both supervised and unsupervised data; the second training

method uses a stacked autoencoder to pre-train the hidden layers of the model. Next,

we proposed two methods for extracting local interpretable explanations from the

model as the D2FLS rules might not be comprehensible to all audiences. Finally, we

extended the local interpretability methods to provide global explanations at the

modular level and enhanced the D2FLS by adding a constraint during training to

improve the readability of the rules of the D2FLS.

10.1 Conclusions

The aims of the thesis were as follows

• To investigate and build an explainable AI model that is suitable for high

dimensional datasets

This was achieved by building a deep algorithm using multiple layers of Interval

type-2 fuzzy logic systems which are trained using the deep learning principle of

greedy layer-wise learning. The model was then trained on eleven high dimensional

datasets, and its performance was compared against several other AI models such

230

as Stacked Autoencoder (SAE), Convolutional neural network (CNN), Multi-Layer

Perceptron (MLP) and Interval type-2 fuzzy logic system (IT2FLS).

In the experiments, it was found that the model achieved comparable performance

to the deep models such as SAE and CNN. It outperformed the SAE by about 2%

on average and performed within 2-3% of the CNN in the categorical datasets. It

also outperformed both the MLP and IT2FLS by about 4% in the categorical

datasets. In the regression datasets, the model performed slightly worse than the

SAE, MLP and CNN models. It outperformed the IT2FLS with a 15% lower error

in the regression datasets.

The interpretability/explainability of the model was evaluated by conducting a

survey, where several subjects were asked to compare the explanations provided by

the proposed model with the IT2FLS explanations, LIME and SHAP explanations

for the SAE model. The results of the survey show that the explanations provided

by the proposed model are highly interpretable, and the explanations are within 2%

of the IT2FLS explanations. When compared to the LIME and SHAP model, the

explanations were found to be about 20% and 17% better respectively.

The simple explanations provided by the model on the high dimensional datasets

suggests that the model was able to inherently make feature selection thereby

reducing the number of features in the explanations.

• To investigate the most suitable training method for the new explainable AI

technique

This was achieved by examining two methods of training the D2FLS. The first one

using a Fuzzy Autoencoder to pre-train the D2FLS using a Greedy Layer wise training

231

method. The second method used Stacked autoencoders to pre-train the hidden layers

of the D2FLS. In the experiments, it was observed that the D2FLS FAE achieved 2%

higher average recall when compared to the D2FLS SAE in classification dataset. In

the regression datasets, the D2FLS FAE has about 6% lower MAE on average. The

D2FLS SAE only performed better in the IDA 2016 dataset where it had 2% higher

average recall.

Two types of training processes were also investigated; in the first training process,

the D2FLS parameters for each of the layers were trained in three steps. In the first

step, the D2FLS layer is trained as a Type-1 FLS, in the second step the FOUs are

added to the MFs of the D2FLS layer and in the third and final step the rules of the

D2FLS layer are retrained. In the second training process, all the parameters of the

D2FLS layers are trained in a single step. In the experiments, it was observed that the

three-step training process reduced the MAE by 47% on average across the regression

datasets.

Hence, the D2FLS was trained as a Fuzzy Autoencoder in a three-step training

process is the most suitable training method.

• To investigate the most suitable optimization algorithm for the new explainable

AI technique

This was achieved by investigating meta-heuristic methods used to find near optimal

solutions. The methods tested were Big Bang Big Crunch (BB-BC) and Genetic

Algorithms (GA). A BB-BC and a GA were implemented to train the D2FLS. In the

experiments, it was found that the D2FLS trained using BB-BC achieved 4.3% higher

average recall in the categorical datasets and about 47% lower MAE in the regression

232

datasets. Further investigation revealed that GA requires a much larger number of

generations to achieve similar fitness to the model trained using BB-BC. Hence, the

BB-BC algorithm is more suitable for training the D2FLS.

• To investigate and develop local explanations that are understandable to all

audience that might use these explanations

Two methods of extracting locally interpretable explanations from the D2FLS were

presented. One method is built around the rules of the D2FLS; hence it is termed rule-

based explanations. The method involves calculating the contributions of each of the

rules in the D2FLS to the output. And based on these contributions, an explanation of

how the output was predicted will be put forth. This provides a view into the inner

workings of the D2FLS and might be suitable for experts. The second method is built

around feature importance scores, where the explanation is a simple set of weighted

values which show the relationship between the input features and the output, using

linguistic variables. The simple formulas used to generate these explanations make it

easy to verify the explanations provided by the model.

These explanations were evaluated by comparing them against popular Deep

learning XAI tools LIME, SHAP and against explanations provided by an IT2FLS.

This was done by conducting a survey in which three different audiences were asked

to examine the explanations provided by these methods. The results of this survey show

that the explanations provided by the D2FLS are comparable to the explanations

provided by the IT2FLS (with only about 2% lower interpretability). It also shows that

the explanations provided by D2FLS are better than the explanations provided by the

tools, LIME and SHAP, about 20% and 17% better interpretability, respectively. At the

same time, the performance of D2FLS model is about 2% higher than the SAE model

233

in categorical datasets and 40% higher error in the regression datasets. This is a small

loss in performance for significantly higher interpretability making D2FLS a suitable

replacement for the other AI models in applications where interpretability is

paramount.

• To investigate and develop a global explanation that can provide a holistic

understanding of the new Explainable AI Technique

The two local interpretability methods for extracting local explanations from D2FLS

were extended to provide Global interpretability at the modular level. The modules are

created by filtering the input or outputs using the linguistic variable that represents

them to create a set of input-output pairs. These modules can be used to query the model

and determine its behaviour based on the linguistic terms selected. This is a powerful

tool for examining the behaviour of the model in a variety of situations. It is also helpful

in analysing how changes in the input affect the output. Thus, giving a holistic

understanding of the D2FLS model.

D2FLS was also enhanced to create combined IF-THEN rules to represent all the

layers. This was done by constraining the D2FLS to use the same linguistic labels for

the consequents or outputs of the hidden layer and the input features of the subsequent

layer. The D2FLS was compared against this enhanced version. With the enhanced

version having 3% lower average recall in the categorical datasets. And a higher error

in regression dataset when trained as an FAE. And the enhanced version had about 2%

lower average recall in the categorical dataset and higher error in regression datasets

when the hidden layers are trained using an SAE.

234

10.2 Future work

In future work, I will explore extending the D2FLS to solve image, speech, and

video classification problems. This could be achieved by combining convolutional

neural networks with the D2FLS as CNNs are some of the best algorithms for image

classification tasks. There is also the potential for extending the D2FLS for text

classification using the method.

Next, I will explore methods to improve the D2FLS SAE training method as a

similar training method used to train Fuzzy Stacked Autoencoders showed higher

performance than the best D2FLS.

Next, I will explore the use of explanations provided by the D2FLS to determine

how business functions can be improved/changed to get the desired outcomes. For

example, if the model predicts customer satisfaction based on some business metrics.

An analytical model can be built to analyse the global modular explanations to provide

details about the input business metrics that can be improved/changed to get the desired

level of customer satisfaction.

Additionally, there is a potential for examining single pass training methods to train

the D2FLS to simplify the training process.

235

Bibliography

[1] R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Explainable AI and

Fuzzy Logic Systems," in International Conference on Theory and Practice of

Natural Computing, 2018: Springer, pp. 3-20.

[2] G. Nott, "Explainable Artificial Intelligence’: Cracking open the black box of

AI," Computer World https://www. computerworld. com. au/article/617359,

2017.

[3] Z. C. Lipton, "The Mythos of Model Interpretability," Queue, vol. 16, no. 3, p.

30, 2018.

[4] D. Gunning, "Explainable artificial intelligence (xai)," Defense Advanced

Research Projects Agency (DARPA), nd Web, 2017.

[5] "AI in the UK: ready, willing and able?," UK Parliament (House of Lords)

Aritificial Intelligence Committee,, 16 April 2017. [Online]. Available:

https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf

[6] B. F. Goodman, Seth, "European Union regulations on algorithmic decision-

making and a "right to explanation"," 2016 ICML Workshop on Human

Interpretability in Machine Learning (WHI 2016), New York, NY, 2016.

[7] P. J. Phillips, C. A. Hahn, P. C. Fontana, D. A. Broniatowski, and M. A.

Przybocki, "Four Principles of Explainable Artificial," 2020.

[8] F. S. Board, "Artificial intelligence and machine learning in financial services,"

November, available at: http://www. fsb. org/2017/11/artificialintelligence-

and-machine-learning-in-financialservice/(accessed 30th January, 2018),

2017.

https://www/
https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf
http://www/

236

[9] R. Chatila and J. C. Havens, "The IEEE Global Initiative on Ethics of

Autonomous and Intelligent Systems," in Robotics and Well-Being, M. I.

Aldinhas Ferreira, J. Silva Sequeira, G. Singh Virk, M. O. Tokhi, and E. E.

Kadar Eds. Cham: Springer International Publishing, 2019, pp. 11-16.

[10] E. B. Authority, "EBA Report On Big Data And Advanced Analytics,"

[11] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman, J. W. Vaughan, and H.

Wallach, "Manipulating and measuring model interpretability," arXiv preprint

arXiv:1802.07810, 2018.

[12] A. Adadi and M. Berrada, "Peeking inside the black-box: A survey on

Explainable Artificial Intelligence (XAI)," IEEE Access, vol. 6, pp. 52138-

52160, 2018.

[13] A. Preece, D. Harborne, D. Braines, R. Tomsett, and S. Chakraborty,

"Stakeholders in explainable AI," arXiv preprint arXiv:1810.00184, 2018.

[14] A. B. Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts,

Taxonomies, Opportunities and Challenges toward Responsible AI,"

Information Fusion, 2019.

[15] H. Li, Y. Tian, K. Mueller, and X. Chen, "Beyond saliency: understanding

convolutional neural networks from saliency prediction on layer-wise relevance

propagation," Image and Vision Computing, vol. 83, pp. 70-86, 2019.

[16] D. Doran, S. Schulz, and T. R. Besold, "What does explainable AI really mean?

A new conceptualization of perspectives," arXiv preprint arXiv:1710.00794,

2017.

[17] J. R. Zilke, E. L. Mencía, and F. Janssen, "Deepred–rule extraction from deep

neural networks," in International Conference on Discovery Science, 2016:

Springer, pp. 457-473.

237

[18] M. Sato and H. Tsukimoto, "Rule extraction from neural networks via decision

tree induction," in IJCNN'01. International Joint Conference on Neural

Networks. Proceedings (Cat. No. 01CH37222), 2001, vol. 3: IEEE, pp. 1870-

1875.

[19] M. G. Augasta and T. Kathirvalavakumar, "Reverse engineering the neural

networks for rule extraction in classification problems," Neural processing

letters, vol. 35, no. 2, pp. 131-150, 2012.

[20] A. D. Arbatli and H. L. Akin, "Rule extraction from trained neural networks

using genetic algorithms," Nonlinear Analysis: Theory, Methods &

Applications, vol. 30, no. 3, pp. 1639-1648, 1997.

[21] M. Affenzeller, S. Wagner, S. Winkler, and A. Beham, Genetic algorithms and

genetic programming: modern concepts and practical applications. Crc Press,

2009.

[22] M. W. Craven and J. W. Shavlik, "Using sampling and queries to extract rules

from trained neural networks," in Machine learning proceedings 1994:

Elsevier, 1994, pp. 37-45.

[23] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu, "Interpreting cnns via decision trees,"

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 6261-6270.

[24] M. W. Craven, "Extracting comprehensible models from trained neural

networks," University of Wisconsin-Madison Department of Computer

Sciences, 1996.

[25] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez,

"Beyond sparsity: Tree regularization of deep models for interpretability,"

arXiv preprint arXiv:1711.06178, 2017.

238

[26] N. Frosst and G. Hinton, "Distilling a neural network into a soft decision tree,"

arXiv preprint arXiv:1711.09784, 2017.

[27] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller,

"Explaining nonlinear classification decisions with deep taylor decomposition,"

Pattern Recognition, vol. 65, pp. 211-222, 2017.

[28] Heatmap.org. "A Quick Introduction to Deep Taylor Decomposition."

http://www.heatmapping.org/deeptaylor/ (accessed 18/08/2020, 2020).

[29] M. Böhle, F. Eitel, M. Weygandt, and K. Ritter, "Layer-wise relevance

propagation for explaining deep neural network decisions in MRI-based

Alzheimer’s disease classification," Frontiers in aging neuroscience, vol. 11,

p. 194, 2019.

[30] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek,

"On pixel-wise explanations for non-linear classifier decisions by layer-wise

relevance propagation," PloS one, vol. 10, no. 7, p. e0130140, 2015.

[31] A. Shrikumar, P. Greenside, and A. Kundaje, "Learning important features

through propagating activation differences," in Proceedings of the 34th

International Conference on Machine Learning-Volume 70, 2017: JMLR. org,

pp. 3145-3153.

[32] C. Molnar, Interpretable Machine Learning. Lulu. com, 2020.

[33] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:

data mining, inference, and prediction. Springer Science & Business Media,

2009.

[34] W. Y. Loh, "Classification and regression trees," Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011.

http://www.heatmapping.org/deeptaylor/

239

[35] L. Rokach and O. Z. Maimon, Data mining with decision trees: theory and

applications. World scientific, 2008.

[36] D. Heckerman, "A Tutorial on Learning With Bayesian Networks," Studies in

Computational Intelligence, vol. 156, pp. 33-82, 2008, doi: 10.1007/978-3-540-

85066-3_3.

[37] L. E. Peterson, "K-nearest neighbor," Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

[38] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New

Directions. Springer, 2017.

[39] Q. Liang and J. M. Mendel, "Interval type-2 fuzzy logic systems: theory and

design," IEEE Transactions on Fuzzy systems, vol. 8, no. 5, pp. 535-550, 2000.

[40] M. T. Ribeiro, S. Singh, and C. Guestrin, "Why should i trust you?: Explaining

the predictions of any classifier," presented at the Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining,

San Francisco, California, 2016.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin, "Anchors: High-Precision Model-

Agnostic Explanations," in AAAI, 2018, vol. 18, pp. 1527-1535.

[42] M. T. Ribeiro, S. Singh, and C. Guestrin, "Nothing else matters: model-agnostic

explanations by identifying prediction invariance," arXiv preprint

arXiv:1611.05817, 2016.

[43] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model

predictions," in Advances in Neural Information Processing Systems, 2017, pp.

4765-4774.

[44] L. S. Shapley, "A value for n-person games," Contributions to the Theory of

Games, vol. 2, no. 28, pp. 307-317, 1953.

240

[45] J. H. Friedman, "Greedy function approximation: a gradient boosting machine,"

Annals of statistics, pp. 1189-1232, 2001.

[46] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, "Peeking inside the black

box: Visualizing statistical learning with plots of individual conditional

expectation," Journal of Computational and Graphical Statistics, vol. 24, no.

1, pp. 44-65, 2015.

[47] Z. Che, S. Purushotham, R. Khemani, and Y. Liu, "Interpretable deep models

for ICU outcome prediction," in AMIA Annual Symposium Proceedings, 2016,

vol. 2016: American Medical Informatics Association, p. 371.

[48] R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "A Big-Bang Big-Crunch

Type-2 Fuzzy Logic System for Generating Interpretable Models in Workforce

Optimization," in 2018 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), 2018: IEEE, pp. 1-8.

[49] T. Garcia-Valverde, A. Garcia-Sola, H. Hagras, J. Dooley, V. Callaghan, and J.

Botia, "A fuzzy logic-based system for indoor localization using WiFi in

ambient intelligent environments," IEEE Transactions on Fuzzy Systems, vol.

21, no. 4, pp. 702-718, 2013.

[50] A. d. A. Garcez, M. Gori, L. C. Lamb, L. Serafini, M. Spranger, and S. N. Tran,

"Neural-symbolic computing: An effective methodology for principled

integration of machine learning and reasoning," arXiv preprint

arXiv:1905.06088, 2019.

[51] R. Evans and E. Grefenstette, "Learning explanatory rules from noisy data,"

Journal of Artificial Intelligence Research, vol. 61, pp. 1-64, 2018.

[52] A. Merentitis and C. Debes, "Automatic fusion and classification using random

forests and features extracted with deep learning," 2015: IEEE, pp. 2943-2946.

241

[53] Y. Yang, I. G. Morillo, and T. M. Hospedales, "Deep Neural Decision Trees,"

arXiv preprint arXiv:1806.06988, 2018.

[54] P. Chen, C. Zhang, L. Chen, and M. Gan, "Fuzzy restricted Boltzmann machine

for the enhancement of deep learning," IEEE Transactions on Fuzzy Systems,

vol. 23, no. 6, pp. 2163-2173, 2015.

[55] M. Janmaijaya, A. K. Shukla, T. Seth, and P. K. Muhuri, "Interval Type-2

Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning,"

in 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2019:

IEEE, pp. 1-6.

[56] M. S. Hosseini-Pozveh, M. Safayani, and A. Mirzaei, "Interval Type-2 Fuzzy

Restricted Boltzmann Machine," IEEE Transactions on Fuzzy Systems, 2020.

[57] Z. Zhang, M. W. Beck, D. A. Winkler, B. Huang, W. Sibanda, and H. Goyal,

"Opening the black box of neural networks: methods for interpreting neural

network models in clinical applications," Annals of translational medicine, vol.

6, no. 11, 2018.

[58] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, "A Hierarchical Fused Fuzzy

Deep Neural Network for Data Classification," IEEE Transactions on Fuzzy

Systems, vol. PP, no. 99, pp. 1-1, 2016, doi: 10.1109/TFUZZ.2016.2574915.

[59] S. Park, S. J. Lee, E. Weiss, and Y. Motai, "Intra-and inter-fractional variation

prediction of lung tumors using fuzzy deep learning," IEEE journal of

translational engineering in health and medicine, vol. 4, pp. 1-12, 2016.

[60] S. Rajurkar and N. K. Verma, "Developing deep fuzzy network with Takagi

Sugeno fuzzy inference system," in 2017 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE), 2017: IEEE, pp. 1-6.

242

[61] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise

training of deep networks," in Advances in neural information processing

systems, 2007, pp. 153-160.

[62] S. Zhou, Q. Chen, and X. Wang, "Fuzzy deep belief networks for semi-

supervised sentiment classification," Neurocomputing, vol. 131, pp. 312-322,

2014.

[63] M. Wang and X.-S. Hua, "Active learning in multimedia annotation and

retrieval: A survey," ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 2, no. 2, p. 10, 2011.

[64] Y. Zheng, W. Sheng, X. Sun, and S. Chen, "Airline passenger profiling based

on fuzzy deep machine learning," IEEE transactions on neural networks and

learning systems, vol. 28, no. 12, pp. 2911-2923, 2017.

[65] R. R. Yager, "Pythagorean fuzzy subsets," 2013: IEEE, pp. 57-61.

[66] H. Ishibuchi, K. Morioka, and I. Turksen, "Learning by fuzzified neural

networks," International Journal of Approximate Reasoning, vol. 13, no. 4, pp.

327-358, 1995.

[67] E. P. Klement, W. Schwyhla, and R. Lowen, "Fuzzy probability measures,"

Fuzzy Sets and Systems, vol. 5, no. 1, pp. 21-30, 1981.

[68] L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8, no. 3, pp. 338-353,

1965.

[69] A. J. Starkey, "Many-Objective Genetic Type-2 Fuzzy Logic Based Workforce

Optimisation Strategies for Large Scale Organisational Design," University of

Essex, 2018.

[70] G. Klır and M. Wierman, "Uncertainty–Based Information," Physica–Verlag,

Heidelberg, 1998.

243

[71] J. M. Mendel, "Computing with words, when words can mean different things

to different people," in Proc. of Third International ICSC Symposium on Fuzzy

Logic and Applications, 1999, pp. 158-164.

[72] N. R. Pal and J. C. Bezdek, "Measuring fuzzy uncertainty," IEEE Transactions

on Fuzzy Systems, vol. 2, no. 2, pp. 107-118, 1994.

[73] N. R. Pal and J. C. Bezdek, "On cluster validity for the fuzzy c-means model,"

IEEE Transactions on Fuzzy systems, vol. 3, no. 3, pp. 370-379, 1995.

[74] L.-X. Wang and J. M. Mendel, Generating fuzzy rules from numerical data,

with applications. Signal and Image Processing Institute, University of

Southern California …, 1991.

[75] J. M. Mendel, "Explaining the Performance Potential of Rule-Based Fuzzy

Systems as aGreater Sculpting of the State Space," IEEE Transactions on Fuzzy

Systems, vol. 26, no. 4, pp. 2362-2373, 2017.

[76] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John, and J. M. Garibaldi, "A

comparative study on the control of quadcopter uavs by using singleton and

non-singleton fuzzy logic controllers," in 2016 IEEE international conference

on fuzzy systems (FUZZ-IEEE), 2016: IEEE, pp. 1023-1030.

[77] E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using

linguistic synthesis," IEEE transactions on computers, no. 12, pp. 1182-1191,

1977.

[78] D. Driankov, H. Hellendoorn, and M. Reinfrank, An introduction to fuzzy

control. Springer Science & Business Media, 2013.

[79] M. Sugeno and T. Yasukawa, "A fuzzy-logic-based approach to qualitative

modeling," IEEE Transactions on fuzzy systems, vol. 1, no. 1, pp. 7-31, 1993.

244

[80] C. Wagner and H. Hagras, "Toward general type-2 fuzzy logic systems based

on zSlices," IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 637-660,

2010.

[81] J. M. Mendel and F. Liu, "On new quasi-type-2 fuzzy logic systems," in 2008

IEEE International Conference on Fuzzy Systems (IEEE World Congress on

Computational Intelligence), 2008: IEEE, pp. 354-360.

[82] S. Coupland and R. John, "Geometric type-1 and type-2 fuzzy logic systems,"

IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 3-15, 2007.

[83] H. A. Hagras, "A hierarchical type-2 fuzzy logic control architecture for

autonomous mobile robots," IEEE Transactions on fuzzy systems, vol. 12, no.

4, pp. 524-539, 2004.

[84] H. Hagras, "Type-2 FLCs: A new generation of fuzzy controllers," IEEE

Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, 2007.

[85] N. N. Karnik and J. M. Mendel, "Introduction to type-2 fuzzy logic systems,"

in 1998 IEEE international conference on fuzzy systems proceedings. IEEE

world congress on computational intelligence (Cat. No. 98CH36228), 1998,

vol. 2: IEEE, pp. 915-920.

[86] D. Wu and W. W. Tan, "Type-2 FLS modeling capability analysis," in The 14th

IEEE International Conference on Fuzzy Systems, 2005. FUZZ'05., 2005:

IEEE, pp. 242-247.

[87] M. Nie and W. W. Tan, "Towards an efficient type-reduction method for

interval type-2 fuzzy logic systems," in 2008 IEEE International Conference

on Fuzzy Systems (IEEE World Congress on Computational Intelligence),

2008: IEEE, pp. 1425-1432.

245

[88] J. M. Mendel and X. Liu, "Simplified interval type-2 fuzzy logic systems,"

IEEE Transactions on Fuzzy Systems, vol. 21, no. 6, pp. 1056-1069, 2013.

[89] D. Bernardo, H. Hagras, and E. Tsang, "A genetic type-2 fuzzy logic based

system for the generation of summarised linguistic predictive models for

financial applications," Soft Computing, vol. 17, no. 12, pp. 2185-2201, 2013.

[90] A. L. Buczak et al., "Fuzzy association rule mining and classification for the

prediction of malaria in South Korea," BMC medical informatics and decision

making, vol. 15, no. 1, p. 47, 2015.

[91] J. A. Sanz, D. Bernardo, F. Herrera, H. Bustince, and H. Hagras, "A compact

evolutionary interval-valued fuzzy rule-based classification system for the

modeling and prediction of real-world financial applications with imbalanced

data," IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 973-990, 2014.

[92] T. Garcia-Valverde, A. Garcia-Sola, H. Hagras, J. A. Dooley, V. Callaghan,

and J. A. Botia, "A fuzzy logic-based system for indoor localization using WiFi

in ambient intelligent environments," IEEE Transactions on Fuzzy Systems,

vol. 21, no. 4, pp. 702-718, 2013.

[93] L.-X. Wang and J. M. Mendel, "Generating fuzzy rules by learning from

examples," IEEE Transactions on systems, man, and cybernetics, vol. 22, no.

6, pp. 1414-1427, 1992.

[94] L.-X. Wang, "The WM method completed: a flexible fuzzy system approach to

data mining," IEEE Transactions on fuzzy systems, vol. 11, no. 6, pp. 768-782,

2003.

[95] O. Erol and I. Eksin, "A new optimization method: big bang–big crunch,"

Advances in Engineering Software, vol. 37, no. 2, pp. 106-111, 2006.

246

[96] R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Interval type-2 fuzzy

logic based stacked autoencoder deep neural network for generating

explainable ai models in workforce optimization," in 2018 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), 2018: IEEE, pp. 1-8.

[97] K. Y. Lee and P. S. Mohamed, "A real-coded genetic algorithm involving a

hybrid crossover method for power plant control system design," in

Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat.

No. 02TH8600), 2002, vol. 2: IEEE, pp. 1069-1074.

[98] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, "Task

matching and scheduling in heterogeneous computing environments using a

genetic-algorithm-based approach," Journal of parallel and distributed

computing, vol. 47, no. 1, pp. 8-22, 1997.

[99] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv

preprint arXiv:1609.04747, 2016.

[100] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[101] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv

preprint arXiv:1412.6980, 2014.

[102] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online

learning and stochastic optimization," Journal of machine learning research,

vol. 12, no. 7, 2011.

[103] T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude," COURSERA: Neural networks for

machine learning, vol. 4, no. 2, pp. 26-31, 2012.

[104] "UCI Machine Learning Repository," ed, 2017.

247

[105] Santander Customer Transaction Prediction (

https://www.kaggle.com/c/santander-customer-transaction-prediction), Banco

Santander,

[106] Swiss healthcare premium prediction (

https://www.kaggle.com/comparisdata/premium-prediction),

[107] J. P. Mallm et al., "Linking aberrant chromatin features in chronic lymphocytic

leukemia to transcription factor networks," Molecular systems biology, vol. 15,

no. 5, 2019.

[108] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger,

"Indications of nonlinear deterministic and finite-dimensional structures in time

series of brain electrical activity: Dependence on recording region and brain

state," Physical Review E, vol. 64, no. 6, p. 061907, 2001.

[109] C. O. Sakar et al., "A comparative analysis of speech signal processing

algorithms for Parkinson’s disease classification and the use of the tunable Q-

factor wavelet transform," Applied Soft Computing, vol. 74, pp. 255-263, 2019.

[110] J. Torres-Sospedra et al., "UJIIndoorLoc: A new multi-building and multi-floor

database for WLAN fingerprint-based indoor localization problems," in 2014

international conference on indoor positioning and indoor navigation (IPIN),

2014: IEEE, pp. 261-270.

[111] F. Graf, H.-P. Kriegel, S. Pölsterl, M. Schubert, and A. Cavallaro, "Position

prediction in ct volume scans," in Proceedings of the 28th International

Conference on Machine Learning (ICML) Workshop on Learning for Global

Challenges, Bellevue, Washington, WA, 2011.

[112] F. Graf, H.-P. Kriegel, M. Schubert, S. Pölsterl, and A. Cavallaro, "2d image

registration in ct images using radial image descriptors," in International

https://www.kaggle.com/c/santander-customer-transaction-prediction
https://www.kaggle.com/comparisdata/premium-prediction

248

Conference on Medical Image Computing and Computer-Assisted Intervention,

2011: Springer, pp. 607-614.

[113] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, "The million song

dataset," 2011.

[114] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-

scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[115] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting," The

journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.

[116] R. Chimatapu, H. Hagras, A. Starkey, and G. Owusu, "Interval Type-2 Fuzzy

Logic Based Stacked Autoencoder Deep Neural Network For Generating

Explainable AI Models in Workforce Optimization," presented at the 2018

IEEE International Conference on Fuzzy Systems (FUZZ), in press.

[117] L. Magdalena, "Semantic interpretability in hierarchical fuzzy systems:

Creating semantically decouplable hierarchies," Information Sciences, vol. 496,

pp. 109-123, 2019.

[118] L. A. Zadeh, "Is there a need for fuzzy logic?," Information sciences, vol. 178,

no. 13, pp. 2751-2779, 2008.

[119] C. Mencar, C. Castiello, R. Cannone, and A. M. Fanelli, "Design of fuzzy rule-

based classifiers with semantic cointension," Information Sciences, vol. 181,

no. 20, pp. 4361-4377, 2011.

