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Abstract 

Artificial intelligence (AI) systems have benefitted from the easy availability of 

computing power and the rapid increase in the quantity and quality of data which has 

led to the widespread adoption of AI techniques across a wide variety of fields. 

However, the use of complex (or Black box) AI systems such as Deep Neural 

Networks, support vector machines, etc., could lead to a lack of transparency. This lack 

of transparency is not specific to deep learning or complex AI algorithms; other 

interpretable AI algorithms such as kernel machines, logistic regressions, decision 

trees, or rules-based algorithms can also become difficult to interpret for high 

dimensional inputs. The lack of transparency or explainability reduces the effectiveness 

of AI models in regulated applications (such as medical, financial, etc.), where it is 

essential to explain the model operation and how it arrived at a given prediction.  

The need for explainability in AI has led to a new line of research that focuses on 

developing Explainable AI techniques. There are three main avenues of research that 

are being explored to achieve explainability; first, Deep Explanations, which involves 

the modification of existing Deep learning models to add explainability. The methods 

proposed to do Deep explanations generally provide details about all the input features 

that affect the output, generally in a visual format as there might be a large number of 

features. This type of explanation is useful for tasks such as image recognition, but in 

other tasks, it might be hard to distinguish the most important features. Second, Model 

induction, which involves methods that are model agnostic, but these methods might 

not be suitable for use in regulated applications. The third method is to use existing 

interpretable models such as decision trees, fuzzy logic, etc., but the problem with them 

is that they can also become opaque for high dimensional data. 
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Hence, this thesis presents a novel AI system by combining the predictive power of 

Deep Learning with the interpretability of Interval Type-2 Fuzzy Logic Systems. The 

advantages of such a system are, first, the ability to be trained via labelled and 

unlabelled data (i.e., mixing supervised and unsupervised learning). Second, having 

embedded feature selection abilities (i.e., can be trained by hundreds and thousands of 

inputs with no need for feature selection) while delivering explainable models with 

small rules bases composed of short rules to maximize the model’s interpretability.  

The proposed model was developed with data from British Telecom (BT). It 

achieved comparable performance to the deep models such as Stacked Autoencoder 

(SAE) and Convolution Neural Networks (CNN). In categorical datasets, the model 

outperformed the SAE by 2%, performed within 2-3% of the CNN and outperformed 

Multi-Layer Perceptron (MLP) and IT2FLS by 4%. In the regression datasets, the 

model performed slightly worse than the SAE, MLP and CNN models, but it 

outperformed the IT2FLS with a 15% lower error. The proposed model achieved 

excellent interpretability in a survey where it was rated within 2% of the highly 

interpretable IT2FLS. It was also rated 20% and 17% better than Deep learning XAI 

tools LIME and SHAP, respectively. The proposed model shows a small loss in 

performance for significantly higher interpretability, making it a suitable replacement 

for the other AI models in applications with many features where interpretability is 

paramount.  
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Chapter 1. Introduction 

Artificial Intelligence (AI) is the programmed ability of machines to mimic 

cognitive functions such as learning, problem-solving, etc., that usually require human-

level intelligence [1]. AI comprised of all the Machine Learning (ML) techniques such 

as search and optimization, symbolic and logical reasoning, statistical learning methods 

and behaviour-based approaches. The recent explosion in computing power, coupled 

with the rapid rise in the quantity and quality of data available for research have led to 

the rapid adoption of AI techniques across a wide variety of fields. There are huge 

incentives for adopting AI, such as product/process cost reduction, consistency, 

repeatability, improved efficiency, enhanced decision making, as well as helping in the 

development of new products and services [1]. AI is a significant disruptor that is 

transforming many industries; it is also helping in spawning new technologies and 

trends that can transform our lives, such as self-driving cars, AI assistants, etc. 

As AI technology matures, it can propel economic growth, transforming the way in 

which we work with computers [1]. Hence, regulators and participants hope that AI 

will be inclusive and beneficial to everyone. However, the use of complex AI 

algorithms such as deep learning, random forests, support vector machines (SVMs), 

etc., could result in a lack of transparency thus creating "black box" models [1, 2]. This 

lack of transparency is not specific to deep learning, or complex AI algorithms, other 

interpretable AI algorithms such as kernel machines, logistic regressions, decision trees 

or rules-based algorithms can also become very difficult to interpret for high 

dimensional inputs [3]. The difficulty in interpreting these AI models can be a huge 

barrier in the adoption of AI systems in regulated applications such as financial, 

medical, justice etc., where the reliability of the model must be guaranteed. 
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There is a growing consensus that there is a need to develop technologies that 

mitigate this problem[4]. The UK Parliament house of lords AI select committee, for 

example, in their report they mention that "We believe it is not acceptable to deploy 

any artificial intelligence system which could have a substantial impact on an 

individual's life unless it can generate a full and satisfactory explanation for the 

decisions it will take" [5]. The European Parliament has gone further by putting in a 

clause in the General Data Protection Regulation to address the lack of transparency in 

AI systems. The clause emphasizes the right of all individuals to obtain "meaningful 

explanations of the logic involved when automated decision making takes place" [6]. 

The National Institute of Standards and Technology, U.S. Department of Commerce, 

has emphasised the need for explainable AI while putting forth four principles that may 

be used to establish a framework to guide real-world applications of AI [7]. 

The Financial Stability Board, which is an international agency that monitors global 

financial systems, has warned that the use of opaque models (such as Deep Learning 

techniques) can lead to the lack of interpretability or 'auditability' which can contribute 

to macro-level risks [8]. The financial stability board stressed that further progress in 

the interpretation of algorithms outputs and decision is an essential condition not only 

for risk management but also for engendering greater trust from the general public as 

well as regulators [8].  

The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence (AI) 

and Autonomous Systems (AS) Drives, a program of the IEEE initiated to address 

ethical issues raised by using AI system, document on Ethically Aligned Design 

mentions that “A key concern over autonomous systems is that their operation must be 

transparent to a wide range of stakeholders, for different reasons. For users, 
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transparency is important because it builds trust in the system by providing a simple 

way for the user to understand what the system is doing and why. For validation and 

certification of an autonomous system, transparency is important because it exposes 

the system’s processes for scrutiny”[9]. 

The European Banking Authority, in its report on Big data and advanced analytics, 

mentions that “Lack of explainability could represent an important risk in the case of 

AI/ML models developed by external third parties and then sold as opaque black box 

packages. The institution acquiring the package needs to have enough means, including 

explanations, to validate the results produced by the package without being strongly 

dependent on the external provider” [10]. 

The lack of transparency in AI has led to a new line of research which focuses on 

developing AI techniques that are explainable [11]. Although a large body of research 

has been conducted there are still many challenges in achieving explainable AI 

techniques, such as. 

• The need to develop explainable models that would adapt according to the 

user profile (level of expertise, domain knowledge, cultural background, 

interests and preferences and other contextual variables) and the explanation 

request setting (justification, teaching, audit, etc.) [12] [13].  

• The trade-off between performance and interpretability that is,  

interpretability reduces as the performance of the system increases [14]. 

• The need to develop explainable models that can deal with inputs with a 

large number of features as many, otherwise, explainable model falter in 

these situations [3] [15]. 
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To overcome the first challenge, semantic representation of the predictions that use 

natural language seems to be the way forward [16]. Furthermore, to overcome the trade-

off between performance and interpretability, a hybrid modelling approach that 

combines high-performance models with interpretable models has been suggested [14]. 

Embedding feature selection within the model, such as in Stacked autoencoders, which 

can be considered as being one way to overcome the third problem. 

From the discussion above a possible approach to solve these challenges is to 

combine Deep Learning training techniques with Fuzzy Logic Systems (FLS). Where 

the Deep Learning will help improve the performance of the AI model and add 

embedded feature selection, the FLS can be used to model the uncertainties in the data 

and express the logic behind the AI model as human-understandable IF-Then rules with 

linguistic labels. Hence, this thesis will explore a possible method of achieving 

explainable AI using a combination of Deep Learning and Type-2 Fuzzy Logic 

Systems. 

1.1 Aims of the Thesis 

The thesis aims to investigate and implement an explainable AI technique to solve 

real-world problems. The core aim is to combine the predictive power and embedded 

feature selection capability of Deep Learning techniques with the interpretability of 

Fuzzy Logic Systems. The remaining aims of this thesis are as follows 

• To investigate the suitability of the model to solve real-world problems.  

• To investigate the most suitable training method for the new explainable AI 

technique 
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• To investigate the most suitable optimization algorithm for the new explainable 

AI technique 

• To investigate and develop local explanations that are understandable to all 

audience that might use these explanations 

• To investigate and develop global explanations that can provide a holistic 

understanding of the new Explainable AI Technique. 

1.2 Thesis Layout 

This thesis is structured as follows; Chapter 2 will give an overview of Explainable 

AI and the three main methods, Deep Explanations, Interpretable AI and Model 

Induction, that are being explored to achieve Explainable AI. It will present the case 

for combining Deep Learning and Fuzzy Logic. It will also explore the techniques that 

have been used to combine these two AI techniques. 

Chapter 3 will give an overview of the Fuzzy logic system and the two major 

subtypes type-1 fuzzy logic and type-2 fuzzy logic and the various operators and 

components of these systems. 

Chapter 4 will give an overview of optimization algorithms. It describes some of the 

algorithms such as Big bang big crunch, Genetic Algorithms and gradient descent 

algorithms.  

Chapter 5 will give a list of problems or datasets used to evaluate the AI models 

explored in this thesis. The problems were chosen with an emphasis on choosing real-

world datasets with a large number of features. The problems are divided into 

Classification and Regression datasets based on the type of outputs or targets for these 

problems. 
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Chapter 6 presents the proposed Deep Type-2 Fuzzy Logic system detailing the 

training method used to train this AI model. It will also evaluate this AI model against 

two deep learning techniques. We will also evaluate some of the optimization 

algorithms and training techniques that could be used to train the AI model. 

Chapter 7 presents an alternative training method to train the Deep Type-2 Fuzzy 

Logic System using Stacked autoencoders. It will also present Fuzzy Stacked 

Autoencoders and evaluate them against the model presented in the previous chapter 

Chapter 8 presents two methods for extracting locally interpretable explanations 

from the Deep Type-2 Fuzzy Logic system. It also evaluates these explanations by 

conducting a survey where these explanations are compared against the explanations 

provided by LIME and SHAP and an Interval Type-2 Fuzzy Logic System. 

Chapter 9 expands the two methods presented in the previous chapter to provide 

global explanations at the modular level. It will also present an enhancement to the 

Deep type-2 fuzzy logic system to extract global rules from it. 

Chapter 10 presents the conclusion of the thesis and discusses potential future work. 
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Chapter 2. Explainable Artificial Intelligence 

An Explainable Artificial Intelligence (XAI) or transparent AI or interpretable AI is 

one which produces explanations or reason for its actions which can be clearly 

understood by its users. Explainability will allow AI systems to provide increased 

transparency and fairness by providing an auditable record of all factors related to a 

given prediction [6]. Explainability will also ensure that algorithmic decision making 

is fair and ethical while enabling businesses to meet compliance requirements [1]. 

XAI is at the intersection of several fields of active research with an emphasis on 

the following. 

• Transparency: AI models are used to support decision making [14]; hence, it is 

vital to ensure that all parties involved in the decision making and the people 

affected by these decisions can understand them. 

• Fairness: Explainability allows us to provide a clear understanding of the 

relations which affect the result, allowing for a fair analysis of the model by 

highlighting any bias in the data. Hence, XAI allows us to avoid unfair or 

unethical use of AI models. 

• Interactivity: The model should be interactive, i.e., it allows the end-users the 

ability to tweak and interact with the model to ensure success [14]. 

• Confidence: Explanations provided by an AI system will allow us to assess the 

reliability of the AI system, thereby gaining confidence and trust in the system. 

• Causality: Since an AI model learns from data, it can discover correlations 

among this data. Although this might not be enough to unveil the cause-and-
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effect relationships, it could provide a first intuition of the causal relationships 

between the inputs and the outputs. 

The transparency in AI rarely comes for free; there are often trade-offs between 

accuracy and transparency, and these trade-offs are likely to grow as AI systems 

become even more complex. Hence, the goal of XAI systems should be to create 

explainable models that provide interpretability while maintaining high accuracy  [1, 

14]. 

The explanations provided by these systems should not be restricted to AI experts; 

they should provide explanations that can be easily understood by the lay user which 

will allow domain experts to test and augment the AI systems with their expert 

knowledge. Empowering them to determine when to trust or distrust a given AI model 

[1, 12] [13]. 

 

Figure 2-1: Existing AI techniques and XAI methods [4] 
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As we can see from Figure 2-1, complex AI models such as Deep Neural networks 

have historically performed better than simple interpretable models such as decision 

trees or rule-based systems [14]. XAI is a DARPA program that is expected to enable 

“third-wave AI systems” [4]. The goal of the XAI program is to enable a new suite of 

techniques that are more explainable while retaining the high level of performance of 

the AI models [4]. According to a DARPA report [4], the XAI explains individual 

decisions, enables understanding of overall strengths and weaknesses, and conveys an 

understanding of how the system will behave in the future and how to correct the 

system’s mistakes. From Figure 2-1, there are three main methods suggested in the 

report. In the following sections, we provide an introduction to the three methods 

suggested to achieve XAI as well as some of the representative works that use these 

methods. We will also present a fourth method to achieve XAI, in which we propose 

to combine high-performance complex AI systems such as Deep learning with 

interpretable systems such as Fuzzy Logic. 

2.1 Deep Explanations 

Deep Explanations involve the modification of existing Deep learning models to add 

explainability. The goal here is to increase the explainability of the Deep Learning 

models without losing their accuracy. Several approaches have been proposed to 

achieve deep explanations [14]; these can be classified into two broad categories which 

are presented below. 
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2.1.1 Model Simplification 

2.1.1.1 Rule Extraction 

The most common method used to achieve model simplification is by rule 

extraction; one work that uses this method is Deep Red [17] where the behaviour of the 

neural network is modelled as decision rules. This method is based on CRED [18], 

which uses the C4.5 algorithm to induce rules in a shallow neural network with one 

hidden layer. The authors of Deep Red extend the approach presented in CRED to Deep 

neural networks by using the C4.5 algorithm to extract rules for each hidden layer based 

on the preceding layer. Once the rules are extracted for all the layers, they are merged 

to obtain the rule set.  

Some of the other methods that use rule extraction include RxREN [19], where, in the 

first step, insignificant neurons are removed from the network and rules are extracted 

using the remaining neurons,  In [20] the neural network is trained using a Genetic 

Algorithm[21]. The significant neurons are then identified, and the rules are extracted 

using these neurons, [22], where rules are extracted using a sampling and query-based 

approach. 

One point to note here is that the rules can become complex as the number of input 

attributes and the number of layers increases. Pruning is used to simplify these rules, 

but if the rules are aggressively pruned the model behaviour, and the rules diverge, i.e., 

the rules can not accurately predict the model behaviour.  

2.1.1.2 Interpreting Neural Networks via Decision Trees 

Another method that is used to achieve model simplification is to extract Decision 

Trees from neural networks. In [23], for example, the authors propose a method to 
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construct a decision tree (depicted in Figure 2-2) to explain the CNN predictions 

semantically and quantitatively. The rationale behind the CNN predictions is 

summarised into decision modes (tree nodes on the decision tree). Each decision mode 

represents predictions that trigger the same filters and have the same contribution to 

the output [23].  

The decision tree represents all possible decision modes of the CNN in a coarse to 

fine manner. Nodes near the tree root represent the most common decision modes or 

characteristics that are shared by many inputs (Most generic rationales as shown in 

Figure 2-2). Nodes near leaves represent decision modes that are shared by fewer inputs 

(Most specific rationales as shown in Figure 2-2) [23].  

To do this, CNN is trained using filter loss functions that push the filter to represent 

object parts of images. Then, each filter is assigned a specific part name. Finally, the 

 

Figure 2-2: CNN explanation via decision trees [23] 
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decision modes are mined to explain how CNN uses the parts/filters for predictions, 

and a decision tree is constructed [23]. 

• Some of the other methods that use decision trees to interpret neural 

networks are TREPAN [24] which uses queries to induce decision trees that 

approximate the neural network, 

•  Tree Regularization [25] is a regularisation technique that favours models 

whose decision boundaries can be approximated by decision trees. 

• Soft Decision Trees [26] is a technique where the inputs and output of a 

neural network are used to train a decision tree. 

One point to note here is that the decision tree only provides an approximate 

explanation for the neural network prediction. Furthermore, as the number of inputs 

increases the number of nodes in the decision tree increases rapidly, which might lead 

to decision trees that are difficult to interpret. 

2.1.2 Feature Relevance 

Feature Relevance involves calculating the importance of the input features to the 

final output. There are a variety of methods that have been proposed for calculating 

feature relevance. Some of the most popular methods are presented below. 

2.1.2.1 Deep Taylor Decomposition 

Deep Taylor Decomposition [27] produces a decomposition of the neural network 

output on the input features. The idea here is to calculate how much each input 

contributes to the output. This is done by redistributing the predicted output into the 

input features by performing a backward pass on the network using a predefined set of 

rules [27, 28]. i.e., by redistributing the output to the neuron in the previous layer, then 
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redistributing this value to its input neurons in the previous layer and so on, (depicted 

in Figure 2-3).  

In Figure 2-3, the output that can be redistributed from arbitrary neuron 
jx  to the 

collection of neurons ( )i ix  that are inputs to this neuron can be defined as a first-order 

Taylor expansion. Hence, the propagation rule for the Deep Taylor expansion can be 

expressed as follows. 

 
' ''
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    (2.1) 

Where ijw+
are the weights between the neurons i  in layer l  and neuron j  in layer 

1l + , the + sign indicates that all the weights are forced to be positive.  

One point to note here is that this method shows all the features and their 

contribution. In cases where there are many input features, it can become tough to 

 

Figure 2-3: Deep Taylor Decomposition [28] 
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distinguish the most important features. The second point to note here is that methods 

such as Deep Taylor Decomposition which rely on gradients, which only measure the 

susceptibility of the output to changes in the input and might not necessarily coincide 

with those areas on which the network bases its decision [29]. The last point here is 

that the algorithm can be challenging to understand to a lay user and they would need 

the help of an expert to understand it. 

2.1.2.2 Layer wise Relevance Propagation 

Layer-wise Relevance Propagation (LRP) [30] uses the idea of relevance 

redistribution. It starts with a relevance score at the output and backpropagates it 

through the network by calculating the relevance score for each subsequent layer of the 

network using the relevance score and parameters from the previous layer. The formula 

for calculating the relevance score is given below 

 
i ij

i j

j i ij

i

x w
R R

x w
=

+



     (2.2) 

Where, ix is the activation value of the neuron in layer l , 
ijw weight of the 

connection between neuron i  in layers l  and neuron j  in layer 1l + , 
jR  is the 

relevance score for each neuron in layer 1l +  and iR  is the relevance score for each 

neuron in layer l . 

Like the Deep Taylor decomposition, LRP shows all the relevant input features and 

their relevance scores. This means that it can become difficult to distinguish the most 

important feature when there are many relevant input features [15]. 



15 

 

2.1.2.3 Deep LIFT 

Another example of feature relevance is Deep LIFT [31], where the activation of 

each neuron is compared to a reference activation, and the difference between these 

two values is used to calculate a score. This score is used to calculate the feature 

importance by backpropagating these values from the output to the input features. The 

reference values for all hidden units are calculating during a forward pass of the neural 

network, using a baseline input. The relevance values for each of the neuron layers is 

calculated using the following formula. 

 
ˆ

ˆ

i ij i ij

i j

j i ij i ij

i i

x w x w
R R

x w x w

−
=

+

 

    (2.3) 

Where ix is the activation value of the neuron in layer l , ˆ
ix is the reference activation 

value of the neuron in layer l ,
ijw weight of the connection between neuron i  in layers 

l  and neuron j  in layer 1l + , 
jR  is the relevance score for each neuron in layer 1l +  

and iR  is the relevance score for each neuron in layer l . 

One point to note here is that this method shows all the features and their 

contribution. In cases where there are many input features, it can become extremely 

hard to distinguish the most important features. Another point here is that the algorithm 

can be difficult to understand to a lay user and they would need the help of an expert 

to understand it. 

2.2 Interpretable Models 

The second approach to achieving XAI is to use models that are inherently 

interpretable or explainable. Some of these models are listed below. 
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2.2.1 Linear/Logistic Regression     

Linear Regression is used to predict the target output as a weighted sum of the 

feature inputs. Logistic Regression is an extension of linear regression for classification 

model used to predict a dependent variable which is binary in nature [32].  

Linear Regression can be used to model the relationship between a target y and the 

input features 
1 2( , ,..., )pX x x x= . The learned relationship between them can be written 

as follows [32] [33]. 

 
0 1 1 ... p py x x   = + + + +    (2.4) 

Where the predicted output is the weighted sum of its p  input features, the 

coefficients represent the learned feature weights.  An example of linear regression 

with a single independent variable ( 1p = ) is depicted in Figure 2-4. For a single 

independent variable equation (2.4) can be simplified to the equation of a line. 

 

Figure 2-4: Linear Regression with one independent variable [32] 
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For logistic regression/classification, the right side of the equation is wrapped into 

the logistic function. This forces the output to assume only values between 0 and 1 [32] 

[33]. 

 
( )

( ) ( )

0 1 1

1
( 1)

1 exp( ( ... ))

i

i i

p p

P y
x x  

= =
+ − + + +

  (2.5) 

The model assumes that the input and the output variable have a linear relationship. 

This makes it easy to create explanations for these models as long as the size of the 

inputs is limited. However, as the number of input features increases, it becomes 

difficult to understand the explanations. Hence, linear/logistic regression models 

require feature selection for inputs with a large number of features. Another problem 

with these models is that they can only be used to represent linear relationships. 

Moreover, any nonlinear input or interaction must be handcrafted and provided to the 

model.  

2.2.2 Decision Trees 

Decision trees are hierarchical structures where the data is split multiple times based 

on certain cut off values for the input features. These split-off data are formed into 

subsets which form the nodes of the decision tree. The final subsets are called terminal, 

or leaf nodes and the intermediate subsets are called intermediate nodes (depicted in 

Figure 2-5). The average outcome of these nodes is used to predict the outcome of the 

leaf nodes. 

There are various algorithms that can be used to train a decision tree. The algorithm 

that is most commonly used to train decision trees is the classification and regression 

trees (CART) algorithm [34]. In CART, the following formula describes the 

relationship between the output y and the input features x [32]. 
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1

ˆˆ ( ) { }
n

i i

i

y f x c I x R
=

= =     (2.6) 

Where each instance falls into exactly one leaf node (=subset iR ). { }iI x R is the 

identity function that returns one if x is in the subset iR  otherwise it returns 0. If an 

instance falls into a leaf node iR , the predicted outcome is ˆ
iy c= , where lc  is the 

average of all training instances in leave node iR [32]. 

Decision trees have been used in a variety of context due to their interpretability, 

even experts from fields other than computation and AI are comfortable interpreting 

their outputs [35]. However, their poor generalization ability in comparison to other AI 

models makes them difficult to recommend in scenarios where predictive performance 

is a design driver. Tree ensembles can overcome this problem, but they have poor 

 

Figure 2-5: Decision Tree [32] 
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interpretability which means post hoc models have to be used. Another problem with 

decision trees is that as the number of input features increases the number of nodes in 

the tree increases, which means that decision trees can become very hard to interpret 

for inputs with a large number of features[3]. Hence, decision trees require feature 

selection for inputs with a large number of features. 

2.2.3 Bayesian Models 

A Bayesian model represents the probabilistic relationship between a set of 

variables. This means that Bayesian models can convey a clear representation of the 

relationship between the input features and the target outputs [14]. They usually take 

the form of a probabilistic acyclic graphical model whose edges represent the 

probabilistic relationship between a set of variables [14]. Formally, if an edge (A,B) 

exists in the graph connecting random variables A and B, it means that P(B|A) is a 

 

Figure 2-6: Bayesian network for the car start problem [36] 



20 

 

factor in the joint probability distribution. Bayesian networks also satisfy the local 

Markov property, which means that a variable is conditionally independent of its non-

descendent variables. Hence, the Joint probability distribution can be written as follows 

[36]. 

 
1 1 1

1

( ,..., | ) ( | ,..., , ) ( | , )
n

n i i i i

i

p x x p x x x p x  −

=

= =   (2.7) 

Where for every variable ix  there will be a subset 1 }{ ,..,i nx x  such that ix  and 

1,.., nx x  are conditionally independent. 

 For example, Figure 2-6 represents a Bayesian network for the car start problem. 

Where P (Turn Over | Battery, Gauge) = P(Turn Over | Battery) since Turnover is 

conditionally independent of Gauge, given Battery. P (Start | Fuel, Turn Over, Battery, 

Gauge) = P (Start | Fuel, Turn Over) since Start is conditionally independent of Battery 

and Gauge given Fuel and Turn over, etc. 

This means that Bayesian Networks are easy to understand when the number of 

variables is small, but as the number of variables increases, the network becomes more 

and more complex. This means that explanations extracted from very large Bayesian 

networks can be hard to understand. Hence, Bayesian networks require feature 

selection for inputs with a large number of features. 

2.2.4 K-Nearest Neighbours 

K-Nearest Neighbours (KNN) deals with classification problems in a 

methodologically simple way: it predicts the class of a test sample by voting the classes 

of its K nearest neighbours (where the neighbourhood relation is deduced by a measure 

of the distance between samples). When used in the context of regression problems, 
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the voting is replaced by an aggregation (e.g. average) of the target values associated 

with the nearest neighbours [14]. The assumption here is that similar objects exist in 

close proximity to each other. A commonly used metric for regression problems is 

Euclidean distance. For classification problems, other metrics such as the overlap 

metric or Hamming distance can be used [37]. 

For example, in Figure 2-7 we are trying to identify the class of green 

square(unknown), assuming that k=4, among the four nearest neighbours of the 

unknown, three members are class A and only one member who belongs to class B is 

close to the unknown. Hence, the unknown object is assigned to Class A. 

In terms of model explainability, it is important to observe that predictions generated 

by KNN models rely on the notion of distance and similarity between examples, which 

 

Figure 2-7: K-Nearest neighbour [37] 
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can be tailored depending on the specific problem being tackled. One must keep in 

mind that KNN’s class of transparency depends on the features, the number of 

neighbours and the distance function used to measure the similarity between data 

instances [14]. A very high K impedes a full simulation of the model performance by 

a human user. Similarly, the usage of complex features or distance functions would 

hinder the decomposability of the model, restricting its interpretability [14]. 

2.2.5 Fuzzy Logic 

Fuzzy Logic systems are rule-based systems which can be used to model imprecise 

and uncertain data. They try to mimic human thinking, although rather than trying to 

represent the brain’s architecture as is done with a neural network, the focus is on how 

humans think in an approximate rather than precise way [1]. This is done by modelling 

uncertainty into if-then rules that describe a given behaviour into a human-readable 

format.  

A good example would be a decision that a human might take while driving a car 

which could be the following rule “If the distance to the car ahead is low and the road 

is slightly slippery Then slow down”. The numerical meanings of “low”, “close” and 

“slow down” will differ from driver to driver. Furthermore, if a driver were to be 

interviewed about the numerical values associated with these linguistic labels, they 

 

Figure 2-8: A Typical Interval Type-2 Fuzzy Logic System [1]  
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would struggle to quantify them. Amazingly, humans are nevertheless able to 

communicate with these ill-defined and vague linguistic labels and do not query the 

exact values when they discuss them. In fact, these uncertain concepts allow humans 

to be able to perform very sophisticated tasks such as driving cars or underwriting 

financial applications [1]. 

A Typical Fuzzy Logic System (FLS) is depicted in Figure 2-8; it contains five 

components: fuzzifier, rule base, inference engine, type-Reducer and a defuzzifier. A 

T1FLS is very similar to the system depicted in Figure 2-8, the only difference being 

that there is no type-Reducer in a T1FLS and it employs type-1 fuzzy sets in the input 

and output of the FLS [38]. 

The IT2FLS works in the following way: the crisp inputs in the data are first 

fuzzified into an input type-2 fuzzy set. A type-2 fuzzy set is also characterized by a 

membership function, but unlike a type-1 MF, the type-2 fuzzy sets are three 

dimensional and include a Footprint of Uncertainty (FOU).  An interval type-2 fuzzy 

set [39], depicted in Figure 2-9, is used to represent the inputs and outputs of the 

IT2FLS. As seen in Figure 2-9, the membership for an Interval Type-2 fuzzy set outputs 

an interval, [0.6,0.8] rather than the crisp number produced by Type-1 fuzzy sets. 

Once the inputs are fuzzified, the inference engine then activates the rule base using 

the input type-2 fuzzy sets and produces the output type-2 fuzzy sets. There is no 

 

Figure 2-9: Interval Type-2 Fuzzy Set [1] 



24 

 

difference between the rule base of a T1FLS and a type-2 FLS except that the fuzzy 

sets are interval type-2 fuzzy sets instead of type-1 fuzzy sets. 

In the final step, the output type-2 sets produced in the previous steps are converted 

into a crisp number. There are two methods for doing this; the first method is the 

conventional two-step process where the output type-2 sets are converted into type-

reduced interval type-1 sets followed by defuzzification of the type reduced sets. The 

second method is the direct defuzzification process which was introduced because of 

the computational complexity of the first method. There are different types of type 

reduction and direct defuzzification [38]. 

It is important to note that the number of rules and the number of antecedents per 

rule have a bearing on the interpretability of the model. As the number of rules and 

antecedents increase the model becomes less and less interpretable and reducing the 

number and size of rules by optimisation can improve the interpretability but 

sometimes at the cost of accuracy. Fuzzy Logic will be discussed in much more detail 

in Chapter 3. 

2.3 Model Induction 

For AI models that are not inherently interpretable, one method to make them 

interpretable is to use model induction through model agnostic methods. These 

methods are designed such that any model can be plugged in with the intent of 

extracting explanations. 

2.3.1 Local Interpretable Model-Agnostic Explanations (LIME) 

LIME [40] is a locally interpretable surrogate model, where an interpretable AI 

model is trained to approximate the predictions of a black-box model. LIME 
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explanations are locally interpretable, i.e., the model is trained to provide good 

explanations for individual predictions, but it does not have to provide good 

explanations globally. This kind of accuracy is also called local fidelity [32]. 

Mathematically, local surrogate models with interpretability constraint can be 

expressed as follows [32]. 

 ( )exp ( ) arg min ( , , )x
g G

lanation x L f g g


= +   (2.8) 

Where f  is the prediction of the original model (e.g. Deep Neural Network), g  is 

the prediction of the interpretable model (e.g. decision tree) with x  as the size of the 

neighbourhood around instance x , ( )g is the model complexity and L is the loss 

function. LIME is used to optimize the loss part with the complexity and size of 

neighbourhood determined by the user. The complexity of the model is generally kept 

low by using a low number of features to create the interpretable model. 

For training the local surrogate model LIME models the behaviour of the underlying 

black-box model by inducing perturbations on the input, i.e., add small variation to the 

input data. LIME generates a new sample dataset (depicted as black dots in Figure 

2-10) using these new inputs for the corresponding original black box model prediction 

(depicted as a yellow dot in Figure 2-10). The new sample dataset is weighted based 

on the proximity to the original target input, in the figure the size of the dots increases 

as they get closer to the black box model prediction. These weighted samples are then 

used to train an interpretable model to provide explanations. The interpretable model 

can be anything such as decision trees, fuzzy logic, etc. The interpretable model is 

trained on a reduced the number of features to reduce the complexity of the model. 
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Increasing the number of features improves the fidelity of the local surrogate but at the 

cost of explainability. 

LIME uses an exponential smoothing kernel to define the weight or proximity of the 

new inputs to the original target input. The kernel width defines the size of the 

neighbourhood, i.e., the new inputs must be within the neighbourhood to influence the 

interpretable model. Determining the kernel width is a design parameter that greatly 

influences the fidelity of the model. Hence, it has to be chosen with care as changes to 

the kernel width have a great influence on the explanations [32]. The next problem with 

LIME is that the explanations are not consistent, i.e., when the same process is repeated, 

the explanations provided can vary greatly [32].  

 

Figure 2-10: LIME Algorithm: Generated sample data for training local model [32] 
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2.3.2 Anchor Local Interpretable Model-Agnostic Explanations  

Anchor Local Interpretable Model-Agnostic Explanations (aLIME) [42] [41] is a 

method where model agnostic explanations are provided by easy to understand if-then 

rules, and these rules are called anchors. An Anchor is a rule that sufficiently "anchors" 

the prediction locally, i.e., changes to variables other than the anchors does not change 

the prediction. Like LIME, the aLIME approach uses a perturbation-based strategy to 

generate if-then rules or anchors as local explanations for predicting the behaviour of 

black-box models. These rules are reusable since they are scoped: anchors include the 

notion of coverage, stating precisely to which other, possibly unseen, instances they 

apply [32]. An anchor can be formally defined as follows [32] [41]. 

 
( | ) ( ) ( )[1 ] , ( ) 1

xD z A f x f zE A x=  =     (2.9) 

Where x  represents the prediction being explained, A  represents a set of 

antecedents, i.e., a rule or anchors, such that ( ) 1A x =  when all the feature predicates 

of A  correspond to x ’s feature values, f  represents the AI model being explained, 

which can be queried to get the predictions for x  and its perturbations. (. | )xD A  

 

Figure 2-11: Anchors generated for keywords “not” and “bad” [41] 
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indicates the distribution of neighbours x  matching A . 0 1   specifies a threshold 

and only rules that achieve a local fidelity greater than   are considered valid [32]. 

For example, in Figure 2-11, x  = “This movie is not bad”, ( )f x  = Positive, ( ) 1A x =  

where {" "," "}A not bad= . Let (. | )D A  denote the conditional distribution when the 

rule A  applies (e.g. similar texts where “not” and “bad” are present, Figure 2-11 

bottom) [41]. Then the anchor A  is easy to apply: if words “not” and “bad” are present, 

then the model will predict positive and if either (or both) words are not present then 

the model prediction is unknown. 

Although anchors mathematical description may seem straightforward, generating 

particular rules is infeasible as it would require evaluating 
( ) ( )1f x f z=

 for all (. | )z D A  

[32]. Therefore, the authors propose to introduce a probabilistic definition (equation 

(2.10)) where anchors satisfy the precision constraint with high probability. 

 
( | ) ( ) ( )( ( ) ) 1 ( ) [1 ]

xD z A f x f zP prec A with prec A E  =  − =   (2.10) 

If multiple anchors satisfy the criterion, the anchor which describes a larger part of 

the search space is preferred, i.e., one with larger coverage [41]. 

The main advantage of the aLIME approach over LIME is that it uses IF-Then rules 

which are easy to interpret (even for laypersons) [32]. However, the IF-Then rules 

anchor model presented in [41], use crisp logic and thus will struggle with variables 

which do not have clear, crisp boundaries, like income, age, etc. Also, the approach in 

[41] will not be able to handle models generated from a big number of inputs. 

Furthermore, explaining the prediction with just an anchor IF-Then rule does not give 

a full picture about the decision as for example in case of classification problems, there 
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are always pros and cons which humans weigh in their minds and take a decision 

accordingly [1]. 

2.3.3  SHAP 

SHAP (SHapley Additive exPlanations) [43] ranks importance or relevance each 

feature has to the prediction or output of the model to be explained. It is based on 

calculating the contribution of input features to each prediction using Shapely values 

(Game Theory) [44].  Shapely values tell us how to distribute the prediction among the 

features fairly. SHAP specifies the explanation as [44]: 

 0

1

( ') '
M

j j

j

g z z 
=

= +     (2.11) 

where g  represents the explanation model, ' {0,1}Mz   represents the simplified 

feature vector, M  represents the maximum feature size and 
j R   represents the 

feature attribution for a feature j , the Shapley values. The simplified features used here 

could be individual features or groups of features depending on the type of data; for 

example, for image data, super pixels are used as the simplified features.  

To calculate the Shapley values, we simulate that only some features values are 

playing ("present") and some are not ("absent") creating the simplified feature vector 

[32]. A linear model is then trained to represent these values, to calculate the 
j

(shapely values). In the simplified feature vector, when the feature values are present, 

then the value of that feature is picked from the input x  for which the explanation is 

being generated. When the feature values are absent, they are replaced by random 

values from some of the other inputs to the original model. 
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One method for calculating the shapely values is by using Kernel SHAP. Kernel 

SHAP calculates the shapely values in 5 steps listed below [32]. 

• A Sample simplified feature vector is created , {1,.... }' {0, } .1 ,M

kz k K  (1 = 

feature present in coalition, 0 = feature absent). 

• A prediction is generated for each 'kz  by first converting 'kz to the original feature 

space (1’s are replaced by the feature values from x  (original input for which we 

are generating the explanation), 0’s are replaced by feature values from a random 

input) and then applying the model f : ( ( ' ))x kf h z  

• Compute the weight for each 'kz with the SHAP kernel. 

• Fit weighted linear model. 

• Return Shapley values 
j , the coefficients from the linear model. 

The intuition behind this is: We can learn about individual features by studying their 

effects in isolation. If a simplified feature vector consists of a single feature, we can 

learn about that features' isolated main effect on the output prediction. If a simplified 

feature vector consists of all but one feature, we can learn about that features' total 

effect (main effect plus feature interactions). The SHAP kernel is defined as follows: 

 

Figure 2-12: SHAP explanations [43]  
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Where M represents the maximum simplified feature vector size and | ' |z  

represents the number of features present in instance 'z . Lundberg and Lee show that 

a linear regression with this kernel weight yields Shapley values [43] [32]. 

The linear model g is trained by optimizing the following loss function L: 

 2

'

( , , ) [ ( ( ')) ( ')] ( ')x x x

z Z

L f g f h z g z z 


= −   (2.13) 

where Z represents the training data. The estimated coefficients of the model, the 
j  

are the Shapley values. 

The main advantage of SHAP is that SHAP has a solid theoretical foundation in 

game theory. If the prediction is fairly distributed among the feature values, then we 

get contrastive explanations that compare the prediction with the average prediction. 

The disadvantages of SHAP are that first, it takes a long time to calculate the SHAP 

values, so it is impractical to use it for many instances. The second disadvantage is that 

it ignores the correlation between the input features; this could lead it to put emphasis 

on unlikely data points [32]. The third disadvantage is that when the inputs have many 

features, it can become very hard to distinguish between the features using the feature 

importance scores. 
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2.3.4 Partial Dependence Plot 

The partial dependence plot (PDP) shows the effect of one or two features on the 

output of a machine learning model[45]. A partial dependence plot can show the 

relationship between an input feature and the output. For example, when applied to a 

linear regression model, partial dependence plots always show a linear relationship 

between the selected features and the output [32]. 

The partial dependence function for regression is defined as [32]: 

 ˆ ˆ ˆ( ) [ ( , )] ( , ) ( )
s cx s x s c s c cf x E f x x f x x dP x= =    (2.14) 

The sx  represents the features that are being plotted in the PDP and cx  represents 

the rest of the input features. Usually, only one or two features are plotted in the PDP 

represented by the set S. The feature(s) in S are those features for which we want to 

know the effect on the prediction. PDP is drawn by marginalizing the output predictions 

over the distribution of the features in set C so that the plot only shows the relationship 

between the input features in set S and the output predictions. This allows us to create 

plots that are only dependent on the input features represented in the set S [32]. 

The partial function ˆ ( )
sx sf x  is estimated by calculating averages in the training data, 

also known as the Monte Carlo method [32]: 

 
1

1ˆ ˆ( ) ( , )
s

n
i

x s s c

i

f x f x x
n =

=     (2.15) 

Where i

cx  represents the features which are marginalised over the output 

predictions. n is the number of records in the dataset.  
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In classification problems, the partial dependence plot displays the probability of a 

certain class. An easy way to deal with multiple classes is to draw one plot per class 

[32]. 

One of the drawbacks of the PDP is that we can only draw two features per plot. 

This means that for inputs with many features, we will have to create a large number 

of PDP plots. This means that PDP becomes extremely hard to understand for inputs 

with a large number of features. The second major drawback is that the features for 

which the plots are being created are assumed not to be correlated to the rest of the 

features. If the features are correlated, then the plot might contain points that are 

unlikely[32]. 

2.3.5 Individual Conditional Expectation 

ICE (Individual Conditional Expectation) [46] plots are equivalent to PDP for 

individual instances. An ICE plot (depicted in Figure 2-13) visualises each individual 

instance or prediction as a line, compared to one line overall in PDP. A PDP (depicted 

as the Yellow line in Figure 2-13) is the average of all lines of an ICE plot. 

The values for a line on the ICE plot can be computed by keeping all other features 

the same, creating variants of this instance by replacing the values (generally from a 

grid) and fetching the predictions for the new input from the black box [32].  

PDPs can show the average relationship between a feature and the model 

predictions. This only works well if the interactions between the features for which 

the PDP is calculated and the other features are weak. In the case of interactions, the 

ICE plot will provide much more insight [32].  
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The advantage of Individual conditional expectation curves is that they are more 

intuitive to understand than partial dependence plots as one line represents the 

predictions for one instance if we vary the feature of interest. They can also uncover 

heterogeneous relationships, unlike PDPs [32].  

The disadvantage of ICE plots is that they can only display one feature meaningfully 

because plotting the third dimension requires the use of a three-dimensional plot and 

we would not be able to distinguish the features of the plot. Multiple ICE plot for each 

feature can be drawn, but as the number of features increases, it becomes increasingly 

difficult to understand. 

2.3.6 Interpretable Mimic Learning  

Another approach to model induction is Interpretable mimic learning [47]. The idea 

behind this approach (depicted in Figure 2-14) is to use knowledge distillation to 

transfer the knowledge of the DNN or another black-box model to a simpler, more 

interpretable model. This is done by training the student/mimic model on the soft labels 

 

Figure 2-13: ICE plot of survival probability by Age [32] 
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generated from the outputs of the parent/base model. The soft label, in contrast to a 

hard label from the raw data, is a real value output of the teacher model, whose values 

are usually in the range [0,1] [47].  

 

Figure 2-14: Interpretable Mimic Learning 

The authors note that a shallow neural network is not as accurate as a Deep network 

when trained on the same training data. However, the accuracy of the shallow neural 

network trained on soft labels is similar to or better than the deep model [47]. The 

authors suggest that this is because some potential noise and error in the training data 

(input features or labels) may affect the training efficacy of simple models [47]. The 

teacher model may eliminate some of these errors, thus making learning easier for the 

student model. Soft labels from the teacher model are usually more informative than 

the original hard label (i.e. 0/1 in classification tasks), which further improves the 

student model [47]. 

The authors choose gradient boosting trees (GBT) as the student model. Gradient 

boosting machines are a method which trains an ensemble of weak learners to optimize 

a differentiable loss function by stages[47]. This is done to ensure that the student 

model retains the accuracy of the original DNN.  

We must note here that GBT is an ensemble of decision trees. This means that, 

although it retains some of the interpretability of the decision trees, it is a much more 
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complex to interpret. Furthermore, it becomes more complex to interpret as the size of 

the DNN increases. 

2.4 Hybrid Deep Learning and Fuzzy Logic Systems 

Semantic representation of the predictions such as the use of natural language seems 

to be the best way of generation explanations [16]. One way of generating these types 

of explanations is to use IF-Then rules, which are intuitive to humans and usually 

require low effort to comprehend and apply [42]. However, IF-Then rules that use crisp 

logic will struggle with variables that have noisy boundaries, such as income, age, etc. 

Furthermore, explaining the prediction with just an IF-Then rule does not give a full 

picture about the decision as an example in case of classification problems, there are 

always pros and cons which humans weigh in their minds and take a decision 

accordingly. Also, another major problem with crisp logic is the inability to understand 

the model behaviour in the neighbourhood of the instance and how the prediction can 

change if certain features are changed, etc[1]. 

From the above discussion, offering users if-then rules that include linguistic labels 

appears to be an approach that can facilitate the explainability of a model. The AI 

technique that satisfies these conditions is the fuzzy logic system (FLS). However, 

when there are many features in the input data FLS can become opaque as modelling 

such data will require many rules. There are, of course, methods to mitigate this 

problem using methods such as [48, 49] but they still require feature selection to be 

effective [1]. 
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A good way to mitigate the problems mentioned about is to combine connectionist 

and symbolic paradigms [14, 50], i.e., combining high performance AI models such as 

deep learning with fuzzy logic systems. There are several advantages to this approach.  

• Since fuzzy logic systems use linguistic IF-Then rules, it makes the system 

inherently interpretable.  

• The system can be trained using both labelled and unlabelled data.  

• The system can handle the uncertainties inherent in the data since it uses fuzzy 

logic. 

• Since the system is composed of transparent rules and membership functions, 

which can be relatively easily changed, if there are any problems. 

• There is no need for feature selection for inputs with a large number of features. 

Combining multiple machine learning algorithms to solve problems has been an 

active branch of AI research for several years [50, 51]. Deep learning has been 

combined with many AI algorithms such as random forests[52], decision trees  [53] 

etc, including with FLSs. In the following sections, we introduce some of the 

techniques or method that have combined Deep learning with Fuzzy logic in the 

literature. 

2.4.1 Fuzzy Restricted Boltzmann Machine 

A Fuzzy Restricted Boltzmann Machine (FRBM) [54] is a neural network where the 

connection weights and bias of the network are fuzzy parameters (depicted in Figure 

2-15). The FRBMs can then be stacked to create a Deep Network. This method 

provides several advantages over a Restricted Boltzmann Machine (RBM). First, the 

FRBM is better than RBM in modelling probabilities; specifically, the RBM is treated 
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as a special case of FRBM when no uncertainty exists in the FRBM model. Second, 

the FRBM model is more robust when compared to an RBM as it has the inherent 

ability to models uncertainty; it will be more robust when encountering noisy data. 

These advantages spring from the fuzzy extension of the connection weights and bias 

of the neural network layers [54].  The Interval type-2 versions of the FRBM have been 

proposed in [55, 56]  These advantages spring from the fuzzy extension of the 

connection weights and bias of the neural network layers [54], which are shown to 

outperform the FRBM.   

The main drawback of this system and its IT2 versions is that it does not enhance 

the interpretability of the Deep Neural Network and only uses the uncertainty 

modelling capabilities of the Fuzzy logic. This means that the weights and biases 

cannot be directly used to gain insight into the relative importance of the inputs or 

underlying relationships between the inputs and the predicted outputs [57]. Additional 

tools such as the methods described in Sections 2.1 or 2.3 have to be used to gain insight 

into the model and provide explanations for the predictions.  

2.4.2 Fuzzy Deep Neural Network 

Fuzzy Deep Neural Network (FDNN) [58] is a method where the neural network 

representation and a fuzzy representation are trained at the same time. As depicted in 

 

Figure 2-15: Fuzzy Restricted Boltzmann machine [54] 
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Figure 2-16, The outputs of these two representations are combined and become the 

input for the next set of layers called the fusion layer. According to the authors, there 

are several advantages to using Fuzzy Deep Neural Network, first, since a fuzzy 

representation of the data is used the uncertainties in the data. Second, since the nodes 

in the various layers interact with each other in uncertain ways, the fuzzy representation 

will be able to account for these uncertainties. Third, since the parameters that represent 

the relationship between nodes from adjacent layers are fuzzy numbers and the learning 

process of the fuzzy representation is extended to the wider network, it results in an 

improvement in the fitness of the joint probability distribution. This, when combined 

with the inherent advantages of Deep learning, the authors have shown that the FDNN 

has superior performance when dealing with noisy or uncertain datasets [58]. 

The main drawback of FDNN is that even though the fuzzy layers are interpretable, 

the neural network layers are difficult to interpret. So, when the output of the two 

different layers is combined, the model becomes opaque. Further, since the FDNN uses 

 

Figure 2-16: Fuzzy Deep Neural Network [58] 
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fusion layers, the methods described in Section 2.1 cannot be used to provide an 

explanation for the outputs. So, the methods used in Section 2.3 have to be used to 

provide explanations for the FDNN. Hence, this method can only be used to enhance 

the performance of Deep learning and not its interpretability. 

2.4.3 Fuzzy Deep Learning 

Fuzzy Deep Learning (FDL) (depicted in Figure 2-17) is a model proposed by 

Seonyeong Park and colleagues in [59]. In their paper they propose a four-layer system 

where the first layer calculates the membership grades of the inputs using membership 

functions, the second layer calculates the firing level of the rules using the t-norm 

operation, the third layer computes linear regression functions by normalizing weights 

and finally, the fourth layer provides the output by summing the outcomes according 

to all fuzzy if-then rules [59]. The main difference between this technique and the 

neuro-fuzzy techniques is the use of the linear regression function in the third layer. 

The authors show that this new method outperforms other traditional methods in 

predicting tumour movement during radiotherapy [59].  

 

Figure 2-17: Fuzzy Deep Learning [59] 
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There are multiple drawbacks to this method, such as it can only be used for 

supervised learning, and there is no mention of how the output is connected to the 

inputs. So, there are improvements required before this method can be used for XAI 

applications. 

2.4.4 Takagi Sugeno Deep Fuzzy Network 

The Takagi Sugeno Deep Fuzzy Network (TSDFN) (depicted in Figure 2-18), was 

proposed by Shreedhar Kumar Rajurkar and Nishchal Kumar Verma in [60]. The 

authors explain their concepts using a three-layered TSDFN where the layers are input, 

hidden and output. They propose that the number of nodes in the hidden layer may vary 

based on the applications and each node in the hidden layer is a Takagi Sugeno Fuzzy 

Logic System (TS FLS). Furthermore, the output layer is a single node or multiple 

nodes depending on the desired output, and these nodes are also TS FLS systems. This 

system is trained using a backpropagation algorithm. 

 

Figure 2-18: Takagi Sugeno Deep Fuzzy Network [60] 
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The system exhibits some level of interpretability, but since multiple layers are used, 

we do not know what the output of the hidden layers or input of the output layer 

represents. Another problem is that of rule explosion, i.e., the number of rules and 

membership functions increases exponentially as the number of features in the input 

increases. Which means that it becomes difficult to interpret as the number of input 

features increases. Hence, there are improvements needed before this system can be 

used for XAI applications. 

2.4.5 Fuzzy Deep Belief Network 

The Fuzzy Deep Belief Network (FDBN) (depicted in Figure 2-19), was proposed 

by Shusen Zhou and colleagues in [62]. The authors propose a system where they first 

train a Deep Belief Network (DBN) using greedy layer-wise pre-training  [61]. Then 

two membership functions are created based on the mapping results of the trained 

 

Figure 2-19: Fuzzy Deep Belief Network [61] 
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DBN. Once the membership functions are trained, they are used to activate the (n-1) 

layer of the DBN. 

The authors claim that this method provides comparable performance to other AI 

algorithms [62]. The biggest drawback of this method is that it does not introduce any 

interpretability to the Deep Belief Network it uses fuzzy inputs to improve the accuracy 

of the DBN. Hence, this system cannot be used for XAI applications. 

2.4.6 Active Fuzzy Deep Belief Network 

Active learning is a machine learning technique that selects the most informative 

samples for labelling and uses them as training data [63]. Active FDBN combines 

Active learning with FDBN systems [62]. Where first the FDBN is trained using a 

labelled dataset and all the unlabelled data. Once the first FDBN is trained, the 

unlabelled data set is analysed, and some of the unlabelled data is converted into 

labelled data based on a set of criteria [62]. After that, the FDBN is retrained using the 

newly labelled and the unlabelled data. The authors have shown that using this method 

improves the performance of the FDBN. This method has the same drawback as the 

FDBN method, i.e. it is not interpretable hence cannot be used for XAI applications. 

2.4.7 Pythagorean Fuzzy Deep Boltzmann Machine 

The Pythagorean Fuzzy Deep Boltzmann Machine (PFDBM), was proposed by Yu-

Jun Zheng and his colleagues [64]. In this system, the weights in a Deep Boltzmann 

Machine are replaced with Pythagorean Fuzzy Numbers [65] represented by the 

weights in Figure 2-20.  

The authors claim that this algorithm provides competitive performance when 

compared to other algorithms in the field of passenger profiling [1]. They put forth 
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three reasons for using fuzzy logic in their model. First, fuzzified neural networks can 

handle inputs with fuzzy (labelled) or incomplete features [66], which are inevitable in 

passenger profilers [64]. Second, fuzzy parameters can improve the representation 

ability of DBM by supporting fuzzy probability distribution [67] over cross-layer units, 

as the principle of incompatibility asserts that high precision is incompatible with high 

complexity in dealing with complex systems, such as passenger profilers. Thirdly, the 

parameter learning of fuzzy DBM has a larger space than its crisp counterpart and thus 

will be more helpful in utilizing the merits of deep learning [64]. 

Mathematically the PFDBM can be represented as follows, given 1[ , , ]L= θ W W  

denotes the fuzzy parameters of the PFDBM shown in Figure 2-20, the fuzzy energy 

state 1{ , , , }Lv h h  of the model is defined as follows. 

  11 1 1

2

( , , , , )
L

T T
lL l l
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E −
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 = − −v h h θ v W h h W h   (2.16) 
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Figure 2-20: Pythagorean Fuzzy Deep Boltzmann Machine [65] 
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 This method has a major drawback in that it does not utilize the interpretability of 

Fuzzy models and only tries to solve the uncertainty and incompleteness of the training 

data. This means that the weights and biases cannot be directly used to gain insight into 

the relative importance of the inputs or underlying relationships between the inputs and 

the predicted outputs [57]. Moreover, additional tools such as the methods described in 

Sections 2.1 or 2.3 have to be used to gain insight into the model and provide 

explanations for the predictions. Hence, this method cannot be used as-is for XAI 

applications, and it will need further research to input interpretability into the algorithm 

[1]. 

2.5 Summary 

This chapter defines and explains the need for Explainable AI, and it also explains 

the three main methods that are being explored to achieve Explainable AI, Deep 

Explanations, Interpretable Models and Model induction.  

It explains that the methods used to achieve Deep Explanations, provide details 

about all the input features that affect the output and that there is no structure to these 

details. This might be useful in image recognition, but in other problems, it might be 

hard to distinguish the most important features.  

It explores the various existing interpretable models such as decision trees, fuzzy 

logic etc, and explains how they have lower performance when compared to their 

opaque counterparts and that they can also become opaque for inputs with a large 

number of features. 
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It explores the various model induction methods in the literature and explains that 

these methods are not suitable for use in regulated applications as they are generally 

achieved using surrogate models.  

It suggests an alternative to the above methods, combining the predictive power and 

embedded feature selection of the Deep Learning models with the explainability of 

Fuzzy Logic Systems. It explores the various methods that have been used in the 

literature to achieve this. It highlights that these methods have primarily focused on 

increasing the performance of Deep learning by taking advantage of the uncertainty 

modelling capability of fuzzy logic while not enhancing the explainability of the 

system.  

The next chapter will describe the Fuzzy Logic Systems in detail. 
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Chapter 3. An Overview on Fuzzy Logic 

Fuzzy Logic (FL) was first introduced by Lotfi Zadeh in his 1965 seminal paper 

‘Fuzzy Sets’ [68]. Zadeh describes Fuzzy sets as the non-binary classification of 

elements to classes; i.e., instead of classifying an element of a set as either belonging 

to a class or not, there is instead a degree of membership to that class [69].   

An example of non-binary classification might be “height” if there are three classes 

that define the term height, short, average and tall. One way to classify people as tall 

could be to say that anyone over 1.9 meters is tall. However, what about someone who 

is 1.89 meters? Should this person be classified as average? This classification would 

also change based on the context such as gender, age, location etc. In these situations, 

we use a non-binary classification or fuzzy sets to determine the degree of membership 

to class rather than use true or false to determine the class. 

Zadeh goes on to state that such imprecisely defined classes exist throughout the 

real world and play an essential part in human reasoning and decision-making 

particularly when it comes to pattern recognition, communication and abstraction [69].    

Fuzzy sets and systems are now widely used in many industries and fields to solve 

practical problems and are subjects of intense research by academics all over the world. 

Furthermore, Fuzzy rule-based systems, which are derived from fuzzy sets, have been 

demonstrated as a powerful design methodology [38]. 

A rule-based fuzzy logic system (FLS) processes its inputs nonlinearly, and an 

essential facet of FLSs is modelling imprecise and uncertain data and representing it 

with a set of if-then rules to describe a given behaviour in human-readable form. A 
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Fuzzy rule has the structure “IF p THEN q”, in which p is called the rule’s antecedent 

and q is called the rule’s consequent.  

An example of a fuzzy rule is “IF service is good and food is delicious THEN tip is 

high”. Here the terms “good”, “delicious” and “high” are called linguistic labels, and 

these values can be hard to define as everyone has different ideas about what a linguistic 

label constitutes. So, we use fuzzy sets and membership functions that describe them 

to define these linguistic labels. Two main types of fuzzy sets are used in this thesis, 

type-1, and type-2. Type-1 fuzzy sets are described by membership functions that are 

totally certain, whereas type-2 fuzzy sets are described by membership functions that 

are themselves fuzzy. The latter can be used to quantify the different kinds of 

uncertainties that can occur [38]. 

A FLS that is described entirely in terms of type-1 fuzzy sets is called a type-1 FLS, 

whereas a FLS that is described using at least one type-2 fuzzy set is called a type-2 

FLS. Type-1 FLSs are unable to directly handle rule uncertainties because they use 

type-1 fuzzy sets that are certain. Type-2 FLSs, on the other hand, can be used in 

circumstances where it is difficult to determine the exact membership functions of a 

fuzzy set [38].  

3.1 Uncertainty  

Fuzzy logic has been designed to handle uncertainty in many forms. In general, 

uncertainty comes in many guises and is independent of the kind of fuzzy logic, or any 

kind of methodology, one uses to handle it [70] [38]. 

The following are the sources of uncertainty that can occur in FLS [38]. 
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• Uncertainty about the meaning of the words used in the rules. 

• Uncertainty about the consequents used in the rules. 

• Uncertainty about the measurements that activate the FLS. 

• Uncertainty about the data, eg., missing or unreliable data, that are used to 

tune the parameters of the FLS. 

Uncertainty about the meaning of words might arise because words mean different 

things to different people [71], which means that FL must somehow use this uncertainty 

when it computes with words [38]. Type-1 FLS handles uncertainties about the 

meaning of words by modelling the words as type-1 membership functions. Once type-

1 membership functions are chosen, all uncertainty associated with it disappears [38]. 

On the other hand, Type-2 FLS handles uncertainties about the meaning of words by 

modelling the uncertainties. Although this is also totally precise, it includes a footprint 

of uncertainty that provides new degrees of freedom that allows type-2 FLS to handle 

uncertainty in new ways [38]. 

Uncertainty about the consequents arises because consequents are sometimes 

obtained from experts, by means of knowledge mining, or are extracted directly from 

data. Because experts do not all agree, a survey of experts usually leads to a histogram 

of possibilities for the consequent of rules. This type of uncertainty can be handled by 

a type-2 FLS [38]. 

Uncertainty in measurement can occur due to noise, as measurements are usually 

corrupted by noise, they can also occur due to the limitation of the measuring (for 

example, sensor resolution) system [38] [72]. Uncertainty in measurement can be 



50 

 

handled within the framework of a FLS by modelling them as fuzzy sets (either type-1 

or type-2) [38]. 

Finally, a FLS contains many parameters whose values must be set before the FLS 

is operational. One of the ways to do this is to make use of a set of data or training set. 

This set usually contains input-output pairs, and if these pair are generated from 

measurements, then they contain the same uncertainty as the measurements that trigger 

an FLS [38]. This means that the FLS must be trained using unreliable data. This type 

of uncertainty can be handled by using type-2 FLS [38]. 

3.2 Type-1 Fuzzy Logic Systems  

A fuzzy logic system (FLS) can be defined as a nonlinear mapping of an input 

feature vector into a scalar output. In a fuzzy logic system (depicted in Figure 3-1) the 

crisp inputs in the data are first fuzzified into an input fuzzy set; singleton fuzzification 

is commonly used as it simplifies the computation. Once the inputs are fuzzified, the 

inference engine then activates the rule base using the input fuzzy sets and produces 

the output fuzzy sets. In the final step, the output fuzzy sets produced in the previous 

steps are converted into a crisp number. Crisp numbers are real numbers with no 

 

Figure 3-1: Type-1 Fuzzy Logic System [38] 
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uncertainty associated with them. These numbers are essential for engineering 

applications, as an example in control systems. For example, the speed of a motor in 

Rotations per minute, the temperature in Celsius etc, are all examples of crisp number 

and they are needed as either inputs or outputs to the fuzzy logic system [69] [38].   

3.2.1 Linguistic Variables   

Zadeh describes linguistic variables as “variables whose values are not numbers but 

words or sentences in natural or artificial language. The motivation for the use of words 

or sentences rather than numbers is that linguistic characterizations are, in general, less 

specific than numerical ones.” [68].   

This means that numerical values can be classified under certain linguistic variables 

and still retain its contextual meaning. Given we use classification rather than true or 

false in fuzzy logic, a numerical value may be classified into two or more linguistic 

labels, but with different degrees of membership [69].  

In fuzzy logic systems, a linguistic variable is fully characterised by a quintuple (

, , , ,u X U g m ), where u is the name of the variable, X  is the set of linguistic terms of 

the linguistic variable u . g  is the syntactic rule for generating the linguistic terms, and 

m  is the rule that assigns the linguistic term x X  its meaning, ( )m x , is the fuzzy set 

on U , that is, : ( )m X F U→ , where ( )F U  denotes the set of fuzzy sets of U . u  is 

generally referred to as the linguistic variable [38]. 

We can use an example to illustrate: Let pressure (p) be interpreted as a linguistic 

variable. One might interpret this linguistic variable as the following terms p(pressure) 

= [weak, low, okay, strong, high] each term in the variable p(temperature) is 

characterised by a set in the universe of discourse U = [100 psi, 2300 psi]. We might 
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interpret weak pressure as below 300 psi, low pressure as between 300 psi and 1000 

psi, okay pressure as pressure between 700 and 1500 psi, strong pressure as between 

1300 and 2000 psi and high pressure as above 1700 psi.   

These terms can be characterised as fuzzy sets whose membership functions are 

shown in Figure 3-2. Measured pressure (p) values lie along the x-axis. In Figure 3-2, 

a vertical line from any measured value intersects at most, two linguistic labels or 

membership functions (see Membership Functions). For example, when p = 300 psi 

pressure can be described by the linguistic labels weak and low, but to different degrees 

of membership [38].   

3.2.2 Membership Functions  

Membership functions are functions that quantify the degree of membership of a 

numerical value to a linguistic term. Membership functions have the mathematical 

notation ( )F x  [38]. 

The most common geometric shapes used for defining membership functions are 

piecewise linear functions such as triangular or trapezoidal, Gaussian, bell-shaped, 

some of these are shown in Figure 3-3. Membership functions can be defined using a 

 

Figure 3-2: Membership Functions for Pressure [38] 
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variety of methods. Membership functions are sometimes chosen by the user based on 

their experience. The membership functions chosen this way vary quite drastically 

depending on the user’s experiences, perspectives, cultures, etc. Other method include 

polling a set of people, clustering using methods such as fuzzy c means clustering [73], 

designed using optimisation procedures [74], etc. 

Triangular Membership Functions are defined using the following formula [38]. 

 

( ) / ( )

( ) ( ; , , ) ( ) / ( )

0

A A

x a b a if a x b

x x a b c c x c b if b x c

if x cor x a

 

− −  


= = − −  
  

  (3.1) 

Trapezoidal Membership functions are defined using the following formula [38]. 
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0
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if b x c
x x a b c d

d x d c if c x d
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 

− −  


 
= = 

− −  
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 (3.2) 

Gaussian Membership functions are defined using the following formula [38]. 

 

Figure 3-3: Types of Membership Function a) Triangular b) Trapezoidal c) Gaussian d) Singleton  

[69] 
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Greater resolution is achieved by using more linguistic terms or membership 

functions. Membership functions are designed to overlap with each other. By doing 

this, we are able to distribute our decisions over more than one input class, which helps 

to make FL systems robust [69]. Membership functions are generally scaled between 

zero and unity, to ensure that the variables are normalised [69].  The choice of 

membership functions generally depends on the user’s preferences. However, we can 

use the partition theory put forward in [75] to determine the type of MFs to use, 

generally larger number of partitions indicates more degrees of freedom which might 

mean better performance. 

3.2.3 Fuzzy Set Theoretic Operations  

Fuzzy set theoretical operations, union, intersection and complement, are defined in 

terms of their membership functions [38] (depicted in Figure 3-4).  

Let A and B be two subsets of X. The union of A and B, denoted by 𝐴 ∪ 𝐵, contains 

all the elements in either A or B, i.e. [38].   

 
1

( )
0

A B

if x Aor x B
x

if x Aand x B
 

 
= 
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   (3.4) 

The intersection of A and B denoted 𝐴 ∩ 𝐵, contains all the elements that are 

simultaneously in A and B, i.e. [38]. 
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 

 
= 
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   (3.5) 

Let A  denote the complement of A; it contains all the elements, not in A, i.e. [38],   
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if x A
x

if x A

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
    (3.6) 

From these facts, it is easy to show that [38]: 

( ) max[ ( ), ( )]A B A BA B x x x    =    (3.7) 

( ) min[ ( ), ( )]A B A BA B x x x    =    (3.8) 

( ) 1 ( )AA
A x x  = −             (3.9) 

In fuzzy logic, union, intersection and complement are defined in terms of their 

membership functions. Let fuzzy sets A and B be described by their membership 

functions 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥). One definition of fuzzy union leads to the membership 

function [38]: 

( ) max[ ( ), ( )]A B A Bx x x   =    (3.10) 

Moreover, one definition of the fuzzy intersection leads to the membership function 

[38]:   

( ) min[ ( ), ( )]A B A Bx x x   =    (3.11) 

Fuzzy intersection can also be defined as the product of the two membership 

function as [38]:   

( ) ( ) ( )A B A Bx x x   =     (3.12) 
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Additionally, the membership function of the fuzzy compliment is [38]:  

( ) 1 ( )AA
x x = −     (3.13) 

3.2.4 Rules  

Fuzzy logic systems are rule-based systems. There are two main types of rule 

structures that are used in Fuzzy logic, one structure is attributed to Zadeh, and the 

other is attributed to Takagi and Sugeno [38]. In either case, the rules are expressed as 

a collection of IF-THEN statements. The IF-part of the rule is its antecedent, and the 

THEN part of a rule is its consequent.  

Suppose a fuzzy logic system has p  inputs 
1 1,..., p px X x X  and one output y Y

. Let us suppose it has M  rules, where the 
thl  Zadeh rule has the form [38]:  

1

1 1: ,..., 1,...,l l l

p pR IF x isF and and x isF THEN y isG l M=   (3.14) 

 

Figure 3-4: Fuzzy set theoretical operations a) Fuzzy sets A and B  b) A union B c) A intersect B d) 

B complement [38] 
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This rule represents a fuzzy relation between the input space 
1,...., pX X . and the 

output space, Y  of the fuzzy logic system [38].  

It is possible to cast “nonobvious” rules into complete rules [38]. Six such rules are 

summarised in the below section 

3.2.4.1 Incomplete IF rules 

Suppose we have created a rule base where there are p  inputs, where some of the 

rules have only a subset of m  antecedents, e.g. [38].  

1 1: ,..., ,m mR IF x isF and and x isF THEN yisG   (3.15) 

Such rules are called incomplete IF rules and apply regardless of 
1,...,m px x+

. They 

can be put into the format of the complete IF rule by treating the unnamed antecedents 

(e.g., 
1,...,m px x+

) as elements of the fuzzy set IN-COMPLETE (IN for short) where, by 

definition 𝜇𝐼𝑁 (𝑥)=1 for all 𝑥 ∈ 𝑋, i.e. [38].  

1 1

1 1 1

( ,..., , )

( ,..., .... , )

m m

m m m p

IF x is F and and x is F THEN y is G

IF x is F and and x is F and x is IN and x is IN THEN y is G+

(3.16) 

3.2.4.2 Mixed Rules  

Not all rules use the “and” connective; some use the “or” connective, and some use 

a mixture of both. The latter rules are called mixed rules. These rules can be 

decomposed into a collection of equivalent rules, using standard techniques from crisp 

logic. Suppose, for example; we have the rule [38]: 

1 1 1 1( ,..., ) ( .... ),m m m m p pIF x isF and and x isF or x isF and x isF THEN yisG+ +
   (3.17) 
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This rule can be expressed as the following two rules [38]:  

1

1 1

2

1 1

: ,..., ,

: .... ,

m m

m m p p

R IF x isF and and x isF THEN yisG

R IF x isF and and x isF THEN yisG+ +

  (3.18) 

Observe that both rules are Incomplete IF rules.   

3.2.4.3 Fuzzy Statement Rules  

Some rules do not appear to have antecedents; they are statements involving fuzzy 

sets. Hence, they are called fuzzy statement rules. For example, 𝑦 𝑖𝑠 𝐺 is such a rule. 

Clearly, this is an extreme case of an incomplete IF rule, and can therefore be 

formulated as [38]:   

1 .... ,pIF x is INand and x isIN THEN yisG    (3.19) 

3.2.4.4 Comparative Rules  

Some rules are comparative, e.g. [38] 

𝑇ℎ𝑒 𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑒 𝑥 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑒 𝑦. 

Such rules must first be formatted into IF-THEN rules; the preceding rule can be 

expressed as follows [38]: 

𝐼𝐹 𝑥 𝑖𝑠 𝑆, 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵. 

Where S is a fuzzy set representing smaller, and B is a fuzzy set representing bigger 

[38].    
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3.2.4.5 Unless Rules  

Rules are sometimes stated using the connective “unless”; such rules are called 

unless rules and can be put into the required format by using logical operators. For 

example, the rule [38]:   

 
1 1 ... p pyisGunless x isF and and x isF    (3.20) 

can be expressed as [38]:  

 
1 1( ... ),p pIFnot x isF and and x isF THEN yisG  (3.21) 

3.2.4.6 Quantifier Rules  

Rules sometimes include the quantifiers “some” or “all”; such rules are called 

quantifier rules. Because of the duality between propositional logic and set theory, rules 

with the quantifier “some” means that we have to apply the union operator to the 

antecedents or consequents to which the “some” applies, whereas rules with the 

quantifier “all” mean we have to apply the intersection operator to the antecedents or 

consequents to which the “all” applies [59].   

3.2.5 Fuzzifier  

The fuzzier maps a crisp point 1( ,..., )nx x x X=  into a fuzzy set xA  in U. There are 

two types of fuzzifiers: Singleton and Non-singleton [38].  

A Singleton fuzzifier is one in which ( ' ) 1
iX ix =  and ( ) 0

iX ix =  for i ix X and 

'i ix x  [38]. Singleton fuzzifier is the most commonly used fuzzifier.  

A non-singleton fuzzification in one in which measurement 'i ix x=  is mapped into 

a fuzzy number [38]. For which ( ' ) 1
iX ix =  and ( )

iX ix decreases from unity as ix  
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moves away from 'ix [38]. Non-singleton fuzzifiers are used in instances where the 

inputs are noisy or uncertain. 

Conceptually, the non-singleton fuzzifier implies that the given input value 𝑥𝑖′ is the 

most likely value to be the correct one from all the values in its immediate 

neighbourhood; however, because the uncertainty in the input due to noise, 

neighbouring points are also likely to be the correct, but to a lesser degree [38]. Figure 

3-5 illustrates singleton and non-singleton fuzzification.  

 

Figure 3-5: a) Singleton Fuzzification b) Non-singleton Fuzzification [76] 

  

3.2.6 Fuzzy Inference Engine  

In the fuzzy inference engine (which is labelled inference engine in Figure 3-1), 

fuzzy logic principles are used to interpret fuzzy IF-THEN rules into a mapping 

between the fuzzy input sets in 𝑋1 × … × 𝑋𝑝 to fuzzy output sets in Y. Each rule is 

interpreted as a fuzzy implication (Mamdani implication [77] is used here). We treat 

the fuzzy inference engine as a system, one that maps fuzzy set into fuzzy sets [38].  

When Zadeh rules and Mamdani fuzzy system is used, then the fuzzy inference can 

be expressed as follows [38]: 

1( , ) [ ( )] ( )l l l l
i

p

i iA G F G
x y T x y  =→

=     (3.22)  
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In (3.22), 1 ( )l
i

p

i iF
T x=  is called the firing strength of the rule. There are three widely 

used connectives to calculate firing strength. If all connectives in a rule are “And” then 

the minimum (3.23) or the product membership degrees can be used (3.24) (t-norm) 

[38]:  

( ) min[ ( ), ( )]A B A Bx x x  →     (3.23) 

( ) ( ) ( )A B A Bx x x  → =        (3.24) 

If all the rule connectives are “Or” then the maximum membership degree can be 

used (3.25) (t-conorm) [38]: 

( ) max[ ( ), ( )]A B A Bx x x  →     (3.25) 

3.2.7 Defuzzifier  

Defuzzification produces a crisp output for FLS from the fuzzy sets that are the 

outputs of the inference engine [38]. One criterion we use for the choice of a defuzzifier 

is its computational simplicity. Since we use population-based optimization to optimise 

the FLS, the FLS is called frequently during the optimisation process. This means that 

complex defuzzification will lead to much more computational resources being used. 

Some defuzzification methods are as follows:  

3.2.7.1 Centroid Defuzzifier  

The centroid defuzzifier combines the output fuzzy sets using union (i.e. a t-conorm, 

e.g. maximum) and then find the centroid of this set [38]. i.e.,  

1

1

( | ')
( ')

( | ')

N

i B ii
c N

B ii

y y x
y x

y x





=

=

=



    (3.26) 
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Unfortunately, the centroid defuzzification is usually difficult and time-consuming 

to compute as we have to first compute the union of the fuzzy sets.  

3.2.7.2 Height Defuzzifier  

The height defuzzifier [78], also called the centre average defuzzifier, replaces each 

rule output fuzzy set with a singleton having maximum membership in the rule’s 

consequent membership set, then calculating the centroid of the type-1 set comprised 

of these singletons. The output of a height defuzzifier is given as [38]:   

1

1

( | ')
( ')

( | ')

l

l

N l l

Bi
h N l

Bi

y y x
y x

y x





=

=

=



    (3.27) 

This is very easy to use because the centres of gravity of commonly used 

membership functions are known ahead of time. For example, regardless of whether 

minimum or product inference is used, the centre of gravity of 𝐵𝑙 for [69]:   

• A symmetric triangular consequent membership function is at the apex of the 

triangle.  

• A Gaussian consequent membership function is at the centre value of the 

Gaussian function.   

• A symmetric trapezoidal membership function is at the midpoint of its support.   

3.2.7.3 Centre-Of-Sets Defuzzifier  

In centre-of-sets defuzzification [79], each rule consequent is replaced set by a 

singleton located at its centroid, whose amplitude equals the firing level, and then the 

centroid of the type-1 set comprised of these singletons. The expression of the output 

of the Centre-of-sets defuzzifier is given as [38]:  
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1 1

1 1

( ) ( ') ( ')
( ')

( ) ( )

M Ml l l l

l l
COS M Ml l

l l

COG G f x c f x
y x

f x f x

= =

= =

= =
 

 
  (3.28) 

3.3 Type-2 Fuzzy Logic Systems  

Type-1 fuzzy logic systems have limited capabilities in modelling and minimizing 

uncertainties in the data [69]. As discussed, uncertainty comes in many guises and is 

independent of the kind of fuzzy system or methodology one uses to handle it. Two 

important aspects of uncertainties are linguistic and random. The former is associated 

with words, and the fact that words can mean different things to different people, and 

the latter is associated with unpredictability. Probability theory is used to handle 

random uncertainty, and fuzzy systems are used to handle linguistic uncertainty, and 

sometimes FLSs can also be used to handle both kinds of uncertainty, because a fuzzy 

system may use noisy measurements or operate under random disturbances [69]. 

Adding uncertainty to the type-1 membership functions means that the membership 

grade is no longer a crisp number; it is its own set in the range [0, 1]. Calculating all 𝑥 

∈ 𝑋 creates a three-dimensional membership function, a type-2 membership function 

that characterises a type-2 fuzzy set.    

3.3.1 General Type-2 Fuzzy Sets 

Consider the transition from ordinary sets to fuzzy sets. When we cannot determine 

the membership of an element in a set as 0 or 1, we use fuzzy sets of type 1. Similarly, 

When the circumstances are so fuzzy, we have trouble determining the membership 

grade even as a crisp number [0,1] we use fuzzy sets of type-2, a concept that was first 

introduced by Zadeh in 1975 [38].   



64 

 

A type-2 set can also be described as a type-1 fuzzy set where the degree of 

membership is fuzzy. Figure 3-6 a. shows a type-1 membership function, where the 

membership is blurred by shifting the triangle on the x-axis, but not necessarily by the 

same amount, this would generate Figure 3-6 b. This means that the degree of 

membership is no longer a single value but is represented by a fuzzy set; whose degree 

of membership takes on values wherever the vertical line intersects the blurs.  

Calculating all x X  creates a three-dimensional membership function, a type-2 

membership function that characterises a type-2 fuzzy set  [38].   

 A type-2 fuzzy set denoted F , is characterised by a type-2 membership function 

( , )
F

x u , where x X  and [0,1]xu J  , i.e., [80] 

{(( , ), ( , )) | , [0,1]}xF
F x u x u x X u J=         (3.29) 

In which ( , ) [0,1]
F

x u  .  F  can also be expressed as [38, 80] 

( , ) / ( , ), [0,1]

x

xF

x X u J

F x u x u J
 

=        (3.30) 

 

Figure 3-6: a) Type-1 Membership Function b) Blurred Type-1 Membership Function c) Footprint 

of Uncertainty [38] 
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Where   denotes union over all admissible x and u [38]. An example of a general 

type-2 fuzzy set is depicted in Figure 3-7 (a) and (b). xJ is called the primary 

membership of x in F . At each value of x say 'x x= , the two-dimensional (2-D) plane, 

whose axes are u and ( ', )
F

x u , is called a vertical slice of F . It is ( ', )
F

x x u = , for 

'x X and ' [0,1]xu J   , i.e., [38, 80] 

 

'

' '( ', ) ( ') ( ) / [0,1]

x

x xF F

u J

x x u x f u u J 


=  =     (3.31) 

 

Figure 3-7: (a) Side view of a general type-2 fuzzy set, with three zLevels on the third dimension (b) 

Tilted read/below view of the same set, indicating the position of the three zSlices. (c) Side view of the 

same zSlices version in (a), with I=3. (d) Tilted rear/below view of the same set, showing the zSlices 

[80].  
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Where '0 ( ) 1xf u  , and ( ')
F

x  is referred to as a secondary MF[80]. 

3.3.2 z-slices Based General Type-2 Fuzzy Sets 

Recently there have been several methods that have been proposed to limit the 

complexity of general type-2 fuzzy logic such as an alpha plane based representation 

presented in [81] or geometric representation presented in [82]. One of these methods, 

a zSlices based representation [80], is presented in this section.  

A zSlice is formed by slicing a general type-2 fuzzy set in the third dimension ( z ) 

at level iz . This slicing action will result in an interval set in the third dimension with 

 

Figure 3-8: (a) Front view of a general type-2 set F . (b) Third dimension at x’ of a zSlices-based 

type-2 fuzzy set with I=4 [80] 
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height iz . As such, a zSlice iZ  is a fuzzy set with its membership grade 
( , )iZ x u

 in the 

third dimension equal to iz , where 0 1iz  . Thus, the zSlice iZ can be written as 

follows [80]:  

 
[ , ]

/ ( , )

i i i

i i i

x X u l r

Z z x u
 

=       (3.32) 

Where, at each x value (depicted in Figure 3-8 (a)), zSlicing creates an interval set 

with height iz  and domain i xJ , which ranges from il  to ir , as shown in Figure 3-8 (b), 

1 i I  , where I  is the number of zSlices (excluding 0Z  ) and /iz i I= [80]. 

A general type-2 fuzzy set F  can be seen as equivalent to an infinite collection of 

zSlices. In a discrete universe of discourse F can be represented as follows [80]: 

 
0

I

i

i

F Z
=

=      (3.33) 

The summation sign in (3.33) does not represent the arithmetic addition but denotes 

the set theoretical operation union. If the maximum operation is used to represent the 

union operation, whenever a u value is attached to more than one iz  values, the 

maximum iz  is chosen and attached to the given u value. Hence, the ( ')
F

x  at 'x  of 

the zSlices-based general type-2 fuzzy set F  shown in Figure 3-8 (b) can be expressed 

as follows [80]: 

 0 [ , ]

'

( ') /

( ) / , [0,1]

i i i

i
i x

I

i iF
i u l r

i x

u J

x z u

max z u J


= 



=

=

 


   (3.34) 
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Where 0 i I  . It is worth noting that at 'x , ( ')
F

x  is a type-1 fuzzy set.  

3.3.3 Interval Type-2 Fuzzy Sets  

There are many possible choices for secondary membership functions. When 

( ) 1 [0,1]x xf u u J=     in equation (3.31), then the secondary membership functions 

are interval sets, and, if it is true for x X  , we have an interval type-2 membership 

function which characterizes an interval type-2 fuzzy set (IT2FS) [83]. An IT2 FS is 

said to be maximally uncertain because all its secondary membership grades are the 

same value. A general Type-2 fuzzy set is said to be less uncertain than an IT2 FS 

because its secondary grades are not all the same.  

Since all the secondary memberships of an interval type-2 fuzzy set are unity, an 

interval type-2 fuzzy set is represented by its domain interval, which can be represented 

by its left and right end-points [ , ]l r  [83]. The two endpoints are associated with two 

type-1 membership functions that are referred to as upper and lower membership 

functions which are bound by a footprint of uncertainty FOU [83]. The upper 

membership function and lower membership function are represented as ( )
F

x  and 

( )
F

x  respectively.  

It has been argued that using type-2 fuzzy sets to represent the inputs and outputs of 

FLS has many advantages when compared to the type-1 fuzzy sets; some of these 

advantages are as follows [84]:  

• As the type-2 fuzzy sets membership functions are fuzzy and contain a footprint 

of uncertainty, then they can model and handle the linguistic and numerical 

uncertainties associated with the inputs and outputs of the FLS. Therefore, FLSs 
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that are based on type-2 fuzzy sets will have the potential to produce a better 

performance than the type1 FLCs when dealing with uncertainties [83].  

• Using type-2 fuzzy sets to represent the FLS inputs and outputs will result in 

the reduction of the FLS rule base when compared to using type-1 fuzzy sets, 

as the uncertainty represented in the footprint of uncertainty in type-2 fuzzy sets 

lets us cover the same range as type-1 fuzzy sets with a smaller number of labels 

and the rule reduction will be greater when the number of the FLS inputs 

increases [38].  

• Each input and output will be represented by a large number of type-1 fuzzy 

sets, which are embedded in the type-2 fuzzy sets [38]. The use of such a large 

number of type-1 fuzzy sets to describe the input and output variables allows 

for a detailed description of the analytical control surface as the addition of the 

extra levels of classification give a much smoother control surface and 

response. In addition, according to Karnik and Mendel [85], the type-2 FLS can 

be thought of as a collection of many different embedded type-1 FLSs.  

• It has been shown in [86] that the extra degrees of freedom provided by the 

footprint of uncertainty enables a type-2 FLS to produce outputs that cannot be 

achieved by type1 FLSs with the same number of membership functions. It has 

been shown that a type2 fuzzy set may give rise to an equivalent type-1 

membership grade that is negative or larger than unity. Thus, a type-2 FLS can 

model more complex input-output relationships than its type-1 counterpart and, 

thus, can give better control response.  
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3.3.4 Interval Type-2 Fuzzy Logic Systems  

A Typical IT2FLS is depicted in Figure 3-9; it contains five components: fuzzifier, 

rule base, inference engine, type-Reducer and a defuzzifier. The main difference 

between an IT2FLS and a type-1 FLS is that the output fuzzy sets of the inference 

engine have to be type-Reducer to output a crisp value. Furthermore, it employs IT2 

fuzzy sets in the input and output of the FLS [38].   

The IT2FLS works in the following way: the crisp inputs in the data are first 

fuzzified into an input interval type-2 fuzzy set; singleton fuzzification is commonly 

used in IT2FLS as it simplifies the computation. Once the inputs are fuzzified, the 

inference engine then activates the rule base using the input interval type-2 fuzzy sets 

and produces the output interval type-2 fuzzy sets. There is no difference between the 

rule base of a T1FLS and a type-2 FLS except that the fuzzy sets are interval type-2 

fuzzy sets instead of type-1 fuzzy sets. In the final step, the output interval type-2 sets 

produced in the previous steps are converted into a crisp number. There are two 

methods for doing this; the first method is the conventional two-step process where the 

output type-2 sets are converted into type-reduced type-1 fuzzy sets followed by 

defuzzification of the type reduced sets. The second method is the direct defuzzification 

 

Figure 3-9: Type -2 Fuzzy Logic System  
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process which was introduced because of the computational complexity of the first 

method [38]. 

3.3.5 Type-Reduction + Defuzzification 

In engineering applications, it is desirable to get the output of a fuzzy logic system 

as a crisp number. In type-1 FLS this is achieved by defuzzification of the output type-

1 fuzzy sets. For Interval type-2 fuzzy logic system, there are two main methods for 

achieving this. (a) Map the IT2 fuzzy set directly to a number also called direct 

defuzzification. (b) Map the IT2 fuzzy sets into type-1 fuzzy sets and then map them 

into a number, Type-Reduction + Defuzzification [38]. In this section, we describe one 

the method that can be used for Type-Reduction + Defuzzification. 

 Type-reduction + defuzzification must reduce to defuzzification when the 

uncertainties of a T2 FS disappear. Consequently, the type-reduction methods are 

extensions of type-1 defuzzification methods, and, once a type-reduction method is 

applied to IT2 FS, then it is relatively easy to apply the same to general type-2 fuzzy 

sets. The starting point for type-reduction is for IT2 FSs, for which each weighted 

average is a special kind of interval weighted average [38]. 

Given 

 [ , ], 1,2,....,i i i ix X x x i N  =    (3.35) 

 [ , ], 1,2,....,i i i iw W w w i N  =    (3.36) 

Where i ix x and i iw w , and iX and iW represent sets of intervals. We can 

compute the interval weighted average as follows. 
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 1

1

[ , ]

n

i ii
IWA l rn

ii

X W
Y y y

W

=

=

= =



    (3.37) 

Where IWAY  is completely defined by its two endpoints, ly  and ry . Because 

( 1,.., )iX i n=  appear only in the numerator, the smallest and largest value of each iX  

is used to find ly  ( )ry , i.e., [38]: 

 1

[ , ]

1

min
i i i

n

i ii
l nw c d

ii

a w
y

w

=

 

=

=



    (3.38) 

 1

[ , ]

1

max
i i i

n

i ii
r n

w c d
ii

b w
y

w

=

 

=

=



    (3.39) 

Where the notations under min and max in (3.38) and (3.39) mean that i  ranges 

from 1 to n and each iw  ranges from ic  and id  [38]. 

It is well known that the equations in (3.38) and (3.39) can be rewritten as follows 

[38]. 

1 1

1 1

L n

i i i ii i L
l L n

i ii i L

a d a c
y

d c

= = +

= = +

+
=

+

 

 
    (3.40) 

1 1

1 1

R n

i i i ii i R
r R n

i ii i R

b c b d
y

c d

= = +

= = +

+
=

+

 

 
    (3.41) 

Where L  and R  are switch points. There is no closed form solution for L  and R

, hence to calculate ly  and ry , iterative algorithms such as Karnik Mendel(KM) 

algorithm are used. 
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3.3.5.1 Karnik-Mendel Algorithm 

The KM Algorithm for computing ly is as follows[38]: 

Step 1: Initialize iw  by setting ( ) / 2, 1,2,....i i iw c d i n= + =  

 1

1 1

' ( ,...., )
n n

n i i i

i i

y y w w a w w
= =

= =     (3.42) 

Step 2: Find {1,2,...., 1}k n − such that 1'k ka y a +   

Step 3: Set i iw d=  when i k , and i iw c= when 1i k + , and then compute 

 1 1

1 1

( )

k n

i i i ii i k
l k n

i ii i k

a d a c
y k

d c

= = +

= = +

+
=

+

 

 
       (3.43) 

Step 4: Check if ( ) 'ly k y= . If yes, stop and set ( ) ( )l ly k y L=  and call k L. If no, go 

to Step 5. 

Step 5: Set ' ( )ly y k= and go to Step 2. 

The KM Algorithm for calculating ry  is as follows [38]: 

Step 1: Initialize iw  by setting ( ) / 2, 1,2,....i i iw c d i n= + =  

 1

1 1

' ( ,...., )
n n

n i i i

i i

y y w w b w w
= =

= =     (3.44) 

Step 2: Find {1,2,...., 1}k n − such that 1'k kb y b +   

Step 3: Set i iw c=  when i k , and i iw d= when 1i k + , and then compute 
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 1 1

1 1

( )

k n

i i i ii i k
r k n

i ii i k

b c b d
y k

c d

= = +

= = +

+
=

+

 

 
   (3.45) 

Step 4: Check if ( ) 'ry k y= . If yes, stop and set ( ) ( )r ry k y R=  and call k R. If no, 

go to Step 5. 

Step 5: Set ' ( )ry y k= and go to Step 2. 

3.3.5.2 Centre of Sets Type Reduction 

The Centre-of-Sets type reduction[39] is described in this section. Regardless of 

which type-reduction method is used, the type-reduced set is also an interval set and 

has the following structure [38]:  

[ , ]TR l rY y y=     (3.46) 

Recall that the COS defuzzifier for a type-1 fuzzy system replaces each rule 

consequent T1 FS by a singleton located at its centroid, with an amplitude equal to the 

firing level. 

Similarly, in the COS type-reducer each rule consequent IT2 FS, iG , by the support 

of its centroid,  [ ( ), ( )]i i

l rc G c G ,  and assigns a secondary MF of  1/ [ ( '), ( ')]i if x f x  to 

it, where [ ( '), ( ')]i if x f x  are the firing intervals for the thi  rule [38]. Hence, from (3.40)

, (3.41) and (3.28) COS type-reduction is as follows [38]:  

1 1

1 1

( ) ( ') ( ) ( ')
( ')

( ') ( ')

L Mi i i i

l lCOS i i L
l L Mi i

i i L

c G f x c G f x
y x

f x f x

= = +

= = +

+
=

+

 

 
  (3.47) 



75 

 

1 1

1 1

( ) ( ') ( ) ( ')
( ')

( ') ( ')
r

R Mi i i i

r rCOS i i R

R Mi i

i i R

c G f x c G f x
y x

f x f x

= = +

= = +

+
=

+

 

 
  (3.48) 

Where ( )i

lc G and ( )i

rc G are the left and right endpoints of the centroid of the IT2 

consequent,
if and 

if are the upper and lower firing levels of the thi  rule [38], and the 

switch points L and R can be calculated using the KM algorithm (described in section 

3.3.5.1). 

Please note that to compute the ( ')COS

ly x and ( ')COS

ry x  one must first compute the 

centroid of each rule’s IT2 consequent set, [ ( ), ( )]i i

l rc G c G . Which can be done by using 

the below equations [38]: 

 1 1

1 1

( ) ( )
( )

( ) ( )

L n

i i i iGi i LG
l L n

i ii i LG G

x x x x
c G

x x

 

 

= = +

= = +

+
=

+

 

 
   (3.49) 

 1 1

1 1

( ) ( )
( )

( ) ( )

R n

i i i ii i RG G
r R n

i ii i RG G

x x x x
c G

x x

 

 

= = +

= = +

+
=

+

 

 
   (3.50) 

 Where, ( )iG
x  and ( )iG

x  are the upper and lower membership function of 

the IT2 consequent set at ix , and, the switch points L and R can be calculated using 

the KM algorithm (described in section 3.3.5.1). The centroids only need to be 

calculated once as these centroids do not depend on the input to the fuzzy system. 

Next, the intervals calculated using (3.47) and (3.48) are averaged to get the crisp 

output. 

( ') ( ')

2

l r
COS

y x y x
Y

+
=     (3.51) 
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3.3.6 Direct Defuzzification  

The main motivation for direct defuzzification is to avoid the iterative computation 

needed to perform the type-reduction. Another motivation is to obtain a formula for 

crisp output of the IT2FLS that can be used in some sort of mathematical analysis [38].  

Nie Tan method [87], is formulated using the vertical slice representation of an IT2 

FLS from (3.31). For an IT2 FLS, each vertical slice is an embedded type-1 fuzzy set 

that can be easily type reduced. The intuition behind the Nie Tan method is that the 

computational overhead of type reduction can be reduced by first type reducing 

individual vertical slices, before defuzzifying the resulting type-1 fuzzy set to obtain 

the centroid of the IT2 FLS [87].  

Consider an IT2 FLS that is represented by a collection of vertical slices [87], i.e.,  

 

'

1/ ( )

x

j

j j

u J

F x x


=     (3.52) 

where j  denotes the 
thj  vertical slice in equation (3.30). 

Suppose the continuous vertical slice is discretized into jn  points, then the centroid 

of each vertical slice can be computed as follows [87]: 

 
1

1
( ) ( )

jn

i

j j

ij

x x
n

 
−

=      (3.53) 

For IT2 FS, the average of a vertical slice that comprises jn  discrete points is the 

mean of the upper and lower membership functions [87]:  

 
1

( ) ( ( ) ( ))
2

j j jx x x  = +    (3.54) 
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Similarly, the combined fired-output set B can be defuzzified by computing the 

centre of gravity of the average of its lower and upper MFs [38], i.e., 

1

1

[ ( | ') ( | ')]1
( ') [ ( | ') ( | ')]

2 [ ( | ') ( | ')]

N

i B Bi
NT NB B

B Bi

y y x y x
y x COG y x y x

y x y x

 
 

 

=

=

+ 
= + = 

  +




   (3.55)      

The procedure for computing the crisp output of the IT2FLS using the Nie Tan 

method is as follows [87]. 

1. Interval type-2 fuzzy consequent sets are reduced to the crisp output using 

equation (3.55).  

2. The firing set for each rule is then obtained using the meet operation as per 

normal. 

3. An IT2 FS representing the output of the fuzzy inference engine is constructed 

using the extended sub start composition. Then the crisp output is calculated 

using the equation (3.55).  

Mendel and Liu [88] prove that ( ')NTy x  (3.55) is a first-order Taylor series 

approximation of the actual defuzzified value of B  when using the centroid type -

reduction + defuzzification [38]. This means that the Nie Tan direct defuzzification 

method gives a close approximation of the centroid type-reduction + defuzzification. 

In addition, we can see that this direct defuzzification depends on only the upper and 

lower firing levels and so we do not have to perform complex iterative computations.  

In addition, when all IT2 MF uncertainties disappear in (3.55), it reduces to the correct 

type-1 defuzzification formula. Hence, in this thesis, we use Nie-tan defuzzification for 

all the regression datasets. 
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3.4 Fuzzy Rule-Based Classification Systems 

Classification problems involve assigning an input vector 1,.. ,. nx x  to a class hC  

from a predefined set of classes 1,..., MC C C= . In fuzzy rule-based classification 

systems (FRBCS) these inputs are mapped to the output using rules. The fuzzy rule in 

the FRBCS can be written as follows [89]. 

1: ....j j j

l n n h hRule R If x is A and and x is A then yisClassC withCF  (3.56) 

Where 1,.. ,. nx x  represents the input vector, 
j

nA represents the linguistic label for 

the antecedent pattern i and hCF  is the rule weight. 

3.4.1 Scaled Support and Scaled Confidence  

In FRBCS, where the rules are generated from data and not from expert knowledge, 

many of the rules of the FRBCS system will have the same antecedents but the 

conflicting consequents [89], to resolve this conflict, two measures are generally used. 

• Confidence: It is the conditional probability that, if the antecedents are true, 

then the consequent is true [90]. 

• Support: It is a measure of how general a given rule is and can be considered to 

be the probability of occurrence of records with given antecedents and 

consequent in a particular data set  [90]. 

The confidence and support measure can cause problems in skewed datasets, i.e., in 

datasets, where the number of training records for one class vastly outnumber the 

number of training records for the other classes. To overcome these problems, Scaled 

Confidence and Scaled Support [91] are used in this thesis. 
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To calculate the scaled confidence and support, we first need to calculate the scaled 

firing strength of the rules. The scaled firing strength is calculated by dividing the firing 

strength of a rule is calculated by dividing the firing strength of the rule by the sum of 

firing strength of all the rules that have different antecedents but the same consequent. 

The upper and lower scaled firing strengths are calculated using the following formulas. 

h

jt
jt

jt

j Class

f
fs

f


=


    (3.57) 

h

jt

jt

jt

j Class

f
fs

f


=


    (3.58) 

Where 
jtf and 

jtf  represent the upper and lower firing levels of the rules. 

h

jt

j Class

f


 and 
h

jt

j Class

f


  represent the sum of firing strength of all the rules that have 

hClass  as their consequent. 

The scaled confidence ( )q qA C→ for rules where the class qC  is the consequent class 

for the antecedents qA  (where there are m  conflicting rules with the same antecedents 

and conflicting consequents) could be written as follows [89]: 

1

( )

( )
( )

s h

jt

s

x ClassC

q q m jt

sj

fs x

c A C
fs x



=

→ =




    (3.59) 

1

( )

( )
( )

s h

jt

s

x ClassC

q q m jt

sj

fs x

c A C
fs x



=

→ =




    (3.60) 
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Here The scaled confidence can be viewed as measuring the validity of ( )q qA C→

[89]. 

The scaled support for the same can be written as follows [89]. 

( )

( ) s h

jt

s

x ClassC

q q

fs x

s A C
m


→ =


    (3.61) 

( )

( ) s h

jt

s

x ClassC

q q

fs x

s A C
m


→ =


    (3.62) 

Here the support can be viewed as measuring the coverage of training patterns by 

( )q qA C→ [89]. 

These two values can then be used to calculate the scaled dominance or the weights 

of the rules using the below formulas [89]. 

( ) ( ). ( )q q q q q qd A C c A C s A C→ = → →    (3.63) 

( ) ( ). ( )q q q q q qd A C c A C s A C→ = → →    (3.64) 

3.4.2 Calculate Output Class 

To determine the output of the FRBCS, the relative importance of each of the 

possible output classes has to be calculated, and the class with the highest importance 

score is the output class for an input vector. 

To calculate the importance of each output consequent or class. The upper and lower 

importance score for each of the output classes is calculated using the below formulae 

[89]. 
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( )* ( )
( )

( ( )* ( ))

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


     (3.65) 

( )* ( )
( )

( ( )* ( ))

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


     (3.66) 

Where ( )j pf x  and ( )j pf x represent the upper and lower firing levels for the rule j  

for input ( )px , ( ( )* ( ))j p

j h q qMax f x d A C → and ( ( )* ( ))j p

j h q qMax f x d A C →  

represent the maximum product of the upper or lower firing level and the upper or 

lower weight for the rules. 

Finally, the upper and lower importance scores of the output classes are averaged 

using (3.67) to get the class importance score. 

( ) ( )
( )

2

p p
p h h

h

Zclass x Zclass x
Zclass x

+
=    (3.67) 

The class with the highest hZclass will be the class predicted for the input vector ( )px

. 

3.4.3 Similarity Metric 

In case the incoming input vector ( )px  does not trigger any of the existing rules, we 

need to decide the output class for the input. The first step in this process is to build all 

possible from the given input vector, using the matched fuzzy sets [92]. 
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Figure 3-10: An Example to Illustrate Similarity Metric 

Suppose we have a classification problem with two inputs 1x  and 2x , and that the 

input vector ( )px  will match the fuzzy sets as shown in Figure 3-10. Then from Figure 

3-10, we can generate four different rules: 1 { , }R Small Medium= , 2 { , }R Small Large=

, 3 { , }R Medium Medium=  and 4 { , }R Medium Large= . Each rule will have an 

associated firing strength but no consequent. 

To find the consequent of these rules, we need to find the rule that is closest to each 

of the generated rules. In order to do this, we calculate a similarity measure between 

each of the generated rules and each of the X rules stored in the rule base. Let the 

linguistic labels that fit the input vector ( )px  be written as 

1 2( , ,.., )inputr input r input r inputnrv v v v=  where r is the index of the thr  generated rule. Let the 

linguistic label corresponding to any given rule in the rule base be 1 2( , ,.., )j j j jnv v v v=

. Then the similarity of the rule can be calculated using the below [89]: 

 

1 1

1

2 2

2

(1

* (1 *....* (1

input r j

inputlr j

input r j inputnr jn

v v
Similarity

V

v v v v

V Vn



 −
= −  
 

 −  − 
− −    

  

 (3.68) 
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Where 1,..., nV V represents the number of linguistic labels representing each 

variable. Each rule in the rule base will have a similarity value associated with each of 

the r  generated rules. For each of the generated rule, this similarity value is used to 

choose the consequent or output class [89]. 

To predict the output class. The upper and lower importance score for each of the 

output classes is calculated using the below formulae [89]. 

( )* ( )
( )

( ( )* ( ))

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


     (3.69) 

( )* ( )
( )

( ( )* ( ))

j p

q qj hp

h j p

j h q q

f x d A C
Zclass x

Max f x d A C





→
=

→


     (3.70) 

Where ( )j pf x  and ( )j pf x represent the upper and lower firing levels of the most 

similar rule in the rule base and ( )q qd A C→ and ( )q qd A C→  represent the upper and 

lower scaled dominance of the most similar rule in the rule base. 

Finally, the upper and lower importance score is used to calculate the total 

importance score of the class. 

( ) ( )

2

p p

h h
hr

Zclass x Zclass x
Zclass

+
=    (3.71) 

The class with the highest hrZclass will be the class associated with the input vector 

( )px . 
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3.5 Design Methods for Fuzzy Logic Systems  

This section describes two design methods that can be used to create fuzzy logic 

systems using examples. 

3.5.1 Wang Mendel Method 

Wang and Mendel developed a well-known method for developing fuzzy systems 

from examples, combining both expert knowledge and numerical data examples [93]. 

They proposed a four-step generalised method for constructing fuzzy systems by 

generating rules from examples. This method leads to a fuzzy system with the number 

of rules smaller than the number of training data pairs, and it is widely used as it is 

simple to implement [38].     

Given a set of desired input-output data pairs [38]: 

 
(1) (1) (1) (2) (2) (2) ( ) ( ) ( )

1 2 1 2 1 2( , : ),( , : ),.., ( , : )n n nx x y x x y x x y   (3.72) 

Where 𝑥1and 𝑥2 are inputs and 𝑦 is an output. This simple two input-one output 

example is used to explain the intricacies of the Wang Mendel method; extending this 

to a multi input-multi output system is straightforward. The Wang and Mendel 

approach consists of the following five steps [93]: 

 Step 1 – Divide the input and output spaces into fuzzy regions.  

Let the domain intervals 1 2 1, :x x y  be represented by 1 1[ , ]x x− +
, 2 2[ , ]x x− +

,  and [ , ]y y− +
 

respectively, where “domain interval” of a variable means that the value of the variable 

most probably be present in this interval (the value of the variable can lie outside the 

interval). Divide each domain interval into 2N + 1 regions (N can be different for 
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different variables, and the lengths of these regions can be equal or unequal), denoted 

by SN (Small N), …, S1 (Small 1), CE (Centre), B1 (Big 1), …, BN (Big N), and assign 

each region a fuzzy membership function [93].  

Figure 3-11 shows an example where the domain interval for the variable 1x  is 

divided into five regions (N = 2), the domain region for the variable 2x  is divided into 

seven regions (N = 3), and the domain interval of the output y  is divided into five 

 

Figure 3-11: Division of Domain Intervals [93] 
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regions (N = 2). The shape of each membership function in this example is triangular; 

with one vertex at the centre of the region that has a degree of membership 1; the other 

two vertices lie at the centres of the two neighbouring regions, respectively, and have 

a degree of membership zero. Of course, other divisions and other shapes of 

membership functions are possible [93]. 

 Step 2 – Generate fuzzy rules from given data pairs.   

First, determine the degree of membership for the given input 
(1) (1) (1)

1 2, :x x y  in 

different regions. For example, 
(1)

1x  in  Figure 3-11, has degree 0.8 in B1, degree 0.2 

in B2 and zero degrees in all other regions. Similarly, 
(1)

2x in Figure 3-11, has degree 1 

in CE, and zero degrees in all other regions [93].  

Second, assign a given 
(1)

1x ,
(1)

2x  and 
(1)y to the region with the maximum degree 

of membership. For example, 
(1)

1x in Figure 3-11, is assigned to be B1, and 
(1)

2x  is 

assigned to be CE [93].  

Finally, we obtain one rule from the one pair of desired input-output data, e.g. [93].  

 
(1) (1) (1) (1) (1)

1 2 1 2

(1)

( , ; [ (0.8 1,max), (0.7 1,max);

(0.9 ,max)]

x x y x in B x in S

y inCE


 (3.73) 

IF x1 is B1 and x2 is S1, THEN 𝑦 is CE [93].  

 
(2) (2) (2) (2) (2)

1 2 1 2

(2)

( , ; [ (0.6 1,max), (1 ,max);

(0.7 1,max)]

x x y x in B x inCE

y in B


 (3.74) 

IF x1 is B1 and x2 is CE, THEN y is CE [93].  
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The rules generated in this way are “and” rules, i.e., rules in which conditions of the 

IF part must be met simultaneously for the result of the THEN part to occur [93].  

Step 3 – Assign a degree to each rule  

After generating the rules using the method in Step 2, it is highly likely that there 

will be some conflicting rules, i.e., rules that have the same antecedents but a different 

consequent. One way to resolve this conflict is to assign a degree to each rule generated 

from data pairs and pick the rule with the maximum degree from this group. In this 

way, not only is the conflict resolved, but the number of rules is also greatly reduced 

[93]. 

We use the following product strategy to assign a degree to each rule: for the rule: 

“IF 𝑥1 is A and 𝑥2 is B, THEN 𝑦 is C” the degree of this rule, denoted by D(Rule), is 

defined as [93]:  

 1 2( ) ( ) ( ) ( )A B cD Rule m x m x m y=    (3.75) 

As examples, Rule 1 has degree [93] 

 1 1 1 2( 1) ( ) ( ) ( )B S CED Rule m x m x m y=    (3.76) 

                        = 0.8 × 0.7 × 0.9 = 0.504  

(see Figure 3-11 ) and Rule 2 has degree [93] 

 1 1 2 1( 2) ( ) ( ) ( )B CE BD Rule m x m x m y=    (3.77) 

                         = 0.6 × 1.0 × 0.7 = 0.42  
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In practice, we often have some prior information about the data pair. For example, 

if we let an expert check given data pairs, the expert may suggest that some are very 

useful and crucial, but others are very unlikely and may be caused just by measurement 

errors. Therefore, we can assign a degree to each data pair that represents our belief of 

its usefulness. In this sense, the data pairs constitute a fuzzy set, i.e. the fuzzy set is 

defined as the useful measurements; a data pair belongs to this set to a degree assigned 

by a human expert [93]. 

Suppose the data pair (
(1) (1) (1)

1 2, :x x y ) has degree m(1), then we redefine the degree of 

Rule 1 as [93]. 

  
(1)

1 1 1 2( 1) ( ) ( ) ( )B S CED Rule m x m x m y m=    (3.78) 

i.e., the degree of a rule is defined as the product of the degrees of its components 

and the degree of the data pair that generates this rule. This is important in practical 

applications because real numerical data have different reliabilities, e.g., some real data 

can be very bad (“wild data”). For good data, we assign higher degrees, and for bad 

data, we assign lower degrees. In this way, human experience about the data is used in 

a common base as other information. If one emphasises objectivity and does not want 

a human to judge the numerical data, our strategy still works by setting all the degrees 

of the data pairs equal to unity [93]. 

Step 4 – Create a combined fuzzy rule base  

 The form of a fuzzy rule base is illustrated in Figure 3-12. We will fill the boxes of 

the base with fuzzy rules according to the following strategy:  a combined fuzzy rule 

base is assigned rules from either those generated from the numerical or linguistic rules 
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(we assume that a linguistic rule also has a degree that is assigned by the human expert 

and reflect the experts belief of the importance of the rule); if there is more than one 

rule in one box of the fuzzy rule base, use the rule that has maximum membership 

degree.   

In this way, both numerical and linguistic information is codified into a common 

framework – the combine fuzzy rule base. If a linguistic rule is an “and” rule, it fills 

only one box of the fuzzy rule base; but, if a linguistic rule is an “or” rule (i.e., a rule 

for which the THEN part follows if any condition of the IF part is satisfied), it fills all 

the boxes in the rows or columns corresponding to the regions of the IF part. For 

example, suppose we have the linguistic rule:  

“IF 𝑥1is S1 or  𝑥2 is CE, THEN  𝑦 is B2” for the fuzzy rule base of  Figure 3-12; 

then we fill the seven boxes in the column of S1 and the five boxes in the row of CE 

 

Figure 3-12: The form of a Fuzzy Rule Base [93]. 
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with B2. The degree of all the B2’s in these boxes equal the degree of this “or” rule 

[93]. 

Step 5 – Determine a mapping based on the combined fuzzy rule base.   

We use the following defuzzification strategy to determine the output control 𝑦 for 

given inputs (𝑥1, 𝑥2): first, for given inputs (𝑥1, 𝑥2), we combine the antecedents of the 

ith fuzzy rule using product operation to determine the degree, 𝑚𝑂𝑖𝑖
 , of the output 

control corresponding to (𝑥1, 𝑥2), i.e. [93], 

 
1 2

1 2( ) ( )i i i

i

O I I
m m x m x=     (3.79) 

Where 𝑂𝑖 denotes the output region of Rule i and 
i

jI denotes the input region of Rule 

i for the jth component, e.g., Rule 1 gives [93]. 

   
1

1 1 1 2( ) ( )CE B Sm m x m x=     (3.80) 

Then we use the following centroid defuzzification formula to determine the output 

[93]. 

 1

1

i

i

K i i

Oi

K i

Oi

m y
y

m

=

=

=



    (3.81) 

Where 𝑦̅𝑖 denotes the centre value of region 𝑂𝑖 (the centre of a fuzzy region is 

defined as the point that has the smallest absolute value among all the points which the 

membership function for this region has membership value equal to one), and K is the 

number of fuzzy rules in the combined fuzzy rule base [93]. 
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3.5.2 Enhanced Wang-Mendel Method 

Wang [94] introduced three rule extraction methods that are variations of the WM 

method described in the previous section. The variations are used to solve different 

problems for different purposes [38].  

The first method is used to extract specific rules which target a specific region and 

rules with different resolutions with flexible choices of the MFs [38]. Specifically, 

given m  input variables 1( ,..., )i imx x  selected from 1( ,..., )nx x  fall into the fuzzy region 

characterized by “IF 1ix  is 1iA  and,…, and imx  is imA ” where the membership functions 

for the fuzzy sets 1iA ,.., imA  are given, the problem is to determine the fuzzy set B  in 

the fuzzy IF-THEN rule [94]:  

 1 ... ,i il im imIF x is A and and x is A THEN y is B   (3.82) 

Step 1: For each input-output pair  ( ; )p px y  , p = 1,2,…,N, compute. 

 
1

( )
ij

m
p p

A ij

j

w x
=

=     (3.83) 

 Where ijA  are the fuzzy sets in (3.82). If 
1

0
N p

p
w

=
= , then no rule in the form 

(3.82) will be generated; the method stops. Otherwise, view pw  as a weight of 
py  and 

compute the weighted average 

 1

1

N
p p

p

N
p

p

y w

av

w

=

=

=





    (3.84) 
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Step 2: A fuzzy IF-THEN rule in the form of (3.82) is generated with $B$ 

determined according to the following two cases. 

Case 1: Among the K  fuzzy sets 
1,..., kB B  defined in the output space R , find the 

*jB  such that 

 * ( ) ( )j jB B
av av      (3.85) 

For 1,2,..,j K= . The B  is chosen as *jB . 

Case 2: Compute the weighted “variance” 

 1

1

| |
N

p p

p

N
p

p

y av w

w


=

=

−

=





    (3.86) 

And the fuzzy set B  is the fuzzy set with triangular membership functions 

 ( ) ( ; , )B y y av  =     (3.87) 

Step 3: Compute the degree of confidence(doc) of the rule generated in Step 2. 

Specifically, in Case 1 the doc is defined as  

 
*

, 1

1 ( )
max | | jBN p q

p q

doc av
y y




=

 
= −  − 

  (3.88) 

And in Case 2 it is defined as 

 
, 1

1
max | |N p q

p q

doc
y y



=

= −
−

        (3.89) 
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The second method can be used to extrapolate the rules over regions not covered by 

the data. The details of the method are detailed below [94]. 

Step 1: For each extrapolating rule, determine how many neighbours it has from the 

set of data-generated rules. Find the group of extrapolating rules that have the 

maximum number of such neighbours and call this group the max-group. 

Step 2: For each rule in the max-group, compute 

 1

1

b
r r r

c
l r
c b

r r

r

y doc dis

y

doc dis

=

=

=



    (3.90) 

Where l  is the index of the rule, b  is the number of neighbours this rule has from 

the data-generated rules, 
r

cy  and rdoc  is the distance between the input centre of this 

rules and its neighbour rule r . The extrapolating rules in this max group are generated 

as  

 1 1 ... ,l l l

i i im imIF x is A and and x is A THEN yis B   (3.91) 

Where 
l

ijA  are fuzzy sets corresponding to the entry of the extrapolating rule in the 

rule table, and lB  is a triangular fuzzy set ( ) ( ; , )l
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Step 3: Compute the degree of confidence of the extrapolating rule (3.91) as 
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Where k,t run over all the neighbour rules are the r  in (3.90) and (3.92). 

Step 4: View the extrapolating rules generated in Step 2 as the same of the data-

generated rules and go to Step 1 to repeat the process until all the extrapolating rules 

are generated. The extrapolating rules plus the data-generated rules form a complete 

fuzzy rule set. 

3.6 Summary 

This chapter provided an overview of the Fuzzy Logic Systems explaining the 

different stages from the crisp input, to fuzzification, rule inference, the various 

defuzzification methods and the crisp output. 

This chapter described the Type-1 and Type-2 Fuzzy sets and presented the many 

advantages of using type-2 fuzzy sets to represent the inputs and outputs of the FLS. It 

went on the describe the difference between the type-1 and type-2 FLS and explained 

the additional steps required, such as type-reduction. It then described the Fuzzy rule-

based classification systems built using scaled confidence and support, that are required 

in cases where the classification data is skewed.  

It also explained the similarity metric that allows the FLS to generate output in no 

rules fired situations that might be caused because of the short rules and small rule-

bases that are used to preserve the interpretability of the FLS. 

The next chapter gives an overview of the optimisation algorithms   
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Chapter 4. An Overview of Selected Optimization 

Algorithms 

Optimisation is a process by which a large number of feasible solutions to a problem 

are systematically examined until we find the best solution. An objective or fitness 

function is used to determine the goodness or fitness of the solutions, and objectives 

are often cost, distance, time and other such factors. 

We use stochastic search principles (where randomness is introduced into the 

algorithms so that a given input can produce different outputs depending on the system 

variables) to all the optimization algorithms to find globally optimal solutions more 

reliably [69]. 

4.1 Big Bang Big Crunch (BB-BC) 

Big Bang Big Crunch method [95] is based on the idea that randomness can be seen 

as energy dissipating into the environment while convergence to an optimal point can 

be seen as gravitational attraction. These ideas are used as the basis for BB-BC 

algorithm where randomness is used to create totally new candidate solutions by 

creating disorder and convergence is used to pick the optimal solutions from this 

disorder. 

BB-BC is similar to a Genetic Algorithm [95] in that both of these methods use 

randomness to generate their initial population. The creation of the initial population is 

referred to as the Big Bang Phase where the candidate solutions are spread uniformly 

across the solution space (depicted in Figure 4-1) 
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The population size is generally kept fixed throughout the optimization process. 

However, the population size can be increased or decreased depending on the fitness 

of the solutions or the number of iterations. 

The Big bang phase is followed by a Big Crunch phase. The Big Crunch phase is 

represented by a convergence operator which reduces the number of solutions to one, 

which is termed as the centre of mass. The centre of mass can be calculated using the 

following formula. 

 1

1

1

1

n

i

i i
c n

i i

x
f

x

f

=

=

=





     (4.1) 

Where ix  represents the individual candidate solution, if  is the fitness of the thi  

solution and n  is the population size of the Big Bang Phase.  

After the Big Crunch phase, the algorithm will create a new generation of candidates 

to be used in the next iteration. There are various ways to achieve this; the simplest 

way to do this is to generate a new generation randomly. This method has no benefits 

 

Figure 4-1: 2D depiction of the initial population of candidate solutions in BB-BC algorithm 
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as the knowledge gained in the previous step is lost. The BB-BC algorithm retains the 

knowledge from each generation by generating the new generation of candidate 

solutions around the optimal point or centre of mass that was discovered in the previous 

step. This is achieved by generating the new candidates using a normal distribution 

operation around the centre of mass and also by reducing the standard deviation of the 

normal distribution function as the number iterations increases [95] (depicted in Figure 

4-2) 

After the second Big Bang phase, the centre of mass is recalculated using the new 

candidate solutions. This process of, Big Bang followed by Big Crunch, is repeated 

until the stopping criteria are met. The knowledge gained in each Big Crunch phase is 

transmitted to the next Big Bang Phase in the form of the centre of mass and the 

standard deviation of the candidate solutions. 

As the number of iterations increases the standard deviation becomes smaller and 

smaller, eventually reaching zero as the number of iterations reaches infinity. Thus, the 

new generation candidates who will be located far from the centre of mass will be 

 

Figure 4-2: 2D depiction of the candidate solutions in the second Big Bang Phase in BB-BC 

algorithm 
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selected with decreasing probability thus potentially moving the centre of mass towards 

itself if it has higher fitness value than the remaining candidate solutions [95]. Thus 

ensuring the global convergence property of the BB-BC algorithm [95]. 

A summary of the BB-BC algorithm is presented below [95]: 

• The initial generation of n candidates is randomly generated while respecting 

the limits of the search space. 

• Calculate the fitness of all the candidate solutions generated in the previous 

step. 

• Find the centre of mass using equation (4.1) or the best-fit individual among 

the candidate solutions is chosen. 

• Calculate the new generation of candidate solutions around the centre of mass 

chosen in the previous step using the below equation. 

 
new c

lr
x x

k
= +      (4.2) 

 

Figure 4-3: Flow Chart for the Big Bang Big Crunch Algorithm 
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where cx  is the centre of mass, l  is the upper limit of the search space, r  is the 

random number generated and k  is the number of iterations completed. 

• Return to step 2 if the stopping criteria are not met. 

4.1.1 Implementation of the Big Bang-Big Crunch Algorithm 

The flow chart for the BB-BC algorithm is show in Figure 4-3, and the pseudocode 

is presented in Figure 4-4. 

4.2 Genetic Algorithms 

Genetic Algorithms are based on the theory of evolution, i.e., the population of 

individuals evolves over time to adapt to a given environment. This means that 

individuals that are more suitable to the environment are more likely to survive and 

reproduce [96].  

Genetic Algorithm is an iterative procedure that is implemented in the following 

way: 

 

Figure 4-4: Pseudocode for the BB-BC algorithm 
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An initial population of individuals or chromosomes is generated either randomly 

or by using some method to embed prior knowledge into the population. Included prior 

knowledge is known to improve the rate of convergence of the genetic algorithm. 

A fitness function is used to evaluate or determine the fitness of all the individuals 

in the population. The fitness function is designed based on the objectives of the 

optimisation process. 

Then a new generation of individuals is generated by first selecting certain 

individuals from the population (usually depends on the fitness of the individual), and 

then the next generation of individuals are generated. The next generation is then 

evaluated for fitness, and if the stopping criteria are met, we stop the evaluation. Else, 

these individuals are used to produce the next generation of offspring’s. This process 

is repeated until the stopping criteria are met. 

4.2.1 Genetic Operators 

4.2.1.1 Selection 

In genetic algorithms, selecting the individual or chromosome that will produce the 

next generation of individuals is crucial. The selection process is generally proportional 

to the fitness of the individuals. There are many methods that are commonly used to 

accomplish this, Fitness proportional selection and Tournament selection are the most 

popular methods [69, 97, 98] 

• Fitness Proportional Selection: In this method, the probability that a particular 

individual i  is selected depends on the following equation 
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Where f  represents the fitness of a particular individual. Therefore the 

probability of an individual being selected is proportional to their fitness [21]. 

Hence, the selection process involves randomly generating a number and 

selecting individuals based on their fitness proportion and its correlation to the 

random number. 

• Tournament Selection: The most common way in which tournament selection 

takes place is by randomly selecting k  individuals from the population, and 

the fittest individual from these k  individuals is selected [21]. 

4.2.1.2 Crossover 

Crossover is the process in which the chromosomes of two individuals are merged 

by cutting the chromosomes at some chosen points [21]. The most common crossover 

techniques are below. 

• Single Point Crossover: In this method, a single point is chosen for the 

crossover point. The chromosome after the chosen point is swapped between 

the two parent chromosomes to generate the new individuals. The single point 

crossover is illustrated in Figure 4-5. 

 

Figure 4-5: Single Point Crossover [69]     
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• Multi-Point Crossover: In this method, n points are chosen for the crossover 

points. The sections of the chromosomes between the n  chosen points are 

swapped between the chromosomes of the two parents to create the new 

individuals. This process is illustrated in Figure 4-6. 

4.2.1.3 Mutation 

Mutation allows undirected jumps within the search space [69]. Mutation is used to 

maintain the genetic diversity of the population, and it is designed to occur very rarely 

with a probability that is set to below 10%. The mutation operator is generally 

interpreted as flipping a bit or generating a random bit [21]. In the case of real-valued 

formulations, mutation is generally interpreted as randomly generating a value within 

the search space of the problem to be solved [69]. 

4.2.2 Implementation of Genetic Algorithm 

The flow chart of a genetic algorithm is shown in Figure 4-7, and the pseudo-code 

for implementing a genetic algorithm is presented in Figure 4-8 

 

Figure 4-6: Multi-Point Crossover [69]  
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4.3 Gradient Descent Optimization Algorithm 

Gradient Descent is one of the most popular optimization algorithms which are used 

for optimizing Neural Networks and Deep Learning algorithms. In this thesis, the 

 
Figure 4-7: Flow Chart of a Genetic Algorithm 

 

Figure 4-8: Genetic Algorithm Pseudo Code 
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gradient descent algorithm is used to train the stacked autoencoder, which is then used 

to pre-train the proposed Deep Type-2 fuzzy logic system. The training method using 

gradient descent is described in Chapter 7.  

Gradient descent is an iterative algorithm that works on the principle of error-

correction learning, and it is implemented in the following way: 

In the initial step, the weights and bias of the neural network are generated randomly. 

The weight and bias values are either uniformly distributed between 0 and 1 or -1 and 

1 based on the algorithm. Next, a single or multiple training data pairs are presented to 

the network, and an error is calculated using a cost function, which is chosen based on 

the type of problem that is being solved. 

The error values are then used to identify the gradient of the cost function, which is 

then used to update the weights and bias of the network based on the learning rate using 

the following equation [99]. 

 1 . ( )t t J   + = −       (4.4) 

Where   is a constant that represents the learning rate, ( )J   represents the 

gradient of the cost function. 

This process is repeated until all the training data pairs are presented to the network. 

The presentation of all the training data pairs to the network is termed as an epoch. 

After each epoch, the performance of the network is evaluated against a validation 

dataset and then checked against the stopping criteria. The epochs are repeated until 

the stopping criteria are satisfied. 
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4.3.1 Adaptive Learning Rate 

The learning rate is one of the most difficult hyperparameters to set because it 

significantly affects performance [100]. Using momentum in the algorithm somewhat 

mitigates this problem but at the expense of adding another hyperparameter. The 

solution to this problem is to automatically adapt the learning rate throughout the 

training process [100]. One of the most popular algorithms that use adaptive learning 

rate is described below. 

4.3.1.1 Adam 

Adaptive Moment Estimation (Adam) [101] is one of the most popular and recent 

adaptive learning algorithms. It is designed to combine the advantages of two other 

popular adaptive learning algorithms: AdaGrad [102] and RMSProp [103]. It is 

considered the best overall choice among the gradient descent algorithms [99]. Adam 

stores the exponentially decaying average of the past gradients as follows. 

 1 1 1(1 ) ( )t tm m J  −= + −      (4.5) 

Where 1  is a hyperparameter and the authors suggest a default value of 0.9. 

Adam also stores the decaying average of past squared gradients as follows. 

 2 1 2(1 ) ( )t tv v J  −= + −      (4.6) 

Where 2  is another hyperparameter, and the authors suggest a default value of 

0.999. 

As the tm  and tv  are initialized to zero, these values are biased towards zero. To 

counteract this effect, the authors have suggested the following correction. 



106 

 

 
1

ˆ
1

t
t t

m
m


=

−
     (4.7) 

 
2

ˆ
1

t
t t

v
v


=

−
     (4.8) 

This yields the final weight update function as follows. 
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Where the value e is initialized to a small value such as 810−  to ensure that there is 

no divide by zero error. 

4.3.2 Implementation of Gradient Descent Algorithm 

The pseudo-code for the gradient descent algorithm used is presented in Figure 4-9. 

The Adam algorithm is used for updating the weights and bias. 

 

Figure 4-9: Gradient Descent Pseudo Code [101] 
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4.4 Summary 

This chapter gave an overview of the optimization algorithms that are used in this 

thesis. These algorithms are Big Bang Big Crunch and genetic algorithms (GAs) which 

are used to train the proposed Deep Type-2 Fuzzy Logic System. The Stochastic 

Gradient Descent, which is used to train the stacked autoencoder and the outputs of 

hidden layers of this model is then used to train the proposed algorithm as an alternative 

training method. 

The next chapter gives an overview of the problems or datasets used to evaluate the 

models examined in this thesis. 

  



108 

 

Chapter 5. Overview of the Datasets used in the 

Research 

In this chapter, we will introduce all the datasets we use to test our XAI models. 

These datasets were collected with the goal of finding large real-world datasets with a 

high number of attributes/features to test the embedded feature selection capability of 

the proposed models presented in this thesis. We also collected datasets with a large 

number of instances and used a part of each dataset to pre-train the proposed models 

unsupervised, and then the models were retrained (supervised training) using the rest 

of the dataset.  

Another goal was finding datasets from a variety of fields to check the applicability 

of our models to solve these problems. Hence, we collected datasets from a variety of 

fields such as Communication, Medical, Financial, Automotive etc.   

We collected six datasets that relate to classification. We also collected five datasets 

that relate to regression. These datasets were collected from a variety of sources such 

as, BT, who provided us with two of these datasets one for classification and another 

for regression problems. The second source was the UCI machine learning repository 

[104], where we were able to identify four classification and three regression datasets. 

Table 5-1: Summary of Datasets used in the Experiments 

Dataset Type No of 

Attributes 

No of 

Records 

Records for 

Unsupervised 

Training 

Records for 

Supervised 

Training 

BT Customer 

Service 

Classification 500  100,000  50000 50000 

CLL Identification  Classification 3000 100000  50000 50000 

IDA 2016 Classification 171 76000  16000 60000 

Epileptic Seizure Classification 178 11500  1500 10000 

PD Speech  Classification 754 756 110 646 

Santander CTP Classification 200 400000 200000 200000 

Wi-fi Localization Regression 522 21100 2100 19000 

Swiss Premium  Regression 199 53,000 25000 28000 

CT Scan Region  Regression 385 53500 8000 45500 

Song year Regression 90 500000 50000 450000 

BT PWA Regression 44 30000 5000 25000 
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The third source was Kaggle, where we were able to identify two of their open-source 

datasets [105] [106].  The datasets are summarised in Table 5-1  

5.1 Classification Problems 

In this section, we present the list of datasets we used to perform classification to 

test the performance of our model in classification tasks. 

5.1.1 BT Customer Service (BTCS) 

The dataset is supplied by BT, and the data is about predicting whether a customer 

is contacting BT to report problems with their broadband connection or not. If the 

problem is related to their connection, i.e., slow connection, broadband not working 

etc, then an engineer will be sent to fix the issue. If the problem is not related to the 

connection itself, the problem could be about issues that could be solved over a phone 

call without the need for an engineer visit.   

Suppose the customer’s problem can be predicted in advance based on the 

customers' historical behaviour or demographic information. The customer’s problem 

can be dealt with appropriately without the need for any unnecessary engineer visits to 

the customers' premises. This would be a huge cost saving for both the customer and 

BT as engineer visits are expensive. This would also lead to a more pleasant customer 

experience as many trivial problems can be resolved more quickly over a phone call 

leading to improved customer experience. 

The data consists of 500 attributes including anonymised demographic information, 

services usage, previous fault details, broadband speeds, etc. with about 100,000 

records. We used 50000 records for unsupervised training and 50,000 records for 

supervised training. 
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5.1.2 CLL Identification (CLL) 

The dataset is about identifying Chronic Lymphocytic Leukemia (CLL) using 

aberrant chromatin features. CLL is a type of cancer, and it has been identified that 

there is a link between aberrant chromatin features and CLL. However, how they are 

related is still an open question. So, they collected genomic sequence from a set of 

healthy individuals and individuals with CLL. The goal of this analysis is to identify 

how the aberrant chromatin features relate to CLL. XAI is one method that can be used 

to identify this connection if the AI models can predict CLL using this dataset and 

predictions of the model can be interpreted then the relationship between the inputs and 

output can be explored using the explanations provided by the AI. Further experiments 

would be needed to confirm that there is a relationship. This dataset points towards one 

of the major uses of XAI systems. 

 The dataset has about 100000 records and 3000 inputs [107]. We used 50000 

records for unsupervised training and 50000 records for supervised training. 

5.1.3 IDA 2016 (IDA)  

The data is collected from heavy Scania trucks in everyday usage. The data is 

collected from the Air Pressure system (APS), which generates pressurised air which 

is used in various functions on the truck, such as braking and gear changes. The data 

consists of a subset of all available data, selected by experts.  

The data consists of truck failures, and the goal is to identify the truck failures which 

are related to the APS. i.e., the dataset’s positive class consists of component failures 

for a specific component of the APS system. The negative class consists of trucks with 

failures for components not related to the APS.  
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The dataset has 76000 records with 171 attributes [104]. We use 16000 of these 

records for unsupervised training and 60000 records for the supervised training. 

5.1.4 Epileptic Seizure (ES) 

The dataset is a pre-processed dataset commonly used for epileptic seizure detection. 

The data has 178 data points, and each data point is the value of the EEG recording at 

a different point in time [108].  

The original dataset from the reference consists of 500 files, with each file 

representing a single subject/person. Each file is a recording of brain activity for 23.6 

seconds. The files are then converted into time-series by sampling the files into 4097 

data points. Each data point is the value of the EEG recording at a different point in 

time. So, we have a total of 500 individuals, with each individual having 4097 data 

points [108].  

Everyone’s data is divided into 23 parts, each part contains 178 data points for 1 

second, and each data point is the value of the EEG recording at a different point in 

time. So now we have 23 x 500 = 11500 pieces of information(row), each information 

contains 178 data points for 1 second(column). The last column represents the target, 

where the positive class represents the list of records where there is an epileptic seizure, 

and the Negative class represents the list of records where there is no problem [108] 

[104].  

We used 1500 records for unsupervised training and 10000 records for the 

supervised training.  
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5.1.5 PD Speech (PDS) 

This dataset is gathered from a study where the data was gathered from 188 patients 

with Parkinson’s Disease (107 men and 81 women) with ages ranging from 33 to 87. 

The control group consists of 64 healthy individuals (23 men and 41 women) with ages 

varying between 41 and 82. During the data collection process, the microphone is set 

to 44.1 kHz and following the physician examination, the sustained phonation of the 

vowel “a” was collected from each subject with three repetitions [109].  

Various speech signal processing algorithms including Time-Frequency Features, 

Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features, 

Vocal Fold Features and TWQT features have been applied to the speech recordings of 

Parkinson's Disease (PD) patients to extract clinically useful information for PD 

assessment. The data has about 756 records with 754 attributes [109].  

We used 110 records for unsupervised training and 646 records for the supervised 

training. 

5.1.6 Santander CTP (SCTP)  

This dataset is from Santander. In this dataset, the goal is to identify which 

customers will make a specific transaction in the future, irrespective of the amount of 

money transacted. The data provided has the same structure as the real data that 

Santander has available to solve this problem. Once the customers who are likely to 

make a transaction are identified, we can use this information in a variety of ways. For 

example, if a transaction, that the model thinks is unlikely, happens then we might add 

additional checks to make sure it is the customer making this transaction. This could 

potentially identify and stop fraudulent transactions. This could also be used in targeted 
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marketing, by approaching the customers who are likely to make a transaction, leading 

to a higher chance of a product sale, etc. 

The dataset consists of around 400,000 records with 200 features [105]. It is a binary 

classification task, and the dataset is skewed with only 20098 positive records while 

the rest of the records are negative. We used 200,000 records for unsupervised training 

and 200000 records for supervised training. 

5.2 Regression Problems 

Regression is a statistical measure that attempts to determine the strength of the 

relationship between one or more dependent variables and a series of independent 

variables. Here we list a set of datasets we use for performing regression analysis for 

testing the ability of our model. 

5.2.1 Wi-fi Localization (WL) 

 This dataset is from an indoor user localization problem [110] [104]. Many 

applications need to know the location of a user in the world to provide their services. 

This means that automatic user localization has been a hot topic of research. The goal 

of the Automatic user localization is the estimation of the position of the user using an 

electronic device, usually a mobile phone. This problem can be solved easily when the 

user is outdoor thanks to the availability of GPS sensors on most mobile phones. 

However, this problem becomes much more difficult when the user is indoor, mainly 

due to the loss of GPS signal in indoor environments.  

This database is focused on WLAN fingerprint-based solutions (also known as Wi-

Fi Fingerprinting). Wi-Fi Fingerprinting can be characterized by the detected Wireless 

Access Points (WAPs) and the corresponding Received Signal Strength Intensities 
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(RSSI). The database was collected in 2013 at the Universität Jaume I by 20 different 

users using 25 android devices. This dataset consists of around 21,000 training records 

with 529 attributes.  

• The first 520 of these attributes are the Wi-Fi fingerprint of 520 WAPs.  

• Attribute 521 is the Longitude 

• Attribute 522 is the Latitude 

• Attribute 523 is the Floor where the datum was collected. 

• Attribute 524 is the building (0 to 2) 

• Attribute 525 is the Internal ID number to identify the Space (office, corridor, 

classroom) where the datum was collected. 

• Attribute 526 is the Relative position with respect to Space (1 - Inside, 2 - 

Outside in Front of the door).  

• Attribute 527 is the User identifier. 

• Attribute 528 is the Android device identifier. 

• Attribute 529 is the time when the datum was collected. 

We use 522 of the above attributes in our experiments and ignore attributes 523 to 

529. 

We used around 2100 records for unsupervised training and 19000 records for 

supervised training. 

5.2.2 Swiss Premium (SP) 

This dataset is collected from the statistics published by the Swiss government.  It 

consists of information about insurers, regions, healthcare information and 

demographic information.  The goal of this data is to predict health insurance premiums 
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that will be charged. This is valuable because the premiums are communicated yearly 

at the end of September. However, if these figures could be predicted earlier, the 

consumers would have more time to plan for a possible change. This is helpful as 

Switzerland has one of the world’s highest health insurance premium rates. With the 

use of XAI, we can also identify the features or factors that influence the premium 

rates. This is helpful as it allows the consumers to be informed about their lifestyle 

choices that could lead to higher premiums. For example, smokers could be charged 

higher premiums as they are more likely to get respiratory diseases. 

This dataset consists of around 53,000 records with 199 inputs. We used 25000 

records for unsupervised training and the other 28000 records for supervised training. 

For more details about this dataset, please refer to the following [106]. 

5.2.3 CT Scan Region (CTSR) 

This dataset is about finding the relative location of computerized tomography (CT) 

slices on the axial axis. This data was used in [111] [112].  

This dataset consists of 53500 CT images from 74 different patients. Each CT scan 

is represented by two histograms; the first histogram describes the location of the bone 

structure in the image, while the second histogram represents the location of the air 

incursion in the body. These to histograms are combined to form the final data vectors. 

The output was constructed manually by annotating ten different locations on the CT 

scan with known locations.  

There are 385 attributes for each record; the first 240 attributes are the histogram 

that represents the location of the bone structure. The attributes from 241 to 385 are the 

histogram that represents the air incursions. The output is a value in the range 0 to 180, 
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with 0 representing the top of the head and 180 representing the soles of the patient's 

feet [104].  

We used 8000 records for unsupervised training and the rest of the records for 

supervised training. 

5.2.4 BT PWA (BTP) 

This dataset is collected from British Telecom in the UK. The data was collected 

from around 520 Work Areas (WA) over a one-year period. Each datum contains 

performance information for each of the WA over a one-week period. With the 

following Attributes. 

• Rank: Relative rank to the other WAs in the week where the performance was 

measured 

• Missed Appointments: Number of tasks per day which could not be completed 

within the appointed time period 

• Productivity: average productivity of the engineers working in the WA for the 

particular week being examined 

• Service Level CL1: Percentage of high priority tasks completed on time 

• Service Level CL2: Percentage of low priority tasks completed on time 

• Travel: average travel time of the engineers  

• Contractors: average number of contractors employed in the WA per week 

• On day Utilization: Utilization of engineers per day measured at the end of each 

day 

• Economic Utilization  

• Overtime: average overtime per day by engineers in the WA 
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• Loans: average number of engineers loaned per day from other WAs 

To predict the future performance of the WA at time interval t, we use the 

performance data at previous time intervals, i.e., 𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3, 𝑥𝑡−4 where xt 

contains the 11 abovementioned performance measures. The target is to predict the 

Rank of the WA at time interval t. 

The data consists of around 30000 records and 44 attributes, and the data was used 

in the following paper [48] [96].  

5.2.5 Song year (SY) 

This dataset is a subset of the million song dataset  [104] [113]. The target is to 

predict the year in which a song was released by analysing its audio features. Songs are 

mostly western, commercial tracks ranging from 1922 to 2011.  

There are 90 attributes, 12 of these attributes represent the timbre average, and these 

features are extracted from the ‘timbre’ features from The Echo Nest API, currently 

owned by Spotify. These values are high-level abstractions of the spectral surface, 

ordered by degree of importance. For completeness, however, the first dimension 

represents the average loudness of the segment; the second emphasizes brightness; 

third is more closely correlated to the flatness of a sound; fourth to sounds with a 

stronger attack; etc. The average and covariance are taken over all segments of the 

songs; each segment is described by the 12-dimensional timbre vector. The rest of the 

78 attributes are covariance over all the segments. 

We used around 50000 records for unsupervised training and the other 450000 

records for supervised training. 
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5.3 Summary 

The Chapter presents the six categorical and five regression datasets used in the 

experiments for the rest of the thesis. It explains that these datasets were chosen because 

they are high dimensional and can be used to test the embedded feature selection 

capability of the proposed model. It explains that real-world datasets were chosen from 

BT and other sources to test the ability of the model to solve real-world problems.  

The chapter also explains how a part of the datasets will be used for unsupervised 

training while the rest of the data will be used for supervised training of the proposed 

model. 

The next chapter introduces the proposed system in detail.  
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Chapter 6. The Proposed Deep Type-2 Fuzzy Logic 

System 

 

One of the problems of modelling datasets with many features using Fuzzy Logic 

Systems (FLS) is that the number or amount of rules required is very large, and this 

reduces the interpretability of the system. For example, for a system with 30 features if 

we use three antecedents per rule, then the number of possible rules in the rule base 

will be 30 143 2*10=  rules.  Such a large rule base presents us with two main problems. 

Firstly, the computational complexity involved in calculating all the rules for each 

prediction means that such a system will be slow. Secondly, although the individual 

rules will be intelligible to the end-users of these systems, the sheer number of rules 

means that these models effectively become opaque.  

One way to resolve this is to reduce the number of rules. Some of the rules in the 

full set will be redundant and reducing the number of rules will not impact the accuracy 

of the model initially. However, as more and more rules are removed the accuracy of 

the model will reduce. Another challenge is that given that the system is operating on 

a reduced ruleset, there will be situations where none of the rules is fired, and thus no 

output is produced. There are a few methods to mitigate this problem; one such method 

is presented in [48, 49] where the similarity of rules, i.e., for each of the rules in the 

FLS, similar rules are created by checking if using the other membership functions or 

linguistic labels of the antecedents trigger the rules, and based on the distance between 

the linguistic labels, the firing levels are calculated. However, there will still be a need 
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to perform feature selection for such systems to operate, and there is no way to learn 

from unlabelled data (input data with no target outcome). 

Hence, we propose a Deep Type-2 Fuzzy Logic System (D2FLS) (depicted in Figure 

6-1). This system comprises of two or more interval type-2 FLSs where the output of 

the first FLS is used as the input of the second FLS and the output of the second FLS 

is used as the input of the third FLS etc. This system is inspired by Stacked 

autoencoders (SAE) or multi-layer neural networks [61]. The goal here is for each of 

FLSs to aggregate the input features into more complex compound features that 

become the outputs of the FLS, thereby reducing the number of features in the 

subsequent FLS layers. This process is repeated by each of the FLSs in the D2FLS until 

we generate the final output. The advantage of such a system is that the total number 

of rules required to represent the whole model will be low, which helps in reducing the 

computational complexity of the system. Furthermore, since the number of rules will 

be small, the system will be more interpretable than an equivalent FLS which will have 

a larger number of rules. 

 

Figure 6-1: A Deep Type-2 Fuzzy Logic System Architecture 
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The training of the D2FLS presents a few problems, as there are multiple FLSs, we 

cannot use single-pass methods such as Wang Mender(WM) [38] [93] described in 

Section 3.5.1 to train the D2FLS because we do not have a simple way of determining 

the outputs of the hidden layer in advance (we only know the inputs and outputs of the 

final layer in advance). For the same reason, we cannot train the hidden layer 

separately. Hence, we propose to train the D2FLS using greedy layer-wise training [61] 

similar to a Stacked autoencoder (depicted in Figure 6-2). In detail, for a D2FLS with 

three FLS as depicted in Figure 6-1, we will train the first layer as a Fuzzy autoencoder 

(FAE) (depicted in Figure 6-3). Next, we discard the decoder and use the output of the 

 

Figure 6-2: Layer Wise Training D2FLS 
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encoder part of the FAE as the input for the second layer and train that layer as an FAE. 

Finally, we will add the final layer to the encoders of the first two FAEs and train the 

three FLSs in a supervised way to get the final output. The idea behind this approach 

is to use unsupervised training of the FAEs to learn essential features or combine 

features. The details of the training method are presented in the following sections.  

6.1 Model Representation 

A key issue in Genetic algorithms and BB-BC algorithm is the choice of the 

encoding scheme, i.e., how to represent a solution to the problem, in this case, an FLS, 

as a chromosome [69]. The choices are generally binary or floating-point. In our case, 

we use floating-point numbers to represent the D2FLS, and the details of the 

representation are presented in the following sections. 

6.1.1 Representation of the Type-1 models 

We encode the parameters of a type-1 FLS as real-valued numbers. There are three 

sets of parameters that can be used to characterise the type-1 FLS, first the membership 

 

Figure 6-3: Fuzzy Autoencoder Architecture 
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functions or linguistic variables that represent the input or antecedents, second the 

membership functions or the linguistic variables that represent the outputs or 

consequents and the third set of values represent the rules of the FLS.  The MFs for the 

antecedents and the consequents are represented using the same encoding.  

6.1.1.1 Membership Function Representation 

The representation of the parameters of the membership functions changes based on 

the type of membership function; hence, below, we show the representation for the 

three types of membership functions. 

6.1.1.1.1 Trapezoidal Membership function representation 

A trapezoidal MF can be defined using the following formula. 

 

( ) / ( )

1
( ) ( ; , , , )

( ) / ( )

0

j j

x a b a if a x b

if b x c
x x a b c d

d x d c if c x d

if x d or x a

 

− −  


 
= = 

− −  
  

 (6.1) 

Where [0,1]x X = , then the parameters of the linguistic variable M, which is 

defined by j trapezoidal membership functions, can be represented in the following 

format. 

 1 1 2 2, , , ,.., ,j jM b c b c b c=     (6.2) 

We can see from (6.2) that each fuzzy set is represented by two parameters, b, and 

c. The parameters a and c of the thk  membership function can be defined using the 

parameters b and c as follows:  

 
1

1

k k

k k
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d b

−
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=

=
      (6.3) 
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Where 1 1, 0a b =  and , 1j jc d =  as depicted in Figure 6-4.  

In other words, from Figure 6-4, we can see that two values represent each fuzzy set 

and the start and endpoints of the MFs are anchored to the previous and the next MF, 

respectively. The start of the first MF and the end value of the last MF are set to 0 and 

1 respectively. So, the first membership function is represented by four values, it starts 

at 0, the top two vertices are represented by 1b  and 1c , and the final vertex at the end 

is represented by 2b . The four vertices of the second membership function are 

represented by start= 1c , top= 2b  and 2c , and end = 3b  etc. 

6.1.1.1.2 Triangular MF Representation 

A Triangular Membership Functions is defined using the following formula [38]. 

 

( ) / ( )

( ) ( ; , , ) ( ) / ( )

0

j j

x a b a if a x b

x x a b c c x c b if b x c

if x cor x a

 

− −  


= = − −  
  

  (6.4) 

 

Figure 6-4: Representation of a Trapezoidal Type-1 Membership Function 
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Where [0,1]x X =  then the linguistic variable M which is defined by j Triangular 

membership functions can be represented in the following format. 

 1 2, ,.., jM b b b=     (6.5) 

We can see from (6.5) that each fuzzy set is represented by one parameter, b. The 

parameters a and c of the thk  membership function can be defined using the parameter 

b as follows.  

1k ka b −=       (6.6) 

Where 1 1, 0a b =  and , 1j jb c =  as depicted in Figure 6-5.  

In other words, from Figure 6-5, we can see that each fuzzy set is represented by 

one value and the start and endpoints of the MFs are anchored to the values of previous 

and the next MF, respectively, and the start of the first MF and the endpoint of the last 

MF are set to 0 and 1, respectively. So, the first membership function is represented by 

 

Figure 6-5: Representation of a Triangular Type-1 Membership Function 
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three values, and it starts at 0, the top of the triangle is represented by 1b  , and the final 

vertices at the end is represented by 2b . The three vertices of the second membership 

function are represented by start= 1b , top= 2b  and end = 3b  etc. 

6.1.1.1.3 Gaussian Membership Function Representation 

A Gaussian Membership function is defined using the following formula [38]. 

 

2
( )

( ) ( ; , ) exp
2

j j

x m
x x m  



 − 
= = −  

   
   (6.7) 

Where [0,1]x X = , then the linguistic variable M, which is defined by j Gaussian 

membership functions (depicted in Figure 6-6), can be represented in the following 

format. 

 1 1 2 2, , , ,...., ,j jM m m m  =    (6.8) 

 

Figure 6-6: Representation of a Gaussian Type-1 Membership Function 
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We can see from (6.8) that each fuzzy set is represented by two-parameter the mean 

and standard deviation of the gaussian MF. 

6.1.1.2 Rules Representation 

Each Rule of the FLS has two components the antecedents of the rule and the 

consequents of the rule. The antecedents and consequents of each rule of the FLS are 

encoded using the below representation. 

 
1 1

1 2 1 2 1, ,.., , , ,..,a a

l bR r r r r c c=     (6.9) 

Where lR  represents the thl  rule of the FLS with a antecedents and b  consequents 

per rule. Each antecedent is represented by 2 points; the first point represents the thi  

input feature or linguistic variable; the second point represents the 
thj  membership 

function of that linguistic variable. The consequents are represented by a single point 

which represents the 
thj  membership function of the thb  consequent. 

6.1.1.3 FLS Representation 

Finally, to represent the parameters of an FLS, we combine the parameter 

representations of the MFs from (6.2), (6.5) or (6.8), based on the type of MF chosen, 

and rules from (6.9) to get the following representation. 

 1 1,.., ,.., , ,..,i i k lN M M M R R+=   (6.10) 

Where iM  represents the membership functions for the i input features or 

antecedents of the FLS and i kM +  represents the MFs for the thk output or consequent 

of the FLS using (6.2), (6.5) or (6.8).  
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6.1.2 Representation of IT2 Models 

The representation of the parameters of an IT2 FLS is very similar to the type-1 FLS 

parameter representation explained in the previous section the only difference is that 

each of the fuzzy sets or MFs will have a Footprint of Uncertainty (FOU) value. The 

rules of the IT2 models and T1 models are identical. 

6.1.2.1 Membership Function Representation 

6.1.2.1.1 Trapezoidal IT2 MF representation 

An IT2 fuzzy set can be represented by its left and right endpoints. The two 

endpoints are associated with two type-1 MFs that are referred to as upper and lower 

membership. For a trapezoidal MF, these two MFs can be defined by adding a small 

FOU to (6.1) as follows. 
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( ) / ( )

1
( ) ( ; , , , )

( ) / ( )

0

j j

x a b a if a x b

if b x c
x x a b c d

d x d c if c x d

if x dor x a

 

− −  


 
= = 

− −  
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 (6.12) 

 Where [0,1]x X = , ( )j x is the upper membership function, / 2a a FOU= + ,

/ 2b b FOU= + , / 2c c FOU= +  and / 2d d FOU= + . ( )j x is the lower membership 

function, / 2a a FOU= + , / 2b b FOU= + , / 2c c FOU= +  and / 2d d FOU= + .  
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Hence, the parameters of the linguistic variable M, which is defined by j IT2 

trapezoidal MFs (depicted in Figure 6-7), can be represented by modifying the 

representation of the type-1 Trapezoidal MF in (6.2) as follows. 

 2 1 21 1 22 , , , ,,.., , ,..,, jj jT b c b c c fb f f=    (6.13) 

Where jf represents the FOUs of the 
thj  fuzzy set. Here, we add one FOU for each 

of the fuzzy sets.  

6.1.2.1.2 Triangular IT2 MF Representation 

An IT2 fuzzy set can be represented by its left and right endpoints. The two 

endpoints are associated with two type-1 MFs that are referred to as upper and lower 

membership. For IT2 Triangular MF (depicted in Figure 6-8) the two endpoints can be 

defined by modifying (6.4) as follows. 

 

Figure 6-7: Representation of a Footprint of uncertainty (FOU) for Trapezoidal MFs 
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  (6.15) 

 Where [0,1]x X = , ( )j x is the upper membership function, / 2a a FOU= + ,

/ 2b b FOU= +  and / 2c c FOU= + . ( )j x is the lower membership function, 

/ 2a a FOU= + , / 2b b FOU= +  and / 2c c FOU= + .  

Hence, the parameters of the linguistic variable M, which is defined by j IT2 

triangular MFs(depicted in Figure 6-8), can be represented by modifying the 

representation of the type-1 Triangular MF in (6.5) as follows. 

 1 2 1 22 , ,. , .., , ,, . jj f fT b b b f=     (6.16) 

 

Figure 6-8: Representation of a Footprint of uncertainty (FOU) for Triangular MFs 

 



131 

 

Where jf represents the FOUs of the 
thj  fuzzy set. Here we add one FOU for each 

of the fuzzy sets.  

6.1.2.1.3 Gaussian IT2 MF representation 

An IT2 fuzzy set can be represented by its left and right endpoints. The two 

endpoints are associated with two type-1 MFs that are referred to as upper and lower 

membership. Thus, an IT2 Gaussian MF with uncertain standard deviation (depicted in 

Figure 6-9) can be defined as follows. 
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x m
x x m  
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Figure 6-9: Representation of the FOU of a Gaussian IT2 MF 
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Where [0,1]x X = , ( )j x is the upper membership function, FOU = + . ( )j x

is the lower membership function and  = .  

Hence, the parameters of the linguistic variable M which is defined by j IT2 

Gaussian MF with uncertain standard deviation (depicted in Figure 6-9) can be 

represented by modifying the representation of the type-1 Gaussian MF in (6.8) as 

follows.  

1 1 2 2 1 2, , , ,...., , , , ,...,j j jM m m m f f f  =   (6.19) 

In Figure 6-9 an input with three fuzzy sets is represented, we can see that the 

standard deviation represented in j  is used as the standard deviation for the lower MF 

and we add the FOU to this value to get the standard deviation of the upper MF. 

6.1.2.2 IT2 FLS representation 

 To represent the IT2 FLS, we combine the MF representation in (6.13), (6.16) or 

(6.19) based on the type of MF and the representation of the rules in (6.9) to get the 

following representation. 

 1 12 ,.., 2 ,.., ,2 ,..,i i k lT T T T R R+=    (6.20) 

Where 2iT  represents the membership functions for the i input features or linguistic 

variables FLS and 2i kT +  represents the MFs for the thk output or consequent of the FLS 

using (6.13), (6.16) or (6.19).  
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6.2 Layer Wise Training of The D2FLS 

As discussed previously, we train the Membership Functions and the rulebase of the 

D2FLS using a method similar to the greedy layer-wise training method used for 

training Autoencoders [61]. This training method (depicted in Figure 6-2) can be 

divided into two phases; in the first phase, we train the hidden FLSs as a Fuzzy 

Autoencoders using unsupervised data. We then train the FLSs one layer at a time until 

we have trained all the FLS layers except the final output layer. In the second phase, 

we add the final output layer to the encoders of all the hidden layers and retrain the 

whole D2FLS using supervised data. The details of the training are given in the 

following subsections. 

6.2.1 Fitness Function 

6.2.1.1 Average Recall 

We used Average Recall as the fitness function to train all the models for all the 

classification datasets. 

  
2
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Recall Recall
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=   (6.21) 
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    (6.22) 

Where True positive tp  is the number of correct positive predictions, and False 

negative fn is the number of incorrect negative predictions. 
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       (6.23) 
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Where True Negative tn is the number of correct negative predictions, and False 

Positive fp  is the number of incorrect positive predictions. 

6.2.1.2 Mean Absolute Error 

We used Mean Absolute Error (MAE) as the fitness function or cost function for the 

regression datasets. 

 1

ˆ| |
n

i i

i

y y

MAE
n

=

−

=


    (6.24) 

Where iy  is the desired output, iy  is the actual output of the model and n  is the 

number of inputs. 

6.2.2 Hidden Layer Training 

A Fuzzy Autoencoder (FAE), depicted in Figure 6-3, comprises of 2 FLSs that are 

trained to attempt to map its input to its output, i.e., the output of the first FLS (encoder) 

is the input for the second FLS (decoder) and the output of the second FLS is the 

 

Figure 6-10: Training Algorithm for IT2FLS  
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reconstructed input of the first FLS. The idea here is to provide a set of constraints to 

force the FAE to prioritize and learn the most useful properties of the input data and to 

make sure the system does not merely learn the identity function. The constraints that 

we add to the FAE are as follows.  

• Restrict the number of outputs of the encoder, and we will call it the hidden 

layer. 

• We reduce the number of consequents or outputs of the encoder when compared 

to the inputs. 

• We restrict the number of rules in the rule base of the 2 FLS that comprise the 

FAE 

• We force the FAE to use the same linguistic labels for the consequents of the 

encoder and the antecedents of the decoder.  

• We force the FAE to use the same linguistic labels for the antecedents of the 

encoder and the consequents of the decoder. 

These constraints reduce the number of parameters that must be trained in the FAE 

during the optimization process. This simplifies the training process allowing it to be 

trained much more quickly and efficiently. The intuition behind this idea is derived 

from Autoencoders in neural networks [100].  The two parts of the FAE are represented 

as follows: 

 ( )ph f x=      (6.25) 

Where h is a vector that represents the output of the encoder ( )f x  

  ˆ ( )px g h=                  (6.26) 
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Where x̂  is the output of the decoder, i.e., the reconstructed input. 

To optimize the FAE, the MFs and the rule base of the FAE are optimized using an 

optimization algorithm and the training is divided into three steps, depicted in Figure 

6-10. The goal of the optimization algorithm is to minimize a cost function such as 

MAE (6.24), which is modified as follows: 

1 1
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h h
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− −

=

−

=
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    (6.27) 

Where 1ˆkh − is the reconstructed input of the 1thk −  encoder, p is the number of 

instances in the training data and 0h  is the input vector of the training dataset. 

6.2.2.1 Optimize Type 1 FAE 

To optimize the type-1 FAE, we use an optimisation algorithm such as BB-BC 

(described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). The first 

step in these algorithms is to encode the parameters (to be tuned) of the two FLS 

(encoder and decoder) that comprise the FAE into individuals. Each individual 

represents a possible solution to the optimization problem. 

There are three sets of parameters to be tuned for each of the FLS of the FAE, the 

MFs that describe the input features or linguistic variables, the MFs that describe the 

output linguistic variables and the rules of the FLS. In this step, we train all these 

parameters, which are encoded into the individual as real numbered values as follows. 

1 1 11 ,.., ,.., , ,.., , ,..,e e d d

i i kT mF lAE M M M R R R R +=     (6.28) 
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Where iM  represents the membership functions for the i input features or linguistic 

variables of the FLS and i kM +  represents the MFs for the thk output or consequent of 

the FLS using (6.2), (6.5) or (6.8). 
e

lR  and 
d

mR represents the l and m  rules of the 

encoder and decoder, respectively using (6.9).  

For example, if the BB-BC algorithm is used as the optimization algorithm, the 

training of the FAE is performed using the following steps. 

Step 1: N  individuals are initialised by randomly generating values for each of the 

parameters of 1FAET in (6.28). 

Step 2: The N individuals are then decoded into FAEs using (6.28) , and the fitness 

of these individuals is calculated using the cost function in (6.27).  

Step 3: The best individual among these N  FAEs is selected, and the stopping 

criteria are checked against this solution. If this FAE satisfies the stopping criteria, then 

the optimization algorithm is stopped, and further steps of the training process are 

performed on this FAE.  

Step 4: Else, a new generation of N individuals is generated by mutating this 

individual using (4.2) , and the steps from Step 2 are repeated. 

6.2.2.2 Transform T1MFs to IT2MFs  

In the second step, we train the FOU of the MFs of the antecedents and the 

consequents using an optimization algorithm such as BB-BC (described in Chapter 4.1) 

or Genetic algorithm (described in Chapter 4.2). To do this, we add a FOU to the 

representation of the MFs of the antecedents and the consequents of the FAE trained in 
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the previous step. The representation of the FAE in (6.28) is modified using (6.13), 

(6.16) or (6.19) (based on the type of MFs) as follows. 

1 1 12 ,.., 2 ,.., 2 ,.., , ,..,, e e d d

e i i k l mT T T T R R R R+=  (6.29) 

Where 2iT  represents the membership functions for the i input features or linguistic 

variables FLS and 2i kT +  represents the MFs for the thk output or consequent of the FLS 

using (6.13), (6.16) or (6.19).  Since we only train the parameters of the MFs and their 

FOUs in this step, the parameters of the MFs are encoded into an individual as follows. 

 12 2 ,.., 2 ,.., 2i i kFAEIT T T T +=        (6.30) 

The FOUs of the FAE are then trained. For example, if the BB-BC algorithm is used 

as the optimization algorithm, the training of the FOUs of the FAE is performed using 

the following steps. 

Step 1: 1N −  individuals are generated by randomly generating values within the 

search space for each of the parameters in 2FAEIT . The final individual is generated by 

choosing the parameters from the type-1 FAE, trained in the previous step of the 

training (the FOUs of this individual are set to zero). 

Step 2: N individuals are then decoded into the MFs of the FAEs using (6.30), the 

rules are then added to these FAEs by choosing them from the type-1 FAE trained in 

the previous step. 

Step 3:  The fitness of the N FAEs are calculated using the cost function (6.27).  The 

best individual among these N  individuals is selected, and the stopping criteria are 

checked against this individual. If this FAE satisfies the stopping criteria, then the 
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optimization algorithm is stopped, and further steps of the training process are 

performed on this FAE. 

Step 4: Else, a new generation of N individuals are generated by mutating this 

solution using (4.2) and the steps from Step 2 are repeated. 

6.2.2.3 Optimizing the Rule Base of the IT2 FAE 

In the third step, we retrain the rules of the FAE generated in the previous section. 

The rules of the FAE are encoded using the representation described in Section 6.1.1.2  

using (6.9) as follows. 

 1 1,..., , ,...,e e d d

FAERules l mR R R R =    (6.31) 

Where 
e

lR and 
d

mR represent the rules (encoded using (6.9)) of the encoder and 

decoder, respectively.   

The rules of the FAE are then retrained using an optimization algorithm such as BB-

BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining 

of the rules is performed using the following steps. 

Step 1: One individual is generated by encoding the rules of the FAE generated in 

the previous step into a real-valued solution using (6.31). Along with this, 1N −  

individuals are generated by mutating the first individual. 

Step 2: The N individuals are then decoded into the rules of the FAE using (6.31). 

The MFs and their FOUs generated in the previous section are then added to the FAE.  
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Step 3: The fitness of these N FAEs are calculated using the cost function in (6.27). 

The best solution among these N  FAEs is selected, and the stopping criteria are 

checked against this solution. If this FAE satisfies the stopping criteria, then the 

optimization algorithm is stopped, and further steps of the training process are 

performed on this FAE  

Step 4: Else, a new generation of N Individuals is generated by mutating this solution 

using (4.2) , and the steps from Step 2 are repeated. 

6.2.3 Optimization Method for the Final Layer 

To train the full D2FLS, as depicted in Figure 6-2, we start by stacking the encoders 

of the n FAEs trained in the previous phase. We then add another FLS, which will act 

as the final output layer of the D2FLS. The output of the D2FLS can then be represented 

as follows. 

 
1 1( ( (...( ( )...))n n

py f e e e x−=    (6.32) 

Where ne  represent the encoder of the thn  FAE, f  represents the final output layer 

and px  is the input vector.  

We use an optimization algorithm to retrain all the layers using the three-step 

training process depicted in Figure 6-10. The goal of the optimization algorithm is to 

minimise a cost function such as MAE (6.24), which is modified as follows: 

1

ˆ| |
p

i

p

y y

MAE =

−

=


    (6.33) 
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Where ŷ is the predicted output of the D2FLS from equation (6.32), y is the actual 

output from the training dataset, n is the number of instances in the training dataset. 

6.2.3.1 Optimize the Type 1 D2FLS 

In this step, we train the final layer as a Type-1 FLS while at the same time retrain 

the MFs and rules of the encoders. First, the parameters of the encoders of the n  FAEs 

trained in the previous phase are encoded using (6.20) and the MFs and rules of the 

final layer FLS are added to these (depicted in Figure 6-2) and encoded in the following 

format. 

 
1

2 1 1,.., , ,.., , ,..,n f f f f

D FLS e e o p gT T M M R R +=   (6.34) 

Where 
n

eT represents the membership functions, and the Rules of the thn  encoders 

created using (6.20),
f

o pM +  represents the membership functions for the o input features, 

p consequents of the final layer and 
f

gR represents the g rules of the final layer.  

The D2FLS is then trained using an optimization algorithm such as BB-BC 

(described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the training of 

the D2FLS is performed using the following steps. 

Step 1: N  individuals are generated, the initial values of the three parameters of the 

final layer of the D2FLS in (6.34) are randomly generated as real numbered values. 

These values are then added to the parameters of the encoders generated in the previous 

phase. 
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Step 2: The N individuals are then decoded into D2FLSs using (6.34) , and the fitness 

of these individuals is calculated using the cost function in (6.33) and the best solution 

among these N  D2FLS is selected. 

Step 3: The stopping criteria (number of generations and target fitness) are checked 

against the individual selected in the previous step. If this individual satisfies the 

stopping criteria, then the optimization algorithm is stopped, and further steps of the 

training process are performed on this D2FLS. 

Step 4: If the stopping criteria (number of generations and target fitness) are not 

satisfied, a new generation of N  individuals are generated by mutating the individual 

selected in Step 2 using (4.2) and then the steps from Step 2 are repeated. 

6.2.3.2 Transform the T1MFs of the D2FLS into IT2MFs 

 In this step, we transform the type-1 MFs of the final layer into interval type-2 MFs 

by adding a FOU to each of the fuzzy sets. This is similar to the way we added the 

FOUs while training the FAEs, and the FOUs are depicted in Figure 6-7 or Figure 6-8 

or Figure 6-9 based on the type of MF. We also retrain the FOUs of the encoder created 

during the training of the FAEs. The FOUs are added to the MFs of the final layer, and 

these parameters are encoded in the following format. 

 
1

2 2 1,.., , 2 ,.., 2n f f

D FLSIT e e o pT T T T +=    (6.35) 

Where 
n

eT  represents the IT2 representation of the MFs of the n  encoders from 

(6.30) and 2 f

o pT + represents IT2 MFs for the o antecedents and p  consequents of the 

final layer using (6.13) or (6.16) depending on the type of MF used. 
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The FOUs of the D2FLS are then trained using an optimization algorithm such as 

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the training of 

the FOUs of the D2FLS is performed using the following steps. 

Step 1: N  individuals are generated by randomly generating the FOUs of the 

antecedents and the consequents of the final layer of the D2FLS and added to the 

D2FLS generated in the previous section and their parameters encoded using (6.35). 

Step 2: The real-valued representation of the N individuals is then decoded into MFs 

of the D2FLS using (6.35). The rules are then added to these D2FLS by choosing them 

from the type-1 D2FLS trained in the previous step.  

Step 3: The fitness of the N D2FLSs are calculated using the cost function in (6.33) 

and the best D2FLS among these is selected 

Step 4: The stopping criteria (number of generations and target fitness) are checked 

against the individual selected in the previous step. If this D2FLS satisfies the stopping 

criteria, then the optimization algorithm is stopped, and further steps of the training 

process are performed on this D2FLS 

Step 5: If the stopping criteria (number of generations and target fitness) are not 

satisfied a new generation of the  N  candidate solutions are generated by mutating 

real-valued representation of the individual selected in Step 2 using (4.2) and then the 

steps from Step 2 are repeated. 
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6.2.3.3 Optimizing the rule base for the D2FLS 

In the final step, we retrain the rules of all the layers. The parameters for this step 

are encoded in the following format to create the candidate solutions. 

 
1 1

2 1 1,..., ,.., , ,...,e e en f f

D FLSRules l l gR R R R R =    (6.36) 

Where 
e

lR and 
f

gR represent the l rules of the encoder and g rules of the final layer, 

respectively. 

The rules of the D2FLS are then retrained using an optimization algorithm such as 

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining 

of the rules of the D2FLS is performed using the following steps. 

Step 1: The rules of the D2FLS generated in the previous step are encoded into real-

valued solution using (6.36). And N  individuals are generated by mutating this 

solution. 

Step 2: The N  individuals are then decoded into the rules D2FLS, then the MFs 

and their FOUs generated in the previous section are added to the D2FLS. The fitness 

of these individuals is calculated using the cost function in (6.33) , and the best 

individual among these is selected. 

Step 3: The stopping criteria (number of generations and target fitness) are checked 

against the individual selected in the previous step. If this D2FLS satisfies the stopping 

criteria, then the optimization algorithm is stopped, and further steps of the training 

process are performed on this D2FLS. 
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Step 4: If the stopping criteria (number of generations and target fitness) are not 

satisfied a new generation of the  N  individuals are generated by mutating the 

individual selected in Step 2 using (4.2) and then the steps from Step 2 are repeated. 

6.3 Experiments and Results 

To test the proposed Deep Type-2 Fuzzy logic system, we use the datasets in Table 

5-1 and compare the performance of our proposed system against the following AI 

models Stacked Autoencoder (SAE), Convolutional Neural network (CNN), Multi-

Layer Perceptron (MLP) and Interval Type-2 FLS (IT2FLS). 

Next, we aim to compare the various types of Membership function and choose the 

best MF type. We will also compare the BB-BC algorithm against the GA to evaluate 

the differences when using the two algorithms and the best algorithm of the two will 

then be used in the experiments.” 

6.3.1 Training Parameters 

For the experiments, we used the following training parameters for the Categorical 

datasets, and we used Average Recall (6.21) as the fitness function 

1. SAE was trained using greedy layer-wise training [61]. We used two hidden 

layers with 400 and 30 neurons each. Adam Algorithm [101] was used for 

training the SAE, and we set the learning rate as 0.001, beta one as 09 and 

beta two as 0.999 and trained it for 200 epochs. 

2. CNN was trained using the Adam algorithm [101]. We created a custom VGG 

net [114] with six convolutional layers with 32 filters and kernel size 3 in the 

first two layers, 64 filters in the next two and 128 filters in the last two layers. 

We added a max-pooling layer after every two convolutional layers. These were 
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then connected to the output layer. We used Dropout [115] to reduce the chance 

of overfitting. And we used the same parameters as SAE for the Adam 

algorithm. 

3. We created a Multi-layer perceptron with one hidden layer with 65 neurons in 

the hidden layer and an output layer. And we used Adam Algorithm for training 

the MLP with the same parameters as the Sparse Stacked Autoencoder. 

4. IT2FLS was trained using the three-step training method proposed for training 

the FAE. We used 200 rules and three antecedents per rule. We used BB-BC 

algorithm with 500 generations and 30 candidates per generation. 

5. D2FLS was trained using the proposed layer-wise training method. With two 

layers and with each layer having 100 rules and three antecedent per rule. The 

hidden layer was trained with 50 consequents. We used BB-BC algorithm with 

500 generations and 30 candidates per generation. 

Similarly, for the regression datasets, we used the following training parameters, 

and we used Mean Absolute Error (MAE) as the fitness function (6.24). 

1. SAE was trained using greedy layer-wise training [61]. We used two hidden 

layers with 100 and 30 neurons each. Adam Algorithm [101] was used for 

training the SAE, and we set the learning rate as 0.001, beta one as 09 and beta 

two as 0.999 and trained it for 500 epochs. 

2. CNN was trained using the Adam algorithm [101]. We created a CNN with four 

layers: the first layer is a convolutional layer with 100 filters and a kernel size 

of 5, The second layer is a Max pooling layer with a pool size of 3, The third 

layer is a fully-connected layer with 16 neurons and finally the output layer. We 
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used Dropout [115] to reduce the chance of overfitting. And we used the same 

parameters as SAE for the Adam algorithm. 

3. We created a Multi-layer perceptron with one hidden layer with 65 neurons in 

the hidden layer and an output layer. And we used Adam Algorithm for training 

the MLP with the same parameters as the Sparse Stacked Autoencoder. 

4. IT2FLS was trained using the three-step training method proposed for training 

the FAE. We used 200 rules and three antecedents per rule. We used BB-BC 

algorithm with 500 generations and 30 candidates per generation. 

5. D2FLS was trained using the proposed layer-wise training method. With two 

layers and each layer is trained with 100 rules and three antecedent per rule. 

The hidden layer was trained with 30 consequents. We used BB-BC algorithm 

with 500 generations and 30 candidates per generation. 

Table 6-1: Comparison of the performance of the D2FLS vs Stacked Autoencoder vs CNN in 

Categorical Datasets with Average Recall as Fitness function 

Data Set 
AI 

Model 
Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Standard 

Deviation 

Santander 

CTP 

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

SAE 65 67.7 66.02 62.34 62.77 64.77 2.01 

CNN 67.56 67.31 69.84 67.48 69.99 68.44 1.21 

CLL 

Identification 

D2FLS 62.8 59.78 61.25 62.37 63.31 61.903 1.26 

SAE 57.21 56.09 58.42 57.65 57.02 57.28 0.76 

CNN 69 68.5 67.9 69.24 68.92 68.71 0.47 

BT Customer 

Data 

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

SAE 75.95 75.06 76.51 75.84 72.03 75.08 1.59 

CNN 73.91 75.85 83.25 76.21 75.8 77.004 3.22 

PD Speech 

D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

SAE 70.13 66.56 68.2 67.75 64.48 67.43 1.87 

CNN 77.08 77.38 76.69 77.38 78.08 77.32 0.46 

IDA2016 

D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

SAE 87.45 88.54 86.72 87.81 84.84 87.07 1.26 

CNN 80.29 83.36 84.37 78.55 80.76 81.47 2.12 

EpiSeizure 

D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

SAE 90.6 91.22 89.8 89.48 90.32 90.29 0.61 

CNN 94.03 92.68 92.48 90.73 89.03 91.79 1.73 
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6.3.2 Deep Type 2 Fuzzy Logic system Vs Deep Neural Networks 

The aim of these experiments is to compare the performance of the D2FLS against 

two Deep Neural Networks, a Stacked Autoencoder and a Convolutional neural 

network. The goal is to see if our D2FLS model performs reasonably well when 

compared to the state-of-the-art Deep Neural Networks. 

We tabulate the performance of the D2FLS, SAE and CNN over five training runs 

on the Categorical datasets in Table 6-1. The results of the training runs are presented 

as Average Recall (equation (6.21)) in columns (3-7). The mean and standard deviation 

of the five training runs is displayed in the eighth and ninth columns of the table, 

respectively. Where a result is in bold (column 8), it indicates that the row contains the 

AI model with the best performance for the dataset. 

From Table 6-1, we can see that the CNN provided the best performance in four of 

the six datasets and the D2FLS and SAE provide the best performance in one each of 

Table 6-2: Comparison of the performance of the D2FLS vs Stacked Autoencoder vs CNN in 

Regression Datasets using Mean Absolute Error as the Fitness Function 

Data Set 
AI 

Model 
1 2 3 4 5 Average Std 

Wi-Fi 

Localization 

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

SAE 0.0558 0.0559 0.0479 0.0401 0.0463 0.0492 0.006 

CNN 0.0494 0.037 0.0477 0.0422 0.0435 0.044 0.0044 

Swiss 

Premium 

Prediction 

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

SAE 0.0277 0.0258 0.0274 0.0294 0.0269 0.0275 0.0012 

CNN 0.0237 0.0259 0.0255 0.0271 0.0263 0.0257 0.0011 

CT Scan 

Region 

Prediction 

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

SAE 0.031 0.0374 0.0298 0.0345 0.0298 0.0325 0.003 

CNN 0.045 0.045 0.0454 0.0451 0.0458 0.0453 0.0003 

Predict Song 

Year 

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

SAE 0.072 0.072 0.0663 0.0658 0.066 0.0684 0.0029 

CNN 0.0745 0.0752 0.0745 0.0689 0.0691 0.0724 0.0028 

BT PWA 

D2FLS 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

SAE 0.0384 0.0379 0.0374 0.038 0.038 0.0379 0.0003 

CNN 0.0381 0.0383 0.041 0.0374 0.0379 0.0385 0.0013 
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the selected datasets. This is intuitive considering that CNN is the state-of-the-art AI 

algorithm for a variety of classification problem. The relevant point here is that in four 

of the datasets (Santander CTP, BT Customer Data, EpiSeizure and PD Speech) the 

difference between the performance of the D2FLS and the best algorithm is within 4-5 

per cent. The D2FLS performance is 2-3% lower than the CNN and 2-3% better than 

the performance of the SAE. This indicates that the performance of the D2FLS is 

comparable to the performance of the best DNN algorithms.  

Similarly, Table 6-2 shows the results of five training runs with Mean Absolute 

Error as the fitness function(equation (6.24)) in columns (3-7).  The mean and standard 

deviation of the five training runs is displayed in the eighth and ninth columns of the 

table, respectively. We have also highlighted in bold the model with the best average 

MAE for each of the datasets. 

From Table 6-2, we can see that the SAE performs the best in three of the datasets, 

and CNN provides the best performance in the other two datasets. But the difference in 
Table 6-3: Comparison of the performance of the D2FLS vs Stacked Autoencoder vs CNN in 

Regression Datasets using Root Mean Square Error as the Fitness Function 

Data Set 
AI 

Model 
1 2 3 4 5 Average Std 

Wi-Fi 

Localization 

D2FLS 0.1546 0.1346 0.1486 0.1362 0.1222 0.1392 0.0113 

SAE 0.0726 0.0553 0.0607 0.0674 0.0592 0.063 0.0062 

CNN 0.0644 0.0564 0.0584 0.0629 0.0671 0.0618 0.0039 

Swiss 

Premium 

Prediction 

D2FLS 0.0569 0.078 0.0681 0.0663 0.0708 0.068 0.0068 

SAE 0.0398 0.0367 0.0356 0.0396 0.0366 0.0377 0.0017 

CNN 0.0395 0.0413 0.0391 0.0394 0.0413 0.0401 0.001 

CT Scan 

Region 

Prediction 

D2FLS 0.1425 0.14 0.1262 0.126 0.1397 0.1349 0.0072 

SAE 0.0542 0.0577 0.0559 0.0576 0.0558 0.0562 0.0013 

CNN 0.0737 0.0737 0.0732 0.0732 0.0735 0.0734 0.0002 

Predict Song 

Year 

D2FLS 0.1095 0.1115 0.1088 0.1106 0.1094 0.11 0.001 

SAE 0.1005 0.1029 0.1011 0.1009 0.1007 0.1012 0.0009 

CNN 0.1044 0.1028 0.1028 0.1022 0.1039 0.1032 0.0008 

BT PWA 

Data Test 

D2FLS 0.0749 0.0796 0.0687 0.0743 0.0844 0.0764 0.0053 

SAE 0.0546 0.0538 0.0541 0.0544 0.0543 0.0542 0.0003 

CNN 0.0555 0.0559 0.0547 0.0543 0.0569 0.0554 0.0009 



150 

 

performance between the SAE and CNN is small. The D2FLS has a higher error on 

average when compared to the SAE and the CNN for the regression datasets.  

To make sure that the Mean Absolute Error fitness function is not affecting the 

results, we conducted another experiment on the Regression datasets by retraining all 

the data models using a different fitness function. In this case, the Root Mean Squared 

Error (RMSE) represented below in equation (6.37). 

 2

1

1
ˆ( )

n

i i

i

RMSE y y
n =

= −     (6.37) 

Where iy  is the desired output, iy  is the actual output of the model and n  is the 

number of inputs. 

The result of five training runs using RMSE as the fitness function are tabulated in 

Table 6-3. With mean and standard deviation over these training runs in the eighth and 

ninth columns of the table, respectively. Where a result is in bold (column 8), it 

indicates that the row contains the AI model with the best performance for the dataset. 

Table 6-4: Snapshot of Rule base of the Hidden Layer of the D2FLS on the BT PWA Dataset 

 Antecedents Consequents 

ID 1 2 3 H00 H01 H02 H03 H04 

1 High MSLCL1 2 
Mid CONTRACTOR 

2 
Low RANK 0 Low High 

Very 
Very 

Low 

Mid 
Very 

Low 

2 
High MISSAPP 

2 
Low RANK 0 

Low ON DAY 

UTILISATION 3 

Very 
Very 

Low 

Low High Low 
Very 
Very 

Low 

3 

Low 

CONTRACTOR 
1 

High MSLCL2 3 
Mid ECONOMIC 

UTILISATION 2 

Very 

Low 
High 

Very 

Very 
Low 

Low High 

4 
High ON DAY 

UTILISATION 2 

Low ECONOMIC 

UTILISATION 1 
Low MSLCL2 0 

Very 

Very 
Low 

Very 

Very 
Low 

Mid High High 

5 Low MSLCL2 1 

Low 

ON_DAY_UTILISA

TION 1 

Low ECONOMIC 

UTILISATION 3 
Low 

Very 

Very 

Low 

Mid Mid Low 

6 Low MSLCL2 3 High TRAVEL 0 Mid MISSAPP 0 High Low High 
Very 

Low 
High 

7 
Mid CALC 

PROD 1 
Mid MSLCL2 2 Mid RANK 0 Low High High Low High 

8 Mid MSLCL2 0 Mid MSLCL2 3 Low LOANS 2 Low High 

Very 

Very 

Low 

Very 
Low 

Very 

Very 

Low 



151 

 

From Table 6-3, we can see that the SAE provides the best performance in four of 

the datasets, and CNN has the best performance in one of the datasets. This is similar 

to the behaviour seen when using the MAE as the fitness function; the only difference 

is in the Swiss Premium Prediction dataset where the CNN outperformed by the SAE. 

We can also see that the D2FLS has a higher error on average across the five datasets, 

which is very similar to the performance loss when using MAE as the fitness function. 

This means that changing the fitness function has only a small effect on the relative 

performance of the three models.  

A snapshot of the rule base generated by one of the runs on the BT PWA dataset is 

shown in Table 6-4 and Table 6-5. Table 6-4 contains a snapshot of the rules (8 out of 

100 rules) of the Hidden Layer of the D2FLS, it shows that the rules are short and 

comprise of three antecedents and five consequents that form the five outputs of the 

hidden layer (H00, H01, H02, H03, H04). Membership functions for the first two of 

Table 6-5: Snapshot of Rule base of the Output Layer of the D2FLS on the BT PWA Dataset 

 Antecedents Consequent 

ID 1 2 3 PWA Performance 

1 Low H02 Mid H00 High H03 Very Very Low 

2 High H00 Mid H03 Mid H01 Low 

3 Low H00 High H01 Mid H02 High 

4 Mid H03 High H02 Low H01 Very Very Low 

5 Mid H02 High H00 Mid H03 Low 

6 Low H03 Low H01 High H00 Very Very Low 

7 High H02 High H01 Mid H00 High 

8 High H01 Mid H02 High H03 High 

9 Low H02 Low H00 Low H03 Very Low 

10 Mid H00 High H02 Low H03 Very Very Low 

11 High H02 Mid H03 Low H00 High 

12 High H00 Mid H01 Low H03 Low 

13 High H00 Low H02 High H03 Very Low 

14 Low H00 Low H03 Mid H01 Very Low 

15 Low H03 Mid H00 Mid H01 High 
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the antecedents of the first rule in Table 6-4 are depicted in Figure 6-11 and Figure 

6-12.  Table 6-5 contains a snapshot of the rules of the output layer of the D2FLS, and 

the rules of the output layers are also short and comprise of three antecedents and one 

consequent for the output. The inputs to the output layer (H00, H01, H02, H03, H04) 

of the D2FLS are synthetic variables created during the training.  

 

Figure 6-11: Fuzzy Set Generated by D2FLS Training for MSLCL1 2 feature of the BT PWA 

dataset 

 

Figure 6-12: Fuzzy Set Generated by D2FLS Training for Contractor 2 feature of the BT PWA 

dataset 
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The rules of both the layers are kept short (3 antecedents per rule) to maximise the 

interpretability of the model while also maintaining the accuracy of the predictions. We 

can then use these rules and membership functions to interpret the predictions of the 

D2FLS. Compared to the SAE and CNN, which are difficult to interpret using just the 

weight and biases used to define them. External tools and modifications such as the 

methods described in Chapter 2.1 and Chapter 2.3 are required to interpret the SAE and 

CNN. But these methods have limitations such as difficulty in interpreting the 

explanations in case of inputs with a large number of features. Hence, in cases where 

the interpretability of the AI model is essential, we can choose D2FLS over SAE or 

CNN without losing too much of predictive accuracy of the AI model. 

6.3.3 D2FLS vs Shallow Neural Networks and an IT2FLS  

In this experiment, we compare the performance of the D2FLS against a Multilayer 

perceptron and an Interval Type-2 Fuzzy Logic System. The goal is to see if our D2FLS 

model performs reasonably well when compared to these two shallow AI models. 

Table 6-6, contains the results of five training runs on classification datasets. The 

results of the training runs are presented as Average Recall (equation (6.21)) in columns 

(3-7). The mean and standard deviation of the five training runs is displayed in the 

eighth and ninth columns of the table. Where a result is in bold (column 8), it indicates 

that the row contains the AI model with the best performance for the dataset.  

Table 6-6 shows that the D2FLS provided the best performance in three of the four 

datasets, and the MLP provides the best performance in two of the remaining datasets. 

The D2FLS outperforms the IT2FLS in all the datasets, and the performance 

improvement is more than 4% in three of the datasets and about 2% in the other two 
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datasets with an average improvement of about 5%. The D2FLS outperforms the MLP 

in three of the datasets with about 9% improvement in performance. In the other two 

datasets where the MLP outperforms the D2FLS, the performance difference is only 

about 2%. The D2FLS performs better than the MLP overall with about 5% increased 

performance. 

Table 6-7 displays the results of the five training runs on the regression datasets. We 

display the MAE over the testing data on the regression dataset in columns (3-7). The 

mean and standard deviation of the five training runs is displayed in the eighth and 

ninth columns of the table. Where a result is in bold (column 8), it indicates that the 

row contains the AI model with the best performance for the dataset. 

Table 6-7 shows that the MLP provides the best performance, and the D2FLS has 

the next best fitness when compared to the MLP. The D2FLS outperforms the IT2FLS 

in all four of the selected datasets. The D2FLS has at least 6% lower error rate when 

Table 6-6: Comparison of the performance of the D2FLS vs Multi-layer perceptron vs IT2FLS 

in Classification Datasets using Average Recall as the Fitness Function 

Data Set 
AI 

Model 
1 2 3 4 5 Average 

Standard 

Deviation 

Santander 

CTP 

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

MLP 65.3 62.41 59.88 64.1 65.09 63.36 2.02 

IT2FLS 56.92 59.44 58.1 56.9 58.14 57.9 0.94 

BT 

Customer 

Data 

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

MLP 75.63 74.34 73.44 75.24 73.05 74.34 0.99 

IT2FLS 60.23 61 60.62 60.66 59.88 60.48 0.38 

PD Speech 

D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

MLP 66.37 66.87 61.81 60.12 63 63.63 2.61 

IT2FLS 69.41 63.6 71.85 61.83 68.11 66.96 3.71 

IDA2016 

D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

MLP 83.32 85.23 82.97 81.48 82.59 83.12 1.22 

IT2FLS 89.64 91.54 90.05 91.33 89.84 90.48 0.79 

EpiSeizure 

D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

MLP 84.53 80.31 82.16 79.97 83.76 82.14 1.81 

IT2FLS 89.73 88.76 88.54 90.67 89.11 89.36 0.77 
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compared to the IT2FLS with the highest improvement in fitness seen in the Wi-Fi 

Localization dataset with a 30% lower error. And the D2FLS has 15% lower error on 

average when compared to the IT2FLS. 

6.3.4 Comparison between the Three-Step Training process and Single Step 

Training process 

Table 6-8: Comparison for the Three-Step Training Process and the Single Step Training Process 

for training the D2FLS with Mean Absolute Error as the Fitness Function 

Data Set 
Training 

Method 
Run 1 Run 2 Run 3 Run 4 Run 5 Average Std 

Wi-Fi 

Localization 

TS 

Training 
0.106 0.116 0.1049 0.1022 0.098 0.105 0.00589 

SS 

Training 
0.147 0.148 0.149 0.178 0.154 0.155 0.0115 

Swiss 

Premium 

Prediction 

TS 

Training 
0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

SS 

Training 
0.067 0.082 0.065 0.069 0.081 0.0729 0.0072 

CT Scan 

Region 

Prediction 

TS 

Training 
0.095 0.091 0.089 0.084 0.09 0.0897 0.00334 

SS 

Training 
0.117 0.136 0.13 0.126 0.126 0.127 0.0062 

BT PWA 

TS 

Training 
0.048 0.057 0.051 0.045 0.057 0.0519 0.00474 

SS 

Training 
0.078 0.05 0.106 0.063 0.077 0.0748 0.0187 

Table 6-7: Comparison of the performance of the D2FLS vs Multi-layer perceptron vs IT2FLS 

in Regression Datasets using MAE as the Fitness Function 

Data Set 
AI 

Model 
1 2 3 4 5 Average Std 

Wi-Fi 

Localization 

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

MLP 0.0387 0.0367 0.042 0.0389 0.0377 0.044 0.0044 

IT2FLS 0.129 0.1551 0.116 0.1188 0.1655 0.1369 0.0199 

Swiss 

Premium 

Prediction 

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

MLP 0.0262 0.0258 0.0263 0.0265 0.0265 0.0257 0.0011 

IT2FLS 0.0507 0.0512 0.0582 0.0518 0.0515 0.0527 0.0028 

CT Scan 

Region 

Prediction 

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

MLP 0.0353 0.0352 0.0359 0.0355 0.0333 0.0453 0.0003 

IT2FLS 0.1048 0.0935 0.0904 0.088 0.1012 0.0956 0.0064 

Predict Song 

Year 

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

MLP 0.0749 0.0753 0.0691 0.0673 0.0671 0.0724 0.0028 

IT2FLS 0.08 0.086 0.081 0.0793 0.0831 0.0819 0.0024 
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The aim of this experiment is the test the effectiveness of the three-step training 

process (TS Training), depicted in Figure 6-10, proposed as the training method for 

training each layer of the D2FLS.  We compare this training method to an alternative 

by combining all the steps of the TS training and train each layer in a single step(SS 

Training) by encoding the layer using the representation in (6.20) and training the MFs 

and FOUs of the antecedents and consequents along with the rules in a single step. 

For the TS training process, we use BB-BC as the training algorithm with 500 

generations and 30 particles per step. For the SS training process, we again use the BB-

BC algorithm with 500 generations and 90 particles to train the D2FLS. We use these 

parameters for the optimization algorithm to ensure that the two training methods use 

a similar amount of CPU time. 

The result of training the two methods over five training runs on four regression 

datasets is tabulated in Table 6-8. The results of the training runs are presented as Mean 

Absolute Error (equation (6.24)) in columns 3-7. The mean and standard deviation of 

the five training runs is displayed in the eighth and ninth columns of the table. Where 

a result is in bold, it indicates that the row contains the training method with the best 

performance for the dataset.  

The results presented in Table 6-8 show that the D2FLS trained using the TS training 

method performs better than the D2FLS trained using SS training method in all four 

datasets. Using the TS training method for the four datasets reduces the MAE by 47% 

on average across the four datasets. This supports the choice of the TS Training method, 

and it is utilised in all the other experiments. 
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6.3.5 Comparison Between D2FLS trained using the various Membership 

Function Types 

The aim of this experiment is to test the impact of the various types of MF on the 

proposed D2FLS model. The MF type, which provides the best results, is then used in 

the rest of the experiments.   

There are mainly three types of Membership functions that were tested; they are 

Triangular MF, Trapezoidal MF and Gaussian MF (depicted in Figure 6-7, Figure 6-8 

and Figure 6-9). Figure 6-13 depicts, examples of the three types of IT2 MFs generated 

during training. Average Recall and Mean absolute error are used as the fitness 

functions the categorical and regression datasets, respectively. In all the cases, the BB-

BC algorithm is used as the optimization algorithm with 500 generations and 30 

particles per step.  

Table 6-9: Comparison of performance of D2FLS for difference types of MFs on Categorical 

Datasets with Average Recall as the Fitness Function 

Data Set 
Type of 

MF 
1 2 3 4 5 Average 

Standard 

Deviation 

Santander 

CTP 

Trapezoidal 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

Triangular 61.07 62.6 61.09 61.23 63.05 61.807 0.84 

Gaussian 52.59 53.79 53.48 53.24 52.89 53.197 0.42 

BT 

Customer 

Data 

Trapezoidal 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

Triangular 68.24 71.87 70.99 70.56 71.98 70.73 1.35 

Gaussian 59.66 59.86 60.02 60.08 59.8 59.885 0.15 

PD Speech 

Trapezoidal 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

Triangular 58.94 68.17 65.74 67.99 70.43 66.253 3.95 

Gaussian 56.98 60.37 57.29 57.46 58.42 58.103 1.23 

IDA2016 

Trapezoidal 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

Triangular 91.73 89.17 92.98 94.4 92.78 92.213 1.58 

Gaussian 94.79 92.34 91.73 92.95 87.93 92.954 1.32 

EpiSeizure 

Trapezoidal 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

Triangular 87.68 87.32 80.7 86.004 88.22 85.983 2.74 

Gaussian 80.16 79.43 75.13 80 78.85 78.714 1.85 
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We tabulate the performance of the D2FLS when using the three types of MFs over 

five training runs on the Categorical datasets in Table 6-9. The results of the training 

runs are presented as Average Recall (equation (6.21)) in columns (3-7). The mean and 

standard deviation of the five training runs is displayed in the eighth and ninth columns 

of the table. Where a result is in bold, it indicates that the row contains the results for 

the Membership functions type with the best performance for the dataset. 

We can see from Table 6-9 that the Trapezoidal MFs provide the best performance 

in four of the five datasets while the Gaussian MFs perform the best in one of the 

datasets (IDA 2016). The Triangular MFs provide slightly worse performance than the 

Trapezoidal MFs, about 3% loss in performance on average. While the Gaussian MFs 

perform the worst in four of the five datasets, about 10% loss is performance on average 

when compared to Trapezoidal MFs. 

Table 6-10: Comparison of performance of D2FLS for difference types of MFs on Regression 

Datasets with Mean Absolute Error as the Fitness Function 

Data Set Type of MF Run 1 Run 2 Run 3 Run 4 Run 5 Average Std 

Wi-Fi 

Localization 

Trapezoidal 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

Triangular 0.1105 0.1256 0.1486 0.1525 0.1477 0.1369 0.0163 

Gaussian 0.2345 0.2393 0.2366 0.2474 0.2418 0.2399 0.0045 

Swiss 

Premium 

Prediction 

Trapezoidal 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

Triangular 0.0596 0.065 0.0659 0.0581 0.0543 0.0606 0.0043 

Gaussian 0.1499 0.1499 0.1641 0.1579 0.1499 0.1543 0.0058 

CT Scan 

Region 

Prediction 

Trapezoidal 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

Triangular 0.1101 0.1136 0.1184 0.1217 0.1361 0.12 0.009 

Gaussian 0.122 0.1335 0.188 0.1359 0.1036 0.1366 0.0281 

Predict Song 

Year 

Trapezoidal 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

Triangular 0.0797 0.0785 0.08 0.0752 0.0751 0.0777 0.0021 

Gaussian 0.0987 0.0882 0.1553 0.0859 0.0903 0.1037 0.0262 

BT PWA 

Trapezoidal 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

Triangular 0.0642 0.0551 0.0556 0.0496 0.0625 0.0574 0.0053 

Gaussian 0.0776 0.0856 0.0746 0.0788 0.0729 0.0779 0.0044 
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Figure 6-13: Examples of IT2 Fuzzy Sets Generated for D2FLS during Training where (a) (d) are 

Trapezoidal MF, (b) (e) are Triangular MF, and (c) (f) are Gaussian MF for Contractor 0 and MSLCL1 2 

features respectively of the BT PWA dataset 
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Similarly, we tabulate the performance of the D2FLS for the Regression datasets in 

Table 6-10. The results of the training runs are presented as Mean Absolute Error 

(equation (6.24)) in columns (3-7). The mean and standard deviation of the five training 

runs is displayed in the eighth and ninth columns of the table. Where a result is in bold, 

it indicates that the row contains the results for the Membership functions type with the 

best performance for the dataset.  

From Table 6-10, we can see that the Trapezoidal MFs provide the best performance 

for all the regression datasets. The use to Triangular MFs and Gaussian MFs led to 

about 21% and 79% larger rate of error, respectively. Examples of the membership 

functions generated are depicted in Figure 6-13. 

This result indicates that the Trapezoidal MFs is the best MF to use in D2FLS for 

the selected datasets. This might be because Trapezoidal MFs generally provide higher 

degrees of freedom compared to the Triangular and Gaussian MFs [75]. Hence, we use 

Trapezoidal MFs for the rest of the experiments. 

6.3.6 Comparison of the performance of the BB-BC against Genetic Algorithms 

Table 6-11: Comparison Between D2FLS Trained using BB-BC and Genetic Algorithm on 

Categorical Datasets with Average Recall as the Fitness Function 

Data Set Optimization 

Method 

Run 1 Run 2 Run 3 Run 4 Run 5 Average Std 

Santander 

CTP 

BB-BC 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

GA 54.83 54.34 55.38 55.32 55.27 55.029 0.39 

BT 

Customer 

Data 

BB-BC 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

GA 67.46 67.39 73.48 72.64 74.35 71.062 3.02 

PD Speech 
BB-BC 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

GA 61.59 61.53 60.5 55.78 64.68 60.816 2.88 

IDA2016 
BB-BC 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

GA 89.29 90.98 90.28 92.3 89.13 90.394 1.17 

EpiSeizure 
BB-BC 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

GA 82.68 83.19 82.84 82.8 84.43 83.19 0.64 
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The aim of these experiments is to evaluate the differences when using the BB-BC 

algorithm or Genetic Algorithm (GA) for training the D2FLS. The best algorithm can 

then be used for further experiments. 

Average Recall is used as the fitness function for all categorical datasets and Mean 

absolute error is used for all the regression datasets. In all the cases where BB-BC 

algorithm is used as the optimization algorithm, its parameters are 500 generations and 

30 particles per step. Similarly, The GA was run for 150 generations, with 100 

individuals per generation with a crossover probability of 0.4 and a mutation rate of 

0.1.  These values are chosen to ensure that both the BB-BC and GA are trained for the 

same amount of time. 

We tabulate the performance of the D2FLS trained using the BB-BC and GA over 

five training runs on the Categorical datasets in Table 6-11. The results of the training 

runs are presented as Average Recall (equation (6.21)) in columns (3-7). The mean and 

standard deviation of the five training runs is displayed in the eighth and ninth columns 

of the table. Where a result is in bold (column 8), it indicates that the row contains the 

optimization algorithm with the best performance for the dataset. 

Table 6-12:  Comparison Between D2FLS Trained Using BB-BC and Genetic Algorithm on 

Regression Datasets with Mean Absolute Error as the Fitness Function 

Data Set 
Optimization 

Method 
Run 1 Run 2 Run 3 Run 4 Run 5 Average Std 

Wi-Fi 

Localization 

BB-BC 0.106 0.116 0.1049 0.1022 0.098 0.105 0.0058 

GA 0.2743 0.2221 0.2176 0.1837 0.1815 0.2158 0.0337 

Swiss 

Premium Pred 

BB-BC 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004 

GA 0.1406 0.1373 0.1365 0.1355 0.1273 0.1354 0.0044 

CT Scan 

Region Pred 

BB-BC 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003 

GA 0.171 0.1772 0.1577 0.1676 0.1565 0.166 0.0079 

Predict Song 

Year 

BB-BC 0.076 0.0741 0.074 0.074 0.079 0.075 0.002 

GA 0.1085 0.1144 0.1136 0.0853 0.0963 0.1036 0.0112 

BT PWA 
BB-BC 0.048 0.057 0.0511 0.045 0.057 0.0519 0.005 

GA 0.1086 0.1014 0.1391 0.102 0.1199 0.1142 0.0141 
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We can see from Table 6-11 that the D2FLS trained using BB-BC algorithm perform 

significantly better than the GA in all five of the categorical datasets with a 6% higher 

average recall on average. 

Similarly, we tabulate the performance of the D2FLS for the Regression datasets in 

Table 6-12. The results of the training runs are presented as Mean Absolute Error 

(equation (6.24)) in columns (3-7). The mean and standard deviation of the five training 

runs is displayed in the eighth and ninth columns of the table. Where a result is in bold, 

it indicates that the row contains the results for the optimization algorithm with the best 

performance for the dataset.  

From Table 6-12, we can see that the D2FLS trained using BB-BC algorithm 

perform significantly on all five of the Regression datasets with a 49% smaller error on 

average when compared to the GA.  

We then investigated why the performance of the GA is lower than the BB-BC 

algorithm. First, we conducted an experiment to check if increasing the number of 

generations will improve performance. We ran the GA for 150 and 200 generations 

with 100 individuals in each generation on the BT PWA Data dataset. The results of 

this are tabulated in Table 6-13. From Table 6-13, we can see that running the GA for 

Table 6-13: Impact of number of Generations on D2FLS trained using Genetic Algorithm  

Number of Generations 150 200 
 

0.108567 0.118009 
 

0.101369 0.138971 
 

0.139087 0.129255 
 

0.102 0.120627 
 

0.119919 0.130588 

Average 0.114189 0.12749 

Standard Dev. 0.014123 0.007504 
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longer does not improve the performance. This might be because of the multiple steps 

used during the training. 

Hence, In the next experiment, we checked the effect of training the D2FLS in a 

single step. i.e., we trained the FOU along with the MFs and rules of the D2FLS at the 

same time. The results of this training over a variety of generations are tabulated in 

Table 6-14. As we can see, the performance of the D2FLS improves as we increase the 

number of generations. This indicates that increasing the number of generations will 

provide improved performance. But even after training for 500 generations, the 

performance of the Single Step training process is lower than the three-step training 

process we used for other experiments; the three-step process is run for 100 generations 

per step, i.e., 100 generations per step which gives us a total of 300 generations. 

Therefore, we stopped any further investigation as the number of generations required 

to get similar performance to the BB-BC from GA seems to be too high. Hence, we 

decided to use BB-BC algorithm for all the other experiment. 

6.3.7 Deep Type-2 FLS vs Deep Type-1 FLS 

In this experiment, we compare the performance of a Deep Type-2 FLS against a 

Type-1 version of the same model, i.e., the FOU of the D2FLS are not trained. The 

goal is to see how much the predictive accuracy of the D2FLS can be improved by 

adding Interval Type-2 fuzzy sets. 

Table 6-14: D2FLS optimized by Genetic Algorithm using a single step training with MAE as 

fitness function 

Number of 

Generations 
Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Standard 

Dev 

100 0.1819 0.1886 0.1773 0.1791 0.1816 0.1817 0.0038 

200 0.1848 0.1671 0.168 0.1805 0.1713 0.1743 0.0071 

300 0.1687 0.1782 0.181 0.1511 0.1691 0.1696 0.0105 

400 0.1566 0.1544 0.1713 0.1482 0.1724 0.1606 0.0096 

500 0.1396 0.1594 0.1491 0.1677 0.1482 0.1528 0.0098 
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The D2FLS and its Type-1 counterpart are trained using BB-BC, with Average 

recall as the fitness function, five times. And the Average Recall on the testing data of 

the categorical datasets along tabulated in Table 6-15. The mean and standard deviation 

of the five training runs is displayed in the eighth and ninth columns of the table. Where 

a result is in bold (column 8), it indicates that the row contains the Type of FLS with 

the best performance for the dataset. 

From Table 6-15, we can see that the Deep Type-2 Fuzzy logic system outperforms 

its Type-1 counterpart in all the selected classification datasets. This is logical as the 

D2FLS is trained by adding FOUs to an optimised Type-1 system; hence, the D2FLS 

system will perform at least as well as its type-1 counterpart. The main point to note 

here is the magnitude of the performance improvement when the Type-1 version of the 

system is converted into the IT2 version. As we can see, there is almost 9 per cent 

improvement in the PD Speech dataset and 12 per cent improvement in the BT 

Customer Data dataset. With an average performance improvement of 4.3% by 

switching from Type-1 to Interval Type-2 system in Classification datasets. 

Table 6-15: Deep Type-2 FLS vs Deep Type-1 FLS on Classification Datasets 

Data Set 

Type of 

Fuzzy 

Set 

1 2 3 4 5 Average Std 

Santander 

CTP 

IT2 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

Type-1 57.74 59.66 60.49 62.36 59.58 59.97 1.5 

CLL 

Identification 

IT2 62.8 59.78 61.25 62.37 63.31 61.9 1.26 

Type-1 61.13 54.18 61.81 62.06 62.01 60.24 3.05 

BT Customer 

Data 

IT2 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

Type-1 59.8 59.98 62.07 61.36 58.31 60.3 1.31 

PD Speech 
IT2 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

Type-1 62.77 68.85 58.76 67.82 66.09 64.86 3.68 

IDA2016 
IT2 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

Type-1 92.63 91.37 91.99 93.14 91.87 92.2 0.62 

EpiSeizure 
IT2 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

Type-1 89.7 89.52 89.89 92.31 89.48 90.18 1.08 
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Similarly, the D2FLS and its type-1 counterpart are trained using BB-BC with MAE 

as the fitness function five times each. The MAE on the testing data of the regression 

datasets is tabulated in Table 6-16. The mean and standard deviation of the five training 

runs is displayed in the eighth and ninth columns of the table. Where a result is in bold 

(column 8), it indicates that the row contains the Type of FLS with the best performance 

for the dataset. 

From Table 6-16, we can see that similar to the classification datasets the D2FLS 

outperforms its type-1 counterpart in all the selected regression datasets.  The D2FLS 

provides about 47% lower error when compared to its Type-1 counterpart with the best 

improvement in the Swiss Premium Prediction dataset where it has less than half the 

error. This indicates that using Interval type-2 Fuzzy sets provides a significant 

improvement over type-1 fuzzy sets.  

6.4 Summary 

This chapter discussed the Deep Type-2 Fuzzy Logic System and a novel training 

method to train this AI model. It discussed the shortcomings of the IT2FLS system for 

Table 6-16: Deep Type-2 FLS vs Deep Type-1 FLS on Regression Datasets 

Data Set 
Type of 

Fuzzy set 
1 2 3 4 5 Average Std 

Wi-Fi 

Localization  

IT2 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

Type-1 0.119 0.1106 0.1343 0.1137 0.1366 0.1228 0.0107 

Swiss 

Premium Pred 

 

IT2 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

Type-1 0.1188 0.1361 0.1104 0.1156 0.147 0.1256 0.0138 

CT Scan 

Region Pred  

IT2 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

Type-1 0.1215 0.1258 0.1114 0.0958 0.1081 0.1125 0.0106 

Predict Song 

Year  

IT2 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

Type-1 0.0747 0.083 0.0784 0.078 0.0812 0.0791 0.0029 

BT PWA  
IT2 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

Type-1 0.0579 0.052 0.0581 0.0833 0.0631 0.0629 0.0108 
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datasets with a large number of features and the suitability of the D2FLS for these 

datasets. To fully evaluate the proposed system, we compared it against SAE, CNN, 

MLP and IT2FLS.  

The results show that in the classification datasets the proposed D2FLS provides 2% 

improvement when compared to the SAE on average and it was within 2% of the 

performance of the CNN. The results also show the D2FLS has about 4-5% higher 

performance compared to the MLP and the IT2FLS. This shows that the D2FLS is 

competitive against state-of-the-art Deep Learning algorithms in categorical datasets 

and outperforms the MLP and IT2 FLS in the categorical datasets.  

In the regression datasets, the results show that the proposed D2FLS has shown 

higher error on average when compared to the MAE of the SAE, MLP and CNN, 

respectively. The D2FLS has better performance when compared to the IT2FLS (15% 

lower error).  

The chapter also shows the interpretability of the D2FLS in the form of the 

membership functions and snapshots of the rules of the D2FLS. The interpretability of 

the D2FLS will be further evaluated through a survey in Chapter 8.3. The D2FLS 

comprises of a small number of rules with a small number of antecedents per rule, thus 

maximising the interpretability of the model. The SAE, CNN and MLP models, on the 

other hand, require external tools or modifications to provide explainability, but these 

tools have their own limitations and might not always be suitable. 

This chapter also discusses the impact of using IT2 MFs in the D2FLS and the results 

show that the use of IT2 MFs has a significant effect on the performance of the D2FLS. 
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With about 5% improvement in performance in the categorical datasets and 47% lower 

error rate when compared to its Type-1 counterpart in regression datasets.  

This chapter also explored the use of GA to train the D2FLS. The results show that 

the D2FLS trained using BB-BC has a 4.3% higher average recall in the categorical 

datasets and about 47% lower MAE in the regression datasets when compared to the 

D2FLS trained using a GA.  

In the next chapter, we discuss an alternative training method for the D2FLS by 

extending the training method used to train a Fuzzy Stacked Autoencoder (FSAE).  
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Chapter 7. Deep Type-2 FLS trained using a Stacked 

Autoencoder 

An alternative to the training method described in section 6.2 is to first train a 

stacked autoencoder and use the outputs at the intermediate layers of these 

autoencoders to pre-train the hidden layers of the D2FLS. A final output layer is then 

added to it, and the whole model is trained. 

The inspiration for this training method comes from the Fuzzy Stacked Autoencoder 

(FSAE) [116], depicted in Figure 7-1, in which the final layer of a stacked autoencoder 

is replaced by an FLS. The way this is done is by first training the hidden layers of the 

FSAE as SAEs using a greedy layer-wise training algorithm [61]. Once the system is 

trained the last layer of the stacked autoencoder is replaced by a Fuzzy Logic System 

(T1/IT2 FLS) and trained using an optimization algorithm like BB-BC using the output 

of n-1 layer of the SAE as the input.  

There is one advantage to using this method over the training method presented in 

the previous chapter. Since, we use gradient descent algorithms to train the stacked 

autoencoder, the training is much faster than random search-based algorithms such as 

BB-BC. The disadvantage is that this training method is much more complex than the 

 

Figure 7-1: Fuzzy Stacked Autoencoder [116] 
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method presented in the previous chapter. This training method consists of three 

phases: the first phase is the training of the SAE, the second phase is pretraining of the 

hidden layers of the D2FLS and finally in the third phase the final or output layer is 

added to the D2FLS and all the hidden layers are retrained. The details of this training 

method are presented in the following sections. 

7.1 Autoencoder Training 

An autoencoder is a neural network that is designed to reconstruct an approximation 

of the input at the output, i.e., the target output of the network is the input. The idea 

here is to constrain the network in such a way that the autoencoder is forced to learn 

the important characteristics of the inputs. Some of the ways in which we will constrain 

 

Figure 7-2: Stacked Autoencoder Training 
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the network is by restricting the number of neurons in the hidden layers which will 

force the network to learn a sparse representation, add noise to the inputs etc. These 

constraints are used to ensure that the autoencoder does not merely learn the identity 

function of the input. 

Mathematically the autoencoder can be represented as follows, given a set of 

training samples 1 2[ , ,.., ]px x x  where px R , the autoencoder first encodes the input px  

to a hidden representation kh , then it decodes the hidden representation to ˆ
px  as shown 

below. 

  1 1( )pkh f W x b= +     (7.1) 

  2 2
ˆ ( )kp hx g W b= +     (7.2) 

Where 1W  and 1b  represent the weights and bias of the encoder layer, 2W  and 2b  

represent the weights and bias of the decoder layer. The weights and bias of the encoder 

and decoder are shared in the autoencoder. We use the Adam algorithm [101] 

(described in 4.3.1.1) to train the autoencoder. It is a Stochastic Gradient Descent 

algorithm which calculates the adaptive learning rates based on estimates of the first 

and second-order moments of the gradients [101]. 

As depicted in Figure 7-2, once the first autoencoder is trained, the decoder is 

discarded, and the output of the encoder is used to train the second layer of the neural 

network as an autoencoder. This process is repeated for all the hidden layers, and once 

this is done the final layer is added to the network and the whole network is retrained 

using supervised learning. 
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7.2 Pretraining D2FLS 

Once the SAE is trained the outputs of the hidden layers of the SAE are used to pre-

train the hidden layers of the D2FLS. i.e., the inputs and outputs of the first hidden 

layer of the SAE are used to train the first hidden layer of the D2FLS. Next, the inputs 

and outputs of the second hidden layer of the SAE are used to train the second hidden 

layer of the D2FLS etc. This process is repeated until all the hidden layers of the D2FLS 

are pre-trained.  

Let kF be thk  the layer of the D2FLS to be trained and given the training samples 

1 2[ , ,.., ]px x x  where px R . The D2FLS SAE pretraining can be represented as follows. 

 1( )k k kh F h −=      (7.3) 

Where kh is the output of the thk  layer of the SAE trained in the previous phase, 

1kh −  is the output of the 1thk −  layer of the SAE. When 1k =  and 1k ph x− =  for the 

training samples. 

To optimize the hidden layers, the MFs and rule base are optimized using the BB-

BC algorithm and the training is divided into three steps, this is similar to the way FAEs 

are trained, and the process is depicted in Figure 6-10. The goal of the optimization 

algorithm is to minimize a cost function such as MAE (6.24), which is modified as 

follows: 

1

ˆ| |k

i

p

kh h

M
p

AE =

−

=


            (7.4) 
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Where ˆ
kh is the output of the hidden layer of the D2FLS, kh is the desired output 

which is the output of the thk  hidden layer of the SAE, p is the number of instances in 

the training data. 

7.2.1.1 Optimize Hidden layer as Type 1 FLS 

To optimize the type-1 Hidden FLS, we use an optimisation algorithm such as BB-

BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). The 

first step in these algorithms is to encode the parameters (to be tuned) of the hidden 

FLS into individuals. Each individual represents a possible solution to the optimization 

problem. 

There are three sets of parameters to be tuned for the hidden FLS, the MFs that 

describe the input features or linguistic variables, the MFs that describe the output 

linguistic variables and the rules of the FLS. In this step, we train all these parameters, 

which are encoded into the individual as real numbered values as follows. 

1 1 1,.., ,.., , ,..,i i k lHLT M M M R R +=      (7.5) 

Where iM  represents the membership functions for the i input features or linguistic 

variables of the FLS and i kM +  represents the MFs for the thk output or consequent of 

the FLS using (6.2), (6.5) or (6.8). lR  represents the l rules of the FLS using (6.9).  

For example, if the BB-BC algorithm is used as the optimization algorithm, the 

training of the FAE is performed using the following steps. 

Step 1: N  individuals are initialised by randomly generating values for each of the 

parameters of 1HLT in (7.5). 
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Step 2: The N individuals are then decoded into an FLS using (6.28), and the fitness 

of these individuals is calculated using the cost function in (7.4).  

Step 3: The best individual among these N  FLS is selected, and the stopping criteria 

are checked against this solution. If this FLS satisfies the stopping criteria, then the 

optimization algorithm is stopped, and further steps of the training process are 

performed on this FLS.  

Step 4: Else, a new generation of N individuals are generated by mutating this 

individual using (4.2) , and the steps from Step 2 are repeated. 

7.2.1.2 Transform T1MFs to IT2MFs 

In the second step, we train the FOU of the MFs of the antecedents and the 

consequents using an optimization algorithm such as BB-BC (described in Chapter 4.1) 

or Genetic algorithm (described in Chapter 4.2). To do this, we add an FOU to the 

representation of the MFs of the antecedents and the consequents of the hidden FLS 

trained in the previous step. The representation of the FLS in (7.5) is modified using 

(6.13), (6.16) or (6.19) (based on the type of MFs) as follows. 

1 12 ,.., 2 ,.., ,2 ,..,i i k lT T T T R R+=    (7.6) 

Where 2iT  represents the membership functions for the i input features or linguistic 

variables FLS and 2i kT +  represents the MFs for the thk output or consequent of the FLS 

using (6.13), (6.16) or (6.19).  Since we only train the parameters of the MFs and their 

FOUs in this step, the parameters of the MFs are encoded into an individual as follows. 

 12 2 ,.., 2 ,.., 2i i kHLIT T T T +=        (7.7) 
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The FOUs of the hidden FLS are then trained. For example, if the BB-BC algorithm 

is used as the optimization algorithm, the training of the FOUs of the hidden FLS is 

performed using the following steps. 

Step 1: 1N −  individuals are generated by randomly generating values within the 

search space for each of the parameters in 2HLIT . The final individual is generated by 

choosing the parameters from the type-1 hidden FLS, trained in the previous step of 

the training (the FOUs of this individual are set to zero). 

Step 2: N individuals are then decoded into the MFs of the FLS using (7.7), the 

rules are then added to these FLSs by choosing them from the type-1 hidden FLS 

trained in the previous step. 

Step 3:  The fitness of the N FLSs are calculated using the cost function in (7.4).  

The best individual among these N  individuals is selected, and the stopping criteria 

are checked against this individual. If this FLS satisfies the stopping criteria, then the 

optimization algorithm is stopped, and further steps of the training process are 

performed on this FLS. 

Step 4: Else, a new generation of N individuals are generated by mutating this 

solution using (4.2) and the steps from Step 2 are repeated. 

7.2.1.3 Optimize the Rule Base of the Hidden Layer 

In the third step, we retrain the rules of the hidden FLS generated in the previous 

section. The rules of the FLS are encoded using the representation described in Section 

6.1.1.2  using (6.9) as follows. 

 1,...,HLRules lR R =     (7.8) 
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Where lR  represent the l rules of the hidden FLS.   

The rules of the FLS are then retrained using an optimization algorithm such as BB-

BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining 

of the rules is performed using the following steps. 

Step 1: One individual is generated by encoding the rules of the hidden FLS 

generated in the previous step into a real-valued solution using (7.8). Along with this, 

1N −  individuals are generated by mutating the first individual. 

Step 2: The N individuals are then decoded into the rules of the hidden FLSs using 

(7.8). Then the MFs and their FOUs generated in the previous section are added to the 

FLSs.  

Step 3: The fitness of these N FLSs are calculated using the cost function in (7.4). 

The best solution among these N  FLSs is selected, and the stopping criteria are 

checked against this solution. If this hidden FLS satisfies the stopping criteria, then the 

optimization algorithm is stopped, and further steps of the training process are 

performed on this hidden FLS  

Step 4: Else, a new generation of N Individuals are generated by mutating this 

solution using (4.2) , and the steps from Step 2 are repeated. 
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7.3 Optimization Method for the Final Layer 

To train the full D2FLS, we use the hidden layers trained using the method explained 

in the previous section and added another FLS that will act as the final output layer of 

the D2FLS. The output of the D2FLS can then be represented as follows. 

 
1 1( ( (...( ( )...))n n

py f h h h x−=      (7.9) 

Where nh  represent the thn  hidden FLS, f  represents the final output layer and px  

is the input vector.  

We use an optimization algorithm to retrain all the layers using the three-step 

training process depicted in Figure 6-10. The goal of the optimization algorithm is to 

minimise a cost function such as MAE (6.24), which is modified as follows: 

1

ˆ| |
p

i

p

y y

MAE =

−

=


    (7.10) 

Where ŷ is the predicted output of the D2FLS from equation (7.9), y is the actual 

output from the training dataset, n is the number of instances in the training dataset. 

7.3.1.1 Optimize the Type 1 D2FLS 

In this step, we stack the hidden layers trained in section 7.2 and add a final layer. 

We train the final layer as a Type-1 FLS while at the same time, we retrain the MFs 

and rules of the hidden layers using the BB-BC algorithm. In this step, the inputs and 

outputs are extracted directly from the data. The parameters of the MFs and rules of the 

D2FLS are represented in the following format. 
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1 2

2 1 1 1, ,.., , ,.., , ,..,n f f f f

D FLST h h h o p gT T T M M R R +=   (7.11) 

Where 
n

hT  represent the MFs and rules of the n  hidden layers created using (6.20). 

f

o pM +  represents the MFs for the o  input features, p  consequents of the final layer 

and 
f

gR  represents the g  rules of the final layer. 

The D2FLS is then trained using an optimization algorithm such as BB-BC 

(described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the training of 

the D2FLS is performed using the following steps. 

Step 1: N  individuals are generated, the initial values of the three parameters of the 

final layer of the D2FLS in (7.11) are randomly generated as real numbered values. 

These values are then added to the parameters of the encoders generated in the previous 

phase. 

Step 2: The N individuals are then decoded into a D2FLS using (7.11) , and the 

fitness of these individuals is calculated using the cost function in (7.10)  and the best 

solution among these N  D2FLS is selected. 

Step 3: The stopping criteria (number of generations and target fitness) are checked 

against the individual selected in the previous step. If this individual satisfies the 

stopping criteria, then the optimization algorithm is stopped, and further steps of the 

training process are performed on this D2FLS. 
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Step 4: If the stopping criteria (number of generations and target fitness) are not 

satisfied, a new generation of N  individuals are generated by mutating the individual 

selected in Step 2 using (4.2) and then the steps from Step 2 are repeated. 

7.3.1.2 Transform T1MFs of the final layer to IT2MFs 

In this step, we add the FOU to the MFs of the antecedents and consequent 

membership functions of the final layer generated in the previous steps and retrain 

FOUs of all the layers using the BB-BC algorithm. The parameters for the FOUs are 

encoded using and represented as follows. 

 
1 2

2 2 1, ,.., , 2 ,.., 2n f f

D FLST h h h o pT T T T T +=    (7.12) 

Where 
n

hT  represents the IT2 representation of the MFs of the h  encoders from 

(6.30) and 2o p

fT + represents the MFs and FOUs of the o antecedents and the p

consequents (6.20).  

The FOUs of the D2FLS are then trained using an optimization algorithm such as 

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the training of 

the FOUs of the D2FLS is performed using the following steps. 

Step 1: N  individuals are generated by randomly generating the FOUs of the 

antecedents and the consequents of the final layer of the D2FLS and added to the 

D2FLS generated in the previous section and their parameters encoded using (7.12). 

Step 2: The real-valued representation of the N individuals is then decoded into MFs 

of the D2FLS using (7.12). The rules are then added to these D2FLS by choosing them 

from the type-1 D2FLS trained in the previous step.  
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Step 3: The fitness of the N D2FLSs is calculated using the cost function in (7.12) 

and the best D2FLS among these is selected 

Step 4: The stopping criteria (number of generations and target fitness) are checked 

against the individual selected in the previous step. If this D2FLS satisfies the stopping 

criteria, then the optimization algorithm is stopped, and further steps of the training 

process are performed on this D2FLS 

Step 5: If the stopping criteria (number of generations and target fitness) are not 

satisfied a new generation of the  N  candidate solutions are generated by mutating 

real-valued representation of the individual selected in Step 2 using (4.2) and then the 

steps from Step 2 are repeated. 

7.3.1.3 Optimizing the Rule Base of the D2FLS 

In this step, we retrain the rules of all the hidden layers and the final layer using BB-

BC algorithm. The parameters for this step are encoded in the following format to 

create the candidate solutions of the BB-BC algorithm. 

 
1 1

2 1 1,..., ,.., , ,...,h h hn f f

D FLSRules l l gR R R R R =    (7.13) 

Where 
hn

lR  represents the rules of the n  hidden layer and 
f

gR  represents the g rules 

of the final layer. 

The rules of the D2FLS are then retrained using an optimization algorithm such as 

BB-BC (described in Chapter 4.1) or Genetic algorithm (described in Chapter 4.2). For 

example, if the BB-BC algorithm is used as the optimization algorithm, the retraining 

of the rules of the D2FLS is performed using the following steps. 
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Step 1: The rules of the D2FLS generated in the previous step are encoded into real-

valued solution using (7.13). And N  individuals are generated by mutating this 

solution. 

Step 2: The N  individuals are then decoded into the rules of the D2FLS, then the 

MFs and their FOUs generated in the previous section are added to the D2FLS. The 

fitness of these individuals is calculated using the cost function in (7.12) , and the best 

individual among these is selected. 

Step 3: The stopping criteria (number of generations and target fitness) are checked 

against the individual selected in the previous step. If this D2FLS satisfies the stopping 

criteria, then the optimization algorithm is stopped, and further steps of the training 

process are performed on this D2FLS. 

Step 4: If the stopping criteria (number of generations and target fitness) are not 

satisfied a new generation of the N  individuals are generated by mutating the 

individual selected in Step 2 using (4.2) and then the steps from Step 2 are repeated. 

7.4 Experiments and Results 

7.4.1 D2FLS vs Fuzzy Stacked Autoencoder 

In this experiment, we compare the performance of the D2FLS against the FSAE. 

In [96] FSAE is shown to have performance that is between an IT2FLS and an SAE, 

so, this is an interesting comparison as we can use this to learn how the D2FLS stacks 

up against the IT2FLS and SAE models trained using the methods described in [96]. 
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The D2FLS model is trained on the classification datasets using BB-BC algorithm 

with 500 generations and 30 particles per step. The FSAE model is trained using a 

greedy layer-wise training [61]. We used two hidden layers with 400 and 30 neurons 

each. Adam Algorithm [101] was used for training the SAE, and we set the learning 

rate as 0.001, beta one as 09 and beta two as 0.999 and trained it for 200 epochs. The 

final layer of the FSAE is trained using BB-BC with 500 generations and 30 particles 

per step.  

Table 7-1: Comparison between D2FLS and FSAE on Categorical Datasets with Average Recall 

as Fitness Functions 

Data Set AI Model 1 2 3 4 5 Average Std 

Santander 

CTP 

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

FSAE 78.39 77.4 76.92 78.28 78.05 77.81 0.56 

CLL 

Identification 

D2FLS 62.8 59.78 61.25 62.37 63.31 61.9 1.26 

FSAE 56.19 56.33 86.94 86.61 87.28 74.67 15.03 

BT Customer 

Data 

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

FSAE 70.79 72.66 72.13 65.04 64.24 68.97 3.6 

PD Speech 
D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

FSAE 73.13 64.85 73.73 76.1 79.85 73.53 4.94 

IDA2016 
D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

FSAE 93.64 94.74 96.47 94.92 96.58 95.27 1.12 

EpiSeizure 
D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

FSAE 95.32 95.13 96.34 96.51 95.87 95.83 0.54 

 

Table 7-2: Comparison between D2FLS and FSAE on Regression Datasets with Mean Absolute 

Error as the fitness function 

Data Set 
AI 

Model 
1 2 3 4 5 Average Std 

Wi-Fi 

Localization  

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

FSAE 0.0384 0.0457 0.0658 0.0577 0.0438 0.0503 0.01 

Swiss 

Premium Pred 

 

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

FSAE 0.0534 0.0767 0.0629 0.0584 0.0652 0.0633 0.0078 

CT Scan 

Region Pred  

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

FSAE 0.0561 0.0486 0.055 0.06 0.0581 0.0556 0.0039 

Predict Song 

Year  

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

FSAE 0.0738 0.0727 0.074 0.0775 0.0763 0.0748 0.0018 

BT PWA  
D2FLS 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

FSAE 0.0436 0.04 0.048 0.046 0.0455 0.0446 0.0027 
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The results of training the two models with Average Recall as the fitness function 

over five training runs on the categorical datasets is tabulated in Table 7-1. The mean 

and standard deviation of the five training runs is displayed in the eighth and ninth 

columns of the table. Where a result is in bold, it indicates that the row contains the AI 

model with the best performance for the dataset.  

We can see from Table 7-1 that the FSAE performance better than the D2FLS in 

five of the datasets while the D2FLS outperforms it in only one of the datasets. The 

highest performance difference is in the Santander CTP and CLL Identification 

datasets, where the FSAE performance the best. The FSAE also outperforms the CNN 

and the SAE (hidden layers of the model used as inputs to the FSAE) in these datasets 

(from Table 6-2). If we do not consider these two datasets, the performance difference 

is small within 2-3 % of each other. 

Similarly, the results of training the two models with Mean Absolute Error as the 

fitness function over five training runs on the regression datasets is tabulated in Table 

7-2. The mean and standard deviation of the five training runs is displayed in the eighth 

Table 7-3 : D2FLS Pretrained using FAE vs D2FLS Pretrained using SAE on Classification 

Datasets with Average Recall as the fitness function 

Data Set 
Training 

Method 
1 2 3 4 5 Average Std 

Santander 

CTP 

D2FLS FAE 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

D2FLS SAE 62.93 58.91 60.18 61.71 61.53 61.05 1.38 

CLL 

Identification 

D2FLS FAE 62.8 59.78 61.25 62.37 63.31 61.9 1.26 

D2FLS SAE 62.47 62.96 62.3 62.23 57.12 61.42 2.16 

BT Customer 

Data 

D2FLS FAE 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

D2FLS SAE 60.34 64.43 59.93 65.19 60.28 62.04 2.28 

PD Speech 
D2FLS FAE 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

D2FLS SAE 70.21 72.55 77.03 65.79 72.14 71.55 3.64 

IDA2016 
D2FLS FAE 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

D2FLS SAE 94.69 92.28 95.27 94.99 95.31 94.51 1.14 

EpiSeizure 
D2FLS FAE 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

D2FLS SAE 90.71 89.76 90.39 92.11 90.25 90.64 0.79 
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and ninth columns of the table. Where a result is in bold, it indicates that the row 

contains the results of the AI model with the best performance for the dataset. 

 Again, we see similar results in that the FSAE outperforms the D2FLS in four of 

the five datasets. But the average increase in error when using the D2FLS is only about 

14% which is a relatively small performance difference. 

The small loss in performance between the D2FLS and FSAE is reasonable 

considering that the FSAE has lower interpretability than the D2FLS and that we 

generally get better performance if we use the Deep learning counterparts such as SAE 

and CNN. 

7.4.2 D2FLS Comparison between The Two Training Methods 

In this experiment, we compare the performance of the D2FLS when it is pre-trained 

as an FAE (D2FLS FAE) against a D2FLS when it is pre-trained using the hidden layers 

Table 7-4: D2FLS Pretrained using FAE vs D2FLS Pretrained using SAE on Regression datasets 

with MAE as the fitness function  

Data Set 
Training 

Method 
1 2 3 4 5 

Averag

e 
Std 

Wi-Fi 

Localization  

D2FLS 

FAE 
0.106 0.116 0.1049 0.1022 0.098 0.105 0.0059 

D2FLS 

SAE 
0.1241 0.1127 0.1073 0.1231 0.1075 0.115 0.0073 

Swiss 

Premium Pred 

 

D2FLS 

FAE 
0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.0041 

D2FLS 

SAE 
0.0474 0.0533 0.0503 0.058 0.0586 0.0535 0.0043 

CT Scan 

Region Pred  

D2FLS 

FAE 
0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.0033 

D2FLS 

SAE 
0.0932 0.0803 0.0906 0.096 0.0883 0.0897 0.0053 

Predict Song 

Year  

D2FLS 

FAE 
0.076 0.0741 0.074 0.074 0.079 0.075 0.0022 

D2FLS 

SAE 
0.0731 0.0746 0.0728 0.0747 0.0768 0.0744 0.0014 

BT PWA  

D2FLS 

FAE 
0.048 0.057 0.0511 0.045 0.057 0.0519 0.0047 

D2FLS 

SAE 
0.0476 0.0523 0.0468 0.0644 0.0646 0.0551 0.0079 
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of an SAE (D2FLS SAE). The goal of this experiment is to find the best pretraining 

method for the proposed D2FLS model.  

We tabulate the results of the D2FLS trained using both the training methods five 

times on the classification datasets using BB-BC in Table 7-3. The results of the 

training runs are presented as Average Recall (equation (6.21)) in columns (3-7). The 

mean and standard deviation of the five training runs is displayed in the eighth and 

ninth columns of the table, respectively. Where a result is in bold (column 8), it 

indicates that the row contains the D2FLS training method with the best performance 

for the dataset 

From Table 7-3, we can see that the D2FLS FAE outperforms the D2FLS SAE in 

five of the six of the datasets. The D2FLS SAE performs better in only one dataset, but 

the performance difference between the two methods is small. The biggest difference 

Table 7-5: Snapshot of Rule base of the Hidden Layer of the D2FLS trained using SAE on the BT 

PWA Dataset 

 Antecedents Consequents 

ID 1 2 3 H00 H01 H02 H03 H04 

1 Mid LOANS 1 Low MSLCL2 2 High MSLCL2 3 Very High High High Low Very Low 

2 Mid MSLCL1 0 Mid MISSAPP 3 
Low ECONOMIC 

UTILISATION 3 
Very High Mid High High Very High 

3 
High ECONOMIC 

UTILISATION 2 
Mid CONTRACTOR 1 Low TRAVEL 1 Mid Low Mid High Very Low 

4 Low MSLCL1 1 
Low ON DAY 

UTILISATION 2 

Mid ON DAY 

UTILISATION 1 
High Very High Very Low Very High Very High 

5 Mid MSLCL1 2 High TRAVEL 3 High CALC PROD 3 Low Very Low Very Low Very High Low 

6 High MSLCL2 3 Mid MISSAPP 3 
Low ECONOMIC 

UTILISATION 0 
Low Very Low 

Very 

High 
Mid High 

7 Mid MISSAPP 3 Low OT HOURS 1 Mid MSLCL2 2 Very High Very Low 
Very 

High 
Mid Low 

8 High RANK 3 
High ON DAY 

UTILISATION 1 
Low MSLCL2 0 Very High High 

Very 

High 
High Low 

9 High OT HOURS 3 Low MSLCL2 0 
High ON DAY 

UTILISATION 2 
Low High High Mid High 

10 
Mid ON DAY 

UTILISATION 3 
Low MISSAPP 0 Low MSLCL2 2 Very High Low High Very High High 

11 Mid TRAVEL 3 
Mid ECONOMIC 

UTILISATION 3 
Low MSLCL2 2 Mid Mid High Very High Very Low 

12 High CALC PROD 0 Low TRAVEL 2 High OT HOURS 1 Mid Low Low Very High Mid 

13 
High ON DAY 

UTILISATION 0 
Mid MISSAPP 2 Low TRAVEL 2 Very Low Low Low High Very High 

14 Mid RANK 1 Low MSLCL2 3 Mid TRAVEL 3 Very Low Mid High High High 

15 
Low ECONOMIC 
UTILISATION 3 

Mid RANK 2 Mid CALC PROD 3 Very Low Very Low High Low Mid 



185 

 

between the two training methods is in the BT Customer Dataset where the D2FLS 

FAE outperforms the D2FLS SAE by about 10%, but the difference in performance 

between the two training methods is only about 2% performance on average. 

We tabulate the results of D2FLS trained using both the training methods five times 

on the regression datasets using BB-BC is tabulated in Table 7-4. The results of the 

training runs are presented as Mean Absolute Error (equation (6.24)) in columns (3-7). 

The mean and standard deviation of the five training runs is displayed in the eighth and 

ninth columns of the table, respectively. Where a result is in bold (column 8), it 

indicates that the row contains the D2FLS training method with the best performance 

for the dataset.  

Table 7-4 shows that like the classification datasets the D2FLS FAE outperforms 

the D2FLS SAE method in four of the five regression datasets. The D2FLS FAE has 

only about 6% lower error rate compared to D2FLS SAE on average.  

A snapshot of the rule base generated for D2FLS trained using SAE on the BT PWA 

dataset is shown in Table 7-3 and Table 7-6. Table 7-3 contains a snapshot of the rules 

 

Figure 7-3: Fuzzy Sets Generated by D2FLS SAE Training for (a) Loans 1 feature and (b) MSLCL2 2 

feature of the BT PWA dataset 
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(15 out of 100 rules) of the Hidden Layer of the D2FLS; it shows that the rules are short 

and comprise of three antecedents and five consequents that form the five outputs of 

the hidden layer (H00, H01, H02, H03, H04). Membership functions for the first two 

antecedents of the first rule in Table 7-3 are depicted in Figure 7-3 (a) and (b). Table 

7-6 contains a snapshot of the rules of the output layer of the D2FLS, and the rules of 

the output layers are also kept short and comprise of three antecedents and one 

consequent for the output. The inputs to the output layer (H00, H01, H02, H03, H04) 

of the D2FLS are synthetic variables created during the training.  

Comparing the D2FLS FAE rules in Table 6-4 and Table 6-5, and the rules of the 

D2FLS trained using both the methods provide similar interpretability and the small 

performance difference between the two training methods means that both the training 

methods are viable and can be chosen based on the user preference. As an example, the 

alternative training method presented in this chapter outperformed the training method 

Table 7-6: Snapshot of Rule base of the Output Layer of the D2FLS pre-trained using SAE on the 

BT PWA Dataset 

 Antecedents Consequent 

Rule 

No 
1 2 3 

PWA 

Performance 

1 High H01 High H02 Mid H03 Mid 

2 Low H00 Mid H01 Low H03 Mid 

3 Low H01 Mid H00 Mid H02 Low 

4 Mid H02 Mid H00 High H03 Very Low 

5 Low H01 Mid H03 Low H00 High 

6 High H02 High H01 Mid H00 Mid 

7 Mid H00 High H01 High H03 Very Low 

8 High H02 Low H03 High H01 Very Low 

9 High H01 Mid H02 Mid H03 Mid 

10 Low H02 Mid H01 Low H00 Low 

11 High H02 Low H01 High H00 Low 

12 Mid H02 Low H01 Low H00 Low 

13 Low H02 Mid H01 Low H00 Very Very Low 

14 Mid H03 High H01 Mid H00 Mid 

15 High H01 Mid H03 Mid H00 Low 
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presented in the previous chapter by 2% in the IDA 2016 dataset, the change in average 

recall was from 92.5 to 94.5%. While the D2FLS FAE outperformed the D2FLS SAE 

in the BT Customer dataset by about 10% in the BT Customer dataset. 

The performance of the FSAE is better than the D2FLS and since the alternative 

training method is an extension of the FSAE we believe there is scope for further 

improvement in the performance of the D2FLS when trained using SAE. 

7.4.3 Effectiveness of Pre-training on the D2FLS 

In this experiment, we aim to verify the effectiveness of pretraining on the D2FLS 

for the selected datasets. This raises an interesting question, why do we need to pretrain 

the D2FLS? as we can train the D2FLS without any pretraining and directly train the 

D2FLS as a multilayer Fuzzy Logic System. 

We tabulate the results of the D2FLS FAE and a D2FLS trained without any pre-

training, trained five times on the classification datasets using BB-BC in Table 7-7. 

The results of the training runs are presented as Average Recall (equation (6.21)) in 

Table 7-7: Comparison of D2FLS with hidden layers pre trained using FAE against D2FLS 

without pretraining on Classification Datasets with fitness function Average Recall 

Data Set  Pre-Training 1  2 3 4 5 Average Std 

Santander 

CTP 

D2FLS 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

No Pretraining 60.06 59.66 61.53 60.86 60.75 60.57 0.65 

CLL 

Identification 

D2FLS 62.8 59.78 61.25 62.37 63.31 61.9 1.26 

No Pretraining 59.4 59.78 61.85 61.55 61.8 60.87 1.06 

BT Customer 

Data 

D2FLS 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

No Pretraining 59.9 60.8 59.23 60.41 60.43 60.15 0.54 

PD Speech 
D2FLS 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

No Pretraining 71.92 68.85 70.78 71.49 64.33 69.48 2.78 

IDA2016 
D2FLS 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

No Pretraining 91.37 91.99 90.45 92.74 92.81 91.87 0.88 

Epi Seizure 
D2FLS 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

No Pretraining 88.87 87.07 87.44 90.14 87.02 88.11 1.22 
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columns (3-7). The mean and standard deviation of the five training runs is displayed 

in the eighth and ninth columns of the table, respectively. Where a result is in bold 

(column 8), it indicates that the row contains the D2FLS pre-training method with the 

best performance for the dataset. 

From Table 7-7, we can see that the D2FLS pre-trained using FAE always 

outperforms the D2FLS with no pre-training in all the selected classification datasets. 

The best improvement is in the BT Customer Dataset, where pretraining provides a 

12% improvement in performance. In PD Speech, Epi Seizure, and the Santander CTP 

datasets pre-training improves the performance by about 2-4%. In the IDA 2016 

dataset, pre-training improves performance by less than 1%. While the overall 

improvement in performance in the selected classification datasets is about 4% on 

average. 

Similarly, we tabulate the results of the D2FLS FAE and a D2FLS trained without 

any pre-training, trained five times on the Regression datasets using BB-BC in Table 

Table 7-8: Comparison of D2FLS with hidden layers pre trained using FAE against D2FLS 

without pretraining on Regression datasets with MAE as the fitness function 

Data Set       Average Std 

Wi-Fi 

Localization  

D2FLS 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

No 

Pretraining 
0.1157 0.1106 0.157 0.1563 0.2003 0.148 0.0326 

Swiss 

Premium 

Pred 

 

D2FLS 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

No 

Pretraining 
0.0429 0.0607 0.0538 0.0658 0.0527 0.0552 0.0078 

CT Scan 

Region Pred  

D2FLS 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

No 

Pretraining 
0.0935 0.1014 0.0968 0.0961 0.0999 0.0976 0.0028 

Predict Song 

Year  

D2FLS 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

No 

Pretraining 
0.0822 0.083 0.0751 0.0755 0.0747 0.0781 0.0037 

BT PWA  

D2FLS 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

No 

Pretraining 
0.0629 0.0668 0.0528 0.064 0.0455 0.0584 0.008 
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7-8. The results of the training runs are presented as MAE (equation (6.24)) in columns 

(3-7). The mean and standard deviation of the five training runs is displayed in the 

eighth and ninth columns of the table, respectively. Where a result is in bold (column 

8), it indicates that the row contains the D2FLS pre-training method with the best 

performance for the dataset 

From Table 7-8, we can see that pre-training improves the performance in all the 

selected regression datasets. With the most improvement seen in the Wi-Fi localization 

dataset, about 40% lower error rate in the pre-trained model. The next significant 

improvement is in Swiss premium prediction and BT PWA datasets with about 17% 

and 12.5% lower error rate in the pre-trained model. The improvement is smaller in the 

other two datasets with an overall average improvement of about 17% lower error rate. 

This indicates that pre-training provides significant benefits over a simple multi-

layer fuzzy logic system.  

7.5 Summary 

This chapter presented the Fuzzy Stacked Autoencoder and an alternative to the 

D2FLS training method we presented in the last chapter. It demonstrated that the two 

training methods perform similar to each other. With the D2FLS FAE outperforming 

the D2FLS SAE in classification dataset by an average of 2% and in the regression 

datasets the D2FLS FAE has about 6% lower error on average. With both the methods 

providing similar interpretability, the choice of the training method depends on the 

dataset that is being used. As an example, the alternative training method presented in 

this chapter outperformed the training method presented in the previous chapter by 2% 

in the IDA 2016 dataset, the change in average recall was from 92.5 to 94.5%. While 
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the D2FLS FAE outperformed the D2FLS SAE in the BT Customer dataset by about 

10%. 

The chapter also shows that pretraining offers significant benefits. The chapter 

shows that pretraining improves the performance of the D2FLS by 4% in classification 

datasets. And pre-trained D2FLS has 17% lower error rate in regression dataset. 

The next chapter discusses the proposed methods for achieving local interpretability 

in the D2FLS.  
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Chapter 8. Local Interpretability Enhancement for 

Deep Type-2 Fuzzy Logic Systems 

The D2FLS proposed in the previous two chapters is a rule-based system and can 

be considered interpretable. However, the intermediate variables connecting the 

various modules or layers of the D2FLS are with only limited semantic support; that 

is, they are synthetic variables. For example, consider one of the rules of the output or 

final layer of a D2FLS from Table 7-6 (displayed in (8.1)). 

02 00 03IF H is Mid and H is Mid and H is HighTHEN PWAPerformanceisVery Low     

(8.1) 

The rule itself is quite simple with only three inputs, however, given that the user 

does not know what H02, H00 and H03 mean, they cannot interpret such a rule in 

isolation, so the user will need to analyse the D2FLS system as a whole. The user will 

have to inspect the rules of all the layers of the D2FLS to understand H02, H00 or H03.  

Consequently, the rules of the D2FLS could be challenging to understand for a lay user.  

Hence, there is the need to provide linguistic meaning to the intermediate variables 

such as H02, H00 and H03. This is related to the idea of cointension; cointension refers 

to a relation between concepts, such that two concepts are cointensive if they refer to 

the same objects[117-119]. Therefore, a knowledge base will be interpretable if its 

semantics are cointensive with the knowledge that a user builds in his/her mind after 

reading the knowledge representation, expressed in natural language [117-119]. 

Hence, in this chapter, we propose a method to provide linguistic meaning to the 

intermediate variables for individual predictions. We note that interpretability is a fluid 
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concept and depends on the target audience [13]. For example, machine learning 

experts may be able to interpret the output based on the firing levels of the rules, but a 

layman may be more comfortable with a small number of weighted features as an 

explanation [40]. Hence, we also propose to create another set of explanations for each 

of the input-output pairs. We designate these two explanations as rule-based 

explanations and feature importance, respectively. The algorithms for creating these 

explanations are for a two-layer D2FLS, but they can be easily extended for multiple 

layers. 

Additionally, since we use the algorithm of the model itself to generate the 

explanations, these explanations are more accurate when compared to model agnostic 

methods such as LIME [32] and SHAP [43] where the algorithms are independent of 

the model used. Since simple algorithms are used to generate these explanations, they 

are much easier to understand and verify when compared to complex algorithms used 

to generate explanations for DNN such as LRP [30], Deep Lift [31] etc. 

8.1 Rule-Based Explanations 

As explained previously, one of the problems with D2FLS rules is that the linguistic 

variables or labels of the intermediate variables that connect the various layers of the 

D2FLS are synthetic variable (created using data). This results in increased complexity 

in interpreting the rules of the D2FLS as the rules of all the layers must be analysed as 

a whole.  

One way to reduce this complexity is by naming the intermediate variables or the 

outputs of each layer based on the features that contributed most to that output; these 

names are termed compound inputs. This is done by finding the rule which contributed 
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the most to an output and the antecedents of this rule are used to name this variable. As 

the rule contribution can change based on the input, the linguistic label for the 

intermediate variables will also change based on the prediction. Hence, these 

explanations are locally interpretable and might not be valid at a global level. 

The contribution of the rules to the output is calculated based on the product of the 

firing level and centroid of the consequent of the rule. This calculation changes based 

on the type of problem, for regression datasets the rule contributions are described in 

Section 8.1.1. In the case of classification datasets, the rule contributions are described 

in section 8.1.2. 

For example, in Figure 8-1, we depict a local explanation for a two-layer D2FLS 

with the first layer having five outputs or intermediate variables designated H00, H01, 

H02, H03 and H05.  

The output H00 of the first layer is a compound input consisting of Low Rank 0, 

Low on Day Utilisation 3 and Low MSLCL2 2 because this rule contributes the most 

 

Figure 8-1: Rule-Based Explanation depicting the Rule contributions to the outputs of the D2FLS 

layers 

 

Figure 8-2: Rule Contributions for the Intermediate Variable H00 
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(84%) to this output or consequent. There are six other rules that contribute to this 

output (depicted in Figure 8-2), but their contribution is much smaller.  

Similarly, all the outputs of the first layer can be named as compound inputs, using 

the contributions depicted in Figure 8-1, as follows.  

• H00=Low Rank 0, Low on Day Utilisation 3 and Low MSLCL2 2 

• H01=Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2 

• H02=Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2 

• H03=Low Rank 0, High MISSAPP 0 and Low on Day Utilisation 3 

• H04=Low Rank 0, Mid Rank 2 and Low MSLCL1 2 

These compound inputs are then used to find the relationship between the first and 

second layers of the D2FLS. For example, in Figure 8-1, the first rule of the output 

layer, which contributes 77% to the output, has three antecedents or inputs H00, H03 

and H02. Which can be interpreted as compound inputs (Low Rank 0, Low on Day 

Utilisation 3 and Low MSLCL2 2), (Low Rank 0, High MISSAPP 0 and Low on Day 

Utilisation 3) and (Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2) 

respectively.  

We can use the same method for the second rule (22% contribution) which has three 

antecedents H01, H02 and H00. These three inputs to the second rule are named as 

follows (Low on Day Utilisation 3, Low MSLCL1 3 and Low Travel 2), (Low on Day 

Utilisation 3, Low MSLCL1 3 and Low Travel 2) and (Low Rank 0, Low on Day 

Utilisation 3 and Low MSLCL2 2) etc. 

 The rule that contributed the most to the final output can then be used to determine 

the input features that contribute the most to the output. As depicted in Figure 8-1, we 
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can say that the output (PWA performance) is High because of Low Rank 0, Low on 

Day Utilisation 3, Low MSLCL2 2, Low Rank 0, High MISSAPP 0, Low MSLCL1 3 

and Low Travel 2. 

The above example illustrates how the rule contributions can be used to provide a 

simple explanation for the output based on the rules of the various layers of the D2FLS. 

In the following sections, we describe the algorithm used to calculate the rule 

contributions. 

8.1.1 Regression Datasets 

To calculate these rule contribution values for regression datasets, we use the 

following equations.  

 *g g

n n nR F c=      (8.2) 

*g g

n n nR F c=        (8.3)  

Where nF  and nF  represent the upper and lower firing levels of the nth rule and 
g

nc

represents the centroid of the 
thg  consequent of the nth rule of the fuzzy layer.  

( ) / 2g g g

navg n nR R R= +            (8.4) 

1

/ *100
n

g g g

nval navg navg

n

R R R
=

=                  (8.5) 

We use Equation (8.5) to calculate the rule contribution values for each of the rule 

and consequent combinations for all the layers. 
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8.1.2 Classification Datasets 

To calculate these rule contribution values for classification datasets, we must 

modify the equations (8.2) and (8.3) for the final layer to the following.   

 * *
g g

g
n nn nR F C S=     (8.6) 

 * *
g gg

n nn nR F C S=     (8.7)  

Where nF  and nF  represent the upper and lower firing levels of the nth rule, 
g

nC  and 

g

nC represent the upper and lower confidence of the 
thg consequent of the nth rule of the 

final layer, 
g

nS  and 
g

nS represent the upper and lower support of the 
thg consequent of 

the nth rule of the final layer. All other equations remain the same between regression 

and classification problems.  

8.2 Feature Importance Explanations  

 Interpretability is a fluid concept and depends on the target audience, and, a lay user 

might not be comfortable with the rule-contribution based explanations provided in the 

previous section and may be more comfortable with a small number of weighted 

features as an explanation [40]. Hence, in this section, we detail a method to generate 

a simple explanation which shows the relationship between the input features and the 

output as Feature importance scores. 

Essentially, we would show how much a feature influences the output. For example, 

in Figure 8-3 we see that the most important feature is Low Travel 2 (i.e., Travel 2 

feature having a Low Linguistic Label) and the second most important input feature is 

Low MSLCL1 3 (i.e. the feature Mean Service Level CL1(MSLCL1) 3 having a Low 
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Linguistic Label) and the third most important input feature is Low on Day Utilization 

3 (i.e. the feature On Day Utilization having a Low Linguistic Label) etc. 

From these feature importance score, in Figure 8-3, it becomes immediately 

apparent which features are the most important to a particular output. These feature 

importance scores are similar to the DNN explanation methods such as LRP [30], Deep 

Lift [31] etc. (detailed in Chapter 2.1.2) 

The advantage of the proposed method is that the feature importance also provides 

linguistic label along with the importance score, that is, from Figure 8-3 we can easily 

deduce that low travel, Low MSLCL1 3 or Low on Day Utilization 3 leads to High 

PWA Performance, while the methods described in Chapter 2.1.2 only provide an 

importance score for each of the relevant features, and the features must be examined 

in detail to understand how changes to the input affect the output.  

 

Figure 8-3: Feature Importance Scores 
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Another advantage is that these feature importance scores are generated using the 

AI model algorithm itself, which allows the users to quickly verify the validity of the 

generated score by using the algorithms described in the next two sections, if required.  

The calculation of these feature importance scores changes based on the type of 

problem being solved. For Regression and Classification tasks, the calculations are 

described in the next two sections. 

8.2.1 Regression Datasets 

To calculate the feature importance scores for regression datasets, we use Algorithm 

1. The idea here is to calculate the contribution of each input feature to the output by 

using the rule firing levels and the membership grades of various layers of the D2FLS. 

In the case of a two-layered D2FLS, this is done by finding the rule that contributes the 

most to the output in the output layer. Then the contribution of the feature to each of 

the outputs in the hidden layer is calculated. The max of the product of these two values 

gives us the feature importance score.  

The algorithm is used to calculate the feature importance score for each feature for 

each of the outputs of the D2FLS, that is, in case of a single output system there will 

be a single importance score for feature x, and, in case of a system with two outputs 

there will be two importance scores for feature x. Once the feature importance scores 

are calculated for all the features, we normalize the values between 0 and 100 for each 

output and display them, as shown in Figure 8-3. 

 

 



199 

 

Algorithm 1: Simplified Explanations, our proposed algorithm for calculating the feature 

importance score. This algorithm is valid for Regression problems 

For g = 1 to number of consequents of the final layer 

 For i=1 to number of inputs  

  , 0g g

i iI I    (upper and lower feature importance scores) 

  For b = 1 to number of antecedents/inputs of the final layer 

   
max max, 0b bR R   

   For n=1 to number of rules 

    If n rule contains antecedent b 

     *b g

n n nR F c=  (Upper firing level, centroid) 

    *b g

n n nR F c=  (Lower Firing Level, centroid) 

     
max maxmax( , )b b b

nR R R=  

     
max maxmax ( , )b b b

nR R R=  

   next n 

   For l=1 to number of rules of hidden layer 

    If l rule contains input feature i 

     
max* * * ( )i b b l

l l l aR F c R x=  

     
max* * * ( )i b b l

l l l aR F c R x=  

     max ( , )g g i

i i lI I R=  

     max( , )g g i

i i lI I R=  

   next l 

  next b 

  ( ) / 2g g g

iavg i iI I I= +   (feature importance score per output) 

 next i 

next g 

Return I  

 

8.2.2 Categorical Datasets 

To calculate the feature importance scores for categorical datasets, we use 

Algorithm 2. Like the previous section, the idea here is to calculate the contribution of 

each input feature to the output by using the rule firing levels and the membership 

grades of the input features. This is done by finding the rule whose vote contributes the 

most to the category of the output in the output layer. Then like the regression 

algorithm, the contribution of the feature to each of the outputs in the hidden layer is 
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calculated. The max of the product of these two values gives us the feature importance 

score.  

The algorithm is used to calculate the feature importance score for each feature for 

each of the outputs of the D2FLS, that is, for each output of the system there will be a 

and importance score for each of the features. Once the feature importance scores are 

calculated for all the features, we normalize the values between 0 and 100 per output 

and display them, as shown in Figure 8-3. 

Algorithm 2: Simplified Explanations, our proposed algorithm for calculating the feature 

importance score for Classification problems. 

For g = 1 to number of consequents of the final layer 

 For i=1 to number of inputs  

  , 0g g

i iI I  (upper, lower feature importance scores) 

  For b = 1 to number of antecedents/inputs of the final layer 

   
max max, 0b bR R   

   For n=1 to number of rules 

    If n rule contains antecedent b 

     * *b g g

n n n nR F C S=  (upper firing level, confidence and support) 

    * *b g g

n n n nR F C S=  (lower firing level, confidence and support) 

     
max maxmax( , )b b b

nR R R=  

     
max maxmax ( , )b b b

nR R R=  

   next n 

   For l=1 to number of rules of hidden layer 

    If l rule contains input feature i 

     
max* * * ( )i b b l

l l l aR F c R x=  

     
max* * * ( )i b b l

l l l aR F c R x=  

     max ( , )g g i

i i lI I R=  

     max( , )g g i

i i lI I R=  

   next l 

  next b 

  ( ) / 2g g g

iavg i iI I I= + (feature importance score per output) 

 next i 

next g 

Return I  
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8.3 Survey 

In the previous sections, we examined two methods of extracting local explanations 

from the D2FLS described in Chapter 6. In this section, we evaluate these explanations. 

To evaluate the explainability of an AI system, we must consider the audience that will 

consume or examine these explanations. Hence, in this section, we conduct a survey 

with participants divided into three different sets, each representing a different type of 

audience. 

• AI Experts: The first set of participants is experts with experience in researching 

AI algorithms. So, these participants are able to understand the intricacies of 

how the underlying AI algorithms work. 

• Domain Experts: The second set of participants are experts in one or more of 

the fields from which the datasets used to build the AI models are selected. They 

are experts who have experience and examining and taking decisions based on 

the data used to build the AI models. So, these are the audience that is most 

likely to use these explanations. 

• Lay Users: The third set of participants are individuals with no experience in 

the AI algorithms or the datasets. 

We surveyed six individuals or subjects who are AI experts and two subjects who 

are Domain experts and two more subjects who are lay users.  

 

Figure 8-4: SHAP explanation for Sparse Stacked Autoencoder 
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We used SHAP [43] (depicted in Figure 8-4) described in Chapter 2.3.3 and Lime 

[40] (depicted in Figure 8-5) described in Chapter 2.3.1, for generating the explanations 

for the SAE. Then we use the methods described in this chapter to generate the 

explanations for the D2FLS (depicted in Figure 8-1, Figure 8-2 and Figure 8-3) and 

IT2FLS.  

We generated the explanations for a small set of data using the 3 AI models, and 

then we asked the participants of the survey to examine the explanations provided by 

the four XAI methods. And then rank them based on how good they are on a scale of 1 

to 10 (10 being the best and 1 being the worst).  

 

Figure 8-5: LIME explanation for Sparse Stacked Autoencoder 

 

Figure 8-6: Survey Plot 
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The results of the survey were tabulated in Table 8-1, and the average of these 

responses are plotted in Figure 8-6. We can see from the results that the explanations 

provided by the D2FLS are comparable (within 2%) to the explanations provided by a 

highly interpretable AI model, IT2FLS. At the same time, the performance of the 

D2FLS model is about 5% better than the IT2FLS in categorical datasets (From Table 

6-6) and 15% lower error than the IT2FLS models in regression datasets (From Table 

6-7). And the explanations provided by the D2FLS are better than the explanations 

provided by popular model agnostic methods such as LIME and SHAP, 20% and 17% 

respectively. At the same time, the performance of D2FLS model is only about 4-5% 

lower than the SAE model in categorical datasets (From Table 6-1) and 40% higher 

error in the regression datasets (From Table 6-2). 

This shows that the D2FLS model, in conjunction with the explanation’s methods 

detailed in this chapter, provides a significant improvement over DNN models in terms 

of interpretability while showing only a small loss in performance. 

Table 8-1: Survey Results 

 Shap Tool Lime Tool D2FLS IT2FLS 

AI Expert 8 8 9.5 9 

AI Expert 8 6 7 9 

AI Expert 7 6 7 9 

AI Expert 6 7 8 8 

AI Expert 3 6 10 10 

AI Expert 8 9 10 10 

Domain Expert 4 4 5 3 

Domain Expert 8 9 10 9 

Lay User 7 7 7 8 

Lay User 4 4 6 6 

Average 6.3 6.6 7.95 8.1 

Standard dev. 1.9465 1.7764 1.8326 2.1318 
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8.4 Summary 

This chapter introduced two methods of extracting locally interpretable explanations 

from the D2FLS to decrease the complexity of interpreting the rules of the D2FLS. 

This is to ensure that the D2FLS explanations are accessible to a broader audience. It 

also discusses the need to tailor the explanations based on the audience who are likely 

to examine these explanations and how this is accomplished using the two methods. 

This chapter also evaluated the explanations provided by the D2FLS against popular 

Deep learning XAI tools LIME, SHAP to interpret SAE and against explanations 

provided by an IT2FLS. This was done by conducting a survey, in which three different 

sets of the audience were asked to examine the explanations provided by these methods 

and rank them according to how easy they are to understand.  

The results of this survey show that the explanations provided by the D2FLS are 

comparable to the explanations provided by the IT2FLS (with only about 2% lower 

interpretability) while the performance of the D2FLS is 5% in categorical datasets and 

15% lower error in regression datasets. It also provides explanations which are better 

than the explanations provided by the tools LIME and SHAP, about 20% and 17% 

better interpretability, respectively. At the same time, the performance of D2FLS model 

is only about 4-5% lower than the SAE model in categorical datasets and 40% higher 

error in the regression datasets. This is a small loss in performance compared for 

significantly higher interpretability making D2FLS a suitable replacement for the other 

AI models in applications where interpretability is paramount. 

In the next chapter, we extend the explanation extraction methods to provide Global 

Interpretability to the D2FLS.  
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Chapter 9. Enhanced Deep Type-2 Fuzzy Logic System 

for Global Interpretability  

In regulated applications such as financial, medical, justice etc., where the reliability 

of the model must be guaranteed it might be necessary to build and use globally 

interpretable AI models. An AI model is Globally Interpretable if the user can 

comprehend the entire model [3]. To explain the global model output, you need to 

understand the trained model, knowledge of the algorithm and the data. This level of 

interpretability is about understanding how the model makes decisions, based on a 

holistic view of its features and each of the learned components such as rules, 

membership functions etc. Which features are essential and what kind of interactions 

between them take place? Global model interpretability helps to understand the 

distribution of your target outcome based on the features.  

Global interpretability can, of course, be achieved by using interpretable models 

such as decision trees, Bayesian rules, fuzzy logic, etc [12]. However, these models can 

be less accurate when compared to the black box models, and they can also become 

opaque for high dimensional inputs [3, 14].  

The D2FLS proposed in the previous two chapters is a rule-based system and can 

be considered globally interpretable. But, as discussed in Chapter 8, the intermediate 

variables connecting the various modules or layers of the D2FLS are without any 

semantic support; that is, they are synthetic variables (variables created using the data).  

This means that the rules of a single layer of the D2FLS cannot be examined in 

isolation, and the rules of all the layers of the D2FLS system have to be examined 

together to gain an understanding of the model at the global level.  
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For example, consider one of the rules in of the output or final layer of a D2FLS 

from Table 7-6 displayed in (9.1), where the output PWA performance is High.  

IF H01 is Low and H03 is Mid and H00 is low 

THEN PWA performance is High
  (9.1) 

 

IF MSLCL2 3 is High and MISSAPP 3 is Mid and Eco Util 0is Low 

THEN H00 is Low and H01 is Very Low and H02 is Very High

 and H03 is Mid and H04 is High

(9.2) 

If we examine the rules of the hidden layer from Table 7-5, we see that the rule 

which most closely matches the linguistic terms of the antecedents of the rule in (9.1) 

is the rule displayed in (9.2). So, from these two rules, we can say that when MSLCL2 

3 is High, and MISSAPP 3 is Mid, and ECONOMIC UTILISATION 0 is Low then the 

PWA performance is High.  

All the rules of the D2FLS in all its layers have to be examined to check for matching 

linguistic terms to gain a global understanding of the D2FLS. This process can be a 

time consuming and difficult for a lay user. Even if the user is able to analyse the rules, 

they might not be able to remember all the complex interactions within the D2FLS 

model well enough to be able to predict the behaviour of the model in all circumstances. 

Such problems are encountered in a lot of algorithms which are Globally 

interpretable when there are many features in the input. This means that global 

interpretability is challenging to achieve in practice for inputs with many features. This 

has led to a decline in research on globally interpretable models and a focus on local 

interpretability [12]. A new set of methods have been proposed to gain global insight 

into models by examining multiple instances of local explanations. One such method 

is SP-LIME [40] where the input features which explain many different instances are 
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scored higher and based on these scores instances which are not redundant, i.e., which 

share fewer features are picked and shown to the user. This method is described as 

Local Interpretability for a Group of Predictions [32].  

Hence, in this chapter, we propose to extract simple interpretable explanations at the 

modular level to provide a holistic assessment of the D2FLS model, i.e., provide a 

qualitative understanding of the relationship between the input features and the output 

for the model at a modular level. The module, in this case, is determined by using the 

linguistic terms of the antecedent or consequent MFs of the inputs and the outputs of 

the D2FLS model which are then used to create a set of input-output pairs. We propose 

to extend the two local explanations methods for D2FLS described in Chapter 8 by 

calculating the average rule contribution and average feature importance score for the 

input-output pairs of a module. The users of these models can then use the linguistic 

labels to generate the explanations at a modular level and use these explanations to 

make an informed decision on the feasibility of the model. 

Another problem we encounter while trying to analyse the rules of the D2FLS is 

that the linguistic terms of outputs of one layer and the linguistic terms of the inputs of 

the next layer might not match. The solution to this is to examine the membership 

functions that define these linguistic terms. But this is another layer of complexity for 

a lay user to analyse. Hence, we propose a method to enhance the D2FLS to simplify 

the process of analysing the rules of the D2FLS. We do this by constraining the D2FLS 

during training to use the same membership functions for the consequents of a hidden 

FLS in the D2FLS and the antecedents of subsequent FLS.  
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9.1 Global Interpretability at Modular Level 

9.1.1 Modular Rule-Based Explanation 

The Modular Rule-Based Explanation propose (depicted in Figure 9-1) is an 

extension of the Rule-Based explanation discussed in Section 8.1. As explained 

previously, to gain a global understanding of the D2FLS, all its rules across various 

layers have to be examined. This process can be time-consuming and difficult for a lay 

user. Even if the user can analyse the rule, they might not be able to remember all the 

complex interactions within the D2FLS model well enough to be able to predict the 

behaviour of the model in all circumstances. 

One way to reduce this complexity is by extracting simple rule-based explanations 

at the modular level. The module, in this case, is determined by using the linguistic 

labels of the antecedent or consequent MFs of the inputs and the outputs of the model. 

For example, for a categorical model that does binary classification as depicted in 

Figure 9-1, there could be two modules based on the output categories—one positive 

for broadband faults and another negative for when the output is not a broadband fault.   

To calculate the rule that contributes the most to a module, a set of input-output pairs 

is selected based on the linguistic variable of the input and output membership 

functions. And the rule contribution is calculated for each rule for all the input-output 

 

Figure 9-1: Rule-Based Explanation 
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pairs, and the average of these values is calculated for each rule and consequent using 

(9.6).  

For example, in Figure 9-1, we generated Modular Detailed Explanations for all the 

input-output pairs where the linguistic term of the output is Negative. And we can see 

that the output H00 of the first layer is named Low ILU HH actual, Low NPS 

Interaction Sat Score, Low ILU HH num of residents because this rule contributes the 

most (53%) to this output, there are six other rules that contribute to this output 

(depicted in Figure 9-2), but their contributions are much smaller.  

We can then use these compound inputs to find out the relationship between the 

input features and the output. For example, in Figure 9-1, the rule which contributes 

28% to the output is composed of 3 compound inputs (Low ILU HH Actual, Low NPS 

Interaction Sat Score, Low ILU HH Resident Num), (Low NPS Interaction Sat Score, 

Low ILU HH Actual, Low Calls P4) and (Low ILU HH Actual, Low NPS Interaction 

Sat Score, Low ILU HH Resident Num). 

 

Figure 9-2: Rule-Based Explanation for one hidden output 

 

Figure 9-3: Rule Base Explanation for ILU HH Actual is High module 
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The above example illustrates how we can use a set of local interpretable 

explanations to find out which inputs contribute to the output of a module. In this case, 

the output is Negative because input feature ILU HH Actual is Low, ILU HH Resident 

Num is Low, NPS Interaction Sat Score is Low and Calls P4 is Low.  

We could examine this further by restricting the input feature ILU HH actual to 

High. The rule-based explanation for this module is depicted in Figure 9-3. From this 

explanation, we can see that when ILU HH actual is high, then the output is generally 

“Positive” which confirms the idea that Low ILU HH Actual leads to an output of 

“Negative” in this D2FLS model. 

The above example illustrates how the average rule contributions can be used to 

provide a simple rule-based explanation for the output of a module based on the rules 

of the various layers of the D2FLS. In the following sections, we describe the algorithm 

used to calculate the average rule contributions 

9.1.1.1 Regression Datasets 

For regression datasets, we calculate the rule contributions by using the below 

equations  

0

* /
j

n

avg n n

k

R F c j
=

=       (9.3) 

0

* /
j

n

avg n n

k

R F c j
=

=        (9.4) 

Where nF  and nF  represent the upper and lower firing levels of the thn  rule and nc  

represents the consequent of the thn  rule. j represents the total number of inputs 

selected. 
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We calculate the average rule firing strength across all the inputs in the dataset for 

both the upper and the lower membership functions using the below equations. 

( ) / 2n n n

avg avg avgR R R= +             (9.5) 

1

/ *100
n

g n n

nval avg avg

n

R R R
=

=      (9.6) 

9.1.1.2  Classification Datasets 

For classification problem we modify equations (9.3) and (9.4) as follows. 
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Where nF  and nF  represent the upper and lower firing levels of the nth rule, 
g

nC  and 

g

nC represent the upper and lower confidence of the 
thg consequent of the nth rule of the 

final layer, 
g

nS  and 
g

nS represent the upper and lower support of the 
thg consequent of 

the nth rule of the final layer. All other equations remain the same between regression 

and classification problems. 

9.1.2 Modular Feature Importance Explanations 

In this section, we propose to extend the Feature Importance explanations provided 

by the D2FLS from section 8.2. Similar to the Feature Importance explanations, we 

propose to show the relationship between the inputs and the outputs. But in this case, 

the inputs are a set of input-output data pairs selected based on a set of filter criteria 

that can be selected by the user. These filter criteria are linguistic labels of the input 

membership functions or the output membership functions. Essentially, we are trying 
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to find the features that contribute to a module of the model and assign importance to 

these features. These modules are determined using the linguistic labels of the input 

and output membership functions. 

For example, in Figure 9-4, we generated Modular Feature Importance Explanations 

for input-output pairs where the linguistic label of the output is positive. We see that 

the model is accurate about 67% of the time and Number of Visits is High in 77% of 

the inputs, Downloads is Medium in 99% of the inputs, and these two inputs are the 

most important features. Similarly, in Figure 9-5, we generated the explanations for 

input-output pairs where the linguistic label of the output is negative. We see that the 

model is accurate 73% of the time, and ILU HH actual is the most important feature. 

When we compare the two explanations in Figure 9-4 and Figure 9-5, we can see 

Number of Visits is high in 77% of the inputs when the output is positive, and it is low 

in 68% of the inputs when the output is negative. This indicates that the number of 

visits is a vital input feature and that a high number of visits indicates that the output is 

likely to be positive (We are trying to determine if there is a broadband fault).  

 

Figure 9-4: Modular Simple Explanation for Positive Outputs 
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The above example illustrates how we can use the modular feature importance score 

to understand which inputs contribute to the output at the modular level.  

To calculate these values, we use the algorithms in section 8.2 to calculate the 
g

iI

and
g

iI values for each of the input features. Once we get these values, we use the below 

equations to calculate the average upper and lower importance score. 

0

/g

iavg i

j
gI I j=              (9.9) 

0

/
j

g

iavg i

gI I j=                  (9.10) 

In the final step, we calculate the final importance score for the module for each of 

the features by taking the average of the upper and lower importance score using the 

below equation. 

( ) / 2i i i

avg avg avgI I I= +         (9.11) 

After calculating the 
i

avgI  value for all the features, we normalize the values and display 

them, as shown in Figure 9-4. 

 

Figure 9-5: Modular Simple Explanation for Negative Outputs 
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To calculate the feature linguistic label values, we use the below equations  

 
1

( )
j

k k

i iP x=     (9.12) 
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Where, ( )k

i x  and ( )k

i x are the upper and lower membership function for the 

linguistic label k of the thi  input feature. j is the number of input-output pairs. Finally, 

we use the below equation to calculate the percentage value. 
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P P
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j

+
=         (9.14) 

9.2 Enhanced Deep Type-2 Fuzzy Logic System 

As discussed earlier, one of the problems we encounter while trying to analyse the 

rules of the D2FLS is that the linguistic terms of outputs of one layer and the linguistic 

terms of the inputs of the next layer might not match. The solution to this is to examine 

the membership functions that define these linguistic terms. But this is another layer of 

complexity for a lay user to analyse.  

 

Figure 9-6: Enhanced Deep Type-2 Fuzzy Logic System. The Dotted Rectangles indicate the two 

FLSs that are constrained to use the same Linguistic Labels for the Consequents as the Antecedents of 

subsequent FLS 
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Hence, in this section, we propose to enhance the D2FLS (as depicted in Figure 9-6) 

by constraining the D2FLS during training to use the same linguistic labels for the 

consequents of a hidden FLS in the D2FLS and the antecedents of subsequent FLS. 

There are several advantages to this system. 

• It reduces the number of parameters that need to be trained. 

• It improves the readability of the rules of the various layers of the D2FLS. 

The disadvantage of such a system is that it reduces the degree of freedom with 

likely consequences to the performance of the model. 

To achieve this, we modify the training methods of the D2FLS as follows. We still 

use the two-stage layer-wise training method proposed in Section 6.2 with the 

following modifications. 

9.2.1 Hidden layer training 

In the hidden layer training, we still use the same three-step training with the 

following modifications to the representation of the FAE in the three steps. 

9.2.1.1 Optimize Type 1 FAE 

In the first step, we still train the Membership functions and rules of the two FLS 

that comprise the FAE as a Type-1 FLSs using the same procedure that is described in 

section 6.2.2.1. But the encoder part of the FAE is modified as follows.  

1 1

1 1 1,.., , .., , ,..,n n n n n

e i i i k lN M M M M R R− −

+ +=    (9.15) 

Where 
1e

iM −
 represent the antecedent MFs which are the consequent MFs of the 

encoder of the preceding FAE. And the FAE representation is modified as follows 
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1, ,..,n d d

n e mE N R R=     (9.16) 

Where 
d

mR represents the rules of the decoder. We only train the rules of the decoder 

as we add a constraint to share the linguistic variables between the encoder and decoder. 

Note that we do not train the antecedent MFs, if there are any preceding hidden 

layers, as they are the same as the consequent MFs of the preceding hidden layer. 

9.2.1.2 Transform T1MFs to IT2MFs  

In the second step, we still train the FOU of the membership functions of the 

antecedents and the consequents using an optimization algorithm. And the FAE 

representation changes as follows. 

 
1 1

1 1 12 ,.., 2 , 2 .., 2 ,..,,n n n n n

e i i i k lT T T T T R R− −

+ +=   (9.17) 

Where 
12n

iT −
 represents the IT2 MFs of the thi  input of FAE, which is shared with 

the thi  consequent of the 1n−  FAE. 

 1, ,..,2 n d d

n e mT RE R=     (9.18) 

Where 
n

eT represents the parameters of the encoder of the thn  layer. Only the MFs 

and FOUs are optimized in this step, while the rules of the FAE are not modified. 

Note that we do not train the antecedent MFs and FOUs, if there is a preceding 

hidden layer, in this step as they have been trained during the training of the preceding 

hidden layer.  
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9.2.1.3 Optimizing the Rule Base of the IT2 FAE 

In the third step, there are no changes to the representation of the FAE in this step. 

We retrain the rules of the IT2 FAE using the same procedure described in section 

6.2.2.3. 

9.2.2 Optimization Method for the Final Layer 

Similar to the method described in Section 6.2.3, to train the full D2FLS, we start 

by using the encoders of the FAE systems trained in the previous phase. We add another 

FLS that will act as the final output layer of the FLS. We use an optimization algorithm 

to retrain all the layers and like the optimization method used for training the FAE 

depicted in Figure 6-10, i.e., we train it in 3 steps. In this part of the training process, 

we use supervised training. 

9.2.2.1 Optimize the Type 1 D2FLS 

In this step, we train the final layer as a Type-1 FLS while at the same time retrain 

the MFs and rules of the encoders using an optimization algorithm. The MFs and rules 

of the two FLS are encoded in the following format. 

 
1

1 1,.., , ,.., , ,..,n f f f f

all e e o o p nE N N M M R R+ +=    (9.19) 

Where 
n

eN represents the membership functions, and Rules of the n encoders 

created using (9.15),
f

o pM +  represents the membership functions for the p consequents 

of the final layer and 
f

nR represents the n rules of the final layer. For the o  inputs of the 

final layer, we use the consequent MFs of the preceding hidden layer. 
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9.2.2.2 Transform the T1MFs of the D2FLS into IT2MFs 

In this step, we transform the type-1 MFs of the final layer into interval type-2 MFs 

by adding a FOU to each of the fuzzy sets. This is similar to the way we added the 

FOUs while training the FAEs, and it is depicted in Figure 6-7. We also retrain the 

FOUs of the encoder created during the training of the FAEs. This encoded in the 

following format. 

 
1

1 1,.., , 2 ,.., 2 , ,..,n f f f f

f e e o o p nT T T T T R R+ +=    (9.20) 

Where 
n

eT  represents the IT2 representation of the n  encoders from (9.17) and 2 f

o pT +

represents IT2 MFs for the p  consequents of the final layer which are built using 

(6.13), (6.16) or (6.19) depending on the type of MF used. For the o  inputs of the final 

layer, we use the consequent MFs of the preceding hidden layer 

9.2.2.3 Optimizing the rule base for the D2FLS 

In the final step, we retrain the rules of the encoder and final layer using the BB-BC 

algorithm. The parameters for this step are encoded in the following format to create 

the candidate solutions. 

 
1 1

1 1,..., ,.., , ,...,e e en f f

all l l nRL R R R R R=    (9.21) 

Where 
e

lR and 
f

nR represent the l rules of the encoder and n rules of the final layer, 

respectively. 

9.2.3 Extracting rules 

To extract rules from the Enhanced D2FLS, we use the fact that the linguistic 

variables of the inputs of a layer of the D2FLS are constrained to use the linguistic 
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variables of the preceding layer. This means that the rules of the two layers can be 

combined by replacing each the linguistic variables of the antecedents of a layer of the 

D2FLS with the antecedents of the rules of the preceding layer with a consequent that 

matches the linguistic variable.  

This can be explained more clearly using an example, in Table 9-3 and Table 9-4, 

we have the rules of the hidden and final layer of a two-layer D2FLS system. The 

hidden layer, in this case, has five outputs or consequents and the linguistic labels of 

the consequents of the hidden layer and the antecedent of the final layer are the same. 

In this case, for the first rule in Table 9-4, the first antecedent of the rule High H03 

represents the fourth input of the final layer with the linguistic label high. Since the 

linguistic label is shared with the consequents of the hidden layer, we can replace the 

High H03 with the compound input created from the rules that have a High consequent 

for the fourth output or consequent of the hidden layer. In this case, there are seven 

rules (fourth to seventh, eleventh, twelfth and fourteenth rules) that have the High 

consequent for the fourth output. We can choose the 4th rule in Table 9-3 to create the 

compound input. 

 ( ) 03   2 0,     3,    0High H Mid MSLCL High CALC PROD Low RANK= (9.22) 

Similarly, for the second antecedent, Low H02, we can replace it with the compound 

inputs created from the rules that have Low linguistic label for the third output of the 

hidden layer. In this case, there are three rules (second, third and ninth rules from Table 

9-3). 

 02 (Low CONT 2, High MSLCL1 1, Low MSLCL2 3)LowH =  (9.23) 
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In a similar fashion for the third antecedent, Mid H01, we can replace it with the 

compound inputs created from 12th and 13th rules of the hidden layer. 

 01 (Mid MISSAPP 0,Low OT HOURS 3,High RANK 0)Mid H =  (9.24) 

When we combine the three together we can rewrite the first rule of the final layer 

as IF (Mid MSLCL2 0, High CALC PROD 3, Low RANK 0) and (Low CONT 2, High 

MSLCL1 1, Low MSLCL2 3) and (Mid MISSAPP 0, Low OT HOURS 3, High RANK 

0) THEN y is Very High. 

Similarly, we can use the same method to rewrite all the rules of the final layer. 

9.3 Experiments and Results 

9.3.1 Comparison between a D2FLS pre-trained as an FAE vs Enhanced D2FLS 

pre-trained as an FAE 

In this experiment, we compare the performance of the Enhanced D2FLS with the 

D2FLS pre-trained as an FAE. The goal of this experiment is to find the loss in 

performance of the Enhanced D2FLS due to the additional constraints that were added. 

Table 9-1: Comparison of the D2FLS with the Enhanced D2FLS on Categorical Datasets with 

Average Recall as the fitness function 

Data Set Model 1 2 3 4 5 Average Std 

Santander 

CTP 

D2FLS FAE 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

Enhanced 

D2FLS FAE 
60.6 59.32 58.03 59.42 60.12 59.5 0.87 

BT Customer 

Data 

D2FLS FAE 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

Enhanced 

D2FLS FAE 
60.16 63.23 62.95 60 60.6 61.39 1.41 

PD Speech 

D2FLS FAE 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

Enhanced 

D2FLS FAE 
64.16 67.5 75.94 70.1 73.8 70.3 4.23 

IDA2016 

D2FLS FAE 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

Enhanced 

D2FLS FAE 
89.89 94.04 91.37 92.96 90.51 91.75 1.54 

Epi Seizure 

D2FLS FAE 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

Enhanced 

D2FLS FAE 
91.48 90.59 89.65 91.16 90.24 90.63 0.65 
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 We tabulate the results of the D2FLS FAE, and Enhanced D2FLS FAE trained five 

times on the classification datasets using BB-BC in Table 9-1. The results of the 

training runs are presented as Average Recall (equation (6.21)) in columns (3-7). The 

mean and standard deviation of the five training runs is displayed in the eighth and 

ninth columns of the table, respectively. Where a result is in bold (column 8), it 

indicates that the row contains the AI Model with the best performance for the dataset 

From Table 9-1, we can see that the D2FLS performs better than the Enhanced 

D2FLS with about 3.6% higher performance on average in the classification datasets. 

With the Enhanced D2FLS performing the worst in the BT Customer Data dataset with 

about 10% lower performance. If we ignore the performance in the BT Customer Data 

Table 9-2: Comparison of the D2FLS with Enhanced D2FLS on the Regression dataset with Mean 

average error as the fitness function 

Data Set Model 1 2 3 4 5 Average Std 

Wi-Fi 

Localization  

D2FLS 

FAE 
0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

Enhanced 

D2FLS 

FAE 

0.1166 0.1054 0.1315 0.1167 0.1063 0.1153 0.0094 

Swiss 

Premium 

Pred 

 

D2FLS 

FAE 
0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

Enhanced 

D2FLS 

FAE 

0.0709 0.0641 0.0601 0.0469 0.0552 0.0594 0.0081 

CT Scan 

Region Pred  

D2FLS 

FAE 
0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

Enhanced 

D2FLS 

FAE 

0.1105 0.1039 0.0949 0.0938 0.0951 0.0997 0.0065 

Predict Song 

Year  

D2FLS 

FAE 
0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

Enhanced 

D2FLS 

FAE 

0.0785 0.0822 0.1038 0.0804 0.0781 0.0846 0.0097 

BT PWA  

D2FLS 

FAE 
0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

Enhanced 

D2FLS 

FAE 

0.0554 0.0541 0.0452 0.0589 0.0558 0.0539 0.0046 
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dataset, then the average performance loss when using the Enhanced D2FLS is only 

about 2%. 

We tabulate the results of the D2FLS FAE, and Enhanced D2FLS FAE trained five 

times on the regression datasets using BB-BC is tabulated in Table 9-2. The results of 

the training runs are presented as Mean Absolute Error (equation (6.24)) in columns 

(3-7). The mean and standard deviation of the five training runs is displayed in the 

eighth and ninth columns of the table, respectively. Where a result is in bold (column 

8), it indicates that the row contains the D2FLS training method with the best 

performance for the dataset 

From Table 9-2, we can see that the D2FLS performs better than the Enhanced 

D2FLS in all the datasets with about 13% lower error on average across the regression 

datasets. 

Table 9-3: Rules of the Hidden Layer of a D2FLS with five outputs 

 Antecedents Consequents 

ID 1 2 3 H00 H01 H02 H03 H04 

1 High MSLCL2 0 Low MSLCL1 3 Low TRAVEL 0 High High High Low High 

2 Low CONT 2 High MSLCL1 1 Low MSLCL2 3 High High Low Low Low 

3 Low TRAVEL 1 Low OT HOURS 3 High MSLCL1 0 High High Low Low High 

4 Mid MSLCL2 0 High CALC PROD 3 Low RANK 0 Mid Low High High Low 

5 High CONT 2 Mid OT HOURS 3 Low RANK 0 High High High High Low 

6 High LOANS 2 High RANK 3 High ECO UTIL 0 High High High High Mid 

7 Low LOANS 0 High RANK 0 High MSLCL1 0 High Low High High Low 

8 High MISSAPP 0 Low ECO UTIL 1 High ECO UTIL 3 High High Mid Mid Low 

9 Low ECO UTIL 3 Low CONTRACTOR 3 Low OT HOURS 3 High Low Low Low High 

10 Low CALC PROD 0 Low OT HOURS 3 Low RANK 0 Mid High High Low Mid 

11 
Mid OT HOURS 0 High LOANS 1 

High ON DAY UTIL 
3 

Low Low High High Mid 

12 Mid MISSAPP 0 Low OT HOURS 3 High RANK 0 Mid Mid Mid High High 

13 High MSLCL1 0 High OT HOURS 3 Low ECO UTIL 3 Low Mid High Low Low 

14 
High MISSAPP 0 High MSLCL2 0 

Mid ON DAY UTIL 

3 
Mid Low High High High 

15 High MSLCL1 3 Low RANK 0 Low TRAVEL 1 Mid Low High Low High 
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A snapshot of the rule base generated for Enhanced D2FLS trained using FAE on 

the BT PWA dataset is shown in Table 9-3 and Table 9-4. Table 9-3 contains a snapshot 

of the rules (15 out of 100 rules) of the Hidden Layer of the Enhanced D2FLS. 

Membership functions for the first two of the antecedents of the seventh rule in Table 

9-4 are depicted in Figure 9-7 (a) and (b). Table 9-4 contains a snapshot of the rules of 

the output layer of the D2FLS.  

If we observe the seventh rule in Table 9-3 and compare the consequents of this rule 

with the antecedents of the seventh rule in Table 9-4. We can see that the linguistic 

terms of the three antecedents, High H00, Low H01and High H02, match the linguistic 

terms of the consequents. From this example, we can observe that when LOANS 0 is 

Low and RANK 0 is High and MSLCL1 0 is High, the output of the Enhanced D2FLS 

(PWA performance) will be High. To come to this conclusion, we only needed to 

observe the rules. If we do the same exercise for the rules of the D2FLS FAE in Table 

6-4 and Table 6-5. We need to do an additional check to make sure that the membership 

functions of the linguistic terms in these tables are similar. 

 

Figure 9-7: Fuzzy Sets Generated by Enhanced D2FLS FAE Training for (a) Loans 0 feature and 

(b) Rank 0 feature of the BT PWA dataset 
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From these observations, we can see that the improved interpretability provided by 

the Enhanced D2FLS comes at the cost of about 3% loss in performance in the 

Categorical datasets and about 13 % higher error in regression dataset when compared 

to the D2FLS. The Enhanced D2FLS could be an option for situations in which the 

global interpretability of the Enhanced D2FLS is very important. And the Global 

Interpretability at the modular level provided by the D2FLS is insufficient. 

9.3.2 Comparison between a D2FLS pre-trained as FAE and Enhanced D2FLS 

pre-trained using SAE 

In this experiment, we compare the performance of the Enhanced D2FLS trained 

using SAE with the D2FLS pre-trained as an FAE. The goal of this experiment is to 

find if using SAE to pre-train the Enhanced D2FLS allows us to close the performance 

gap between the two models. 

Table 9-4: Rules of the Final Layer of a D2FLS 

 Antecedents Consequent 

Rule 

No 
1 2 3 0 

1 High H03 Low H02 Mid H01 Very High 

2 Mid H00 Mid H01 High H02 Mid 

3 Low H00 Low H03 High H02 Very Low 

4 Low H03 Mid H00 Mid H02 High 

5 Mid H03 High H02 Low H00 Very High 

6 Mid H03 High H02 High H00 High 

7 High H02 High H00 Low H01 High 

8 High H00 High H01 Low H03 Very High 

9 Low H03 High H00 Mid H01 Low 

10 High H03 Low H01 High H02 Very High 

11 Low H00 Low H01 Low H02 Very High 

12 High H00 Mid H02 High H03 Very High 

13 High H03 High H02 Low H01 Very Low 

14 Mid H01 Low H02 Low H00 Very Low 

15 Low H00 Low H01 High H02 Very High 
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 We tabulate the results of the D2FLS FAE, and Enhanced D2FLS SAE trained five 

times on the classification datasets using BB-BC in Table 9-5. The results of the 

training runs are presented as Average Recall (equation (6.21)) in columns (3-7). The 

mean and standard deviation of the five training runs is displayed in the eighth and 

ninth columns of the table, respectively. Where a result is in bold (column 8), it 

indicates that the row contains the AI Model with the best performance for the dataset 

From Table 9-5, we can see that the D2FLS performs better than the Enhanced 

D2FLS with about 2.5% higher performance on average in the classification datasets. 

With the Enhanced D2FLS performing the worst in the BT Customer Data dataset with 

about 10% lower performance. If we ignore the performance in the BT Customer Data 

dataset, then the average performance loss when using the Enhanced D2FLS is only 

about 0.5%. This shows that for Categorical datasets, the Enhanced D2FLS provides 

an alternative that performance as well as the D2FLS with slightly improved 

interpretability. 

 

Table 9-5: Comparison of the D2FLS pre-trained using FAE with the Enhanced D2FLS pre-trained 

using SAE on Categorical Datasets with Average Recall as the fitness function 

Data Set Model 1 2 3 4 5 Average Std 

Santander 

CTP 

D2FLS FAE 64.39 61.4 63.7 61.39 62.04 62.584 1.24 

Enhanced 

D2FLS FAE 
60.93 57.92 60.51 60.35 63.62 60.67 1.82 

BT Customer 

Data 

D2FLS FAE 73.53 71.82 72.63 71.49 70.83 72.061 0.7 

Enhanced 

D2FLS FAE 
61.29 62.01 61.46 61.39 60.27 61.28 0.36 

PD Speech 

D2FLS FAE 77.64 70.17 70.3 74.5 74.51 73.425 2.84 

Enhanced 

D2FLS FAE 
74.61 77.29 70.46 71.11 68.14 72.32 3.24 

IDA2016 

D2FLS FAE 92.07 91.94 92.56 92.73 93.5 92.559 0.55 

Enhanced 

D2FLS FAE 
91.64 94.18 94.65 93.44 93.28 93.44 1.02 

Epi Seizure 

D2FLS FAE 90.6 92.45 91.34 90.78 91.46 91.325 0.65 

Enhanced 

D2FLS FAE 
91.23 90.96 91.83 91.01 91.48 91.3 0.32 
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We tabulate the results of the D2FLS FAE, and Enhanced D2FLS SAE trained five 

times on the regression datasets using BB-BC is tabulated in Table 9-6. The results of 

the training runs are presented as Mean Absolute Error (equation (6.24)) in columns 

(3-7). The mean and standard deviation of the five training runs is displayed in the 

eighth and ninth columns of the table, respectively. Where a result is in bold (column 

8), it indicates that the row contains the AI Model with the best performance for the 

dataset 

From Table 9-6, we can see that the D2FLS performs better than the Enhanced 

D2FLS with about 16% lower error on average in the regression datasets. With the 

Enhanced D2FLS performing the worst in the Wi-Fi Localisation dataset with about 

28% higher error. If we ignore the performance in this dataset, then the D2FLS has 

about 12% lower error when compared to the Enhanced D2FLS. 

From these observations, we can see that in categorical datasets at least the 

Enhanced D2FLS trained using SAE might be a viable alternative to the D2FLS FAE 

Table 9-6: Comparison of the D2FLS FAE with Enhanced D2FLS SAE on the Regression dataset 

with Mean average error as the fitness function 

Data Set Model 1 2 3 4 5 Average Std 

Wi-Fi 

Localization  

D2FLS FAE 0.106 0.116 0.1049 0.1022 0.098 0.105 0.005897 

Enhanced 

D2FLS SAE 
0.1538 0.1278 0.1373 0.1199 0.137 0.1352 0.0114 

Swiss 

Premium 

Pred 

 

D2FLS FAE 0.0534 0.0413 0.049 0.0459 0.0447 0.0469 0.004103 

Enhanced 

D2FLS SAE 
0.0564 0.0501 0.056 0.0555 0.0524 0.0541 0.0025 

CT Scan 

Region Pred  

D2FLS FAE 0.0945 0.0911 0.0885 0.0843 0.0899 0.0897 0.003337 

Enhanced 

D2FLS SAE 
0.1009 0.0944 0.0865 0.1071 0.0875 0.0953 0.0079 

Predict 

Song Year  

D2FLS FAE 0.076 0.0741 0.074 0.074 0.079 0.075 0.002247 

Enhanced 

D2FLS SAE 
0.0785 0.0822 0.1038 0.0804 0.0781 0.0846 0.0097 

BT PWA  

D2FLS FAE 0.048 0.057 0.0511 0.045 0.057 0.0519 0.004737 

Enhanced 

D2FLS SAE 
0.0581 0.0599 0.0577 0.0638 0.0592 0.0598 0.0022 
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even with the additional complexity of training an SAE due to its slightly higher 

interpretability.  

9.4 Summary 

This chapter discussed global interpretability and explained that it is challenging to 

achieve in practise when there are a large number of features in the input. It discussed 

alternatives such as SP-LIME, put forward to achieve global interpretability at the 

module level. Hence, the two local interpretability methods for extracting explanations 

from D2FLS proposed in the previous chapter were extended to provide Global 

interpretability at the module level. The modules are created by filtering the input or 

outputs using the linguistic variable that represents them to create a set of input-output 

pairs. 

It also discussed another problem that might be encounter while trying to analyse 

the rules of the D2FLS. The problem is that the linguistic terms of outputs of one layer 

and the linguistic terms of the inputs of the next layer might not match. It proposed a 

method to enhance the D2FLS with the goal of simplifying the process of analysing the 

rules of the D2FLS. This is done by constraining the D2FLS during training to use the 

same membership functions for the consequents of a hidden FLS in the D2FLS and the 

antecedents of subsequent.  

The D2FLS was compared against this enhanced version trained using FAE. The 

results show that the enhanced version has a 3% lower average recall in the categorical 

datasets. And a 13% higher error in the regression dataset. The D2FLS was then 

compared with the enhanced version trained using SAE. The results of this comparison 

show that the enhanced D2FLS SAE performs with 0.5% of the D2FLS in the 
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categorical datasets, with one exception. This shows that the Enhanced D2FLS SAE is 

a viable alternative to the D2FLS due to its superior readability of the rules even with 

the more complex training process. 
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Chapter 10. Conclusions and Future Work  

In this thesis, we presented a novel Deep Type-2 Fuzzy logic system by combining 

the predictive accuracy and feature selection capabilities of Deep Learning with the 

interpretability of Interval Type-2 Fuzzy Logic System. The proposed model is built 

using easy to understand IF-Then rules that include linguistic labels similar to an 

Interval Type-2 FLS. This is one of the main benefits of the proposed model; that is, 

we could easily modify the system by changing the rules. Next, we presented two 

methods of training the model; the first training method uses greedy layer-wise training 

to train the model using both supervised and unsupervised data; the second training 

method uses a stacked autoencoder to pre-train the hidden layers of the model. Next, 

we proposed two methods for extracting local interpretable explanations from the 

model as the D2FLS rules might not be comprehensible to all audiences. Finally, we 

extended the local interpretability methods to provide global explanations at the 

modular level and enhanced the D2FLS by adding a constraint during training to 

improve the readability of the rules of the D2FLS. 

10.1 Conclusions 

The aims of the thesis were as follows 

• To investigate and build an explainable AI model that is suitable for high 

dimensional datasets  

This was achieved by building a deep algorithm using multiple layers of Interval 

type-2 fuzzy logic systems which are trained using the deep learning principle of 

greedy layer-wise learning. The model was then trained on eleven high dimensional 

datasets, and its performance was compared against several other AI models such 
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as Stacked Autoencoder (SAE), Convolutional neural network (CNN), Multi-Layer 

Perceptron (MLP) and Interval type-2 fuzzy logic system (IT2FLS).  

In the experiments, it was found that the model achieved comparable performance 

to the deep models such as SAE and CNN. It outperformed the SAE by about 2% 

on average and performed within 2-3% of the CNN in the categorical datasets. It 

also outperformed both the MLP and IT2FLS by about 4% in the categorical 

datasets. In the regression datasets, the model performed slightly worse than the 

SAE, MLP and CNN models. It outperformed the IT2FLS with a 15% lower error 

in the regression datasets.  

The interpretability/explainability of the model was evaluated by conducting a 

survey, where several subjects were asked to compare the explanations provided by 

the proposed model with the IT2FLS explanations, LIME and SHAP explanations 

for the SAE model. The results of the survey show that the explanations provided 

by the proposed model are highly interpretable, and the explanations are within 2% 

of the IT2FLS explanations. When compared to the LIME and SHAP model, the 

explanations were found to be about 20% and 17% better respectively. 

The simple explanations provided by the model on the high dimensional datasets 

suggests that the model was able to inherently make feature selection thereby 

reducing the number of features in the explanations.  

• To investigate the most suitable training method for the new explainable AI 

technique 

This was achieved by examining two methods of training the D2FLS. The first one 

using a Fuzzy Autoencoder to pre-train the D2FLS using a Greedy Layer wise training 
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method. The second method used Stacked autoencoders to pre-train the hidden layers 

of the D2FLS. In the experiments, it was observed that the D2FLS FAE achieved 2% 

higher average recall when compared to the D2FLS SAE in classification dataset. In 

the regression datasets, the D2FLS FAE has about 6% lower MAE on average. The 

D2FLS SAE only performed better in the IDA 2016 dataset where it had 2% higher 

average recall.  

Two types of training processes were also investigated; in the first training process, 

the D2FLS parameters for each of the layers were trained in three steps. In the first 

step, the D2FLS layer is trained as a Type-1 FLS, in the second step the FOUs are 

added to the MFs of the D2FLS layer and in the third and final step the rules of the 

D2FLS layer are retrained. In the second training process, all the parameters of the 

D2FLS layers are trained in a single step. In the experiments, it was observed that the 

three-step training process reduced the MAE by 47% on average across the regression 

datasets. 

Hence, the D2FLS was trained as a Fuzzy Autoencoder in a three-step training 

process is the most suitable training method. 

• To investigate the most suitable optimization algorithm for the new explainable 

AI technique 

This was achieved by investigating meta-heuristic methods used to find near optimal 

solutions. The methods tested were Big Bang Big Crunch (BB-BC) and Genetic 

Algorithms (GA). A BB-BC and a GA were implemented to train the D2FLS. In the 

experiments, it was found that the D2FLS trained using BB-BC achieved 4.3% higher 

average recall in the categorical datasets and about 47% lower MAE in the regression 
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datasets. Further investigation revealed that GA requires a much larger number of 

generations to achieve similar fitness to the model trained using BB-BC. Hence, the 

BB-BC algorithm is more suitable for training the D2FLS. 

• To investigate and develop local explanations that are understandable to all 

audience that might use these explanations 

Two methods of extracting locally interpretable explanations from the D2FLS were 

presented. One method is built around the rules of the D2FLS; hence it is termed rule-

based explanations. The method involves calculating the contributions of each of the 

rules in the D2FLS to the output. And based on these contributions, an explanation of 

how the output was predicted will be put forth. This provides a view into the inner 

workings of the D2FLS and might be suitable for experts. The second method is built 

around feature importance scores, where the explanation is a simple set of weighted 

values which show the relationship between the input features and the output, using 

linguistic variables. The simple formulas used to generate these explanations make it 

easy to verify the explanations provided by the model.  

These explanations were evaluated by comparing them against popular Deep 

learning XAI tools LIME, SHAP and against explanations provided by an IT2FLS. 

This was done by conducting a survey in which three different audiences were asked 

to examine the explanations provided by these methods. The results of this survey show 

that the explanations provided by the D2FLS are comparable to the explanations 

provided by the IT2FLS (with only about 2% lower interpretability). It also shows that 

the explanations provided by D2FLS are better than the explanations provided by the 

tools, LIME and SHAP, about 20% and 17% better interpretability, respectively. At the 

same time, the performance of D2FLS model is about 2% higher than the SAE model 
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in categorical datasets and 40% higher error in the regression datasets. This is a small 

loss in performance for significantly higher interpretability making D2FLS a suitable 

replacement for the other AI models in applications where interpretability is 

paramount. 

• To investigate and develop a global explanation that can provide a holistic 

understanding of the new Explainable AI Technique 

The two local interpretability methods for extracting local explanations from D2FLS 

were extended to provide Global interpretability at the modular level. The modules are 

created by filtering the input or outputs using the linguistic variable that represents 

them to create a set of input-output pairs. These modules can be used to query the model 

and determine its behaviour based on the linguistic terms selected. This is a powerful 

tool for examining the behaviour of the model in a variety of situations. It is also helpful 

in analysing how changes in the input affect the output. Thus, giving a holistic 

understanding of the D2FLS model.  

D2FLS was also enhanced to create combined IF-THEN rules to represent all the 

layers. This was done by constraining the D2FLS to use the same linguistic labels for 

the consequents or outputs of the hidden layer and the input features of the subsequent 

layer. The D2FLS was compared against this enhanced version. With the enhanced 

version having 3% lower average recall in the categorical datasets. And a higher error 

in regression dataset when trained as an FAE. And the enhanced version had about 2% 

lower average recall in the categorical dataset and higher error in regression datasets 

when the hidden layers are trained using an SAE. 
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10.2   Future work 

In future work, I will explore extending the D2FLS to solve image, speech, and 

video classification problems. This could be achieved by combining convolutional 

neural networks with the D2FLS as CNNs are some of the best algorithms for image 

classification tasks. There is also the potential for extending the D2FLS for text 

classification using the method. 

Next, I will explore methods to improve the D2FLS SAE training method as a 

similar training method used to train Fuzzy Stacked Autoencoders showed higher 

performance than the best D2FLS. 

Next, I will explore the use of explanations provided by the D2FLS to determine 

how business functions can be improved/changed to get the desired outcomes. For 

example, if the model predicts customer satisfaction based on some business metrics. 

An analytical model can be built to analyse the global modular explanations to provide 

details about the input business metrics that can be improved/changed to get the desired 

level of customer satisfaction. 

Additionally, there is a potential for examining single pass training methods to train 

the D2FLS to simplify the training process. 
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