
[i]

The Machine that Lives Forever

Michael Walton

A thesis submitted in partial fulfilment of the requirements of the University of

Essex for the degree of Doctor of Philosophy

School of Computer Science and Electronic Engineering

University of Essex

March 2021

[ii]

Acknowledgements

I would like to take this opportunity to thank all my friends and colleagues who took the time

to help me when I needed it during this research. Dr John Woods, for his mentoring and

supervision, Ian Dukes, for his excellent platform building skills, along with his tech team, who

have all helped me out at some point or another. My beautiful wife Jangei and, of course, son

Samuel both of whom have endured my persistent lack of time. Lastly, to Simon Hardy and

Graham Chapman for allowing me the time and sponsorship to follow this path.

Abstract

Design an intelligent micromachine that can self-power and sustain from environmental energy

scavenging to achieve an autonomous device that can communicate at will with peers

indefinitely. 

Explore sleep/wake hibernation strategies coupled with food scavenging off-grid traits to

identify the tightest work to sleep efficiency schedule, incorporating adaptive

reconfiguration to manage significant environmental impacts.

Capture, store and manage background radiations and stray RF signals to feed on in a

continued effort to make intelligent survival decisions and oversee management protocols.

Ensure that every micro Watt of usable energy gets extracted from every part of the harvest

and then forward-scheduled it for productive use.

Finally, employ natures tricks and experience to introduce essential personality

traits, pursuing maximising survival numbers and increasing dispersal target area sizes of

large self-sufficient wireless sensor deployments.

[iii]

This research intends to provide a closely coupled software-hardware foundation that aids

implementers in intelligently harnessing and using tiny amounts of ambient energy in a highly

autonomous way.

This platform then continues on to explore ways of maximising the efficient usage of the

harvested energy using various hibernation/wake strategies and then making objective

comparisons with proposed intelligent energy management protocols.

Finally, the protocol extends to enable the device to manage its personal survival possibilities

so the devices can use an evolutional personality-based approach to deal with the unknown

environmental situations they will encounter.

This work examines a machine that can self-power and sustain from environmental energy

scavenging with the aim to live forever. Living forever implies a brain (microcontroller) that

can manage energy and budget for continuous faculty. With these objectives,

sleep/wake/hibernation and scavenging strategies get examined to efficiently schedule

resources within a transient environment. Example harvesting includes induced and

background radiation. Intelligent, biologically-inspired strategies are adopted in forward-

scheduling strategies given temporal energy relative to the machine’s function (the Walton).

Copyright

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement

[iv]

Publications

• Paper titled “Efficient charging for batteryless solutions in energy harvesting”

published at CEEC 2019, the 11th Computer Science and Electronic Engineering

Conference, 2019, https://ieeexplore.ieee.org/document/8974344

• Paper titled “The Machine that Lives Forever – BluBot” published in the COJ

Electronic Communications Journal on 10/02/2020.

• Paper titled “Intelligent control of micro power – Immortal machine” published in the

Elsevier Nano Energy journal (Volume 72, June 2020),

https://www.sciencedirect.com/science/article/abs/pii/S2211285520302561

• Paper titled “A Joint Temporal-Spatial Ensemble Model for Short-Term Traffic

Prediction” is currently under review with Science Direct Neurocomputing Journal.

[v]

Chapter 1: Introduction and Background ... 1

Introduction .. 1

The Device Cycle ... 2

Research Questions .. 4

Problem being addressed ... 6

Primary Cells and Batteries .. 6

Background ... 8

Example Scenarios ... 8

Chapter Summary .. 14

Chapter 2: Literature Review ... 16

Sensor Networks ... 17

Energy Coupling ... 18

Energy Harvesting .. 19

Capacitors as Energy Stores ... 21

Near-Field Lensing ... 27

Bluetooth Radio Technology ... 29

Mesh Networking ... 29

Wireless Radio Protocols ... 32

Wireless Energy Consumption ... 32

Wireless Protocol Comparisons .. 36

Deep Sleep Hibernation Strategies ... 44

Wakeup-on-Radio, Wireless Wakeup .. 48

Fully Integrated Solutions .. 49

[vi]

Unintrusive Energy Metering ... 50

Mesh Networking Protocols .. 53

IoT – Internet of Things .. 56

BLE Meshing .. 57

BLE Sensors ... 59

Low-Power-Devices Design ... 61

Energy Scavenging ... 65

Chapter Summary .. 67

Chapter 3: The research approach in this thesis (Original Content) 68

Research design .. 69

Hardware .. 69

Communication and Meshing ... 78

Energy Harvesting .. 80

Energy Store ... 87

Wireless Energy Beaming .. 88

Firmware and Application Software ... 107

Data Collection ... 108

Chapter Summary .. 109

Chapter 4: Empirical Research, Phase 1: Energy Harvesting (Original Content) 110

Methodology, Phase 1 .. 113

Sleep Strategies... 114

Hardware Domain ... 116

Software Domain .. 122

[vii]

Charging Time Constant ... 123

Discharging Time Constant .. 125

Intelligence and Autonomy .. 129

Startup Inertia ... 130

Discussion and Results ... 131

Chapter Summary .. 138

Chapter 5: Empirical Research, Phase 2. Meshing and Communication 139

Methodology, Phase 2 .. 139

Communication .. 141

Provisioner Device ... 151

Mesh Friend Device.. 152

Mesh Controller Device .. 153

BluBot LPD .. 154

GUI Application Software .. 156

Chapter Summary .. 161

Chapter 6: Empirical Research, Phase 3. Intelligent Energy Management Protocols

(Original Content) ... 163

Methodology, Phase 3 The requirement for Energy Management Protocols 163

Time Dilation Based Protocols ... 163

Adaptive Protocols ... 174

WIMP (Walton Intelligent Management Protocol) Protocol Stack 180

Chapter Summary .. 251

Chapter 7: Findings, Phase 3 ... 253

[viii]

Logging .. 258

Test Schedule .. 263

Chapter Summary .. 271

Chapter 8: Field Test, Oyster Monitoring (Original Content) .. 272

The Unit of Walton ... 275

Unit Deployment ... 285

Field Results .. 287

Chapter Summary .. 288

Chapter 9: Integrating and Benefitting from Mother Nature (Original Content) 290

Parallels between S3 Devices and Animate Lifeforms .. 290

Coronaries ... 292

Diurnal and long term cycles .. 296

Stigmergy.. 298

OCEAN .. 298

Seven Deadly Sins .. 299

Personality Mappings ... 300

Life Cycle ... 301

Personality Algorithms ... 307

Social Standings ... 307

Simulation ... 313

Self Criticism .. 318

Messages ... 319

Chapter Summary .. 322

[ix]

Chapter 10: Conclusions .. 323

Further Research.. 326

References ... 327

[x]

Figure 1: Literature Review Map ... 16

Figure 2: Distance, Self-Resonant Frequency vs Winding Cost [23] 21

Figure 3: Basic RC Circuit ... 23

Figure 4: RC Circuit Energy Distribution [30] .. 25

Figure 5: BLE Current analysis ... 33

Figure 6: ZigBee current analysis .. 34

Figure 7: Consumption Characteristics of ANT, BLE, and ZigBee .. 39

Figure 8: Emergy Meter Implementation .. 50

Figure 9: Distributed LPNs Measured Consumption... 52

Figure 10: LPD Using PIC16 MCU .. 70

Figure 11: LPD PCB Modules ... 72

Figure 12: Assembled Brain (CPU) Module ... 73

Figure 13: Assembled Stomach (Harvesting) Module... 74

Figure 14: Stacked unit .. 74

Figure 15: RF Harvesting Antenna .. 75

Figure 16: RF Harvesting Stack ... 75

Figure 17: Solar Panels .. 76

Figure 18: Solar Panel Stack .. 76

Figure 19: Device Positioning ... 77

Figure 20: Common RF Power .. 78

Figure 21: Device Arena .. 78

Figure 22: Provisioner, Friend, and Controller .. 79

Figure 23: High Sensitivity Power Monitor... 80

Figure 24: BQ25570EVM.. 81

Figure 25: BQ25570 Threshold Voltages .. 81

[xi]

Figure 26: Power Level Monitor.. 82

Figure 27: Energy Harvester Configuration Options ... 83

Figure 28: Overvoltage Actual Calculation ... 84

Figure 29: OK and Hyst Voltages Actual Calculations ... 85

Figure 30: Regulated Chopper Voltage Actual Calculation .. 86

Figure 31: Energy Store Model.. 87

Figure 32: Energy Store Charge Simulation .. 88

Figure 33: Transmitting Antenna ... 89

Figure 34: Transmitting Antenna Tuning .. 89

Figure 35: Matching Air Caps and Inductors .. 90

Figure 36: Transmitted Signal Source ... 90

Figure 37: Preamp .. 91

Figure 38: Power Amp ... 91

Figure 39: Transmitted Signal Flow .. 92

Figure 40: Ofcom Spectrum Allocation ... 94

Figure 41: Ofcom IR2030 Extract ... 94

Figure 42: Risk Assessment ... 95

Figure 43: Transmitter Control Setup .. 96

Figure 44: Transmission Amp Gain Stages ... 97

Figure 45: Rectenna Design ... 97

Figure 46: HSMS-285 Forward Voltage Graph... 98

Figure 47: Reception Loop Antenna .. 99

Figure 48: Reception Analysis ... 99

Figure 50: Dielectric Constants of Various Materials ... 102

Figure 51: Styrofoam Experiment Table ... 103

[xii]

Figure 52: LPD Rectenna and Antenna ... 104

Figure 53: LPD Energy Harvesting Module .. 105

Figure 54: J-Link Programmer... 107

Figure 55: Mutual Induction Process ... 115

Figure 56: Schematic diagram of the system ... 115

Figure 57: Loop Antenna ... 116

Figure 58: Circuit of charging and discharging a capacitor ... 123

Figure 59: Capacitor Charge Simulation ... 124

Figure 60: Capacitor Discharge Simulation ... 127

Figure 61: Adaptive Decision Process .. 128

Figure 62: Charging and discharging processes .. 132

Figure 63: Efficiency vs sleep time ... 133

Figure 64: Efficiency of the regular reading Method .. 134

Figure 65: Efficiency of a regular reading method with different sleep times compared to the τ

calculation method ... 135

Figure 66: Percentage of extra charging time for regular reading compared to the proposed τ

method.. 136

Figure 67: Comparison of Volts over fixed time (Seconds) vs proposed algorithm 137

Figure 68: Nordic Semi BLE Mesh [85].. 141

Figure 69: Mesh Network Device Types ... 144

Figure 70: BLE Mesh Layout .. 150

Figure 71: BLE Device Coms Overview ... 158

Figure 72: BLE Device Coms Overview Part 2... 159

Figure 73: BLE Message Flow Diagram ... 160

Figure 74: Task to Consuming Unit... 165

[xiii]

Figure 75: Additional Charge Opportunities ... 165

Figure 76: Deterministic Paths of Execution ... 166

Figure 77: Multiple Tasks Per Wake Slot .. 167

Figure 78: HEFa Example ... 168

Figure 79: Spiral of Death.. 169

Figure 80: Startup Inrush ... 171

Figure 81: Threshold Sweetspot .. 172

Figure 82: Typical Adaptive Cycle .. 176

Figure 83: Time Dilated Cycle .. 177

Figure 84: Protocol Module Outline .. 178

Figure 85: Minimum Execution Area .. 181

Figure 86: Message Flow Overview .. 184

Figure 87: CYCcost Breakdown .. 189

Figure 88: Xcost Breakdown ... 190

Figure 89: Multiple Jcosts .. 191

Figure 90: WKcost Measure Points ... 192

Figure 91: HBcost Measure Points .. 192

Figure 92: Costed Message Flow (Part A) ... 193

Figure 93: Costed Message Flow (Part B) ... 194

Figure 94: Distribution Topology .. 196

Figure 95: Intelligent Energy Distribution ... 197

Figure 96: Execution Flow with Ticks... 199

Figure 97: Tick Costing ... 201

Figure 98: Stack Services Overview .. 204

Figure 99: Calibration Procedure ... 207

[xiv]

Figure 100: Self-Calibration Loop ... 210

Figure 101: Cactual Flow... 211

Figure 102: Quantisation Step Rise ... 214

Figure 103: Basic Voltage Divider .. 215

Figure 104: Energy Store Level Detail .. 216

Figure 105: 8bit ADC Values .. 217

Figure 106: 10bit ADC Values .. 217

Figure 107: Ideal Quantisation Noise .. 218

Figure 108: Task-Receptor Interface Outline .. 221

Figure 109: Task State Enumeration .. 222

Figure 110: Planner FIFO .. 226

Figure 111: Parent Tasks ... 228

Figure 112: RTOS Topology ... 229

Figure 113: Feedback Correction Loop ... 233

Figure 114: Radio Overhead Tolerance ... 240

Figure 115: Peer-To-Peer Message Exchange Setup ... 243

Figure 116: Continued Friendship Meetings ... 245

Figure 117: nRF BLE Block Diagram ... 251

Figure 118: WIMP Test Platform Layout .. 253

Figure 119: Time Sync RF Message .. 255

Figure 120: Task Time Sync Points ... 256

Figure 121: Task Energy Level Sample Points.. 257

Figure 122: LPD Variable Measurement Points .. 259

Figure 123: Charge Rate Measurement Areas ... 260

Figure 124: Correlated Execution Patterns .. 261

[xv]

Figure 125: Downloaded Logs... 262

Figure 126: Charge vs Execution ... 264

Figure 127: Basic Adaptive Comparison ... 265

Figure 128: False Wake ... 266

Figure 129: Prediction Error .. 267

Figure 130: Error Correction Model .. 269

Figure 131: Adaptive Feedback ... 270

Figure 132: Environmentally Hardened Unit .. 273

Figure 133: Initial Deployment Configuration .. 278

Figure 134: Field-Effect Sensor ... 279

Figure 135: Oyster Grouping ... 279

Figure 136: Sensor Submersion ... 280

Figure 137: Floating Controller Platform .. 281

Figure 138: Controller Unit Internals .. 282

Figure 139: Controller Solar Panel .. 282

Figure 140: Controller Sensor Entry .. 283

Figure 141: Internal Components .. 283

Figure 142: Aquisition PCB and CPU ... 284

Figure 143: Units Ready For Deployment ... 284

Figure 144: BluBot Mesh Controller Application ... 313

Figure 145: Simulation Executive Overview ... 314

Figure 146: Personality Registers .. 317

Figure 147: LPD Object Detail .. 318

Figure 148: Simulation Message Log .. 321

[xvi]

Glossary of Terms

BLE Bluetooth Low Energy

BT Bluetooth

FSK Frequency Shift Keying

IoT Internet of Things

LPD Low Power Device

LPN Low Power Node

RFID Radio Frequency Identification

S3 Self-sustaining, Self-learning Subsystems

SAADC Successive Approximation Analogue-to-Digital Converter

SoC System On Chip

UWB Ultra-Wideband

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WMAN Wireless Metropolitan Area Network

WSN Wireless Sensor Network

[xvii]

[1]

Chapter 1: Introduction and Background

Introduction

Technology is currently advancing at an extraordinary rate throughout the world, certainly

accelerated by highly integrated systems being continually condensed into smaller units while

pushing their speeds significantly faster; marketing departments boasting reduced energy

consumption requirements, smaller footprint, and smaller cost to deployment. From all these

recent advancements, it is critically apparent that being mobile and modular, free from cabling

constraints, self-contained, and managing and minimising their own energy requirements

always benefits.

Energy comes in many forms that continually surround us in every conceivable way, albeit

measurably small if not tiny amounts. It is still in existence and ready to be harnessed. From

the power suppliers we know and trust like the national power grid, the AAA batteries, the sun

beaming down, through to the yet to be effectively tapped sources such as the hydrogen

abundance, thermal scavenging, and harvesting the x-rays entering our plant yet originating

from other galaxies. Clearly, there are still large swathes of research waiting to be studied.

How this energy is stored, distributed, and used is an unending and entirely separate challenge

with many possible paths and pitfalls.

The ultimate goal then; is to efficiently collect and store tiny ‘goblets’ of energy captured from

the ambient environment in various ways, securely storing these little pieces of treasure until

they are needed, then distribute them as efficiently, intelligently, and carefully as possible. This

energy management process is the key to how the energy consumer(s) can exist and function

at their most efficient.

[2]

This research intends to provide a closely coupled software-hardware foundation that aids

implementers in intelligently harnessing and using tiny amounts of ambient energy in a highly

autonomous way.

This platform continues on to explore ways of maximising the efficient usage of the harvested

energy using various hibernation/wake strategies and then making objective comparisons with

proposed intelligent energy management protocols.

Finally, the protocol extends to enable the device to manage its personal survival possibilities

so the devices can use an evolutional personality-based approach to deal with the unknown

environmental situations they will encounter.

The Device Cycle

Fundamentally, consumer expectations of modern-day intelligent devices consist of some type

of physical object that has a somewhat predictable design flow:

• Has a power source of some form

• Has the ability to be activated in some way

• Can do some kind of work

• Can communicate

The difference between a simple device, such as a temperature sensor, versus a complicated

device, such as the latest mobile phone offering, in terms of what work they do and offer, is

obviously vast; however, these more complicated devices get divided down into subsystems

that end up following the same bulleted fundamentals listed above.

[3]

If we then introduce ambient, harvestable, renewable energy as the power source for one or

more of these devices and allow the device to manage its usage of this energy, we can categorise

them as being S-Cube’d Devices, abbreviated to S3 (self-sustaining, self-learning subsystems).

S3 devices can be connected together in the sense that they can share their incoming energy

with other devices, and they can communicate with each other, potentially learn from each

other, work with each other, and solve the problems their deployment addresses.

These concepts open up fundamental questions which this research will be addressing.

[4]

Research Questions

1. Is it possible to operate a device intelligently and autonomously from ambient

renewable energies indefinitely?

2. Is it possible for the device to adapt to and manage its available ambient energy

resources?

3. Is it possible for this autonomous device to communicate via a radio link and continue

to sustain its existence?

4. Is it possible to deploy an interconnected mesh of these devices?

5. What are the design considerations needed to achieve a self-sustaining, self-learning

subsystem node?

6. Is it possible to draw parallels between animate life and S3 nodes?

Question 1 is addressed by designing and introducing a bespoke hardware research platform

that allows testing of various battery-less self-sustaining framework concepts.

Questions 2 to 5 are then explored in detail, resulting in introducing a low-level protocol that

can manage the device’s charge/work patterns in an adaptable way.

Various sleep/wake patterns get introduced, evaluated, and compared.

The last question (6) then considers the basic life instincts and coronaries found within animate

beings and implements them in the form of an S3 existence protocol; parallels get drawn, which

reflect how nature has successfully supported life for so long. These attributes are collected

together and considered as essential coronaries:

[5]

• Survival, Inbuilt instinct above all others to stay alive

• Work/Life balance, ensuring the best level of work output to survival needs

• Sustenance, based on an available food source, to be able to provide a benefit to society

• Avoiding starvation

• Gluttony, adjusting its work output to manage its energy input

• Over-exertion, frequently over-working will cause difficulties in managing the other

coronaries

• Birth, managing its initial energy store and being able to establish its running

parameters, joining the group

• Maturity, Leaning and improving based on its experiences over time

• Prosper, getting everything just right to maximise work and enjoy ample energy

• Accumulate resources, being able to know the best times and positions to gain basic

requirements

• Rest, being able to hibernate and sleep in a way that enables energy conservation and

recuperation

• Awareness of surroundings, neighbours, energy sources

• Consider the worst, realising if energy gain/rest cycles are not sufficient to sustain life,

and prepare for the eventuality

• Learn, both short term and long-term experiences

• Burn out, failing to sustain the energy/sleep and work balances to a point where

existence is no longer viable.

[6]

Problem being addressed

One of the main influencing attributes is time, so one of the main intentions is to study time

dilation and its control to deliver electronic-driven services, which otherwise may be

prohibitive given access to available resources.

The prize is to have intelligent devices which can achieve more work than the sum of the

energies it held during its commissioning.

The conclusions of this research will improve device and sensor networks in the form of

introducing the S3 concept into deployable micro-devices and machines with ultra-low power

autonomous designs requiring only scavenged micro-renewables to sustain existence.

Primary Cells and Batteries

Sensor networks are already well established in the research arena, but they come with a

considerable negative attribute: They use batteries.

This attribute has many knock-on consequences:

• Expensive, not only for the battery procurement but also infers the requirement for a

charging system to reduce any disposal/replacement impact.

• Weight, batteries always add considerable weight to any product.

• Maintenance, in the form of charging, replacing, making sure no leakage or degradation

has occurred.

• Disposal, eventually, the cell must be disposed of, having a negative environmental

impact.

• Current consumption, designs will usually decide a battery capacity and work to

achieve an acceptable run-time based on that decision, so once the implementers meet

[7]

the design goal targets, no further effort to reduce current requirements is typically

made.

• Non-adaptive, the battery is always there, so the unit does not need to change its

behaviour as it knows it will eventually have its battery replaced or recharged.

• Environmental impact, battery manufacture itself uses chemicals, some exotic (for

example the vanadium found in vanadium redox flow batteries, the cadmium found in

nickel cadmium batteries and to some extent even lithium).

• Cost, batteries, and the associated maintenance all come at a considerable cost.

• Deployment, batteries currently suffer considerable transport restrictions.

Introducing a battery into a design immediately gives the device an end-of-life clause. The

battery itself will die at some point. The death will be due to total drainage of all its energy, or

in the case of rechargeable entities, the breakdown of the batteries internals needed to keep its

chemically driven energy creating processes working.

The ultimate goal is to design a device that can out survive these devices and even out survive

the generation of designers that created and deployed it – We must eventually sever the

dependency we have on these mortal energy devices.

[8]

Background

Sensors, supporting devices, and controllers are deployed all around us, and scenarios where

this kind of energy managing research can be incorporated are in abundance.

Four unrelated and very different example scenarios get presented below.

Example Scenarios

Pond Pump

Current implementations of a typical pond pump incorporate a solar panel directly connected

to a small water pump. When the sun is intense and is directly above the device, the solar

panels can collect enough solar rays to sufficiently power the motor and pump water to the

fountain spout. As soon as the sun’s path becomes obstructed by clouds or shade, the pump

and fountain will stop. It is also important to note that if the sun’s rays are not quite strong

enough to provide adequate solar energy that can meet the motor’s requirements, the pumps

output speed will be reduced until eventually the power simply gets wasted.

This design is highly inefficient and could benefit massively from some intelligent energy

management.

The first and foremost improvement provides a store for the placement of solar energy

accumulation. This store allows the capture of energy irrespective of the sun’s rays’ strength

at any given time.

An ultra-low-power microcontroller monitors this energy store, and its charge/discharge profile

is then mapped and continuously updated.

[9]

The microcontroller then determines the best times and durations to enable the pump, so a more

consistent and more extended fountain stream ensues. Communication is implemented via

radio meshing between multiple pumps to provide synchronisation or fountain effect patterns.

The intelligence, radio, and microprocessor involved get powered from the same solar energy

store.

Mars Rover

The mars rover operated on a remote battery management scheme, where its current charge

status was transmitted back (via relays) to a base station on earth. The command centre would

use this information to decide what jobs they could safely perform with the available energy.

The Rover was put into a sleep state via a command to gain charge within its battery using its

solar panel. The command to do this also gave it a wake-up time for which the Rover would

wake-up and re-transmit its energy status. If enough energy gain followed, it could perform

the list of tasks sent from the command centre; else, it would return to a sleep state for another

predetermined length of time.

The delay in sending a message to the Rover, or receive one from it, could be up to 30minutes,

largely depending on the planets’ position to each other at the time of transmission. Typically,

the Rovers receive hardware needed to be powered and consuming energy during any message

reception window.

This process demonstrates an energy harvesting/energy management scenario; however, it fails

to be truly autonomous. It is the control centre that decides when to wake up and when to

perform tasks, and because of this, considerable energy gets consumed waiting for messages

generated based on information received by the control centre at an earlier point in time.

[10]

Applying autonomy to this project would result in the Rover being able to decide for itself what

and when to do the work tasks it is responsible for. It monitors and calculates its own charge

and discharge curves and decides to wake up and perform work when it has achieved adequate

charge. The control centre only has to issue a list of tasks to do and monitor its status messages.

Distributed Sensor Nodes

CO2, air quality, and moisture measurements to review environmental changes and impacts get

regularly taken in sites of scientific interest and natural beauty such as volcanoes, icebergs,

forests, and jungles. Currently, large, expensive battery-powered devices are installed at choice

locations and are maintained and monitored, and these locations, frequently found in hostile

positions, require significant effort and expense to reach.

To deploy (even via airdrop) a self-sustaining, self-powered mass sensor network into hundreds

of tree canopies or over large areas that will have minimal effect on wildlife and ecosystem is

highly desirable. Using communication meshing technology, they pass data back to a

monitoring point or controller via neighbour hopping radio techniques and allow complete

maintenance-free operation. The units self-optimise to provide the best use of the available

energy to perform their work tasks and communicate their results. Their useful life is

considered indefinite.

Oyster Monitoring

In the mariculture of oysters and other bivalves, producers must time the laying of ‘cultch,’ this

being a material that encourages the natural spat-fall such as freshly-ground oyster shells or

otherwise disturbed natural or artificial substrates which free themselves from estuarine silts,

so becoming accessible to oyster larvae.

[11]

This bio-cycle enables the producer to increase their crop using local natural resources instead

of buying in post-settlement spat from hatcheries. There is a great incentive to do this both for-

profit-margins but increasingly due to the providence of the product and its suitability to grow

in a given location, particularly with more specialised products such as the European flat oyster.

However, the timing of cultch-laying, preparation, or other spat collecting activities relative to

the spawning behaviour of commercial oyster species is critical for the success of this highly

demanding and costly activity.

The shellfish/oyster industry relies either on (i) anecdotal predictions and/or basic

measurements (water temperature) or (ii) the much more laborious and expensive counting of

free-swimming (planktonic) oyster larvae to time the laying of cultch.

The release of larvae is sensitive to water temperature, and extended growth seasons and

summer heat-waves already alter the spawning and settlement behaviour of bivalves, making

it increasingly unpredictable for oyster fishers to manage natural stocks.

Late-laying and preparation of cultch will miss the peak in spat abundance, early-laying,

however, will result in the degradation and possible dispersal of cultch and, depending on the

location, its burial in soft sediments, making it inaccessible to oyster larvae.

To aid in this prediction, quantifying the gaping behaviour in bivalves to predict seasonal

spawning activity and release of planktonic larvae using valvometry can be introduced.

The principle of bivalve valvometry is not new. The invention stems from a simplification of

the sensing mechanism (a Hall Effect Sensor instead of two electromagnets) and the

development of a new sensor unit that can deploy to make the measurements on large batches.

[12]

The goal is to use this sensor to measure the oyster’s opening and closing and log it periodically.

This data then gets post-processed to find a correlation between mating habits, environmental

variables, and eating habits.

After enough of the oysters have been monitored and the data collected (current targets aim for

80 oysters being sampled at a 10Hz frequency), it is hoped that the mating window, which is

of such critical importance to the oyster farming community, can be predicted.

The sensors monitor a large batch of oysters; they operate for as long as possible, collecting as

much logging data as possible. The units get deployed in remote hard to access locations, and

they frequently operate in harsh conditions.

The units have a battery; however, they also have a solar panel available to collect energy and

charge the battery. The device must manage its energy in a way where it can maximise its

existence and perform its logging duties for as long as possible.

The goal is to introduce intelligence where the battery is considered as a secondary, potentially

redundant supply, and the device can manage its own incoming solar energy and adjust its

sampling frequencies to counter potential failure.

Collaborative Working

Measurements taken in harsh environments such as radioactive, combustible, and extra-orbital

are incredibly costly in terms of both finance and effort to implement. In these cases, it is worth

introducing redundancy within the system to counter any possible failures which invalidate or

prevent the result. Measurements can simply be multiple versions of the same system running

entirely independently but parallel with each other. However, this does not cover every

eventuality.

[13]

Benefits would also arise if these units could inter-communicate to share progress information,

results, and current status reports. This visibility would allow the devices to intelligently work

together to perform the task, providing redundancy to a loss of energy income.

Suppose the devices could monitor and control their incoming energy resource vs its energy

expenditure. In that case, it could, in effect, cooperate with other devices so that their

sleep/charge/work patterns are not synchronised, alleviating the possibility of bulk failure.

[14]

Chapter Summary

We can best answer this thesis’s main question by breaking the research down into three

individual layers.

First, we can consider having a device survive and manage its own energy in its simplest form

by utilising dynamic sleep/wake cycling based on incoming to outgoing energy balance.

This stage will focus on finding energy, capturing it in tiny quantities, managing the flow and

store of energy, and providing a foundation for considering time-dilation and its effects on

allowing the device to lose its dependence on finite cell types of energy supply.

A research platform gets developed to study the real effectiveness of creating a foundation that

can sustain a digital existence with enough headroom to execute useful work successfully.

The second would be to further this platform by adding a layer of intelligence in the form of a

protocol stack that will allow the devices to encapsulate communication and self-management

tasks, improve their energy efficiency, and manage their own task completion output energy

availability.

Here, the notation of ‘containerising’ blocks of energy that can be stored, assigned, and

consumed according to a dynamic management plan gets proposed.

The protocol stack will allow tasks to be queued and prioritised, where the device will take

charge and find the best way to complete its assigned duties within the environment it has been

deployed.

A communication protocol is introduced, which is both energy conscious and time driven. The

meshing of multiple devices cooperatively working and various ways of timed-based message

delivery and scheduling get compared.

[15]

Global time and message synchronisation are covered, and both peer-to-master and peer-to-

peer(s)-communication are both presented.

Lastly is to consider survival atomicity, in which personality and colliery traits get introduced

to provide resilience within unknown environments for prolonged periods of existence.

Light-weight, low energy, and low CPU-burden methods provide intelligent reasoning in

dealing with unforeseen circumstances within inaccessible environments.

It is inevitable that during the deployment of enormous swarms of individual sensor devices

out in the field for a prolonged period, there will be failure and loss of a deployment batch

percentage. Having the devices self-managed and exhibiting less predictable outcomes when

overcoming survival-based challenges can dramatically reduce overall group loss. In fact,

simulations will show that when all the devices follow the same predictable patterns, a much

greater loss will result, and it becomes the deployer’s responsibility to find a way of mitigating

the problem.

Nature and evolution have themselves harnessed these kinds of rugged cross-generational

survival patterns based on the fittest and best-suited characters for their respective environment,

typically carrying these traits forward will allow the device the best chance to flourish and

prosper.

It will significantly benefit in providing self-managed sensor devices with the ability to evolve

in their environment just as we see insects and animals evolving in nature.

For this last phase, the platform gets expanded with a final layer of the protocol stack that

allows the device to be furnished with various depths of a digital-personality, guiding it in

making its survival choices.

[16]

Chapter 2: Literature Review

The following literature review attempts to identify relevant and novel discoveries within the

fields surrounding energy harvesting, low-power device design, self-sustainability and

cooperative communication technologies.

Figure 1 below illustrates the areas of particular interest, which are the main focus topics of

review. The figure highlights the tight coupling between the critical systems required when

building self-sustaining devices.

1

Figure 1: Literature Review Map

[17]

Sensor Networks

Wireless sensors, data collection, and global interconnection are essential aspects needed to

enable the IoT revolution that is currently firmly underway. To have the ability and technology

which allows small, light-weight intelligent sensor arrays to operate indefinitely without the

need for human intervention, and for them to be able to acquire and manage their energy source

in a non-exhaustible fashion, is a highly relevant area of research with great potential to

influence the direction of future sensor deployment.

Having multiple intelligent sensors in environments and situations which are hostile,

complicated, or costly to reach or are just impossible to reach creates a situation where self-

learning-survival technology is highly sought after. Providing the sensor with the ability to

solve its survival issues using learning and evolutional techniques will significantly mitigate

this issue.

A deploy-and-forget methodology is a key to this research’s foundation; hardware devices

containing zero parts or subsystems with a time-to-live dependency break free from the

shackles of expensive maintenance commitments and part replacement requirements. LPDs,

which can work and communicate together, learning their environmental situation and solving

survival issues without the need for external interference, enable a compelling model for large-

scale, cost-effective sensor deployment.

[18]

Energy Coupling

Magnetic resonant frequency coupling for the enabling of wireless power beaming and transfer

has been around for a considerable time with its foundations lying with Nikola Tesla’s research

in the late 19th century, coil-based solutions are developed and presented in [1]. Energy transfer

in the form of near-field wireless charging also has considerable benefits, both for safety, cost-

effectiveness, simplicity, and convenience [2]. The health and safety aspects of such energy

coupling are considered safe by [3].

Large corporations such as Qualcomm and Apple have been closely monitoring the

developments and directions of wireless power transfer ever since scientists at the

Massachusetts Institute of Technology (MIT) were able in 2007 to demonstrate transferring

tens of watts over a distance greater than two meters [4]. Most research has, however,

concentrated on the one transmitter-one receiver approach, and these have concluded that

performance is related directly to factors such as distance between coils and transmitted power

[5] [6] [7].

Rectenna circuity is critical to the efficient capture and recovery of wireless energy, and many

topologies of implementation have been researched and compared [8], such as series single

mounted diode approaches, single shunt mounted diodes and diode bridges. Different

component designs are explored as described in [9], where a Schottky diode approach gets

successfully adopted for millimetre wave rectification. With the design goal of scavenging

multiple wireless transmissions being of high importance, previous research evaluates

connecting multiband reception antennas to appropriate rectenna designs in the field of energy

harvesting [10] [11] [12] increasing the ability to recover efficiently from multiple frequency

bands.

[19]

Energy Harvesting

Energy harvesting, in general, has come under scrutiny in the sense of its feasibility and

effectiveness, especially in the area of ambient radio transmissions [13] [14] and opportunistic

radio transmission harvesting [15], where discovery that the leakage currents of the storage

capacitors contribute negatively to the overall worthiness was made. However, energy

harvesting in itself is still proving to be a great source of interest and research, offering many

well-documented techniques and materials [16]. Its promising benefits within the autonomous

systems industry are desired as detailed in [17] and in ultra-low powered devices [14].

Harvesting techniques using different transducers are becoming more efficient and practical,

such as the adaptive piezoelectric circuit detailed in [18] and the piezoelectric and pyroelectric

materials discussed in [19]. Confidence can also be drawn from [20], where the novel idea of

harvesting energy from radiation produced by fluorescent lamps was proven.

When considering a very low power resonantly coupled antenna used to charge a

supercapacitor, the choice of resonant coupling allows us to tightly monitor the input and output

energy using only a signal generator without the need for dc-dc converters to boost the voltage

level. It then becomes possible to precisely study the consumption needs and constraints of an

LPD (Low Powered Device). The same reasoning applies to small solar or piezo-based

renewable sources, which have also been used and produce comparable results.

The performance of the traditional transformer, which, based on inductive magnetic coupling

between primary and secondary coils, improves when the two coils resonate at the same

frequency, as discussed in [30]. This performance boost forms the basis of most wireless

charging systems allowing the transfer of energy across free space at a distance. The amount

of power transfer is dependent on the mutual inductance between the two coils, which is

inversely proportional to the distance between them [21]. The secondary needs to receive

enough energy to enter resonance; otherwise, work becomes impossible.

[20]

Traditionally, near and far-field low-power resonant systems have had no significant function.

However, systems are available [22], which allow reception, rectification, and then storage of

the DC in capacitors.

Another example of energy harvesting using specifically tuned components comes from Dyo,

Ajmal, Allen, Jazani and Ivanov [23]; they propose a purpose-designed ferrite rod antenna

intended for use with energy harvesting circuitry within the MW bands (526.5kHz to

1606.5kHz inside Europe and the UK). They devised a method to find an optimal configuration

for a ferrite rod antenna to harvest energy from a specific frequency band. Their optimisation

model was implemented and simulated using the sequential quadratic programming algorithm.

Balancing this against the cost of wire needed to provide the optimal windings, they presented

the conclusive graph shown in Figure 2, illustrating the principle in practice, focused on a

specific and well-documented transmitter.

The test circuitry harvested energy from a BBC Radio 5 transmitter located in Brookmans Park,

UK, at a range of distances from 1 to 15 km. This transmitter emits 150 kW of RF power at

909 kHz. The energy harvester is required to deliver 1 mW of power to a 1 kΩ resistor, have

50% power efficiency and have a 1 V voltage across the load.

[21]

2

Figure 2: Distance, Self-Resonant Frequency vs Winding Cost [23]

The results clearly show predictable amounts of harvestable energy is available at the different

frequencies, and to properly benefit from this stream, proper matching, configuration and

optimisation of all hardware components is essential.

Capacitors as Energy Stores

Wireless power transfer offers the possibility to receive power wirelessly and do work without

the conventional storage medium of a battery [24]. An example is a battery-free receiver

designed by the Powercast Group [25]. This product is the P2110B 915 MHz RF Power

Harvester far-field Receiver [26] and designed for sensor networks and active RFID. Distances

of 10m are claimed but at the expense of highly directional and powerful transmitters. The

process of placing the accumulation of energy into a supercapacitor allows for further

organisation and management.

[22]

The ubiquitous battery gets replaced with a supercapacitor which has several advantages. It can

be charged from zero, is compact, can charge/discharge very rapidly, has duty cycles in excess

of 500,000, and has a specific power of the order of 10kW per kg [27].

Disadvantages include low voltage ratings; some leakage and supercapacitors are not suited to

AC circuits. Applications within low-power wireless networking environments are low voltage

(customarily considered 1.6-5v but can be much lower), and capacitors are available in integer

multiples of 2.7v and 3.3v. Leakage is important for low power applications, and a good rule

of thumb is 1µA/Farad [28], giving a minimum rate at which the capacitor gets charged. The

LPD application requires DC, which is primarily the reason supercapacitors get designed. A

capacitor stores energy according to:

� = 1
2��

�

[23]

There is, however, a significant caveat involved when choosing a capacitor to use as primary

energy storage, which is the fact that only half the energy fed into a capacitor for storage will

be available to draw on for use. The other ‘missing’ half of the energy supplied gets dissipated

and lost to the resistance that presents itself in the supporting circuitry [29], with a running

example referenced from [30] which is re-produced and summarised below.

To demonstrate this principle, we must further look at a simple RC circuit. The switch will be

closed at time t=0, and the capacitor C is initially uncharged.

3

τ = 	� = 0.05

Figure 3: Basic RC Circuit

At the 5τ point (0.25 seconds in this case), the transient is substantially over.

The performance equations for this circuit are:

Equation 1

��� = �	 �
��
��

Equation 2

����� = � �1 � ���	��

[24]

As this example stands, V = 12 volts, R = 5 ohms, and C = 10,000µF, the energy delivered to

the resistor and the capacitor can be calculated, and they sum to the energy delivered by the

source.

The capacitor will end up asymptotically approaching the source voltage, as such will

eventually store within its electric field (U) 0.72 Joules of energy, this can be proven by the

following equations:

Equation 3

�	 =
2��� ∙ 	 ⇒ ��	�
��	��

2 ∙ 	 ⇒ �2
	 ��2�	�

�� = ����� ∙
��� ⇒ � �1 � ���	�� ∙ �	�
��	� ⇒ �2

	 ����	� � ��2�	� �

��	�� �!" = # �2
	

∞
0 ��2�	� %�

Integrating using the example values gives us the total energy dissipated in the resistor:

Equation 4

144
5

∞
0 ��2�0.05%�

28.8∞
0 ��40�%�

= 28.8 ∙ (� 1
40 ��)*�+

∞
0 ⇒ 28.8 ∙ (0 + 1

40 ∙ 1+

= 0.72.
A transient simulation tool such as MPLAB Mindi [31] is used to plot graphs showing the

energy delivered to both the resistor and the capacitor. Notice how the resistor (red) and

capacitor (green) energy traces merge out just past five time-constants. Showing that half the

[25]

energy supplied by the source gets delivered to the resistor (which gets dissipated as heat), and

the other half is now safely stored in the capacitor’s electric field.

4

Figure 4: RC Circuit Energy Distribution [30]

The moment the switch contact (shown in Figure 3 above) is made, thus completing the circuit,

the capacitor has zero voltage, while the supply has V. This voltage difference generates an

electric field that accelerates charges. This acceleration, in turn, sets up a current which flows

and charges up the capacitor until its voltage also reaches V.

At this point, there is no voltage difference between the source and capacitor, but the

accelerated charges are, in fact, still moving. Half the energy has gone, at this point, into the

capacitor and (discounting losses) half has gone into the current in the wire.

[26]

The current will continue to flow and continue to charge the capacitor; the capacitor’s voltage

will overshoot V until the current stops, creating another potential difference. This potential

difference will then cause a current to flow back in the opposite direction. This sequence will

continue for a while where the current and voltage oscillate. This oscillation behaviour in the

circuit gets characterised as ringing.

Resistances present in the circuit will eventually remove this extra energy, leaving only the

charged capacitor.

This issue impacts the entire circuit design for low current use. For example, resisters do not

resist at all; they do not restrict or push back; they can only lose current, throw it away, and do

that by dissipating it as heat.

Any kind of resister in the circuit is fundamentally going to leak current when it has a flow

passing within it. This problem becomes further exasperated because every component

exhibits some kind of resistive property, intestinally or not. Components also exhibit changes

in their resistive parts when encountering different temperatures and different frequencies of

operation.

The sum of all these losses represents the leakage current of the device, and if not carefully

controlled, can quickly consume any gains introduced by intelligent management techniques.

The very best way to constrain energy for use is to hold as much control over these leaks as

possible and maintain a balance that allows easy mitigation of these losses by the incoming

energy flow. The losses themselves will never be eliminable and will present a constant noise

type consumption on the energy store, even during hibernation periods.

[27]

Near-Field Lensing

A fascinating and novel research area that surfaces at various points during the experiments

conducted for this research involves exploring the near-field coupling ‘lensing’ effect between

two or more antennas during a coupled energy transfer. During previous research [32], it is

noted that the actual energy transfer amount present on the reception antenna is somewhat more

than the mathematically calculated expectation for the setup. This phenomenon points to the

flux lines present during the coupling having a ‘pull and acceleration’ effect on surrounding

flux lines not directly expected to be involved in the coupling process – this ‘pull’ effect seems

to forcibly involve these surrounding flux lines, thus increasing the rate of energy transfer.

This process becomes even more intriguing when more antennas get introduced for coupling.

It is suggested here that there will be an optimal positioning arrangement for multiple LPDs all

wishing to couple energy from a single source at the same time, the number of coupled LPDs,

the size of the reception antenna, the distance between the LPDs, and the distance between the

LPDs relative to the transmitting antenna will all need considering. Ultimately an algorithm

that the LPDs can individually use to determine this best position would be highly beneficial

in many real-world wireless/battery-less sensor/charging networks.

To better understand the observed lensing effects, charge rate logging coupled with LPD

position data can be collected and processed to map the flux lines present between the

transmitter and coupled LPDs and how they change as the LPD’s positions change.

Suppose individual LPDs are aware of the other LPDs surrounding them and the coupling

effects they are experiencing. In that case, it is feasible for the LPDs to position themselves in

a way where the lensing effect can provide a benefit during the energy transfer cycle, as well

as to be able to determine if the desired position may have a negative effect for itself or other

LPDs currently coupled.

[28]

An exciting idea that can use the multi-device coupling effect to its advantage involves using

medically implanted devices. An antenna such as the miniaturised stacked implant antenna

proposed by Kaka, Toycan and Walker [33] could be used to couple wireless energy. The

study constructs a vertically stacked three layer hybrid Hilbert fractal geometry and serpentine

radiator-based patch antenna. This type of LPD allows tuned RF reception from inside biomass

using the ISM (Industrial, Scientific and Medical) band located at 2.4-2.48 GHz. Small patch

antennas like this can be used to harvest energy intentionally transmitted and directed at them

to power the LPD they are attached to, allowing full operation and data communication from

within a body indefinitely.

[29]

Bluetooth Radio Technology

Bluetooth has become a mature, reliable, and universal communication medium covering

multiple topologies, including Point-to-Point, Broadcast, and Mesh [34]. One massive benefit

of using Bluetooth is the low energy option it provides (BLE), Ionascu and Marcu [35] carry

out an in-depth profile of various BLE designs using well-documented benchmarks and arrive

at conclusions that the Nordic nRF system on chip (SOC), along with its hibernation and sleep

modes, offers exceptional energy-efficient properties. Ultra-low energy BLE is picking up the

pace and gets demonstrated by Ensworth and Reynolds [36] to be operable by using a PSK

backscatter modulation to generate a subcarrier in one or more of the Bluetooth channels. RF

backscattering represents communication made possible by modulating a devices own

reflections of an incident RF signal, as opposed to generating radio waves itself. FSK

modulation is then integrated onto it, allowing a data transfer directly injected into the BLE

stack. Further comparison-based research performed by Siekkinen, Hiienkari, Nurminen, and

Nieminen [37] show how the energy consumption of BLE was studied by measuring real

devices with a power monitor and models derived from the raw energy consumption behaviour

observed from the measurement results. They contrasted their results by performing similar

measurements with ZigBee/802.15.4 LPDs. Their results show that when compared to ZigBee,

BLE is indeed very energy efficient in terms of the number of bytes transferred per Joule of

energy spent.

Mesh Networking

It is in recognition that the best chance for continued success in deployments of sensor networks

is to utilise a mesh networking communication system, specifically a choice of WMN (Wireless

Mesh Network). Various surveys into the different WSM offerings and their designs have been

commissioned and published. Akyildiz and Wang [38] undertook one such survey where they

[30]

identify that WMNs are predicted to both resolve limitations and to significantly improve the

performance of ad hoc networks, wireless local area networks (WLANs), wireless personal

area networks (WPANs), and wireless metropolitan area networks (WMANs). They continue

to foresee that WMNs will deliver wireless services for various applications in personal, local,

campus, and metropolitan areas. Their research presents a detailed study of recent advances

and open research issues in WMNs. They analyse various system architectures and applications

of WMNs and discuss critical factors influencing protocol design. Their work explores

theoretical network capacity, and the state-of-the-art protocols currently available for WMNs

get explored to point out several open research issues.

The research draws some interesting conclusions that cover some important points about the

scalability of mesh networks and other failings that must get considered during implementation.

They present the following categories of feature sets and their limitations imposed:

• Scalability. Based on existing MAC, routing, and transport protocols, the network

performance, indexed by throughput, end-to-end delay, and fairness, is not scalable

with either the number of nodes or the number of hops in the network.

• Self-organisation and self-configuration. Self-organisation and self-configuration

require all protocols in WMNs to be distributive and collaborative. Otherwise, WMNs

will lose the autonomic feature.

• Security. Due to wireless ad hoc architecture, WMNs are vulnerable to security attacks

in various protocol layers. Current security approaches lack a comprehensive

mechanism to prevent or counterattacks in different protocol layers.

• Network integration. Current WMNs have minimal capabilities for integrating

heterogeneous wireless networks. Integrating multiple heterogeneous wireless

networks is still an on-going task for WMNs, due to the difficulty in building multiple

[31]

wireless interfaces and the corresponding gateway/bridge functions in the same mesh

router.

[32]

Wireless Radio Protocols

Low power design of wireless technologies is a critical point for the future Internet of things

(IoT) applications and will affect deployment momentum as energy starvations are still

considered one of the most challenging issues to overcome. Lee, Dong, and Sun [39] produced

a preliminary study of low-power wireless communication standards: ZigBee and BLE,

evaluating their main features and behaviours in terms of various comparable metrics,

including the transmission time, data coding efficiency, power consumption, and delivery ratio.

Their paper titled “A preliminary study of low power wireless technologies: ZigBee and

Bluetooth Low Energy.” presents a quantitative evaluation of ZigBee and BLE in terms of the

transmission time, data coding efficiency, power consumption, and delivery ratio. They also

acknowledge that a clear conclusion of choice is unachievable since the suitability of wireless

technology selection is greatly affected by practical situations, such as the realistic environment

interferences, chipset prices, and installation cost.

This reasoning is very evident when the technologies get critically compared; the wireless

communications offerings, meshing, and others are currently plentiful and growing

substantially. Some of the technologies are remarkably similar in how they operate, and it has

become these small differences that can match the technology perfectly to a given problem

situation.

Wireless Energy Consumption

Also of particular interest from their research is the detailed energy usage mapping correlated

with the protocol function area they performed on their hardware devices. This kind of analysis

is imperative in achieving an understanding of the consumption costs of individual LPD

actions. A high bandwidth calibrated current probe can be connected to the LPD’s supply to

[33]

achieve this level of accuracy and detail. The probes are typically constructed using field effect

type measurements which present no interference to the circuit. The problem is correlating the

changes in consumption with the task being executed at that moment in time. Additional

hardware is an option that helps resolve this difficulty, allowing software profiling, so the

executing code sections are made visible. Using a combination of shared timestamps, external

triggering, and software debugging, the effects of individual software functions get mapped to

the system’s consumption. Figure 5 and Figure 6 below show the graphical representation and

mapping, which is achieved using this kind of measurement procedure, as presented by [39].

5

Figure 5: BLE Current analysis

[34]

6

Figure 6: ZigBee current analysis

For ZigBee and Bluetooth, Baker [40] studied their strengths and weaknesses when the

technologies get used for industrial applications. Baker claims that “ZigBee over IEEE

802.15.4 protocol can meet a wider variety of real industrial needs than Bluetooth due to its

long-term battery operation, greater useful range, flexibility in a number of dimensions, and

reliability of the mesh networking architecture.”

Lee, Su, and Shen [41] provided a study of Bluetooth, UWB, ZigBee, and WiFi wireless

communication standards, evaluating their main features and behaviours in terms of metrics,

including the transmission time, data coding efficiency, complexity, and power consumption.

In [42], Georgakakis, Nikolidakis, Vergados, and Douligeris presented a comparison of

ZigBee, Bluetooth, and BLE about applications, topology, power consumption, data rate, data

encryption, authentication, and modulation. They made critical advantage and disadvantage

comparisons between them and summarised their feature offerings. In addition to this study,

Tabish, Mnaouer, Touati, and Ghaleb [43] compared the leading wireless technologies

according to power requirement, throughput, and latency. Conclusions drawn identified that

[35]

BLE showed the most self-resilience towards network obstacles, both BLE and 6LoWPAN

have great potentials for such applicability in terms of power demand, bit rate, and latency.

One primary concern that repetitively reappears is the notion of interference in such wireless

networks. All of the latest WSN technologies occupy or get configured to occupy the same 2.4

GHz ISM frequency bands. Due to this, in [44], Lin, Talty, and Tonguz compared the received

signal strength indicator (RSSI) of ZigBee and BLE under WiFi and Bluetooth interferences.

The experiments suggest that BLE outperforms ZigBee in the context of intra-vehicular

communication when WiFi interference exists in the car.

Comparisons also get made of ZigBee, BLE, and WiFi transceivers’ specifications and power

consumption by Shahzad and Oelmann [45]. The results show that the BLE has less minimum

energy consumption. In [46], Siekkinen. Studied the energy consumption of BLE by measuring

real LPDs with a power monitor and derived models of the necessary energy consumption

behaviour observed from the measurement results. They compared their results by performing

similar measurements on ZigBee/IEEE 802.15.4 devices. Their results showed that BLE indeed

consumes extremely little energy and has a desirable ratio of energy-per-bit transmitted. This

analysis gives a good insight into the measurement techniques needed to understand such radio-

driven consumption bursts and is discussed in further detail later in this chapter.

Dementyev, Steve, Stuart, and Joshua [47] provided experimental data to compare the power

consumption of BLE, ZigBee, and ANT for a cyclic sleep scenario on a low-power wireless

sensor node with short-range communication. The results determined a sleep interval at which

the trade-off between power consumption and data rate gets optimised.

[36]

Wireless Protocol Comparisons

In [48], Gomez, Oller, and Paradells perform an overview and evaluation of BLE. They studied

the protocol stack and performed experiments for performance evaluation of energy

consumption and latency measurements. They also discussed the main characteristics and

features of BLE compared to the other wireless technology offerings currently available.

Higuera, Kartsakli, Valenzuela, Alonso, Laya, and Martinez [49] studied the feasibility and

performed experiments using Bluetooth, IEEE 802.15.4, and ZigBee in a high-speed railway

environment. They use the technologies to evaluate connectivity times and throughputs at

different speeds. Their results concluded that Bluetooth and IEEE 802.15.4 are suitable for

ground-to-train connectivity in high-speed train environments.

In [50], Mikhaylov, Plevritakis, and Tervonen perform a study on maximum peer-to-peer

throughput, minimum frame turnaround time, and the energy consumption used in BLE, IEEE

802.15.4, and SimpliciTI. Their conclusions agreed with the many others stating that BLE

provides an inexpensive and power-efficient solution for wireless communication but still has

many limitations restricting the throughput and increasing communication latency.

Further comparisons of efficiency get presented by Shahzad and Oelmann [48], where they do

not look at the costs of the transmission protocol itself but rather at the differences in costs

when different data processing techniques get used.

As typically realised using IEEE 802.15.4 compatible low-power radio transceivers that offer

limited throughput, wireless sensor nodes are generally applicable to low-data rate intermittent

monitoring applications. The results highlight the relationship between the amount of data,

and frequency of data, against the need to reduce communications and radio usage to preserve

energy reserves. To successfully realise high data-rates and increase sample rates for

monitoring applications, the transmission of reduced overhead, even raw data, using a high

[37]

throughput radio transceiver, or performing potential signal conditioning and computation

within the sensor node, resulting in a reduced amount of data to transmit. Shahzad and

Oelmann [51] performed a quantitative evaluation of raw data transmission using different

short-range wireless technologies and in-sensor processing using energy-constrained wireless

sensing nodes. He creates a WSN (Wireless Sensor Network) consisting of spatially

distributed sensor nodes and configures them to monitor a range of parameters from the

environment they get exposed to. The WSN nodes then form a network through wireless

communication to relay the data to a central destination.

To cope with the limited energy budget in such LPNs, wireless communication is typically

realised with low-power radio transceivers (i.e., 802.15.4 compatible). With this low-energy

consumption and the resulting limited communication throughput, such nodes have

traditionally been better suited to low-sample rate intermittent monitoring applications.

Realising high-sample rate applications such as image and vibration-based industrial

monitoring, both the communication throughput of the low-power radio transceivers typically

used in such nodes and their associated energy consumption [52] [53] poses a challenge in

attaining a practically feasible solution.

While consuming the minimum energy is a motivating factor in evaluating different standard

based wireless communication technologies. In relation to a low-power, low-cost, and compact

size wireless sensor node, an analytical evaluation of these technologies enables a choice

regarding the most feasible quantitative comparison alternatives.

To further understand the energy consumption intricacies of the three short-range wireless

communication technologies ZigBee, BLE, and WiFi, different data loads, were used to make

a quantitative evaluation. The study continued the analysis by moving the data pre-processing

[38]

into the sensor and making further quantitative evaluations based on the reduced data

throughputs.

The study results show that with maximum theoretical throughput, as attainable under ideal

channel conditions, ZigBee consumes the least amount of energy when comparisons get made

using data loads of up to 500 bytes.

When considering large data payloads measuring 800 kB and more, the study shows that WiFi

appears to be best suited. For a wireless transmission load of less than 800 kB and more than

500 bytes, as is the case for typical data-intensive monitoring applications, the results show

that the BLE results in minimum energy consumption.

The comparisons get carried out over two different dataset examples; the first was a typical

transducer type dataset packets sent regularly and sized around 140 kB of raw data. The second

dataset was geared around image transfer and generates dataset packets of sizes more than 250

kB.

Comparing the energy consumption associated with the two different data transmission

bandwidths, using the ZigBee, BLE, or WiFi, the results show that the in-sensor processing is

the most energy-efficient solution for both of these applications.

Power consumption analysis of Bluetooth Low Energy, ZigBee, and ANT sensor nodes in a

cyclic sleep scenario has been studied by Dementyev, Hodges, Taylor, and Smith [54] and

provides experimental data comparing power consumption of Bluetooth Low Energy (BLE),

ZigBee and ANT protocols for a cyclic sleep scenario. Their setup consisted of a short-range,

low-power wireless sensor node that periodically sends a data packet to a remote `hub’ with

intervening sleep intervals.

For all measured sleep intervals, BLE achieved lower power consumption (10.1 µA, 3.3 V

supply at 120 s interval) compared with ZigBee (15.7 µA) and ANT (28.2 µA). Most of the

[39]

power consumption differences get attributed to the time taken for a node to connect to the hub

after waking up and using sleep/hibernation states between individual RF packets. The study

determined that of the three protocols, a sleep interval at which the trade-off between power

consumption and data rate is considered the optimal cycle.

The nature of communications between a sensor node and a hub dramatically impacts the

power consumed. Unfortunately, much of the literature which compares the power

consumption of different radios is theoretical and qualitative [55] or provides generalised

experimental data [56] from which it is not possible to draw practical conclusions on power

consumption in a given scenario. Furthermore, datasheets do not provide specific parameters

or “rule of thumb” that will help a developer balance power consumption and data rate when

selecting a radio for an application such as a cyclic sleep sensor node.

The LPNs in this case, which are referred to as slaves within this study, were programmed with

a fixed time style hibernation pattern consisting of a cyclic sleep such that they would wake up

and transmit an 8-byte packet at the following intervals: 5 sec, 10 sec, 30 sec, 60 sec and 120

sec. The specific cyclic sleep activity at a 5-sec interval is clear from the voltage drop plot

across a shunt resistor and shown in Figure 2 for each protocol.

7

Figure 7: Consumption Characteristics of ANT, BLE, and ZigBee

[40]

The LPNs get deployed using a configuration profile that aimed to minimise power

consumption by reducing the packet overhead and maximising the time the LPN can remain in

an energy reserving hibernation mode. Conversely, the hub (referred to as the master) was

optimised to connect with a node as quickly as possible by frequently scanning for new

connections.

The conclusions presented from the study suggested that BLE achieved the lowest power

consumption, followed by ZigBee and ANT. The study found that the dominating factor that

consumed the largest blocks of current was the overhead involved in re-establishing the radio

interface upon every wake cycle; this was in contrast to active or sleep currents displayed. It

is noted that the duration and frequency of the RF module slept between individual RF packets

had effects on the results.

The study suggested that the design and implementation costs in terms of person-hours are that

ZigBee was the quickest, ANT took the longest, and BLE was between the two.

Most research and current market offerings point to Bluetooth currently being the winner for

the lowest current per useful transmission bit. This outcome is scrutinised in depth by

Siekkinen, Hiienkari, Nurminen, and Nieminen [54]. They study the energy consumption of

BLE by measuring real LPNs with an integrated power monitor system and then derives models

of the basic energy consumption behaviour observed from the measurement results. They

continue to investigate the overhead of Ipv6-based communication over BLE, which is relevant

for future IoT scenarios that require TCP/IP style communications. The study contrasts their

results by performing similar measurements using ZigBee/802.15.4 devices. In addition to

concluding that BLE is very energy efficient in terms of the number of bytes transferred per

Joule spent, it was also discovered that IPv6 communication energy overhead also remains

reasonable and can realistically be operated in a WSN environment.

[41]

In terms of accurately modelling the current usages at every stage of the radio cycle, their

measurements get performed using a Monsoon Power Monitor [57]. This integrated device

provides an adjustable voltage output terminal to which the LPN to be measured can be directly

connected.

To characterise and measure the energy consumption of BLE, a BlueGiga BLE112 [58] module

(based on TI’s CC2540 [59] System-On-Chip) was connected to the power monitor and

configured to operate as a slave device. This slave was communicating with a BLE112 USB

dongle, which gets configured as a master device. It was ensured that the slave device

contained nothing else which would consume energy apart from the bare minimum code

required to implement the BLE interface, thus ensuring no bias gets added to the results. In

contrast to the nRF BLE stack, this LPN implemented TI’s BLE stack (v 1.0) in single-chip

mode, and it is considered this represents a realistic example of a sensor where the amount of

hardware and power consumption is intentionally kept to a minimum. The slave gets set to

generic discoverability and undirected connectability mode.

Similar to the BLE implementation, their ZigBee measurements also used TI’s hardware and

software offerings. The sensor boards consisted of MSP430F2274 [60] application

microcontrollers working with CC2530 [61] ZigBee network processors. The boards are

intended for operation in dual-chip configuration (which consists of the MSP430 running the

application and CC2530 running network processor firmware). However, the consumption of

the CC2530 is the only measurement of interest. Therefore, CC2530 gets flashed with firmware

containing the full Z-Stack (v.2.4.0–1.4.0), and the MSP430 was programmed to go to sleep

on startup, making this configuration operate as a single-chip solution would.

[42]

The comparison is further confirmed valid because the CC2530 SoC is identical to the BLE’s

equivalent (CC2540); this makes it possible to perform a fair comparison of energy

consumption between the two.

The experiment’s configuration involved an LPN connected to the power monitor unit, and the

LPN then established communications with another LPN, which is also connected to a PC and

acting as PAN coordinator. The MAC layer is configured not to use the superframe structure

(beacons used only for network discovery); this removes the need for end-devices to listen and

wait for the beacon before sending data.

Their results show that BLE indeed consumes extremely little energy and has a desirable ratio

of energy-per-bit transmitted. However, the stack used to perform the experiments had certain

limitations. The energy efficiency could be further improved by allowing more packet

exchanges per connection event and implementing frequency hopping algorithms to combat

interference. It is also noted that the discovery energy could be reduced through the design of

cooperative mechanisms.

HART [62] [63] is a digital protocol for two-way communication between a host application

and smart field instruments, providing access to diagnostics, configuration, and process data.

Traditionally, HART specified a physical layer that used frequency-shift keying (FSK)

superimposed on the analogue control signal (4–20 mA). As of version 7, HART also

incorporates an IEEE 802.15.4-based wireless mesh network as an option for the physical layer.

This protocol gets commonly referred to as WirelessHART.

[43]

Lennvall, Svensson, and Hekland [64] suggest that ZigBee is not considered suitable for use in

most industrial applications, and this unsuitability was the motivation for the development of

a new wireless communication standard tailored to industrial needs: WirelessHART.

They continue to point out that many studies have been completed since the availability of all

these different wireless technologies, examples of which can be found in [65] [66] [67]. These

studies identify the same categories of challenge [68] [69], which surround self-sufficient

hardware design.

• Self-sufficiency requires first looking at the low power design of its own operating

hardware and consumption

• They must understand the limitations of the resources they have available

• They must be able to network in some way

With these goals in mind, the study proposes an LPD solution that operates around the BLE

One Chip Solution CC2540F256 [70] from Texas Instruments (TI). The CC2540F256 consists

of a BLE transceiver alongside an integrated 8051 microcontroller running a BLE software

stack provided for free from Texas Instruments [71].

Their study successfully creates a low-power device that is self-sufficient by being wholly

powered via an energy harvester. The LPD also provided BLE network connectivity with good

throughput and very low overhead.

[44]

Deep Sleep Hibernation Strategies

Using sleep/hibernation patterns to influence energy consumption is not something new in the

microcontroller world, and research conducted by Wendt and Reindi [72] into various wake-

up methods used to extend the battery life of wireless sensor nodes.

They identified that to help expand the operational life cycle of LPDs, sleep/wake strategies

that significantly affect the controller’s consumption by reducing its power need to be utilised.

Their work focuses on comparing and evaluating wake-up strategies for wireless sensor

applications [73].

To assist in their proper evaluation, a custom demonstration platform capable of wireless

communications and current consumption measurements was developed and provided the

foundation for this type of study.

Four common multiple access methods suitable for wireless sensor networks [65] get identified

and categorised into:

1. Time diversity

2. Frequency diversity

3. Code diversity

4. Space diversity

These strategies represent four very different areas in which LPD consumption rates can be

influenced, breaking each of the domains down into four comparable experiments.

Time Domain Strategies

This experiment consisted of sharing and synchronising a common clock source. This clock is

used to synchronise the wireless host/controller/hub and LPNs to a standard time base. Every

[45]

sensor node in the network is then assigned a specific timeslot in which data gets transmitted

to the host. The LPN needs only to be awake and have its radio initialised and ready to utilise

its allocated slot. When the slot has ended or the transmission has completed, the LPN returns

to a sleep state.

Frequency Domain Strategies

Frequency diversity is achieved using an additional radio frequency or channel to implement a

low-power wake-up signal used to bring an LPN out of hibernation. The LPNs are all equipped

with a 2.45 GHz frequency band transceiver and additionally with a 125 kHz receiver. The 125

kHz receiver is designed to decode an address value embedded within its message and, if

applicable, will power up the 2.45 GHz transceiver ready for data exchange. Communication

on the 2.45 GHz band is faster but consumes more power than the 125 kHz receiver. Table 1

below shows a typical difference see in current requirements when comparing operational

frequency.

Table 1: Comparison of two typical wireless receivers

[46]

Software Domain Strategies

Code diversity represents the most widespread approach to influencing the consumption rates

of an LPD. The solution involves the broadcast of every message sent. The broadcast embeds

the target node’s address, every LPN receives the broadcast and decodes the target address

field. At this point, every LPN will return to hibernation apart from the LPN, which gets

targeted within the message, and this device then continues to communicate with the host.

This wake and listen method is already widely adopted within the wireless networks domain.

Environmental Domain Strategies

The study’s fourth category considers the implications of dividing the radio transmission area

down into segments that get targeted using a physically or electrically narrow beam rotatable

antenna or multiple input multiple output antenna. This system will scan the segmented areas

where communication needs establishing with at most one LPD per segment.

The frequency diversity method is also undoubtedly relevant to this research and presents an

exciting option. The idea of having a very low power wake-up addressing channel that could

share as much hardware resource as possible as the primary data transfer channel is very

desirable. This idea has also been studied by Durante and Mahiknecht [74] in some detail

where they present an ultra-low-power 2.4 GHz RF Wakeup Receiver designed primarily for

wireless sensor networks nodes. The receiver demodulates On-Off Keying at 100 kbps. A 120

nm CMOS chip includes the analogue front-end and consumes only 7.5 uW from a single 1.5

V supply.

The study states that nearly 75% [73] of the total power consumed from a typical WSN node

gets attributed to the radio transceiver. They identify that one leading cause is the receiver,

[47]

which gets turned on frequently to listen to possible incoming messages and avoid high latency

communication. The radio channel gets sampled using intelligent strategies in the MAC layer,

such as those described in [73] or [66], to synchronise communications and optimise power

consumption. Using these strategies, very low power consumption is only achieved at the cost

of data throughput and latency because communication occurs only during small time windows

at low periods (e.g., once per second). In such situations, packets have a worst-case end-to-end

delay equivalent ideally to the period of the cycle multiplied by the number of hops.

[48]

Wakeup-on-Radio, Wireless Wakeup

Pletcher, Gambini, and Rabaey also present an ultra-low-power RF-based wake-up receiver,

using a lower frequency. A complete 1.9 GHz receiver, with BAW (Bulk Acoustic Wave)

resonator-referenced input matching network, is designed as a wake-up receiver for wireless

sensor networks. This integrated solution consisted of creating a 90 nm CMOS IC with an

integral RF amplifier, PGA (Programmable Gain Amplifier), ADC (Analogue Digital

Converter), and reference generation peripherals while consuming a mere 65 μW from a single

0.5 V supply. The RF receiver’s input bandwidth achieves 7 MHz, providing a maximum data

rate of 100 kbps. The receiver exhibits -56 dBm sensitivity for a 90% probability of detection

of a 31-bit address sequence.

A tuned RF (TRF) architecture with on-off keying (OOK) gets implemented for simplicity

reasons. The TRF architecture by design eliminates the requirement for a local RF oscillator,

which is considered expensive in terms of current consumption.

Careful selection of technologies for every system and peripheral on the IC is made to ensure

all parts could operate from an aggressively scaled 0.5V supply.

From the amount of research available regarding low-power wake-up signalling channels, it is

clear it has become a universally adopted method of maximising the LPD’s energy efficiency.

Lu, De, Xu, Song, and Cao [75] propose a novel wake-on sensor network design. In this

context, we have designed a new sensor platform called TelosW. The wake-on sensing

capability of TelosW lets designated sensors wake up the microcontroller (MCU) only on the

occurrence of some event with a pre-configurable threshold.

TelosW integrates the CC1101 Wake-On Radio (WOR) hardware, and this enables the MCU

to offload the processing needed to continually listen for and decode any address attributes or

[49]

threshold data from incoming messages. Upon successfully receiving a targeted message, the

CC1101 hardware will assert an interrupt connected to the MCU, allowing it to wake and take

appropriate action. This entirely event-driven wake-on sensor network can reduce energy

consumption considerably.

Fully Integrated Solutions

The TelosW platform from the study gets equipped with a very precise onboard energy meter

capable of performing in-situ energy consumption measurements. As each LPN has the same

energy meter, it is possible to collect data and consider all nodes’ individual energy states in a

network at any point in time. As most mesh-type topologies use a form of flooding protocol,

this data provides an insight into how the consumption spreads throughout the network, thus

making it possible to analyse and compare protocols for their energy efficiency.

This paper presents a very relevant study concerning the research presented in this thesis. It is

shown that predetermining the precise amount of energy needed to exchange a message

between two nodes situated at arbitrary routing location points within a mesh network topology

is possible.

The energy meter used to take the measurements allowed precise in-situ sampling while

incurring very little self-consumption or adding interference into the application. Dutta,

Feldmeier, Paradiso, and Culler [76] present an energy meter hardware design geared around

‘free-energy’ metering. This type of design is implementable in large numbers as part of a

distributed WSN. Incorporating the meter design on every LPN allows insight into the

consumption patterns of LPNs in a network of any size.

TelosW has a wake-on hardware feature to aid in maximising the duration the LPD hibernates.

The wake interface gets configured so any onboard sensors can wake up the MCU based on

[50]

configurable event thresholds. Coupling this feature alongside its interrupt-driven wake-on

radio hardware enables event-driven wireless communication and minimum energy

consumption. The design combines the use of all the current popular energy-saving techniques

into a highly integrated SoC.

The wake-on capability of TelosW to hibernate until a configured sensor or radio wakes it up

allows further peripheral optimisations. These types of selective configurations allow the

system to selectively use its ADC module to sample for configured threshold levels during

sleep. The wake-on radio also uses a duty-cycle approach to decrease its consumption further.

Unintrusive Energy Metering

The onboard energy meter hardware and the relevant driver (with proper calibration) of TelosW

allow the facility to track each LPNs real-time energy consumption. This facility enables

network-wide energy data collection utilising the network itself to retrieve it. The feature gets

used to track energy consumption distribution across the entire network from time to time. It

gives a detailed real-time view of the energy consumption incurred by the LPNs throughout a

network of any size.

The monitor hardware itself is based on the MAX1724 [77] IC from Maxim Technologies.

8

Figure 8: Emergy Meter Implementation

[51]

The onboard energy meter of TelosW uses the idea and design of iCount [76]. iCount proposes

a hardware design that allows the measurement of energy consumption without adding any

loading attributes to the circuit it is trying to measure or by coupling energy using field-effect

type measurement techniques. This design can be implemented on ultra-low-power sensor

nodes to track and record their energy consumption. The iCount design measures energy usage

by counting the regulator's switching frequency instead of interfering with the actual flow of

the current path itself. The operation principle utilised here is based on the relationship between

the load current and the switching frequency being linear.

The IC implements and maintains an energy meter counter value, representing the current count

of the regulator switching frequency. As the switching power-supply used to power the LPN

adjusts its switching frequency relative to the current demand presented to it, the energy meter

count will change to reflect it – synonymous to how a domestic energy meter tracks user

consumption usage rates.

The meter needs to be calibrated before usage to provide the expected linearity. The calibration

computes the coefficients which influence the relationship between the counters value and the

load current variation against the input voltage. To achieve the calibration, the ADC peripheral

gets used to measure the input voltage level. This dependency reveals a limitation with this

kind of level measurement implementation in terms of not having a fixed reference to compare

the current input level against. Due to this and the fact that the battery will be continuously

discharging, frequent re-calibration routines are necessary to maintain accuracy. The TelosW

implementation has a resolution of 0.1 V when sampling input voltage levels, meaning that re-

calibration will occur for every 0.1 V variation in input voltage measurement.

[52]

Their study presented Figure 9 below, which shows an energy distribution pattern from a mesh

of 17 LPNs, all sharing the same design. It is seen that the closer an LPN is to the controller

node (marked 0 in the figure), then the more consumption incurred.

The LPNs located one hop from the controller will carry the highest consumers. In this study,

LPN 2 was the highest consumer due to the forwarding responsibilities it has for both LPN 8

and LPN 9. This pattern will continue to be the case as the network continues to grow.

9

Figure 9: Distributed LPNs Measured Consumption

The controller LPN 0 is surprisingly the lowest consumer, the reason being that the study's

implementation required the controller to operate in a receive-only mode without the need to

power its transmitter. According to the datasheet, the CC1101 will consume approximately

15.6 mA in receive mode and 32.3 mA in transmit mode (at 250kBaud data rate and 10dBm

output power).

[53]

Mesh Networking Protocols

During the development of ZigBee, other protocols have spun off, all chasing the goals of

lowest energy, easy set-up, reliability, and usefulness. Z-Wave and Z-Wave Plus are good

examples of one of these newer offerings. Z-Wave tries to address some of the ZigBee

implementation's inadequacies, including introducing various encryption and security levels,

gearing nicely towards companies wishing to have an easier deployment to market experience.

Z-Wave includes proprietary, closed source code, ensuring any intellectual property, internal

operation details, and protocol implementation are all considered secret and not shared with

any user base. Although many considered this to be a weakness compared to the open-source

ZigBee offerings, it has not led to a lack of large well-known manufacturers adopting the

protocol; as of this time, over 700 companies have created an alliance to promote and use the

protocol. Z-Wave enjoys much adoption from within the security companies sectors offering

wireless security aligned products.

ZigBee has been released under an open-source license scheme, so any manufacturer who

wants to utilise the code can obtain the protocol source code, inspect it, adopt it, and even

modify it as long as the licence restrictions are adhered to. ZigBee’s latest version 3 offering

introduced a unified standard that works more alongside how Z-Wave works.

According to Z-Wave marketing material [78], over 35 million different devices sold today use

Z-Wave wireless standards. It is a proprietary technology that requires a license for companies

to incorporate in their products.

When comparing differences between the two protocols which impact device deployment, it is

notable that ZigBee transmits data at a faster 250 kbps compared to Z-Wave’s transmission

rate of 100 kbps. However, the extra speed comes with the drawback of range; ZigBee has a

range of 35 feet, whereas Z-Wave can transmit and receive at up to 100 feet.

[54]

Transmission distance gets somewhat enhanced for both protocols by the fact they can mesh.

Having more than one ZigBee or Z-Wave device within near-proximity of each other will

enable them to additionally act as a repeater or booster, allowing the signal to propagate further.

ZigBee and Z-Wave both offer multiple means of controlling the provisioning of new LPDs

into their networks and can add and remove LPDs in a secure manner. Both protocols have an

advantage over BLE when it comes to being energy efficient, and this is due to the operating

frequency choices made during design time.

Where BLE and ZigBee can both use and occupy the 2.4GHz spectrum, enjoying the fast

speeds available, ZigBee can also drop down to 900MHz (868MHz for Europe, 915MHz for

the US) band where it can immediately tap into the slower and less energy demanding

frequencies. Although throttled severely by speed, the extended range vs lower energy is

desirable. The lack of speed (for this research) simply falls into the time dilation solution. The

other glaring advantage of this is avoiding radio interference from widespread WiFi and

Bluetooth protocols in operation.

When considering these options for deployments of large sensor networks, it must be noted the

built-in device maximums which the protocol can provision. Z-Wave has a 232 device limit,

which ZigBee overcomes by offering 65000. Any difference in the underlying communication

rules significantly impacts speed and performance. Finally, Z-Wave allows only four hops

between a device and a hub, while ZigBee imposes no restriction.

Danbatta and Varol conducted research comparing ZigBee, Z-Wave, and Bluetooth in the

home automation arena [79]. They identify and evaluate various comparable attributes offered

by the technologies and make critical comparisons based on these indices. They consider

power consumption, propagation range, cost, ease of use, scalability, and interoperability.

[55]

The study showed that for power consumption, Z-Wave, Bluetooth, and ZigBee have a low

power consumption of 1mw, 10mw, and 100mw, respectively. While WiFi has high power

consumption.

Propagation data shows WiFi has a range of up to 1000m, with Z-Wave having 30m, ZigBee

100m, and Bluetooth with the lowest having 10m. The introduction of Bluetooth 5 long range

[34] technologies has greatly increase the operable range for this protocol towards the 50-100m

mark.

As for the cost indices, Bluetooth is the cheapest choice, with ZigBee, WiFi, and Z-Wave

following, respectively.

The scalability and interoperability indices are somewhat intertwined concerning scaling the

network up using products from different manufacturers who have implemented the same

protocol. In this situation, it is found that Z-Wave is the best choice because it allows

commercial devices and hundreds of nodes with high density.

Table 1 below summarises the results presented in the study.

Table 2: Comparison of wireless technologies for home automation

The study concluded that “Z-Wave is the best choice if the variable of interest is energy saving,

or the user is interested in using different devices from different manufacturers, or even

[56]

commercial devices. When the variable of interest is using devices from the same manufacturer

with relatively low-cost and power consumption, ZigBee is the best fit in such a situation. In

the event ease of use and range is the interest of the user, then the WiFi solution is the most

appropriate. However, if cost is the issue, then Bluetooth would provide a better solution.”

IoT – Internet of Things

As it stands at the time of writing, many of the alliances that emerged for the creation of both

ZigBee and Z-Wave are also in support of an emerging protocol named CHIP (Connected

Home Over IP) [80].

As the Internet of Things (IoT) has evolved, the need has become apparent for more substantial

unity among brands and ecosystems to enable products within smart environments to work

together more efficiently. Working to meet that need, the ZigBee Alliance seeks to promote

collaboration in the Internet of Things by creating, evolving, and promoting universal open

standards that enable all objects to connect and interact.

The protocol intends to simplify product development for device manufacturers, broaden

consumer choice, and ensure easy discoverability, deployment, and engagement to fuel

connected living.

The standard uses IP — internet protocol to allow for the broadest inclusion of products and

address privacy and security issues.

The technology rollout will begin with Wi-Fi, Wi-Fi 6, Thread, and Bluetooth Low Energy.

Also expected to be included will be Ethernet connections, cellular and broadband.

Thread [81] is an IPv6-based networking protocol designed for low-power Internet of Things

devices in an IEEE 802.15.4-2006 wireless mesh network or Wireless Personal Area Network

[57]

(WPAN). Thread is independent of other 802.15 mesh networking protocols, such a ZigBee,

Z-Wave, and BLE.

Thread's primary features include:

• Simplicity — Simple installation, start-up, and operation

• Security — All devices in a Thread network get authenticated, and all communications

are encrypted

• Reliability — Self-healing mesh networking, with no single point of failure, and spread

spectrum techniques to provide immunity to interference

• Efficiency — Low-power Thread devices can sleep and operate on battery power for

years

• Scalability — Thread networks can scale up to hundreds of devices

Thread solves the complexities of the IoT, addressing challenges such as interoperability,

security, power, and architecture requirements. It is a low-power wireless mesh networking

protocol based on the universally supported Internet Protocol (IP) and built using open and

proven standards. Thread networks have no single point of failure and include the ability to

self-heal. They are simple to set up, use and will auto-reconfigure when a device gets added

or removed. Thread ensures end-to-end communication in most topologies, device-to-device,

device-to-mobile, and device-to-cloud.

BLE Meshing

Mackensen and Lai have performed an in-depth feasibility study on using wireless sensors with

BLE [82], with references to energy harvesting. They concluded that connection setup could

be established in as little as 0.3mJ, with a data transmission consumption of 0.13mJ possible.

Coupled with research performed by Mackensen and Wendt [83] regarding possible output

[58]

powers of commercially available energy harvesters, RF has been proven to provide mW to W

or energy, Solar typically uW to mW. To improve efficiencies further, Feng, Mo, and Li found

that the average current of BLE data transmission was reduced significantly by its packaging

strategy [84]. They discussed a particular method of transmission which allowed considerable

current saving for low data rates.

In 2016, Zenker, Krug, Binhack, and Seitz [85] conducted research to evaluate the meshing

capabilities of BLE; their simulations showed great potential for the challenges presented by

wireless networks and IoT. This work has been made concrete by releasing an official version

with choices of topologies by the Bluetooth controlling body [86]. Building the best type of

meshed BLE network has been researched by Chiumento, Reynders, Murillo, and Pollin [87],

where they found how each setting such as transmit power, connection interval, and source rate

impact overall network performance figures of merit such as end-to-end delay, packet delivery

ratio and network build time. BLEMesh is an interesting broadcasting network protocol

presented by Kim, Lee, and Jang [88] where the available data payload using Bluetooth Low

Energy Generic Access Profile is identified (Non-connectable Advertisement Data for the

different number of nodes and packets to send in a batch). Then it is compared with BLEmesh

using both a conventional routing method and a flood routing method. Their preliminary

evaluation shows that the number of transmissions by BLEmesh is significantly smaller

compared to its competitors for some selected network configurations, reducing the aggregated

energy consumption within the mesh network.

Further energy savings can be employed as researched by Murillo, Reynders, and Chiumento

[89], where the setup's orientation gets considered, and they took a measurement-based

comparison of two mesh approaches that fit within BLE operation: flooding and connection

oriented networking. Using metrics such as packet delivery ratio (PDR), end-to-end delay, and

power consumption, they concluded that the optimal mesh approach depends on the

[59]

application. It is shown that for comparable performance in PDR and overhead, flooding could

trade a lower end-to-end delay for higher power consumption than the connected mesh. They

present a method of automatically switching between the two methods based on a message

priority approach.

In addition to these topology studies, an energy-efficient reconfigurable scatternet formation

algorithm has been proposed by Yu and Yu [90]. Here a root node propagates parameters k

and c in the downstream direction to construct a tree-shaped subnet and determines new roots.

Each new root then sends a request to its upstream master to initiate a return connection to

convert the first tree-shaped subnet into a mesh-shaped subnet. Following this, a peak-search

method is used in the first root node to locate the optimum k layer and generate an optimum

mesh-tree topology. This method's simulation results showed that the optimum k layer could

then be determined and achieve hop-length performance. Another topology formation

algorithm for a scatternet gets introduced by Sheng, Qun, Qiang, and Jian [91], where they use

a recursively executed sequence of parameter acquisition, node assigning, and link setup to

achieve greater robustness and expansibility within the mesh.

BLE Sensors

BLE has also introduced and refined the possibility of using the link to aid distance and

direction-finding capabilities. Kajdocsi, Kovács, and Pozna [92] have highlighted a very novel

suggestion which potentially improves both accuracy and computational capabilities of indoor

positioning using meshed BLE devices. Their work concluded that if the transmitters of

position information can create a mesh topology, they may transfer data to each other and the

user, thus aiding various algorithms such as dead reckoning and triangulation to be achieved.

Further supporting factors as to BLE being a good choice get shown by the performance

[60]

comparison done by Yun, Lee, An, Kim, and Kim [93], where positioning schemes are

evaluated using Wi-Fi and BLE. They utilised the received signal strength (RSS) of the

wireless device and analysed the estimated indoor position's accuracy by using the weighted

centroid localisation technique. They concluded that BLE performance is optimal under

shorter distances, which is ideal under a mesh network condition. The number of BLE devices

aiding the positioning accuracy has also been studied, notably by work done with Ji, Kim, Jeon,

and Cho [94], where path loss is analysed and how the introduction of more devices impacts

the serviceability.

[61]

Low-Power-Devices Design

Considering other research in energy management techniques and efficiency for low voltage

sensors and applications, various experiments have been performed to enable maximum use of

tiny harvested energies in ways that make capturing even the smallest amounts worthy.

Newell, Twohig, and Duffy [95] have performed an in-depth analysis of step-up DC-DC

convertors connected to various types of solar-based harvesting inputs. They concluded that

there exists an optimal number of series-connected cells where the optimised output power can

be identified, resulting in upwards of 15% improvements in the convertor stages.

Donovan, Dewan, Peng, Heo, and Beyenal [96] researched the viability of using a Sediment

microbial fuel cell alternative to renewable power, allowing them to enable remote sensors

requiring less than 2.5W to function. They developed a power management system that

enabled the source to operate the sensor, which effectively stored microbial energy in

capacitors, allowing short bursts of power to be realised.

Furthering this idea of alternative energies, Chung-Yang and Nan-Chyuan [97] worked on

extracting energy from the human body itself. They experimented with Micro-

electromechanical systems (MEMSs) based energy harvesters, characterising various

techniques, operation principles, bottlenecks and presenting performance, frequency tuning

techniques, and biocompatibility micro energy harvesters.

Some further excellent research is presented by Newell and Duffy [98] again, focusing on the

area of improving the efficiency of the conversion chains coupled to the harvester inputs. They

analysed the effects of utilising switched capacitor energy buffers injected between the

harvester and the boost convertor/load parts for wireless sensors. Performing loss analysis and

careful impedance matching allowed them to realise gain increases of up to 10% in terms of

efficiency of the power delivered from low-voltage, low-power EH sources over an existing

[62]

boost converter. This increase is due to the switched capacitor circuit enabling operation in a

similar pulsed manner as the wireless sensor, thus reducing the continuous conversion losses

encountered by many commonly available converters.

Ranvijay, Yadav, Kumar, and Agrawal [99] proposed a Dynamic Voltage Scaling solution for

an energy harvesting real-time system. They proposed a scheduling algorithm that offers less

energy consumption for battery-powered dynamic real-time systems modelled with aperiodic

tasks and energy harvesting constraints. The proposed approach has to decide which speed or

voltage level is to be selected, leading to a reduction in energy overhead and timing overhead

due to the speed switching. The simulation results and examples illustrated that their approach

could effectively reduce the overall system energy consumption and improve the system

performance in terms of remaining energy and reduce the rejection ratio of aperiodic tasks.

Khairudin and Salleh [100] researched the increased efficiency of energy harvesting after

introducing multi-input source harvesting circuits. By exploiting the ambient energy from

mechanical vibration, light, and thermal gradient fed into various power management circuits,

including LTC 3588-1, LTC 3588-2, and a voltage doubler, they present a simulation, design,

fabrication proposal, and testing of double-layer multisource energy harvesting circuit. The

result shows that the recommended power management circuit for low power energy harvesting

power management is the LTC3588-1 for low power and voltage generated. All the power

management circuits can be used together at the same time but require a capacitor to stabilise

the output of voltage if any of the input sources have no input voltage, and when all the multiple

input source is present, the passive switching will choose the higher available voltage from the

circuit.

Further touching on the design issues presented when developing various kinds of low-power

sensor systems, Squires and Huff present a white paper [101] that covers many fundamental

[63]

design issues which need considering, including Power Budgets, Storage Devices, Harvesting

Solutions, MSUs, and connectivity. Using a basic configuration for a standalone sensor system

as a reference, their discussion covers sensor/transducer types, power budgets, power sources

(especially devices that harvest ambient energy), and energy storage solutions. It also

summarises microcontroller requirements and highlights the latest power-management chips

and wireless ICs. A good working example is presented, which covers all the issues

individually.

Another good working example involving ultra-low power energy harvesting techniques get

presented by Gorlatova, Kinget, Kymissis, Rubenstein, Wang, and Zussman with Ultra-Low-

Power Energy-Harvesting Active Networked Tags (EnHANTs) [102]. EnHANTs are small,

flexible, and self-reliant (in terms of energy) devices that can be attached to objects that are

traditionally not networked (e.g., books, clothing, and produce), thereby providing the

infrastructure for various novel tracking applications. Examples of these applications include

locating misplaced items, monitoring objects (items in a store, boxes in transit), and

determining disaster survivors' locations. Recent advances in ultra-low-power wireless

communications, ultra-wideband (UWB) circuit design, and organic electronic harvesting

techniques will enable the realisation of EnHANTs in the near future. For EnHANTs to rely

on harvested energy, they have to spend significantly less energy than Bluetooth, ZigBee, and

IEEE 802.15.4a devices. The research explores various energy harvesting techniques. It

concludes that EnHANTs necessitate a rethinking of communication and networking principles

and require careful examination of ultra-low-power and energy harvesting technologies'

particularities. The research shows that the nature of EnHANTs requires a cross-layer approach

to enable effective communications and networking between devices with extreme power and

harvesting constraints.

[64]

Moghe, Divan, and Lambert [103] experimented with using magnetic-field and solar energy

harvesting to power low-cost utility sensors in research supported by the National Electric

Energy Testing Research and Applications Center (NEETRAC). The research presents a novel

0.2 V to 3.3 V AC-DC boost converter, which converts the magnetic field (H-field) and solar

energy to electrical energy used by the sensor electronics. A supercapacitor gets used to operate

the sensor even in an outage. Numerous design constraints are identified, and a low-cost power

circuit was fabricated, built, and experimentally tested to show functionality under varying

operating conditions.

[65]

Energy Scavenging

A further twist on powering wireless sensor networks gets presented by Zungeru, Ang,

Prabaharan, and Seng [104], where they explore the benefits of radiofrequency energy

harvesting. They present a practical approach for RF Energy harvesting and managing the

harvested and available energy for wireless sensor networks using the Improved Energy

Efficient Ant Based Routing Algorithm (IEEABR). The research covered the RF power

density measurement, calculation of the received power, storage of the harvested power, and

management of the power in wireless sensor networks. The routing used IEEABR technique

for energy management. Practical and real-time implementations of the RF Energy using

Powercast™ harvesters and simulations using the energy model of Libelium Waspmote to

verify the approach were performed. Comparisons of IEEABR and other traditional energy

management techniques get explored while also looking at open research areas of energy

harvesting and wireless sensor networks management.

The power management implementations keep appearing in most research done within energy

harvesting and are clearly a critical area in achieving useful efficiencies from the tiny amounts

of harvestable ambient available. Kansal, Hsu, Zahedi, and Srivastava [105] reinforce this with

their research exclusively in the power management and energy harvesting arena. They present

various considerations in using an energy harvesting source fundamentally different from using

a battery, specifically, rather than limiting the maximum energy. It has a limit on the maximum

rate at which the energy can be used. They continue to point out that harvested energy

availability typically varies with time in a non-deterministic manner. Simultaneously, a

deterministic metric, such as a residual battery, suffices to characterise the energy availability.

In the case of batteries, a more sophisticated characterisation may be required for a harvesting

source. They also touch on another issue that becomes important in networked systems with

multiple harvesting nodes, in that different nodes may have different harvesting opportunities.

[66]

The same end-user performance may be achieved in a distributed application using different

workload allocations and resultant energy consumptions at multiple nodes. In this case, they

show it is crucial to align the workload allocation with the energy availability at the harvesting

nodes. The research develops abstractions to characterise such sources' complex time-varying

nature with analytically tractable models and uses them to address critical design issues. They

continue to develop distributed methods to efficiently use the harvested energy and test the

models both in simulation and experimentally on an energy-harvesting sensor network,

prototyped especially for this research.

The methods presented in their research enable using environmental energy in a harvesting

aware manner and adapting in real-time to energy availability. This yields significantly higher

performance levels than the existing approach of using a conservative duty cycle in solar power

systems, which is designed for expected worst-case scenarios. The methods discussed

addressed some of the more common power-scaling mechanisms and usage scenarios. Several

other more sophisticated power scaling techniques are available in more advanced low-power

hardware, and these methods may be modified to exploit all such techniques as suitable for

maximising performance at the application layer.

[67]

Chapter Summary

With such a vast area of topic to cover, the literature review was never going to be small. The

volume of available works currently appearing clarifies that wireless meshing networks are

genuinely beginning to dominate the low-power distributed device communications network

arena.

There is also no lack of studies in energy harvesting topics and the delicately balanced chain

of components needed to harness and capture the ambient wireless energy offerings. Rectenna

designs and evaluations are plentiful and progressing rapidly, continually finding new, more

efficient ways of rectifying, storing and using their harvests.

It is also of interest to see more and more custom silicon solutions presented, suggesting

maturity of the problem domain and a willingness to risk larger investments to realise the

benefits. Eventually, as Nordic, Silicon Labs [58], and the other big silicon players continue

to show, the integrated circuit solution will conquer and provide the fastest, lowest-powered

and most implementable solution. As an example, the latest offering from Nordic [106], as of

point of writing, is an nRF5340 Dual-core Bluetooth 5.2 SoC (System On Chip) boasting a

network processor clocked at 64 MHz and optimised for low power, radio and efficiency.

[68]

Chapter 3: The research approach in this thesis (Original Content)

To offer the most flexibility for both this research and the potential continuation of future

experimentation, a full-featured prototyping platform has been developed, consisting of

controllable energy suppliers, measurable energy consumers, and a communication network to

link the consumers together with external control equipment.

As this research concerns efficiently using the ambient energy currently available, there is no

need to spend considerable time tuning energy conduction systems in search of achieving

maximum power transfer. This subject is, of course, touched on and presented due to its

importance in the design process; however, it is not the ultimate goal of this research.

The research platform developed can provide and sustain an average lab sized infrastructure

where energy deliverance can be controlled and measured and can also provide multiple

sources of energy streams, allowing the consumers to choose.

There are far more efficient ways currently available to harvest even smaller amounts of energy

than this platform can achieve, which is improving at a considerable rate. The designs

presented in this research satisfied all the requirements needed to achieve a stable

experimentation platform and deliver consistent, comparable data needed for correct

evaluation.

The main goal was to provide an environment that allows the devices under test to be entirely

self-sufficient and decoupled as much as possible from any control of the energy sources fed

to them. This solution includes the ability to set up a communications network and send

messages back and forth between devices and controlling hardware.

[69]

Research design

The key points for the hardware requirements include:

• A power controllable wireless energy transmission source

• A power controllable and positionable solar lamp

• A collection of low-power devices capable of harvesting both wireless energy and solar

energy

• A radio network that allows the devices to communicate

• A proxy device used to connect the platform with an end-user

Hardware

Both the wireless energy transmitter and solar lamp can have their output power adjusted; the

solar lamp can also be re-positioned. Both devices are both classed as energy ‘suppliers’ and

treated as separate uncoupled hardware systems. They provide an artificial version of the sun

and ambient wireless power sources.

However, the collection of low-power devices get categorised as energy ‘consumers.’ Although

they have no need to communicate directly with the energy suppliers, they communicate with

other consumers and the proxy.

The proxy is neither a supplier nor a consumer, merely an enabler.

Energy Consuming Devices

The energy consumers are the devices that receive all the research focus and are the most

involved in terms of design and construction.

[70]

These devices represent the ultra-low-power work-executing self-sustaining part of the

platform, and they get referred to as LPDs (Low Powered Device), or if the device has joined

a meshing network, it can also be considered an LPN (Low Powered Node).

Two test LPD designs exist; the first is based on an ATtiny85 [31] and commissioned for the

sole purpose of exploring the difference between fixed, threshold-based and adaptive sleep

strategies. Thus, this design did not include a radio interface, only a solar cell, capacitor, LED,

and MCU. A variant of this LPD using a Microchip PIC16F1823 [107] also exists and capable

of performing the same duties (Figure 10). The principle behind this allows comparisons using

different vendor offerings; however, recent years have seen Microchip and Atmel merge into

a single company.

10

Figure 10: LPD Using PIC16 MCU

The second LPDs design is based around a Nordic Semiconductors Nrf52832 [106], a

powerful, highly flexible ultra-low power multiprotocol SoC (System on Chip). With an

internal clock speed of 64MHz, 512Kb of flash, and 64Kb of ram, it is more than adequate to

interface all required peripherals. Current consumption of 58µA/MHz is possible, with sleep

currents as low as 1.9µA. The device gets configured to operate in a low current DC-DC mode,

[71]

where it uses an external inductor and capacitor to enable its internal boost circuitry. The

primary oscillator is a 32MHz crystal, and the low-frequency clock is enabled using its internal

resonator. The operational input voltage is from 1.7V to 3.3V.

Power comes from various ambient energy-receiving transducers connected to a BQ25570

Nano Power Boost Charger and Buck Converter [108]. This device is a highly efficient energy

harvesting controller capable of capturing mere microwatts of energy and storing it in an energy

store. The BQ25570 offers automated threshold-based monitoring of the energy levels and

provides an output line used to power the microcontroller via a MOSFET transistor when

sufficient energy has been collected.

The energy store consists of a bank of supercapacitors rated up to 5 volts. The BQ25570 [108]

gets configured to prevent the charge voltage from rising above 3.3V; this allows the

microcontroller to operate directly from the energy store without further regulation.

Bluetooth 5 Low Energy connectivity [109] comes from the nRF52832 [106], a 2.4GHz RF

output is available, which gets connected to a PCB microstrip antenna. Transmission up to

+4dBm of power is possible with data rates up to 2Mbps. The microstrip antenna is feed point

matched to 50Ω using an impedance matching network configured in a PI arrangement.

Built upon previous work from the author of this thesis, originally named BluBot [110], this

hardware platform is re-engineered and continues the development and design produced and

detailed in the BluBot paper [110]. The new style stackable configuration breaks down into

four independent modular subsystems:

1. Energy harvesting and management – The Stomach

2. Central system and communications – The Brain

3. Cognitive functions – The Legs

4. Universal expansion – The Hands

[72]

 11

Figure 11: LPD PCB Modules

These modules can be operated independently of each other for testing and characterising

purposes; as the research progresses, the complete stack-up connects together and becomes

fully operable.

For the design's cognitive aspects, two motors have been installed and controlled via PWM

using a DRV8836 dual DC motor driver [111]. Offering a 95nA sleep current and operation

from 2V, it provides two H-bridge type outputs possible of delivering 1.5A each. This part

takes two PWM inputs where the duty cycle gets used to determine the motors' speed; it also

provides two inputs used to change travel direction.

EEPROM inclusion provides a non-volatile memory system allowing for the long-term storage

of learned skills and work-task parameters, environmental discoveries, other LPDs, and

leadership hierarchy details.

A generic ‘Proto’ board exists, intended to allow flexible design expansion and testing and

implement different ambient energy receivers, rectenna circuits, and antennas for critical

comparison.

[73]

The finished PCB modules are shown above in Figure 11.

Figure 12 below shows the populated and tested CPU module; the EEPROM (U7), planned for

a later date, is used to retain non-volatile coefficients, task information, energy consumption

details and planned job lists.

The processor's radio hardware has been impedance matched to the microstrip antenna located

at the top of the PCB, and a 50Ω high frequency switched connecter soldered down to allow

easy connection of tuning hardware.

12

Figure 12: Assembled Brain (CPU) Module

The populated energy harvesting modules shown in Figure 13 below are commissioned with

the power level thresholds set using high resistance resistor dividers (thus minimising current

consumption of the setup). A supercapacitor mounted in the lower-left corner becomes the

energy store, and room made available for additional placement of energy store capacitors if

needed.

[74]

13

Figure 13: Assembled Stomach (Harvesting) Module

The three modules (CPU, Energy Harvester, and Proto carrying the rectenna and energy

reception circuitry) are stacked together to form a modular, expandable, and configurable

hardware stack, as shown below in Figure 14.

14

Figure 14: Stacked unit

[75]

The rectenna circuitry has been tuned and connected to the coil antenna interface; this is visible

in Figure 15 and Figure 16 below. This setup gets replicated to five other devices initially,

providing a batch of 6 units for experimentation.

15

Figure 15: RF Harvesting Antenna

16

Figure 16: RF Harvesting Stack

[76]

Figure 17 and Figure 18 below both show the addition of another form of energy harvesting

transducer. Two solar panels and supporting input circuitry are added to the sides of the energy

reception module (Prototype board), and this will allow the idea of simultaneously harvesting

energy from multiple ambient sources to be considered and evaluated when required.

17

Figure 17: Solar Panels

18

Figure 18: Solar Panel Stack

[77]

Both wireless energy and ambient light work in unison to establish the initial operation energy

requirements, significantly reducing the wait time needed for the LPD energy stores to charge

to a usable level, after which their power settings are adjustable, allowing replication of

different environmental simulations. Figure 19, Figure 20, and Figure 21 below show the

intended test environment set up with randomly positioned LDPs surrounding the wireless

energy transmitting antenna.

Metrics such as charge times, discharge times, radio power consumption, distance from RF

source, available workload energy, and message transmission costs are now measurable.

19

Figure 19: Device Positioning

[78]

20

Figure 20: Common RF Power

21

Figure 21: Device Arena

Communication and Meshing

As far as mesh networking is concerned, the supporting devices required to facilitate the

network management tasks (such as Controller, Provisioner, and Friend devices) all share the

similar hardware development platform shown in Figure 22, allowing quicker time to produce

[79]

hardware and thus quicker acquisition of the network's performance metrics. Figure 22 is a

standard Nordic Semiconductor [106] nRF52832 evaluation board available for purchase.

22

Figure 22: Provisioner, Friend, and Controller

Nordic Semiconductor has also produced and made available for purchase a very sensitive

energy monitoring daughterboard (Figure 23). This development device can gets used to

measure and correlate precise energy demands with firmware code execution position.

Ultimately, this powerful tool will allow full mapping of the energy profile during radio

transmissions and work tasks and aid in optimising code for ultra-low energy operation. This

energy monitor's measurement output can be captured for long-term logging and trending along

with a time-correlated measure of the energy store level, allowing accurate estimations and

operation predictions based on available energy store levels over controllable periods.

[80]

23

Figure 23: High Sensitivity Power Monitor

Energy Harvesting

The BQ25570 [108] energy harvester IC can be accurately configured to best suit imposed

ambient energy conditions, energy store size, and expected expenditure rate. A set of hardware

resister voltage-divider networks get manipulated to set and fine-tune its operation.

The BQ25570 [108] also has a highly efficient internal power supply chopper converter that

gets used to provide a stable 1.9V output rail when enabled; this gets used to power the CPU,

radio, and all other peripherals.

A BQ25570EVM-206 [112] evaluation board shown below in Figure 24 was purchased to

understand how to set up and implement the part fully before PCB manufacture; this provided

a stable working reference design to ensure the suitability of purpose.

[81]

24

Figure 24: BQ25570EVM

Overcharge protection, MPPT (Maximum Power Point Tracking), Under-volt

protection, Voltage OK, and boost voltage output are all set using a collection of high

resistance divider networks as detailed in Figure 27 below.

25

Figure 25: BQ25570 Threshold Voltages

[82]

A power level monitor input (Figure 26) is being fed into the microcontroller using one

of its SAADC (Successive Approximation Analogue-to-Digital Converter) ports

configured with its internal voltage reference of 0.6V enabled. The voltage level will

first pass through three diodes, which together effectively drop its voltage by ≈1.5V

before being passed through the SAADC gain blocks to reduce it further by ¼. The

microcontroller will monitor and detect the energy level and prepare for hibernation

when the level reaches ≈1.8V. At 1.7V, the BQ25570 [108] will kill the

microcontroller's power and concentrate solely on harvesting more energy. The ideal

goal is for the microcontroller to stay powered in a low current hibernation state

allowing the BQ25570 [108] to raise the energy store level without switching off the

supply.

26

Figure 26: Power Level Monitor

The BQ25570 [108] has three setup stages (shown below in Figure 27) which have been

calculated and set using a series of excel spreadsheet formulae solutions.

[83]

27

Figure 27: Energy Harvester Configuration Options

The energy store overvoltage protection is set to 5V by a high resistance resistor

network with a sum not exceeding 13MΩ (ROV1 and ROV2) using the following equation

(VBIAS is the internal reference voltage, nominally 1.21V):

Equation 5

�/0123 = 32 �/506 �1 + 	23�	237�

[84]

28

Figure 28: Overvoltage Actual Calculation

A separate network of high-value resistors (ROK1, ROK2, and ROK3) is used to set the

energy store OK level at 2V and its hysteresis at 4.7V using the following formulas:

Equation 6

�/0128 = �/506 �1 + 	28�	287�

Equation 7

�/019:;< = �/506 �1 + 	28� + 	28=	287 �

[85]

29

Figure 29: OK and Hyst Voltages Actual Calculations

Finally, a chopped regulated voltage output is set to 1.9V using a third resister network

(ROUT1 and ROUT2)

Equation 8

�2>< = �/506 �	2><� + 	2><7	2><7 �

[86]

30

Figure 30: Regulated Chopper Voltage Actual Calculation

The energy store consists of a bank of supercapacitors rated up to 5 volts. The BQ25570 gets

configured to prevent the charge voltage from rising above 5V; this will prevent damage

occurring to the supercapacitors in the event of overcharging and allow the microcontroller to

operate directly from the energy store without further regulation.

[87]

Energy Store

31

Figure 31: Energy Store Model

Figure 31 above shows the model of the energy store. The capacitors charge time is calculated

and graphed using the following formula:

Equation 9

? = 	�

� @� = �A �1 − ℮��C �

[88]

32

Figure 32: Energy Store Charge Simulation

Figure 32 above shows the expected charge graph for the implemented values.

Wireless Energy Beaming

Initial research focuses on beaming a square wave with a frequency of 13.56MHz via a centre

fed ½ wavelength helical dipole antenna as characterised in [113].

The antenna is constructed using a 92mm PTFE pipe approximately 2 meters in length with a

wall thickness of 8mm. 11.1 meters of antenna wire is then coiled evenly around the middle

section of this aperture. Figure 33 below shows the assembled antenna.

2.0 @ 114.4s
(50%)

2.6 @ 173.3s
(65%)

3.92 @ 645.5s
(98%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000 1200

V
o
lt

ag
e

(V
o
lt

s)

Time (Seconds)

Charge Time

[89]

33

Figure 33: Transmitting Antenna

34

Figure 34: Transmitting Antenna Tuning

A VNA [114] (Vector Network Analyser) is used to tune the antenna's resonant frequency to

13.5MHz with an input impedance close to 50R (Figure 34). This match is achieved using a

combination of wire trimming and additional matching circuitry. High power variable

[90]

capacitors and inductors (Figure 35) are connected inline for dynamically fine-tuning the match

during antenna operation if required.

35

Figure 35: Matching Air Caps and Inductors

A signal generator produces a square wave at the target frequency, which exhibits edge

transitions less than 8ns (Figure 36). This signal then gets fed into a pre-amp module (Figure

37). The pre-amp adds up to 1.9dB of gain depending on its adjustable supply voltage.

36

Figure 36: Transmitted Signal Source

[91]

37

Figure 37: Preamp

The pre-amp’s supply voltage is varied to dynamically control the output transmission power

level of the RF field, and it is here that any required experiment adjustments get made. This

signal propagation continues and gets fed into a power amp module (Figure 38) before being

passed onto the antenna structure via a 50R transmission line.

38

Figure 38: Power Amp

The primary flow of the signal is represented in Figure 39 below. Individual power supplies

are used to supply the amplifier stages.

[92]

39

Figure 39: Transmitted Signal Flow

Safety Limitations

Due to the potential of large output wattages being transmitted via the antenna to fully explore

the system's scalability, considerable time has been spent obtaining and understanding the legal

allowances and precautions of transmitting within the chosen frequency band. OFCOM

indicate maximum transmission powers for the band 13.553-13.567MHz to be 42 dBµA/m at

10 m [115] (Figure 41) for a device to be categorised as ‘short-range,’ this can be interpreted

as follows:

An H-field of 42 dB µA/m in size is equal to 126 µA/m (in real numbers):

Equation 10

%/D0/F = 20 log�D0/F� ⇒ D0/F = 10�JKLM/N�* �
= 125.89D0/F

Given that the impedance of free space is roughly 377Ω, we can convert this to V/m:

Equation 11

�/F = 5 ∙ 	 ⇒ 125.89 × 10�Q0/F ∙ 377Ω

[93]

= 0.04746053 �/F

Now conversion into W/m2 can be made:

Equation 12

T/F� = ���/F��
377 �

= 0.005975 FT/F�

This shows that at 10 meters, the H-field gives a power of roughly 6µW. This value is the

power per square metre because both E and H-fields are represented as volts per metre and

amps per metre.

Assuming the transmitter emits all the power in a uniformed spherical pattern, ensuring that at

any distance, the total power passing through the surface of a sphere is identical, then at a 10m

radius, the area of a sphere being 4πr2 is 1257 square metres. This result equates to the

transmitted power being 1257 times greater than the 6 µW (per metre) mentioned above:

Equation 13

4UV� = 4 × 3.14 × 100F� = 1256F�
0.005975 FT/F� × 1256F�

= 7.5046FT

The actual power emitted then to achieve 42 dBµA/m at 10m is 7.5 mW; a goal for this research

is to operate with transmission powers as low as this allowing the work to get classed within

the ‘short-range’ category, thus potentially benefitting from receiving any kind of already

heavily attenuated ultra-low-power ambient RF energy.

[94]

These calculations all assume an isotropic transmitting antenna exhibiting equal power level

transmissions in all directions. An antenna with exhibits gain must have this attribute factored

into the equation.

40

Figure 40: Ofcom Spectrum Allocation

41

Figure 41: Ofcom IR2030 Extract

Actual measurement and classification of the transmitted signals' levels are explained in the

ETSI EN 300 300 standards [116]. A calibrated reference antenna is used to measure the

transmission power level emitted for verification against the legislation.

For the purpose of this research, A risk assessment has been completed, which identifies and

provides management of the potential risks present during periods of transmission (Figure 42).

[95]

42

Figure 42: Risk Assessment

Beaming Setup

The transmission control system consists of the critical components needed to enable the

realisation of wireless energy transmission. Figure 43 shows the control equipment stack,

which consists of:

• High current low noise PSU for transmission duties

• Variable low ripple PSU used to control the amplitude via the pre-amp

• Pre-amp stage

• Power amp stage

• Wattmeter, Oscilloscope and high wattage dummy load for verification

[96]

43

Figure 43: Transmitter Control Setup

Figure 44 below shows an oscilloscope verification trace set captured after the power-up of the

energy transmitter. It shows the signal generator’s square wave signal in green, passing through

and getting amplified by the pre-amp signal coloured in yellow, and finally, the fully amplified

signal is visible as it enters the antenna mast area coloured in blue.

[97]

44

Figure 44: Transmission Amp Gain Stages

The LPD devices are all equipped with a small loop antenna connected directly to a rectenna

circuit [117], similar to the design presented in Figure 45, allowing the beamed RF energy to

be captured, DC rectified and injected into the energy harvesting IC for accumulation.

45

Figure 45: Rectenna Design

The multiple stages of the voltage multipliers are adjusted based on the results obtained from

power level measurements done within the near-field area of the transmitting antenna and

limited by the maximum voltage input characteristic of the energy harvester IC [108].

[98]

The HSMS-285 from Broadcom [118] is a Surface Mount Zero Bias Schottky Detector Diode.

It is designed and optimised for use in small signal (Pin <-20 dBm) applications at frequencies

below 1.5 GHz where primary (DC bias) power is not available.

This detector diode exhibits an impressively low forward voltage, as illustrated in Figure 46

below. The benefits this characteristic presents for harvesting applications are its ability to

rectify tiny amounts of voltage. Based on the harvesters input specifications, this diode part

enables the LPD to start ‘seeing’ usable microwatts for harvesting potential from around

250mV and above.

46

Figure 46: HSMS-285 Forward Voltage Graph

The performance of the HSMS-285 is so good that the Dickson voltage multiplier stages of the

rectenna can be entirely omitted and the LPDs are still able to perform as expected.

The reception loop antenna (Figure 47) passes through a matching circuit to maintain optimum

power reception delivery. Power transfer efficiencies can be measured directly using an active

oscilloscope probe which presents a very low capacitive loading to the device under test.

[99]

47

Figure 47: Reception Loop Antenna

Basic reception tests were performed by connecting the probe directly to the reception coil

antenna's matching circuity interface (shown below in Figure 48).

48

Figure 48: Reception Analysis

Various transmission and reception antennas were reviewed for efficiency and practicality,

including Yagi, large coil, Heli-coiled, and dipole constructions. A software interface now

exists to quantify the different antennas' effectiveness and efficiencies, allowing quick and easy

initiation of essential calculations and performance metrics. Its operation uses antenna aperture

comparison points, gain and directivity measurements to help choose the best suitable

configuration.

[100]

Effective Antenna Aperture (linear gain)

Equation 14

0W = X�
4U Y = ��

Z� × Y4U

0W = Effective Antenna Aperture

λ = Wavelength =
�
[(where f = frequency, C = speed of light)

G = Antenna gain (Linear Value)

The same calculation done using logarithmic gain uses the following formulae:

Equation 15

0W = ��
Z� ×

10 Y�%/�104U

The software accepts as input the physical attributes of the antenna under test, along with the

electrical characterisation; it then computes the results of the equations and stores the results

in the form of a presentable comparison report.

Permabilities

Initial tests made after applying signals to the transmitting antenna were very surprising and

somewhat unexpected. The measurement suggested a complete collapse of the signal at any

desired frequency regardless of applying any form of impedance tuning. Investigation showed

that after removing the antenna assembly from the mounting table, the transmission field

returned and behaved as expected.

[101]

This result pointed to the table as the cause of the problem; the table consisted of an MDF

substrate construction (wood, Formica, resin, glue) with metal legs. This material stack up

proves to have a very high dielectric which can quickly sum to a value above 10.

To create a research environment where these kinds of influencing attributes can be measured

and controlled, it was decided an entirely new table would be constructed, allowing better

measures to be employed regarding the influence the platform has on the experiment's

measurements.

The new table almost entirely used Styrofoam for its construction; this material's recorded

dielectric is an incredible 1.03 [119], and in Figure 50 below, it can be seen compared against

other materials for permittivity.

Although Styrofoam is not representative of a real-world environment, it provides a stable

predictable foundation to conduct isolated research experiments.

[102]

49

Figure 49: Dielectric Constants of Various Materials

Free air dielectric is 1.0, so Styrofoam is an excellent choice of material to minimise any effects

on the experiments.

[103]

A power meter is introduced into the measurement chain as a secondary verification monitoring

the power amplifier's output power feeding the antenna.

50

Figure 50: Styrofoam Experiment Table

Verification Experiment

A primitive energy beaming experiment was run to validate the system’s ability to wirelessly

deliver power which can be harnessed and used by an independent device.

The Energy Harvesting Stomach module is used along with the coil antenna and rectifier

together in isolation from the other modules to harvest and store transferred energy in a

standard electrolytic capacitor. This accumulated energy then gets released into an LED after

the voltage level has breached the thresholds set with the energy harvesters configuration.

The energy store is a 470uF 16V standard electrolytic capacitor. The power supply chopper

circuit provided by the BQ25570 [108] gets reassigned so that it takes any available voltage

from the store that is above 2.1V and switches it at high speed to an output path which provides

a stable 2.1V output continually as the store's charge is consumed and depleted.

[104]

This power supply output is triggered internally by the IC when the store's voltage level rises

above 4.85V, discharging the capacitors contents directly into a yellow LED, as shown in

Figure 52.

51

Figure 51: LPD Rectenna and Antenna

As the transmission system is powered up and begins to radiate energy from the antenna area,

the LED begins to flash at a rate relative to the strength of the transmission power minus

propagation, reception and harvesting losses.

This test, as shown being performed in Figure 53 below, has been adopted as a commissioning

test, quickly proving the correct operation of the platform when verifications are needed. It is

also frequently used to make informed antenna efficiency comparisons.

[105]

52

Figure 52: LPD Energy Harvesting Module

Commissioning Test Setup

An initial test cycle proves the hardware and executes the following procedure:

1. Initialise into an initial deep sleep mode when 0.1V of energy has successfully

accumulated via the antenna into the store.

2. Continue to collect RF energy and place it into capacitor storage

3. When capacitor storage reaches 4.85 volts, enable chopper circuitry, which turns on the

LED, consuming the stored charge

4. When capacitor storage drops to 2.35V, disable the chopper and return to step (2)

The LED flashes at a rate that represents the capacitors charge time and varies depending on

the distance the device is located from the transmitting antenna.

This basic test verifies the presented platform's correct operation and aids in choosing which

types of antennas best suit the LPNs transmitter and the receiver requirements.

[106]

Ensuring the LPDs all stay in the same position, the LED flash period can be recorded and

measured. This period then gets used to make direct comparisons regarding the most efficient

antenna design combination to continue this research.

The capacitor storage component selection is easily swapped out for supercapacitors when the

need arises, and the prototype board allows easy additions of required electronics for other

intended experiments. The power supply chopper circuit gets used to power the

microcontroller, and the Power Good signal from the harvester gets used to release the

microcontroller out of reset. A secondary reason for adopting this configuration is that the

microcontroller's wake-up energy surge gets mitigated by allowing the harvesters built-in

threshold engine to control the minimum operating level.

A voltage monitor circuit allows the microcontroller to tap into the primary energy store feed

point directly for level measurement purposes and will use this to monitor and log the devices

charge and consumption rates. This level input also enables the ability to capture metrics related

to the speed and efficiency of the energy stream reception.

Multiple LPDs are built for deployment, all using the same design. The charge rate log data of

every LPD gets transferred using the radio interface to a communal logging computer along

with its current physical position.

This collated data then gets used to map and better understand the lensing and reaction effects

exhibited when mutual coupling within the near-field propagation area of a transmitting

antenna gets realised. This data further allows the creation of an algorithm that the LPDs can

use to best position themselves relative to each other so the maximum benefit of the transmitted

power can be captured and realised.

[107]

Firmware and Application Software

Firmware development uses the SEGGER Embedded Studio software [120]. All firmware was

written using C and made full use of the SDKs (Software Development Kit) provided with the

nRF52832 [106]. The SDK covered the low-level communications setup for the Bluetooth

radio and provided its relevant certification assurance – this comes in the form of a pre-certified

Bluetooth SoftDevice. This binary distributed library ensures that the Bluetooth design

conforms to the maintainers' proper protocol legislation and, as such, ensures device

interoperability.

A custom written library exposes interfaces to all the external peripherals implemented on the

design.

An SWD (Serial-Wire-Debug) and JTAG (Joint Test Action Group) interface located on the

PCB allows for debugging, programming and real-time process data exchange with the

nRF52832 [106]. A SEGGER JLink [121] (Figure 54) debug probe provides microcontroller

flash and debugging facilities. This device fully supports the Embedded Studio software and

can be used via the command line for automation purposes.

53

Figure 53: J-Link Programmer

Regarding in-field maintenance and firmware management, the JLink device initially gets used

to flash a bootloader and SoftDevice library onto an MCU. Both are binary parts consisting of

[108]

firmware components that will not change as the primary firmware develops and extends.

Upon application of power, this bootloader transitions into an operational state that powers on

the Bluetooth radio and waits for the wireless reception of a primary firmware package. Any

future changes to the main firmware can be re-programmed using the same over-the-air

method, thus removing the dependency on both the JLink device and any physical connection.

Data Collection

Although EEPROM provisions are available on the MCU module, initial logging data is made

non-volatile by writing it to the MCUs internal flash area.

Once experimentation and execution ceases, the LPD gets connected to the JLink device for

data retrieval. The JLink reads the relevant memory locations and passes the resulting binary

data to the user for further processing and analysis.

[109]

Chapter Summary

For this research to successfully investigate different ways of controlling energy, the chosen

research platform must support the researchers in making fair and informed comparisons of

energy consumption vs task execution output. From a very early stage, it was clear that finding

such a platform on the market that also considers very low-power design techniques is near, if

not entirely impossible.

When considering satisfaction of the initial research requirements, this platform performs very

well in terms of the low current operation, extremely low current hibernations and can

accurately sample, control and monitor their own energy stores.

New microcontroller market offerings get introduced every week, which are all boasting lower

consumption per MHz of speed, more cores, faster clocks, but the changes are relative when

considered alongside the context of this research.

The platform does not include the lowest power latest technology; its research-driven design

decisions allow operation with any device and at any speed. This platform's primary design

paths are forged for their ability to work in a low RF transmission environment with low levels

of light; this way, the sleep/hibernate cycles can easily be artificially influenced to suit the

experiments.

Although the chosen microcontroller heavily offers support for the BLE stack, it is also

compatible with ZigBee meshing and any type of custom radio interface the designer wishes

to implement, and this has come in very useful for the comparisons needed in this research.

[110]

Chapter 4: Empirical Research, Phase 1: Energy Harvesting (Original Content)

With the advent of low-power microcontrollers, keeping a computing device alive for extended

periods with minimal resources is possible.

Extending this feat to its logical conclusion, it should be possible to power a low-power

microcontroller indefinitely if a renewable source can replace the depletion from the power

source, the magnitude of which gets discussed later.

However, why would one wish to do such a thing? Self-powered sensor nodes have enjoyed a

publishing history in the literature for several years now. Sensor nodes generally take

infrequent measurements of data which gets logged for later use. Devices of this type can be

run from button cells or small batteries for months, and deplete and replace the batteries is the

generally accepted solution. The application of a renewable source implies a desire to be

environmentally friendly and/or extend battery life. If a solar panel powers a battery, it will

charge during the day and remain in the charged state at night. However, without doing work,

the machine serves no purpose. If subjected to a load, i.e., doing work, provided the load is

less than the average power generated across the 24 hours, the battery will remain in a charged

state. Setting the load to match the average power does not account for the increased power

availability during the day. Subsequent voltage regulation or decreased current demand from

the battery cells when fully charged will result in useful power not being used to do work.

If intelligent control is employed where the work done reflects the rate at which generation is

taking place, the total work done over the 24 hours will be much greater. Intelligent control is

achievable using a dedicated piece of circuitry or a microcontroller.

A microcontroller's advantage is clear; the algorithm can be quickly and easily modified, and

different adaptation strategies can be applied. Modern microcontrollers can be inactive or

standby modes. Active mode is the regular computational operation with access to A/D

[111]

converters, GPIO, UARTs, etc. Standby or sleep mode is where the program remains in RAM,

and the program counter gets stored. The clock and peripherals assume a suspended state and

have negligible consumption. Wakeup techniques use interrupts based on a watchdog timer or

external pin changes. Putting the microcontroller into standby/sleep results in very low power

consumption and represents little or no burden to the system.

When a cell has been charged and is ready to do useful work, its energy stored over an extended

charge cycle can discharge for a short period through a large load (as shown in flowchart Figure

60: Adaptive Decision Process below). This cycle means the system can drive (albeit

momentarily) much greater loads than it could from the steady charge alone. Many examples

of this principle surround us, e.g., charging a car battery to start a car engine.

A simple example application is a garden pond pump; usually, a solar panel with sufficient

output drives the pump motor directly. However, with a small solar panel, the pump motor can

never run directly from the sun. Utilising a controlled charge time followed by a shorter, higher

power discharge, useful work prevails, and pond aeration commences – just not continuously.

The basis of this work is the addition of a microcontroller to a low-power charging resource to

maximise the work done for a given input source. The assumption that the resource is

inadequate to drive the load directly is ubiquitous in energy harvesting systems and assumed

here. To prevent over-voltage, the load should always be larger than the capability of the

generation source.

The microcontroller (or brain) is in itself parasitic to the system but, with proper configuration,

consumes very little power (of the order of nanowatts). The advantages outweigh the costs, as

seen later. Microcontrollers must operate within strict voltage bounds; typically, in this work,

between 1.8 and 5v. Falling below 1.8 results in potential unspecified operations, including

corruption of RAM and the device entering into an irrecoverable state. Increasing beyond 5v

[112]

will destroy the device. If for a given time-dependent resource, the voltage can be maintained

between these two bounds and at the same time do useful work, then the ‘perpetual’ machine

has been realised. Work can be either internal or external to the MCU.

[113]

Methodology, Phase 1

By using a very low-power resonantly coupled antenna, the supercapacitor is chargeable using

wireless energy beaming. The choice of resonant coupling allows us to tightly monitor the input

and output energy using only a signal generator without dc-dc converters to transform the

voltage. It then becomes possible to study our machine precisely. The same reasoning applies

to small solar or piezo-based renewable sources, which have also been used and produce

comparable results.

The performance of the traditional transformer, based on inductive magnetic coupling between

primary and secondary coils, improves when the two coils resonate at the same frequency [1].

This relationship forms the basis of most wireless charging systems allowing the transfer of

energy across free space at a distance. The amount of power transfer is dependent on the mutual

inductance between the two coils, which is inversely proportional to the distance between them

[2]. The secondary needs to receive enough energy to enter resonance; otherwise, work

becomes impossible.

Traditionally, near and far-field low-power resonant systems have had no significant function.

However, new systems get introduced frequently [3], which allow reception, rectification, and

then storage of the DC in capacitors.

Using wireless power transfer, it is possible to receive power wirelessly and do work without

the conventional storage medium of a battery [4]. An example is a battery-free receiver

designed by the Powercast Group [5]. This product is the P2110B 915 MHz RF Power

Harvester far-field Receiver [6] and designed for sensor networks and active RFID. Distances

of 10m are claimed but at the expense of highly directional and powerful transmitters. The

process involved the accumulation of energy into a supercapacitor.

[114]

This system is distinct from the Powercast offering. Both systems accumulate energy onto a

supercapacitor, but we (a) try to keep the microcontroller alive and (b) deliberately design it to

run larger instantaneous loads than the source can supply.

Accumulating power and then discharging is a bit like saving up to buy something one cannot

immediately afford. This process is achieved by accumulating for a specific length of time,

then spending it when a threshold has breached. The analogy continues because the cost of

living needs considering to prevent the savings from going below zero.

To accumulate a desired quantity of energy, it is necessary to observe/measure a resource. The

act of performing a measurement is in itself parasitic, and the more frequently one measures a

resource, the more energy gets consumed without doing useful work. An obvious approach is

to perform measurements at regular intervals, but if the system is understood, observations

need only be sparse, achieving greater efficiency for a given setup.

The subsequent sections and chapters show and realise intelligent algorithms for power

accumulation that optimally adapts to the available source and required load. The power

requirements of the microcontroller and the capacitance leakage manifest as an addition to the

load.

Sleep Strategies

To illustrate intelligent control of wireless power transfer, an algorithm is created and examined

in a testbed. The idea is to periodically run a load from a source with less energy than the

continuous load requirement. This extrapolation requires scheduling the load's work time into

short bursts or shifts in the duty cycle according to the capacitor's voltage. The steps to achieve

this are: turn the load off; wait for energy accumulation on the capacitor; turn the load on for a

specific time, deplete the capacitor to a known level; turn off and repeat from the beginning.

[115]

Figure 55 illustrates the block diagram of the system. The received power is rectified and stored

in the reservoir capacitor. The capacitor represents the DC source of the system. The

microcontroller decides to turn the load on or off according to the capacitor's charge state.

54

Figure 54: Mutual Induction Process

Figure 56 presents the simplified schematic diagram of the system.

55

Figure 55: Schematic diagram of the system

The testbed uses a loop antenna, used for convenience due to its impedance characteristics

being similar to those used for far-field transceivers. The loop antenna is a radio device that

consists of one or more loops. In our design, two loops are wound, as shown in Figure 57. The

first one is the coaxial oscillating loop or coupling loop, which has a 50Ω impedance to match

the source, a signal generator. The second one is the main loop or the free-running loop (in

resonance), representing the transmitter for the overall design. A tuning capacitor allows for

[116]

fine adjustments. The receiving coil is a ten-turn PCB-based coil with 1/100th the area of the

main loop.

56

Figure 56: Loop Antenna

A 1v pk-pk sine wave drives the coupling loop at around 4MHz giving a transmit power of

approx. 2.5mW assuming perfect matching. Faraday shielding is used in this band to prevent

unlicensed radiation.

Hardware Domain

The MCU with the lowest power consumption is a matter of some dispute and depends on the

application, duty cycle, sleep cycle etc.

The current state-of-the-art ultra-low-power MCUs quote current requirements as low as 30µA

per MHz in active mode and 100nA in sleep mode with operational voltages as low as 1.8v.

[117]

The power consumption of MCUs is dependent on the Microcontroller’s clock speed, the

operational voltage, and the types of technology used but will be in the order of milliamps

when in active mode.

The ATtiny85 [31] is an example of a cheap ultra-low-power microcontroller that provides

development support for the Arduino platform. During active mode, it draws 10-12mA running

at 8MHz. Assuming a CR2032, 3.0v battery has a 500mAh capacity that gives

(500mAh/12mA) over 40 hours of run time. This return is pretty good, but this can easily

extend by several orders of magnitude with the help of sleep cycles strategies.

Onboard any MCU, there exists several peripherals that consume power. For example, the

ATtiny85 has an analogue to digital converter (ADC). When not in use, turning it off can reduce

the power budget significantly. Further savings are possible by sleeping the MCU as discussed

above and waking it up via a counter within the watchdog interrupt.

The recently introduced MSP430 series from Texas Instruments [60], widely used in power

harvesting applications, can be inactive mode at 230µA, 1MHz, 2.2v, or 0.5µA standby, 2.2v.

It can also be programmed using Arduino-based code.

This 16-bit microcontroller running from the same CR2032 cell as before could run for

0.5/300u = 1667 hours or nearly 70 days in active mode. Even the most basic sleep strategies

could extend life to years.

The above observations give intuitive insight into the large amounts of time available to

replenish the source and the small amounts of power required to do so.

For sensor networks and energy harvesting applications, much of the work required is periodic,

allowing the device to power down for significant periods. Power down or sleep mode in the

MCU allows considerable power savings with current consumptions potentially equivalent to

less than the open circuit natural leakage of the batteries used.

[118]

For example, it is required to run the ATTiny85, configured as a sensor controller, for one year

from a CR2032 cell (which measures a mere 20mm diameter with a 3.2mm thickness). We can

calculate its maximum current deliverance to survive the year , that is:

Equation 16

0.5A
�24 ℎVA × 365 %!^A�

An average of ~57µA continuous current/hour. 57µA is not enough to run an ATtiny85 in

active mode (approximately 10mA), so a combination of sleep/wake cycles is required to match

the available power budget.

By being in active mode for a short period followed by a timed inactive or sleep period, it

becomes possible to match the MCU to the resources available. If Ta = the active period, Ts =

the sleep period and I1 = the current required while active, and I2 = the current required while

sleeping, then any average current budget can be expressed as:

Equation 17

5_`Wa_bW = 1_5_ + 1c5c1_ + 1c

Equation 18

1_ + 1c = 1_5_ + 1c5c5_`Wa_bW

Equation 19

1_ − 1_5_5_`Wa_bW = −1c + 1c5c5_`Wa_bW

[119]

Equation 20

1c1_ = 5_`Wa_bW − 5_5c − 5_`Wa_bW

With Ia, Is and Iaverage known, e.g. if Ia = 10mA and Is = 25µA and Iaverage = 50µA

Equation 21

50 × 10�Q − 10 × 10�=
25 × 10�Q − 50 × 10�Q = 398 = 398: 1

Giving a ratio between Ts and Ta of 398:1 for the ATtiny85. To run the MSP430 for a year by

the same reasoning would take a 3:1 ratio.

As Iaverage→0, the ratio between Ts and Ta is approximately equal to

Equation 22

5_5c

Thus, the sleep/awake ratio can be found for any known current budget, allowing it to

accompany the prescribed energy budget efficiently.

Applications of this technology are typically short duration and periodic such as a sensor node

sampling temperature etc. However, the combination of a battery-free active (alive)

microcontroller driven from a minimal energy source offers a machine the potential to do useful

work into the foreseeable future.

The ubiquitous battery gets replaced with a supercapacitor which has several advantages. It can

re-charge from zero; compact, able to charge/discharge very rapidly, has duty cycles in excess

of 500,000 and has a specific power of 10kW per kg [9].

[120]

Disadvantages include low voltage ratings; some leakage and supercapacitors are not an

excellent fit for AC circuits. This application is low voltage (5v), and capacitors are available

in integer multiples of 2.7v. Leakage is important for low power applications, and a good rule

of thumb is 1µA/Farad [10], giving a minimum rate at which the capacitor can receive a

charge. The application here is DC which is primarily where supercapacitors shine. A

capacitor stores energy according to:

Equation 23

� = 12 ���

If a 5.4v 2 Farad supercapacitor gets discharged from 5v to 4v, then 9 Joules of energy is

released. Division by time gives the power dissipated in Watts.

If a 50mA motor is to be driven at the average voltage of 4.5v; P = I∙V and 0.05x4.5 = 0.225W,

the motor can drive for 40 seconds given the capacitor conditions above (ignoring the incoming

charge).

On the charging cycle, if we assume 1µA of capacitance leakage current, a current source of

1mA, and an average current draw of 10µA from the microcontroller, then according to:

Equation 24

 = � %�
%�

It will take 2/0.000989 = 2022 seconds or 34 minutes to charge back to the 5v. The above

makes no allowance for capacitance leakage or incoming current.

This specific example can be generalised as follows:

[121]

If :

C = rating of the capacitor in Farads

ILoad = current drawn by the load

ILeak = the capacitance leakage current

Vbefore = voltage on capacitor before charge/discharge

Vafter = voltage on capacitor after charge/discharge

Imicro = average current draw of microcontroller

Icharge = charge current from the source

The variables of interest are the charge times and the discharge times Tcharge and Tdischarge

If the average voltage seen by the motor is:

Equation 25

��eW[faW � �_[�Wa�/2

Then:

Equation 26

1�g_abW = ���eW[faW � �_[�Wa��5hg_abW � 5iW_j � 5Nkhaf�

Equation 27

1Jkchg_abW = ���eW[faW � �_[�Wa��5lf_J + 5Nkhaf + 5lW_j � 5hg_abW�

[122]

Clearly from the above, if Imicro + Ileak ≥ Icharge, then no useful work is possible, the capacitor

will begin to discharge, and Imicro must reduce in some way, or the device will die.

Software Domain

To manage energy over time, it is necessary to regularly read the capacitor voltage until a target

voltage threshold gets breached. Then a decision can be made to run the load. This process

also exists using discrete electronics or a low-power microcontroller. The new generation of

ultra-low-power controllers such as the Atmel ATTiny 85 and the TI MSP430 have comparable

or better power consumption than bespoke electronics with the added advantage of onboard

computation.

A microcontroller in the awake state can consume 2-3 orders of magnitude more power than

when asleep [7]. Our system moves beyond merely ‘sitting’ and waiting for the capacitor to

charge before doing anything. Two readings are taken of the capacitor voltage at separate times

and used to calculate the system's time constant. From this, the required sleep time gets

calculated, so the microcontroller awakes at the point where the capacitor has reached the

desired charge (recall sleep is much more energy-efficient than awake). Two readings are used

in the first cycle, followed by a single reading in subsequent cycles to update the estimated

time constant. The outline of the algorithm is as follows:

1. Read VCC

2. Sleep for a short time

3. Read VCC

4. Calculate τch (Time constant for charging)

5. Find (tsleep) the required time for sleeping until target1

6. Sleep for tsleep

[123]

7. Wake up, read VCC and turn the load on

8. Delay for a short time

9. Read VCC

10. Calculate τd (Time constant for discharging)

11. Find (ton) the required time for turning the load on

12. Delay for ton

13. Repeat from step 5

Charging Time Constant

Step 4 in the algorithm needs some clarification, where τch is the time constant of charging the

system's capacitor. It is known as:

Equation 28

?hg = 	hg × �

Where Rch is the equivalent impedance in series with capacitor C [8]. Figure 58 shows the

mechanism of charging and discharging the capacitor.

57

Figure 57: Circuit of charging and discharging a capacitor

In this system, Rch is not a constant impedance. It is the equivalent impedance of the combined

circuit before the capacitor and is challenging to calculate as it changes with coupling and load.

[124]

Therefore, the time constant needs to be calculated regularly and updated. It is possible to

calculate the time constant from two readings of the capacitor’s voltage at any given time while

it is charging. The time constant for charging can be calculated in this way, starting with the

basic capacitor charging formula, as shown below:

Equation 29

�* = �km n1 � ��o Cpq⁄ s
Equation 30

�7 = �km n1 � ��t Cpq⁄ s
Where V1 and V0 are the voltage readings at t1 and t0, respectively.

58

Figure 58: Capacitor Charge Simulation

Where Vin is the maximum voltage, as shown in Figure 59. These two equations get rewritten:

Equation 31

�* = � ?hg "u (1 � �*�km+
Equation 32

�7 = � ?hg "u (1 � �7�km+

[125]

Taking the difference between the two times leads to:

Equation 33

�7 � �* = ?hg"u (1 � �*�km+ � ?hg"u (1 � �7�km+
Equation 34

?hg = �7 � �*
"u v1 � �*�kmw � "u v1 � �7�kmw

= �7 � �*
"u (�km � �*�km�3t +

This equation gives an estimate for the time constant regardless of where we are on the charging

curve.

From the calculated charging time constant, the microcontroller can find the required sleep as

in step 5 of the algorithm by:

Equation 35

�A"��x = ?�ℎ "u y �
u�
u ���!Vz��1{

Discharging Time Constant

Similar to the above, the time constant for discharging gets calculated as required in step 10.

The time constant in the discharging process τd depends on the parallel load resistance Rd [8].

In this system, Rd represents the equivalent resistance of the circuit beyond the capacitor and

gets defined as:

Equation 36

?| = 	| × �

[126]

As before, taking two voltage readings (V2 and V3 from Figure 59 and Figure 60) is enough to

find the discharging time constant. The first reading measured at the highest charged point t2.

The second reading took a short while afterwards, t3, as shown in Figure 60. Starting with the

capacitor discharging formula, τd is derived as shown below:

Equation 37

�� = �c�_a� ���} C~⁄

Equation 38

�= = �c�_a� ���� C�⁄

These two equations are re-written:

Equation 39

�� = − ?| "u ���c�_a�

Equation 40

�� = − ?| "u ���c�_a�

Taking the difference between the two times leads to:

Equation 41

�= − �� = − ?| "u �=�c�_a� + ?| "u ���c�_a�

Equation 42

?| = − ��� �}lm(�}������+� lm(��������+ = − ��� �}lmv �}�� w

[127]

59

Figure 59: Capacitor Discharge Simulation

Regarding step 11 in the algorithm, the calculated discharge time constant gets used to estimate

the required time to spend the accumulated energy as useful work:

 Equation 43

�fm = ?J"u y �c�_a���_abW��{

The flowchart in Figure 61 provides specific detail of the implementation tested here. The

highlighted shapes represent the remaining parts in force in subsequent cycles. This illustration

shows that the time constants are calculated only in the first cycle and then updated as new

conditions occur. After the first cycle, just one reading is required during charging and one

reading during discharging.

[128]

60

Figure 60: Adaptive Decision Process

[129]

Intelligence and Autonomy

If a renewable resource gets managed correctly, it is possible to charge and maintain an

accumulator such as a supercapacitor. The addition of a parasitic microcontroller places a load

on the accumulated resource, but this can be mitigated by putting the MCU into standby/sleep

mode.

If the MCU never sees a voltage level below 1.8v, wakes periodically, and performs a useful

function, then the machine that lives forever is born. For this to be possible, the outgoing or

consumption of power must be less than the incoming or rate of generation, or the voltage level

on the accumulator will progressively decrease. Note capacitive leakage is not being considered

here.

Microcontrollers with deep-sleep modes can enter into very low power modes and

consequently tailor their behaviour to the resources available to them. In this way, it is possible

to run a microcontroller periodically where the input is less than the operational consumption.

With the addition of the intelligent controller and awareness of generation rates, it becomes

possible to budget according to the current and future perceived resource; the machine should

learn from past events.

The overriding objective of a machine of this type is to stay alive, i.e., maintain the voltage

above v_min and to do as much work as possible in a given time. Work can fall into various

categories, including calculations, driving external loads, and communication with the outside

world.

Available energy can be at two extremes: (i) excess or feast and (ii) insufficient or famine. In

(i), the accumulator has reached the desired charge, and the influx rate is fast. In (ii), the

accumulator is below its maximum, and the influx is minimal or non-existent.

[130]

If energy is bountiful as in (i), long duty cycles of work can be assigned and sleep times

reduced. If energy is scarce as in (ii), little or no useful work is possible, and sleep times must

be very long. If considering Micro Solar, (i) would be the case during the day and (ii) the case

during the night. The MCU would need to ensure sufficient energy available in the accumulator

to last from dusk until dawn.

Startup Inertia

An obvious question is why keep the MCU alive at all; if the voltage dips below 1.8v, just let

it until sufficient energy becomes available again. While this approach has some merit, MCUs

approach their operating voltage from below their minimum specification, causing them to take

significant amounts of current and consume more energy than being generated without

becoming operational. Low voltage lockout circuits exist, which can prevent this, but they

often use more in standby than the MCU while operational! In the event of under-voltage, the

current program state becomes lost (in RAM), meaning that any long-term data needs writing

to ROM. If no under-voltage protection is employed, there is a genuine possibility of ROM and

program memory corruption. Given the tiny amounts of energy involved, the option of keeping

the MCU alive is a viable one. For example, the MSP430 series from Texas can sleep for 12

hours for approximately 1uWh

[131]

Discussion and Results

Continuously measuring the stored energy on the capacitor can be achieved by regularly

reading (e.g., every few seconds) its voltage until it just surpasses the target. Reading voltages

in this way is wasteful of power because of the awake state energy requirements of the

microcontroller. Logically, reducing the number of readings by increasing the sleep time

between subsequent readings will improve the system's efficiency. Nevertheless, there are

limitations to maximum sleep times. With arbitrary delays, the voltage could exceed the target

and even overvoltage the microcontroller. The action of reading the analogue voltage has the

direct effect of also increasing the time to target, so regular reading also requires increased

charging times to compensate for the cost of the awake states.

Figure 62 shows the systematic sampling approach for charging and discharging the capacitor.

During the charging cycle, the samples are every 8 seconds in this example and require the

microcontroller to be awake for 2.5ms. For the rest of the cycle, the microcontroller is sleeping

using 100 times less power. If the system has a time constant of 150s, it requires 13 readings

to reach target 2 (sampled every 8s) and the samples required during discharging to reach target

1. There are two disadvantages to the traditional sampling approach: as well as decreasing the

efficiency; the system requires more time to reach the target because of the increased

parasitics.

[132]

61

Figure 61: Charging and discharging processes

An accurate estimate of the time constant for charging an appropriate sleep time can be found for the

microcontroller, allowing efficient energy accumulation, waking only once when target two has

breached. With the associated knowledge of the discharging time, a constant target efficiency can be

reached without depleting the capacitor below the microcontroller’s minimum operational voltage.

In terms of energy, it is possible to calculate the efficiency of the charging process of the capacitor as

follows:

Equation 44

�ZZ
�
�u�^ = �@�x@� �u�Vz^ 5ux@� �u�Vz^ × 100%

Equation 45

�ZZ
�
�u�^ =
��faj. 1J

��faj. 1J + �c. 1c + �a . 1a . �
P 100%

Where: Pwork : Useful power or output power.

Td : Discharging time

Ps : Power consumption of the microcontroller

[133]

 during sleep time.

Ts : Sleep time.

Pr : Power consumption of the microcontroller for each voltage reading.

Tr : The time it takes for each reading.

N : The number of readings.

62

Figure 62: Efficiency vs sleep time

Figure 63 shows the efficiency of the system as a function of sleep time. The figure leads one to believe

that longer sleep time gives greater efficiency, but when Tsleep > Tactual overvoltage occurs, damaging the

circuitry, and sub-optimal use gets made of the resources available.

The system shown in Figure 61 has been simulated in Matlab to evaluate the capacitor's

charging process controlled by an ATtiny85. The variables in the simulation are shown in Table

3. The two factors of interest are the charging process's efficiency and the extra time required

to compensate for the losses incurred from the regular reading during the charging process.

Different sleep times are used to show the impact on the efficiency of the system.

[134]

C = 4700µF The used capacitor

Rc = 33kΩ The equivalent serial resistance

Rd = 700Ω The equivalent parallel resistance

Is = 5µA The microcontroller current during sleep mode

Ir = 5mA The average current when the microcontroller is on

Ton = 2.5ms The wake-up time for each reading

Vtarget1 = 4V The upper level of voltage

Vtarget2 = 3V The lower level of voltage

Table 3: Variable Values

Looking now at the discharging, without any interval time between any two readings, the

efficiency will be zero for the given setup shown in the table because all the stored energy will

get spent driving the microcontroller and performing a continuous reading. Figure 10 shows

the effect of three different interval times between readings during discharging. The figure

illustrates that the longer the interval time, the higher the efficiency for a specific sleep time.

Moreover, increasing sleep time improves the efficiency for a specific interval time.

63

Figure 63: Efficiency of the regular reading Method

The comparison between continuous and our ‘selective time constant’ based method shown in

Figure 64. It is clear from the figure that the efficiency of the time constant calculation method

[135]

is more than two times that of the regular reading with 16s sleep time and 10ms discharge

interval time for the given 150-second Tau setup.

64

Figure 64: Efficiency of a regular reading method with different sleep times compared

to the τ calculation method

Figure 65 presents the percentage of the additional charging time as a result of multiple

readings proportional to the required time of our proposed method:

Equation 46

 ���V! �
F� x�V��u� = �a − ����

where tr : Charging time of regular reading method

 tp : Charging time of proposed method

[136]

65

Figure 65: Percentage of extra charging time for regular reading compared to the

proposed τ method

Illustrated by Figure 65 and Figure 66, using low sleep times is infeasible due to the low

efficiency and increased charging times.

[137]

66

Figure 66: Comparison of Volts over fixed time (Seconds) vs proposed algorithm

[138]

Chapter Summary

Power management is achievable by implementing intelligent control in designing a wireless

power transfer system but has far-reaching implications for other low power applications. This

research presented an algorithm to run a load with a source that has less energy than the load’s

continuous requirements. The theory evidence comes from using an ultra-low-power

microcontroller that makes sleep and awake decisions to accumulate the maximum amount of

usable energy. At the appropriate time, the micro wakes up, briefly runs the load, keeping

sufficient power to allow it (the micro) to stay alive.

The presented algorithm is easily realised in code and achieves best-case utilisation from just

two readings. This contribution represents a significant improvement in efficiency over the

periodic analysis case. It keeps charging times fixed without significant expansion and allows

increased discharging time to do more useful work.

[139]

Chapter 5: Empirical Research, Phase 2. Meshing and Communication

Methodology, Phase 2

2011 saw the Bluetooth SIG [86] release their first deployable implementation of a new

Bluetooth version known as Bluetooth Low-Energy (BLE), also referred to as Bluetooth Smart.

The drive behind its creation was a clear market trend targeted towards battery-powered

devices. BLE is not constrained by or requires the ‘device pairing’ protocol initiation

procedure found in the previous incarnations of the Bluetooth offerings – now renamed as

‘Bluetooth Classic.’ BLE is targeted explicitly towards connectivity for the Internet of Things

and small sensor type networks, potentially adopted as some kind of broadcast-type sensor

offering data samples to other BLE devices, all of which do not need the pairing overhead.

The original Bluetooth offerings revolved around a star topology providing point-to-point type

connections between the devices. Consisting of some kind of hub or central device – e.g., a

PC or a smartphone performs the pairing operation with one or many different devices. The

limitation of the number of pre-paired devices is potentially unlimited; however, the number

of these devices that can be simultaneously connected to and used concurrently is limited only

by the specific implementation of the software and hardware.

Due to the star-topology of Bluetooth Classic, devices cannot directly connect and

communicate with each other, and if the requirement is to pass messages from one device to

another, then some kind of Central hardware must be utilised as a relay.

BLE works to overcome some of these pitfalls and resource-hungry limitations. It adds both a

point-to-multipoint and a broadcast facility available for short-range navigation beacon tasks

such as near object identification and classification, achieved using a combination of RSSI

(Received Signal Strength Indicator), Calibrated antennas, and knowledge of the transmission

[140]

devices power output. Broadcasting offers an efficient way to send one message to every

receiver simultaneously.

The Classic version was again revisited and revamped in 2016 where the release of version 5

was delivered. This version offered a greater choice on data link speeds and coding and

providing support for longer-range transmissions.

More interestingly, developed alongside this release was the introduction of a new connectivity

model that allowed mesh networking. This model was named the Mesh Profile and is a many

to many communication style with integrated provisions for message relay from one device to

another. This profile allows creating a very flexible mesh topology with multiple potential

paths between nodes, ensuring redundancy, self-healing, and increasing the probability of

successful message delivery.

[141]

Communication

67

Figure 67: Nordic Semi BLE Mesh [86]

Figure 68 illustrates how the Bluetooth Mesh model fits into the standard BLE protocol stack

supplied by Nordic Semiconductors [86]. The Bluetooth Mesh-specific extensions are visible

on the left-hand side of the diagram. The Mesh profile was not exclusive to the Bluetooth 5

release as such; its also compatible with Bluetooth 4.2.

BLE Meshing

The Bluetooth mesh profile includes several generic models that can provide solutions for most

problems when combined. The generic servers have simple variants such as On/Off,

Open/Closed, and Level values. A considerable influence on the Mesh Profile design itself was

[142]

the smart home and smart lighting industries. For example, a typical smart light would use the

generic On/Off model alongside a generic Level model to manipulate its brightness level.

A device must accept provisioning to allow it to join a particular network segment, and to

achieve this, it must execute a sequence of connection setup exchanges with its peer. Specific

encryption key sets for the device and the desired part of the network must be exchanged with

its peers, after which it can assume its role of network ‘node.’

Server Models and Elements

Devices are built by mapping generic server models to every ‘feature’ offered by the underlying

product, and these get referred to as Elements. Every device must provide at least one primary

Element and can have one or many secondary Elements.

An example of this Elements hierarchy would be a Temperature controlled bathroom fan. The

primary element would be the generic On/Off model representing the fan's power control. A

secondary element is introduced, which is a generic level model representing the current sensed

temperature value.

Additional elements get added as secondary elements, all of type ‘generic level’, which

represent the other features of the product such as the temperature setpoint to turn on, the

setpoint to turn off, maybe even a humidity level. For even more integration, some variants of

the same product may also include additional elements allowing for the humidity readings to

start and stop the fan.

A Bluetooth Mesh network is capable of connections between 32,767 individual nodes. These

nodes are groupable into a maximum of 4096 different subnets allowing broadcast domain

control. Provision is made for up to 65535 ‘Scenes.’ A scene is a collection of common

elements applied to multiple devices of different types. In the smart home environment, a scene

[143]

may well control the levels of numerous bulbs, heaters, and fans, setting them all up to pre-

defined settings required for a specific mood. For example, there may be many types of

different bulbs from different suppliers; however, they all have a generic level server that can

control the brightness.

Mesh Friends

The profile allows for ‘friend’ devices, which facilitate the nodes' ability to remain in an ultra-

low power consumption state, yet still retrieve the messages targeted towards the node during

its sleep.

The friend device implements a store-and-forward feature to buffer messages to the hibernating

node for delivery when the device wakes up. It is the device's responsibility to connect with

and check their friends for any pending messages they may have. This power shift moves the

entire responsibility and time dependency of retrieving and sending messages to the ultra-low-

power device and enables it to be operational for extended periods using extremely low energy

levels yet still maintaining an effective communication medium.

[144]

68

Figure 68: Mesh Network Device Types

Further to the friend device feature, the spec also provisions for a proxy device. Since many

user-orientated management nodes do not contain mesh support as standard, the need to pass

control messages to and from the network and manage provisioning duties are satisfied by

proxy devices.

Mesh Proxies

The proxy allows applications from none-meshing hardware to relay messages in and out of

the network. It can also be implemented as an ultra-low-power device using message pushing

to communicate with the proxy device.

Friend devices cannot typically operate as a device that can sleep/wake unless network time

synchronisation facilities exist to support it.

[145]

The mesh uses a managed flood routing protocol to forward messages from one node to

another. The messages use a time-to-live (TTL) value to prevent infinite message looping and

ensure broadcasts get delivered to every device in the vicinity. The TTL is decremented every

time the messages pass through a node until it reaches a zero value which then causes it to drop.

The maximum number of hops offered by the Bluetooth Mesh is 126.

By nature of the flood routing and TTL, every device will eventually receive every message;

unwanted and unintended message reception can be reduced and controlled using the network

segmentation subnet feature.

Managed flood routing allows BLE to scale and cover larger areas quickly and easily and allow

internal expansion as the nodes feature requirements dictate; this is a significant addition to the

previous Bluetooth specifications.

Control Messaging

A Client-Server architecture operates as the control protocol. The server model is used to track

and represent states or states that span elements from within the device. The client model

defines a set of messages used by the client to get, set, or request status for a server's various

states.

Finally, a control model adds the control logic needed for interactions between the client and

server models.

The mesh's communication system is based on passing messages with a maximum payload size

of 29 bytes, which is by design intended to be used to surface and publish the device's element

states.

[146]

State Notifications

There exists a notification system that operates on a publish and subscribe model. Here other

devices can send a notification request to a server, which as actors they wish to subscribe to

and will be getting, setting, or requesting status from the servers' elements.

As the messages do not traverse a central device or broker of some kind, the mesh's managed

flood protocol will ensure every device receives every network message. The penalty here is

that all servers will also respond to these messages; careful use of the subnet segmentation

reduces this overhead.

Security Layers

Security and encryption are compulsory when joining and using the mesh. A device setup and

provisioning procedure must be executed for every node, after which the device gets granted

access to join the network.

Provisioning involves exchanging security keys for the network and the device, setting the

device's subnet parameters, and then provisioning the device with setup and operational data.

The encryption and authentication of all mesh messages are, if possible via device

implementation, done using an Elliptic Curve Diffie-Hellman (ECDH) implementation to

establish a shared secret with the provisioner for further possible key exchange.

Alternatively, the provision also exists for an out-of-band key exchange which can take

advantage of the QR Code scanning facility. Here, the device gets supplied to the end-user

with its shared secret embedded in a barcode. This barcode is scanned by the provisioning

device, after which all subsequent traffic will encrypt using the AES-128 symmetric cypher.

[147]

This provisioning is a very convenient means of deployment as the barcode can be included in

its packaging or attached to the device itself.

The mandatory use of message encryption and authentication is a significant strength of the

protocol and enforces the need to have tight security integration from the very beginning.

Every device must be authenticated and have securely exchanged keys before any network

messaging can occur.

Provisioning commences via a proxy node, with control coming from either the end-user or via

a previously successfully provisioned device.

The provisioning process consists of five distinct phases:

1) Beaconing

2) Invitation

3) Public key exchange

4) Authentication

5) Provisioning Data

The unprovisioned new device will begin the process by periodically advertising a beacon

message showing its desire to be provisioned.

This beacon gets answered by another device willing to provision the new device by sending

it an invitation.

The reception of an invitation will cause the new device to transmit a capabilities protocol data

unit (PDU) which describes the following features offered by the new device:

[148]

• Number of elements the unprovisioned device contains

• Capabilities in terms of supported security algorithms

• Out of band public key information if available

• Capabilities of this device reporting data

• Capabilities of this device accepting data

Using this PDU, the provisioner will decide how best to exchange the security keys with the

new device.

The procedure then securely exchanges several nonces (random numbers) to initiate the

authentication stage. Either device generates the nonces, and the PDU contents determine who

will take this responsibility. The other device waits to acknowledge the receipt of the nonces.

Both devices can also generate a set of their own nonces and exchange them, following up the

transmissions with their respective acknowledgements.

Confirmations then follow this process that the nonces are correct and the authentication

process can complete, this starts the provisioning phase, and its data gets sent to the new device.

This data will include:

• network encryption key

• Unique device key

• Bookkeeping data

• Unicast address

At this point, the new device becomes a ‘node,’ and its unique network address is the Unicast

address passed to it during provisioning data transferral. This address points to the device's

servers' primary element. The provisioning procedure can now complete, and the node can

begin receiving and transmitting mesh messages.

[149]

If a device is to leave a network, an un-provisioning procedure gets performed where the node

can give up its network encryption keys and gracefully leave the mesh.

In the case of hardware failure where a device becomes completely unresponsive, yet there still

exists a requirement for its removal from the network, a facility exists where the other nodes

can blacklist the failed device, preventing it from establishing connections to other network

nodes from that point on.

After a blacklist has occurred, the provisioner can initiate a Key Refresh procedure that

generates a new network encryption key set and securely distributes it to all the network nodes.

This extra security layer prevents an attacker from obtaining a device and somehow removing

the encryption key and using it in a custom hardware device to penetrate the network.

The mesh protocol also provides cybersecurity features to protect the integrity of the network's

PDU exchanges. These include PDU Sequence numbering and Initialisation vector (IV) index

fields, which allow sequence enforcement and audit trails – preventing such intrusion attacks

like a reply attack.

Incorporating the BLE Mesh profile into the BluBot hardware platform [110] was

straightforward. The layout, to collect and analyse comparable data, consisted of the following

hardware and software collective:

[150]

69

Figure 69: BLE Mesh Layout

1. Provisioner (Enabling the network to perform automatic discovery and provision of

the BluDot devices). A single hardware unit deployed alongside the controller. In

conjunction with a supporting application, this device enables the end-user to query

the network's status and properly remove nodes when required.

2. Mesh Friend (Allows message queueing for low-power devices, enabling them to

hibernate). As the devices' coverage area was not large, a single hardware unit was

enough to achieve the research goals.

3. Mesh Controller (Hardware interface between network and PC/App). This device

acts as the proxy node, allowing messages to traverse between the network and the

user. The GUI end implements a USB connection to the Bluetooth Mesh hardware

device.

[151]

4. Bluetooth Mesh BluBot profiles (Publishes server and client models for the devices,

these will facilitate the task execution and allow status requests)

5. GUI User Control/Monitor Application, with the facility to capture the network's

message data for analysis.

6. Software implementation of the Bluetooth Mesh specification

7. Software implementation of the Mesh Provisioner specification

8. Software implementation of the Mesh Friend specification

9. Several BluBot LPNs (low power nodes) will represent the workforce.

Each stage's implementation uses modified versions of the software offerings from both Nordic

semiconductors [106] and the Zephyr mesh project [122].

Provisioner Device

The provisioner is a single standalone hardware device.

The provisioner's role is to provide an entry point into the mesh for new devices and nodes and

facilitate nodes wishing to leave the mesh by ensuring they get appropriately decommissioned.

This hardware’s firmware is implemented using the Bluetooth Mesh SoftDevice, and reference

design implementation offered by Nordic semiconductors [106]; alongside the nRFConnect

app running on Bluetooth enabled Android devices, the provisioning duties operate as per the

stock reference specification.

The device performs the following management tasks:

[152]

• Scan for unprovisioned mesh devices which are waiting for an invitation

• Checks for compatibility by querying mesh nodes for the correct BluBot services

• It gives the device a unique unicast ID address

• Exchange the network communication keys

• Enumerates and initialises (provisions) the LPN device

Four individual Application Keys get deployed with the devices, each one covering a generic

server implementation,

The first covers the generic On/Off server, which controls the LPN’s LED.

The second is a generic Boolean value server which represents the current state of the LED.

The third key is to implement a generic level server representing the LPN’s current energy

store level.

The final key is reserved for a generic level model, allowing the controller to implement a

synchronised message wakeup pattern.

Mesh Friend Device

A Mesh Friend is one or many standalone hardware devices, but not low-powered. They get

provided with a permanent power supply and, by design, are not intended to be self-sufficient.

At the time of implementation, the idea of an LPN using a friend to store and forward a

hibernating device's messages was in the process of being finalised, and as such, a friend

solution from Nordic semiconductors [106] was not available.

Therefore, the implementation uses a modified version of the code available from the Zypher

mesh project [122]; this code is both open source and available for download. As both

[153]

companies fully support the published BLE specifications, both providers' offerings work

together without issue.

The implementation is in its raw distributed form, and an LPN must explicitly establish a

friendship with the device before any message traversing can occur.

The implemented duties include:

• Continually listens for new BluBot friend requests

• Makes friend offers to unfriended LPN devices

• Establishes and maintains individual message queues for all friended devices

• Provides a service that allows the BluBot LPN devices to poll it for pending messages

Mesh Controller Device

A Mesh Friend is one or many standalone hardware devices, but not low-powered. They get

provided with a permanent power supply and, by design, are not intended to be self-sufficient.

The controller part has been implemented using the Nordic Semiconductors [106] Softdevice

alongside a bespoke firmware implementing the project-specific details.

The primary duties of the controller cover:

[154]

• Network monitoring, size, and load

• Provides feedback to the controlling PC via a wired comms link

• Allows message passing from the user to the network and vice versa

• LED Blink Client Model – Allows the device to request other devices to blink LED

• LED Status Client Model – Allows the device to request other devices LED state

• Power Level Client Model – Allows the device to request power status information

from other devices

• Monitors device health, RSSI levels, communication losses etc

• Time sync client model – Allows the controller to sync the wake-up times of the mesh

devices

The device allows a copy of the messages sent over the mesh to pass through the hardware

USB port destined for the GUI software. It also provides an infrastructure to allow predefined

command transmissions to either all or individual LPNs within the mesh.

BluBot LPD

BluBot LPDs are individual standalone ultra-low-power hardware devices with

communication abilities and are designed with self-sustainability in mind.

The hardware design supports the following primary requirements:

[155]

• LED Blink Server Model – Provides a service that allows other devices to issue a

blink LED command

• LED Blink Client Model – Allows the device to request other devices to blink LED

• Power Level Server Model – Provides a service that allows its current energy store

level retrieval

• Power Level Client Model – Allows the device to request power level information

from other devices

• Low power PWM LED controller

• Implements deep sleep and auto wake cycles

• Implements a service which searches the mesh for nearby friend devices

• Implements a service to request friendships and accept friend requests

• Implements a service used to poll friend devices for pending messages

• Time sync server model – Allows wakeup event synchronisation with other mesh

devices.

• Time sync client model – Allows wakeup events to be initiated directly with other

mesh devices.

Implementing both the client and server parts of the generic model into the LPN design

allows the units to achieve a peer-to-peer messaging and command initiation setup, which

significantly reduces the overall traffic flow and the need for the controller to act as a post

office.

[156]

GUI Application Software

The user software parts of the deliverables consist of a PC based software application and a

small supporting collection of mobile device applications.

The GUI application runs on a windows platform and is written using C++. The controlling

PC does not need any Bluetooth hardware support or drivers, as the Bluetooth radio, stack, and

supporting hardware have already been implemented within the Mesh Controllers hardware

assembly.

The GUI application duties comprise of:

• Display all discovered devices currently joined to the mesh network

• Queries and displays power status of these devices

• Provides a means to interact with the network, send and receive messages which

initiate commands.

• Allows research and debugging data from devices to be collected and stored.

Various mobile applications are available from Nordic Semiconductors [106] that aid in the

initial configuration and deployment of a Mesh network and provide the ability to monitor and

diagnose a problematic network if needed.

Radio

The radio interface generates a 2.45GHz carrier when transmitting. The provisioner, friend,

and controller devices have their radios permanently enabled. However, the LPNs will only

enable the radio when they are unaware of the current communication cycle or expecting to

receive or transmit a message. This deployment strategy further illustrates the need for the

constantly-powered friend device to act as a go-between.

[157]

The flowchart in Figure 71 below shows the overview of how a device behaves when first

introduced into the network. The provisioner hardware must initially provision it. Following

successful provisioning, it must immediately find and bond with a friend to assist in message

passing. When these two setup stages are successfully complete, the device can begin to

participate in the low-energy work tasks provided via the network. The actual message flow

is detailed in Figure 73 below, and here we can see how the friend can assist in enabling the

device to realise a low-energy existence. If the friend were not available, the LPD would need

to permanently enable its reception radio due to it being unaware of any message transmission

timing, thus consuming considerably more power. The friend allows the device to wake up

periodically and request any pending messages for its attention. The LPN, however, can

immediately send any responses or transmissions directly to the network, as at this point, the

LPD is already in an operational state consuming energy. The friend devices can perform their

own energy conservancy and operate in a low energy state if needed, as receiving and storing

messages is their only task; they do not undertake any other workload duties. Friends do not

need to be mobile or perform any intensive CPU operations, but they do need to have a radio

listening and available whenever an LPN or controller message exchange event occurs.

Potentially, duty cycling the radio in a predetermined and predictable way could also lead to

reduced operational consumption.

[158]

70

Figure 70: BLE Device Coms Overview

[159]

71

Figure 71: BLE Device Coms Overview Part 2

[160]

72

Figure 72: BLE Message Flow Diagram

[161]

Chapter Summary

Meshing proves to be a very resilient and capable communication protocol. We can make

better use of our energy reserves and be more efficient if we can implement a more direct to

peer messaging approach when needed.

Direct communication, self-synchronisation, and independent operation are also highly sought-

after attributes.

If we again reflect upon how nature achieves communication, it seldom reveals that it requires

everybody hearing what everybody else has to say. Evolution has shown that harnessing all

types of messaging protocols and mediums is the best and most diverse way to communicate,

and this covers unicast, multicast, and broadcasting.

There are other nature traits we can look at; for example, if we have a message to pass to a

friend, we would unlikely hold onto that message in our minds for years. Evolutional

messaging systems seem to have achieved ways of losing baggage and only coping with a

limited number of internal queues – but it works.

Adopting these kinds of tactics works very efficiently when considering them within the

context of ‘survival solely to complete tasks’.

If, after some time, a message does not get through, it will naturally be retried at some future

point and forgotten. The interval before any re-attempt to pass on the message, at this stage, is

dependant on the urgency associated with the message.

The idea is we do not need to throw massive amounts of hardware and energy resource at these

types of problems, just as evolutional communicational systems have adapted. It is enough to

make a best-effort attempt and keep trying for a reasonable period. The most crucial objective

is survival, not message delivery.

[162]

When we start to break away from the mesh connectivity idea, or the network becomes

segmented down into smaller groups, we almost start to create explorers ready to move away

from the comfort and close contact of their siblings and settle in a new group, potentially

creating another ‘mini-mesh’ community.

The process of how to make a unit try and detach from the mesh to expand can be solved by

having dedicated devices used to join two independent mesh systems together and provide a

communication gateway or a proxy.

The more this type of expansion gets consideration, the more its realised that further supporting

hardware is needed to ‘prop up’ the platform. Controllers, friends, gateways are all energy

consumers and effectively restrain any kind of self-survival.

Devices have a way to contact their home base station by passing messages through other

devices and being available to help pass another device's messages onwards to their destination.

The guaranteed delivery aspect of the message is lost, but evolutionally, it seems not to be there

anyway.

Time synchronisation is essential and somewhat challenging for this type of operation.

Tolerance windows get utilised to counter fluctuations in timing crystals and resonators. This

addition will inevitably cause energy loss due to the extra time needed to ensure successful

wake synchronisation.

The device must be in a position to be able to decide for itself if it is capable of sustaining

communications of any sort based on its current charge level. It must schedule its flow of

messages and have a small limit in terms of any type of queue that needs servicing.

[163]

Chapter 6: Empirical Research, Phase 3. Intelligent Energy Management

Protocols (Original Content)

Methodology, Phase 3 The requirement for Energy Management Protocols

When a device operates without the constraints of a battery and relies only on the energy it can

scavenge from its ambient surroundings, every single micro Watt of power successfully

plucked from the environment and forced to pay its harvesting costs, followed by having its

remainder stashed into a leaky storage reservoir is a remarkable achievement.

Thus, energy has to be considered a valuable resource, and it must be kept, guarded, issued,

and used appropriately. Wasting it cannot be tolerated and undermines all the work done to

collect it, so the entire accumulation and consumption system needs proper management

measures in place.

It is often expected for an LPD to deliver a summed output of useful work that is greater than

the primary energy the device held during its commissioning. There must be measures to

control the food source's spoils and how it gets distributed to achieve this.

Sleep strategies and intelligent energy management protocols allow devices to operate and

survive well beyond their initial design specifications.

Time Dilation Based Protocols

Various types of these energy management protocols have been covered in Chapter 3: The

research approach in this thesis (Original Content). They enable the device to look at their

available energy reserves and profile their energy expenditure while completing their given

task. This dataset's contents then make it possible to calculate the optimal times and durations

for hibernation and operation, increasing working time efficiency per joule of energy given.

[164]

As the incoming energy decreases, time is dilated further by simply hibernating and recharging

for longer, potentially even working for shorter times and at different interval patterns.

When time gets managed in this way, and the task can be defined as a ‘continuous effort

needed’ type of work, this loop of managed-hibernation followed by task-execution can

continue forever. The measurement of progress is defined as the percentage of completion of

the ‘task’ in its entirety (take a sensor-measurement or pass-a-message, for example). The

measure of efficiency would be the progress percentage against the time it has taken to get

there, combined with the overhead cost of self-survival and intelligent energy management

protocols, along with encountered false wakes that occurred during the expected execution

time.

Equation 47

�<_cj = ��_cj_NkmkN�N��[kmkcg � �c�_a�� + �f`WagW_J + ∑ �[_lcW�_jWcm* × 100

The small cost in terms of energy consumption overhead required by intelligent energy

management protocols is mostly a deterministic one. The current task gets broken down and

energy-costed in terms of completing usable sub-units of the overall task (Figure 74 below);

thus, the overall performance of time dilation-based operation is directly proportional to the

energy harvesting input stream.

[165]

73

Figure 73: Task to Consuming Unit

The more harvestable energy flowing into our unit will allow the stores to charge quicker,

allowing shorter hibernation periods and more frequent task sub-unit completion periods

(Figure 75 below), increasing overall task completion using less time.

74

Figure 74: Additional Charge Opportunities

On the opposite side of the coin, if the energy input is so low that only the minimum survival

amount is being harvested, thus allowing the device only to wake, assess its levels and return

[166]

to immediate re-hibernation, the overall completion rate will become unsustainably slow. At

that point, the task's success or failure can only reflect a previously defined and imposed time

limitation.

A time-dilation-only type of operation will have three basic blocks of energy consumption,

illustrated below in Figure 76.

1. The energy consumed to wake-up, turn-on, assess energy store levels and then decide

to work or sleep.

2. The energy consumed to assess its task and complete a useful work unit from it.

3. The energy consumed to assess its particular work task but decide that it cannot

complete a useful work unit and should immediately re-hibernate.

75

Figure 75: Deterministic Paths of Execution

[167]

The first item is largely deterministic and can be considered the absolute minimum requirement

to sustain meaningful survival.

The other items in this list can be costed individually in terms of energy consumption. Still, the

rate at which either of them occurs will only be deterministic if the harvested energy stream is

also deterministic, as each task incurs decisions and costs, as illustrated in Figure 77 below.

76

Figure 76: Multiple Tasks Per Wake Slot

If a wake event has occurred, and the energy store level sampling phase returns an unexpectedly

low result, then the decision to work or hibernate has already been determined, the device must

re- hibernate and incur the wake-up cost loss of this decision. This event is classed as a false-

wake and is illustrated below in Figure 79.

When the incoming energy stream fluctuates around the same level as the energy needed to

achieve the first item in the list, then the device's energy store will also fluctuate and require

extended periods to overcome the balance. This random fluctuation can be considered as an

energy noise floor:

[168]

77

Figure 77: HEFa Example

Figure 78 above shows the effects on the energy store when the device is trying to forage for

tiny amounts of energy while sitting on an energy noise floor. Parallels with nature can once

again get drawn here when we consider animal foragers. Wake up, nip out, find some food,

eat a little, store as much as possible back in the nest and then go back to sleep. Sometimes

food is hard to find, and returning to the nest for a hungry sleep is a reality and needs to be

managed, preferably with the help of some previously prepared reserves.

Ultimately, the measured HEFa (Harvest Energy Floor average) must, over time, be more

significant than our minimum sustainability cost. A larger HEFa must consistently be available

to successfully achieve task completion within any imposed time limitations.

[169]

78

Figure 78: Spiral of Death

The inefficiencies start to become apparent when we look at how the device decides when to

hibernate and how long the hibernation period will last.

In its purest non-adaptive form, it would be mostly constant values chosen at design time for

both of these parameters. The influencing factors are product responsiveness, environmental

circumstances, the complexity of the assigned task, and all of which would have been

researched and understood beforehand.

The device will perform outstandingly in ideal placement situations, and as expected, smooth,

periodic patterns will be displayed consistently, following tightly against all design modelling.

It is outside of these ideals where the inefficiencies can quickly build up.

After design considerations get finalised, items 1 and 2 from the above list can be made

deterministic for these ideal operating characteristics. As soon as the input energy stream or

task complexity tracks away from ideal, false wakes will begin.

[170]

The event false-wake gets classified as:

The device waking up expecting to complete its task unit; however, the reality is it has not

gained enough charge and therefore has no other option but to re-hibernate for a further

predetermined hibernation time.

The false-wake costs energy; this energy unit could be significant as everything needed to

satisfy item 2 in the previous list must be powered on and used. The negative energy impact

sustained from the false-wake gets consumed from the store, further increasing the device's

need to re-hibernate and accumulate charge.

Startup Inrush Avoidance

Typical behaviour when initially powering up microcontroller devices, or any kind of discrete

device, involves an initial current inrush as the discrete’s chosen underlying physical

technology traverses past its absolute minimum voltage and current specifications into a startup

condition. After this traversal has happened, currents may fall again while the component is

waiting for explicit wake commands or configuration. This inrush trait is illustrated in Figure

80 below, which shows a typical startup characteristic from a PIC16F1820 MCU [107]. The

yellow trace represents the voltage rise of the devices MCU supply rail, and the green trace

represents the current draw. The B cursor is positioned at the point where the initial startup

minimum conditions have been met and processed. It should be noted that the part was not in

an execution state at this point, merely powering up.

[171]

79

Figure 79: Startup Inrush

Therefore, consideration is needed on how one can reduce as much as possible the need to fund

the inrush spike with fresh current supplies. The solution takes two forms depending on the

devices design foundation.

If the discrete device is to be entirely powered down, efforts need directing at minimising false-

wakes entirely, using prediction and maintained energy reserves.

Suppose the discrete device is to be placed into a specific hibernation mode offered by the part

for energy conservation, and its supply is to remain. In that case, efforts need directing at

ensuring the device's minimum energy store level never gets breached, allowing the minimum

power supply level to be permanently available to the MCU. Figure 81 below illustrates the

more consistent consumption demonstrated when the supply voltage fluctuates above the

MCU’s absolute minimum.

[172]

80

Figure 80: Threshold Sweetspot

Regardless of whether the device's energy store was 1% or 99% insufficient to meet the needs

to complete a work unit successfully, the device re-hibernation time will be 100% of the pre-

determined wake/work cycle value.

This trait exemplifies the second significant inefficiency with fixed value sleep/wake patterns.

The device’s existence in itself suggests it has a job it has to do. There are the expected time

limits to have the job completed, providing an additional metric for measuring success or

failure. The false-wake has not only spent the energy from deciding it had to re-hibernate, but

the job completion time frame also takes a negative impact of a size determined by the

determined hibernation time it must now also wait.

A real possibility is present of the false-wakes spiralling until the energy store depletes. The

incoming energy stream must then increase significantly for the device to overcome the initial

energy surge and needs of a potential ‘rebirth’, as presented in Figure 80.

[173]

When the incoming energy stream tends towards being gluttonous in supply, the fixed

hibernation period can again prove inefficient. Small dips or losses in the incoming stream can

cause sudden energy store level drops, which initiates a hibernation cycle. In this case,

regardless of how quickly the energy store replenishes, the hibernation period will need to be

entirely spent.

There is also often a job-related reason to hibernate as well to be considered. Sometimes it is

not desirable to continuously work, immediately repeating a task after its completion or even

immediately moving on to the next task in hand. Such instances appeal to the hibernation

process as a means of spending time in an optimised idle state even if energy charging is not

required.

It is also a measure of inefficiency to not be in some kind of deep power-saving state when not

needed for work tasks. Even as energy scavengers, they must be mindful of wastefulness.

Harvesting energy is just that, ‘taking’ it out of the air, or the heat or the wind. It is not a finite

supply in any form. When we consider RF harvesting, we take energy from the airways; this

energy was put there initially by someone or something (when considering galactic

microwaves). We could well be stealing someone else's power, even in tiny amounts.

Consideration towards other devices needing to ‘nab’ and harvest little bits of energy floating

around is imperative, and each device that feasts will remove a tiny part of this greater stream.

Eventually, if enough devices are all drinking from this stream, it will dry up.

If the energy is not needed, it should be left. The device should do everything possible to

preserve its energy and hibernate whenever its task constraints allow it.

Addressing the inefficiencies associated with time-dilated-wake strategies requires the

introduction of specific adaptive measures. These measures influence the hibernation periods

[174]

and make decisions weighted more towards their current immediate needs rather than those

needs identified and predicted during design-time.

Adaptive Protocols

Adaptive protocols take the time dilatation methods and adjust them dynamically based on

other varying and influencing factors.

These kinds of protocols typically perform more efficiently than simple time dilation solutions

as they can help avoid the need for ‘false-wakes,’ which cost energy when waking up too early.

As highlighted in the Time Dilation Based Protocols section above, the most considerable

variation in efficiency comes from manipulating the hibernation period variable.

Adapting the hibernation period based on the current environmental surroundings significantly

increases the overall efficiency of the device.

Chapter 4: Empirical Research, Phase 1: Energy Harvesting (Original Content) covered an

elementary example of manipulating a sleep/wake pattern to minimise false-wakes

occurrences.

The essential ingredients needed for this are:

1. A measure of the rate of incoming energy

2. A measure of the current energy store charge

3. A measure of the amount of energy needed to complete a work task unit successfully

4. The knowledge of the wake-up decision and current running costs

5. Understanding of the devices charge curve requirements

The most optimum wakeup time is derivable using this information, giving the highest

probability of being at the right charge level for the pending task.

[175]

Even if an influencing environmental factor has changed unknowingly during hibernation, and

a false-wake has followed, the loss is manageable. By calculating a quick top-up ‘nap’, the

device can minimise the effects of any further wastage.

All of the above-listed items can be easily implemented into a device apart from item 3; it is

this area where most of the intelligence gets applied.

Energy Blocking

Devices come in all shapes and sizes and provide one or many functions; each of these

functions may or may not need execution at different periods and different recurrence

frequencies.

These specific execution schedules cannot be easily constrained and described in a clean,

straightforward expression. The size or complexity of any given feature requires quantifying

in some form.

In terms of block-diagrams, the device's features become its jobs; these jobs allow further sub-

division down into units representing the ‘smallest amount of useful work’, known as tasks.

Tasks represent ‘energy block units’ which move through a processing cycle:

[176]

81

Figure 81: Typical Adaptive Cycle

Figure 82 above shows the relationship time dilation has with regards to the current input

energy stream. In this case, the LPDs job breaks down into its smallest useful tasks sized

according to its energy consumption prediction. The Hibernation period reflects the time it

takes to harvest enough energy to fill the pending task-block.

At this point, the Execution stage activates, and the task consumes the required energy.

When the input energy rate decreases, the Hibernation period increases, all other variables

retain their existing values, as shown in Figure 83 below.

[177]

82

Figure 82: Time Dilated Cycle

Both Figure 82 and Figure 83 share the same Ct period, the difference being that Figure 82

represents better efficiency when considering the output of useful work (or completed jobs)

from the period.

Quantifying the energy in terms of task consumption allows the wake pattern to be dynamically

adjusted depending on the awaiting task's predicted energy cost.

The jobs and their tasks are known beforehand and represent one, or many of the devices

feature sets. Each task has a predicted energy consumption cost previously determined, and

the device is aware of these costs.

A protocol uses this information to provide some kind of work schedule and task queuing

system to manage the job's execution.

The relationship between the tasks is one of tight coupling. Any change in the incoming energy

supply (item 1 from the list) reflects immediately in all of the other list items.

[178]

Item 1 is considered a random variable that must be tolerated within the LPDs design, all of

the rules for time dilation apply here, which introduces a time restriction element around the

work schedule.

It is clear then, to properly benefit from adaptive power management, there must be a protocol

able to deal with the following distinguishing attributes:

• An energy measuring subsystem capable of providing and managing a level monitor

sensor for the energy store.

• A task information database; detailing known tasks and associated costs in terms of

energy consumption.

• A task schedular; which manages the work tasks passing through the device.

• A device manager; responsible for the hibernation duration algorithms.

83

Figure 83: Protocol Module Outline

[179]

In addition to these essential services illustrated above in Figure 84, various supporting

offerings should also be considered, such as measuring a tasks' actual consumption and a

mechanism allowing for the introduction of new tasks to the device.

To provide a complete system, inter-device communication and user interaction also need to

be considered and properly managed.

A protocol stack enables the implementation of these identified subsystems at the hardware’s

lowest level.

It surfaces the discussion that “any kind of energy prediction could significantly benefit from

various AI methods and calculations”; however, the consumption requirements, space,

processing power and storage for AI type learning data quickly render the energy savings

gained irrelevant. Much simpler adaptive measures benefitting from regular feedback and self-

correction loops proves substantially adequate.

The aim is to use significantly less energy than the savings its implementation can provide, be

small enough not to impact device hardware characteristics, and be efficient enough not to

drain any CPU resource and interfere with regular operation.

[180]

WIMP (Walton Intelligent Management Protocol) Protocol Stack

The WIMP stack attempts to blend the worlds of both time dilation and adaptive energy

management protocols to provide an autonomous encapsulated platform capable of supporting

the higher-level application.

The stack is made aware of the dynamic inputs of the device it is operating within by its

implementor. During operation, the stack provides the application with notifications of when

to sleep and for how long, what task to run next, and how to deal with any false-wakes

gracefully.

As expected, the implementor must design in the intelligence to execute the tasks at hand.

Typically, an individual stack implementation operates on every microprocessor equipped with

energy-saving features found within a device. However, designs where a task may use other

microprocessors or controllers without possessing the stack's underlying knowledge to aid in

completing their task are also operable. They will, however, be unable to exhibit the full

potential of the energy management system.

The Calibrator implementation discussed below automatically determines a particular task's

consumption cost by performing a run-and-measure type calibration cycle. This autonomy aids

in achieving necessary feedback adjustments computed during operation in the field.

When designing protocols that largely control the availability of the device they are working

within, one must also consider the design's communications aspects. Wake patterns and

message exchanges must attain tight synchronisation in some way.

[181]

Basic Operation

The stack itself integrates with the higher-level application using a simple set of signals

interfaced within the Task-Receptor service.

Two-way messaging is achieved through the Task-Receptor calling an application function and

passing it a standard set of parameters:

• taskExecute(task)

• taskTerminate(task)

• SampleEnergyStore()

• Hibernate(status, duration)

It is critically important that the Hibernate function immediately puts the device into a deep

sleep state. Any further execution or energy expenditure between the Hibernate request and

actual hibernation will incur greater false-wake probabilities. If further processing is needed

here to process any rejected or failed tasks, this process time should be kept as constant as

possible and incurred regardless of the status or return attribute. The more this time can be

made deterministic; the more efficient the algorithms will become. Figure 85 below highlights

this critical timing area.

84

Figure 84: Minimum Execution Area

[182]

When the execution of a task has ended, and execution control gets passed back into the stack,

the Hibernate signal gets generated. This signal allows information to be passed back to the

application software, indicating the result of the task's execution. If a calibration or rejection

result has occurred, it will be included here as part of the status value.

The application can either retry failed or rejected tasks or prepare alternative tasks designed to

deal with rejections and failures.

The application will respond to or initiate requests by calling the Task-Receptor Service

Signal(message) function, where the message attribute can take the form of:

• Woken

• taskFinish

• taskError

• taskCalibrate

• taskAdd(priority,…)

• taskRemove

• Idle

• Tick

Similar to the Hibernate function, the Woken signal needs sending as soon as reasonably

possible after the device has spent its hibernation period.

[183]

The taskFinish and taskError signals occur appropriately as soon as the application has

completed or decided it has given up on its current task execution.

There is also a current status retrieval facility that will return the task the stack is currently

expecting to execute.

A primary message diagram (as shown in Figure 86 below) illustrates the intended flow of

messages in an ideal operating environment.

[184]

85

Figure 85: Message Flow Overview

[185]

The stack does not know the contents of the task it will be scheduling. It does not have any

direct input into the execution and completion of tasks. These processes are controlled entirely

by the application software and hardware. The stack only knows a prediction of how much

energy the task will consume, and the only real control it wields is requesting to the application

software what tasks start at what time. However, it can request to the application that a task’s

process terminates due to it not adhering to the energy predictions expected of it.

Figure 86 shows an ideal operating environment after all tasks have been calibrated; it

highlights the energy level sample points both before and after the task's execution. The

decision to work or sleep is coupled directly with the result of the measurement.

An energy level sample will always immediately follow a wake event and be performed just

before entering a state of hibernation.

Primary Modules and Consumption

The entire process divides up into three distinct subsystems:

1. Wakeup/Hibernate management

2. Decision-Making management

3. Task execution management

Each of these subsystems will consume energy, and stack operation will commonly see pairs

of these subsystems working together. This commonality allows the categorisation of the

consumption parts into measurable units that are deterministic in design, for example:

• A wake-up event will always consume Wake Cost + Decision Cost.

• A hibernation event will always consume Decision Cost + Hibernate Cost.

[186]

Additional Decision Cost deductions happen when a task reaches completion; however, if this

decision is to initiate hibernation instead of continued task execution, then the last Decision

Cost becomes part of the following Hibernate Cost, as two successive energy level store

readings serve no purpose.

Hibernation itself also consumes energy. Although markedly reduced compared to task

execution costs, it can be challenging to ensure it remains deterministic. A lot of this

consumption will be from various component leakage characteristics and environmental

influences, coupled with device components experiencing continuous temperature, light and

humidity changes, all of which have additional knock-on effects.

Predictable Losses

Resisters, diodes, and capacitors are common causes for the lack of precise long-term

deterministic time properties and exhibiting varying energy consumptions. Physics is at play

here; these components' primary characteristics relate to their operating temperatures and

conditions.

Suppose we take resistance; its ability to resist accurately at its specified value fluctuates with

relation to its operating temperature. Ohms Law proves resistance is directly related to current

with V/R; in that case, we can immediately comprehend that environmental temperature

changes will affect the individual components' resistance, which will affect the amount of

current flowing through them. This potentially extra current can only be satisfied from the

energy store.

These tiny fluctuating changes may not be a problem for the device's tasks, and indeed in most

cases are designed to average themselves out, but they will have a combined effect, small or

large, on the energy predictions and the accuracy of how deterministic they are.

[187]

The tolerance choices of these components during design time have an enormous impact during

attempts to model the devices' potential energy usage. Wherever possible, during the low-

current design stages, these types of considerations need to be addressed, especially when

considering long-term effects as discussed by Zhai, Zhou and Ye when they looked at a

tolerance design method for electronic circuits based on performance degradation [123].

Energy Storage

Energy store implementation takes the form of a capacitor, and again the leakage of the

capacitor must be understood at design time. Supercapacitors usually offer much smaller loss

levels over much more extended periods than exhibited by traditional capacitors [124].

Another point of tolerance consideration would be for oscillators and resonators. Every logic

system needs some kind of clock, and this clock will determine all types of timing inaccuracies

which in turn have both positive and negative effects on current consumption.

Oscillator and resonator start-up times and accuracy can be influenced considerably by

temperature and temperature change.

These leakages and tolerances are essential contributions to the accurate energy consumption

predictions required for proper stack execution. Allowances introduced at every part of the

energy management process for the combined tolerance requirement provide resilience against

randomness. The running total of all these allowed tolerances, presented by all the hardware

components, increases the consumption prediction. However, incurring a false-wake due to

over-tight tolerance calculations will inevitably cost more than having tiny amounts of surplus

energy leftover from successful task execution, which would then be fed back into the system

for reuse.

[188]

Allowances for the differences in consumption potentially caused by environmental influences

needs addressing. These types of interference are tough to predict for both strength and time,

as such a percentage increase of the consumption prediction provides a mechanism to offer

reserve.

Test runs found that slight over predictions given to the deterministic tasks had minimal effect

on overall efficiency measurements. This trait is due to the regular energy store level samples

allowing rescheduling of the surplus energy reserved for remaining pending tasks. However,

causing a false-wake has the opposite effect and induces a comparably more extended recovery

period to replenish the wasted energy.

Wake Cost WKcost

Decision Cost Dcost

Hibernate Cost HBcost

Hibernation Cost Zcost

Execution Cost Xcost

Tolerance Cost Addition TOLcost

Tick Cost TKcost

Task Predicted Cost Jcost

Table 4: Variable Mapping

Equation 48

Startup Cost -> Scost = (WKcost + Dcost) × TOLcost

Equation 49

Sleep Cost -> Ecost = (Dcost + HBcost) × TOLcost

A typical execution cycle CYCcost will contain

[189]

Equation 50

CYCcost = Scost + Xcost + Ecost

86

Figure 86: CYCcost Breakdown

Figure 87 above shows how a CYCcost breaks down into its sub-parts; the dashed red vertical

lines represent the allowances added to the consumption predictions for tolerance and

environmental influences.

Xcost gets further broken down into its sub-parts, as shown in Figure 88 below.

Depending on how many tasks the device plans to execute, which will depend on how much

energy it has accumulated in the store, an Xcost will consist of at least one Jcost.

Xcost may have many Jcost parts and include some Ticks to monitor the real-time energy situation;

this will cost one or more TKcost units, mathematically represented as:

Equation 51

�hfc� = ���.hfc��u� + 1��hfc��u�� + � 1�hfc��F��hfc��m�:�
N�*

�
m�7

�

[190]

87

Figure 87: Xcost Breakdown

Figure 88 above shows the most straightforward Xcost setup consisting of a single job Jcost, and

two Tick calls. The Ticks are regular, and their interval is application-specific.

An Xcost can have many Jcosts within it; Figure 89 below illustrates this point visually. This

figure has a Tick event that falls between the finish of Jcost[0] and the start of Jcost[1]. This Tick

event can also provide the sample reading data to decide on further task execution or

hibernation.

[191]

88

Figure 88: Multiple Jcosts

Most of these identified consumption costs can easily be self-discovered at runtime, barring an

accurate measurement of WKcost and HBcost. The correct procedure for measuring these two

parameters involves using some high quality current sensitive measurement equipment. The

point at which the measurement gets made is critical, and the following guidelines describe the

optimum sequence:

• For WKcost, the measurement must be started at the exact point the devices' primary

clocking system starts and will end when the device is up to operating speed, stable,

and the application software has made the woken() call into the WIMP stack (Figure

90 below).

• For HBcost, the measurement starts when the hibernate() request was made from the

stack and ends when every clocking system within the device has finished their

winddown sequences and settled into their lowest consumption settings (Figure 91

below).

[192]

89

Figure 89: WKcost Measure Points

90

Figure 90: HBcost Measure Points

Figure 92 and Figure 93 below illustrates the various costs grouped around the specific stack

features they support and how they flow through the modules.

The boxing around the functions represents the types of services the stack expects execution

for during that period.

[193]

91

Figure 91: Costed Message Flow (Part A)

[194]

92

Figure 92: Costed Message Flow (Part B)

[195]

Level Offsets and Topologies

The stack can make an offset adjustment to every energy store level sample it makes, and this

allows the application to control how the stack ‘sees’ the contents of the store. It can enforce

a minimum store level that is always kept and considered untouchable by the stack.

Alongside this, a ‘full’ level variable to control the maximum amount of level the stack sees is

available, and this allows multiple instances of the stack to run concurrently as part of a bigger

system; yet at the same time enabling the sharing of the same energy store.

Each implementation of the stack can be configured only to use a portion of a single larger

store via their primary energy stores. The communal energy store must feed into the smaller

individual primary energy stores so the stack can monitor its actual usage accurately, feed this

back into its adjustment algorithms, and detect any consumption overruns (Figure 94 below).

[196]

93

Figure 93: Distribution Topology

This setup is easily implementable and, in most cases, follows acceptable bulk-capacitance

requirement design practices.

In these types of energy distribution topology, the communal energy store can do a secondary

job of smoothing the incoming harvested energy and then distributing the accumulation either

equally or by a resisted priority-based supply setup to all of the individual subsystems.

[197]

Initial commissioning of this shared store topology type is slightly more involved because the

individual subsystems need a temporary external energy source for accurate consumption

measurements, commissioning and initial calibration. Some kind of supply isolation is needed.

There is a consideration in the usefulness of an intelligent ‘marshalling’ type of device to sit

between the primary energy store and sub-energy stores and wielding power to decide which

subsystem gets what energy and at what rate (Figure 95 below illustrates this topology). After

some brief modelling, it showed the consumption cost outweighing the benefits provided and

any intelligence in this area would only provide distribution management, not energy

reductions.

94

Figure 94: Intelligent Energy Distribution

[198]

A simple equal energy distribution path performs as expected; the overall input rate is the

combined efforts of all available energy harvesters. As each subsystem executes its tasks, their

different individual consumption rates cause the stacks in each subsystem to start adapting

differently.

When device communication is part of the design requirements, this type of topology can

efficiently synchronise wake-up and communicate type messaging protocols.

Internal Status Monitoring

Once all the tasks have been assigned and calibrated, the device will enter a sleep/work routine,

adapting dynamically to satisfy as best as possible its input energy stream against its output

task execution rate.

The tick function manages a relatively slow interval clock for the stack to progress its internal

monitoring functions. When the device is awake and executing tasks, this tick function is called

by the application software at regular intervals, using a period specific to the devices desired

responsiveness and requirements. The primary need for this interval is to progress the status

monitoring features implemented by the Power-Trender service and prevent a task

unknowingly feasting from the energy store.

Figure 96 below shows a message flow diagram for executing a single task and pausing the

execution at regular intervals to service the tick call sent from the application software. It

shows that every tick call will trigger an energy level sample via the underlying hardware

subsystem; this sample's result becomes the supporting data for the pending sleep/wake

decision that will then occur.

[199]

95

Figure 95: Execution Flow with Ticks

[200]

The tick interval is chosen carefully to find a balance suitable for the application. Calling tick

too frequently will cause overhead consumption to increase. However, the stack will detect and

intercept any consumption overrun situation quickly and gracefully deal with the problem

incurring minimum wastage of remaining energy.

Slower intervals are more efficient but risk a more considerable energy loss during an overrun

event before detection. This setup type is best suited for devices that guarantee that their tasks'

energy predictions will be accurate.

Removing the tick altogether is also an option but will be heavily application dependant and

will remove the ability to perform priority-based scheduling and communication

synchronisation.

Figure 97 below illustrates what parts of the message exchange are managed by TKcost, and

how they fall within the Task-Execution periods, The CYCcost is extended due to every TKcost,

demonstrating the importance of careful consideration for the tick period decision.

[201]

96

Figure 96: Tick Costing

[202]

Decision to Work or Sleep

The Decision block represents the stack choosing between executing a task or hibernating.

Although based on numerous factors, the decision itself mainly follows the adaptive wake

calculations outlined in the Sleep Strategies Chapters.

The other influencing terms driving the decision include the devices pending tasks, the current

energy store level, the next scheduled task's predicted costs, and the average incoming energy

rate.

Having a regular clock signal like this also enables the stack to obey time scheduling limits to

the planned tasks currently on the queue.

When a task gets added to the stack, it also accepts two scheduler influencing parameters,

priority and a TTL (Time-To-Live) value. This TTL value represents the maximum allowed

number of ticks (or multiples of) that can pass before this task must complete its execution.

The priority represents how quickly (or urgently) the new task should be scheduled for

operation in relation to the other currently queued events.

Zero represents the highest priority task, and 255 the lowest. Multiple tasks can share the same

priority. Suppose the planner is currently scheduling tasks of an importance level that

represents multiple possible task choices. The choice then of how best to utilise the available

work slot involves evaluating combinations of task energy consumption prediction values.

If there is no way of completing the last tasks of the highest priority together in one work time

slot, but a combination of all but one task at the highest priority and a task from the next highest

priority, this is considered an acceptable choice only if explicitly allowed via stack option

configuration. When enforcing priority-based execution, the surplus energy is used to reduce

the impending hibernation period.

[203]

The TTL is only valid for non-zero priorities, and its operation will raise the priority of the task

as the preconfigured time limit reduces.

The TTL operation principle is that its value gets divided by the priority value passed with the

taskAdd request. This calculation results in a JumpCount value representing the number of

ticks that will pass before the task's priority gets upgraded to the next level. At this point, the

task parameters get reevaluated.

Equation 52

.@Fx� @u� = 11��V
 V
�^

When the task's priority reaches zero, the TTL becomes irrelevant as the task at this point will

have the highest possibility of being scheduled alongside the other tasks about to gain service.

The only other influencing factor for the schedular to consider is the task's energy consumption

prediction size and how it can best get scheduled for execution, ultimately allowing its removal

from the stack.

TTL usage affects the natural-priority and balance of intended task execution; thus, considering

the overall task flow is critical when assigning its values. If tasks are being added to the device

dynamically during runtime, this TTL will ensure that any previous tasks will not be pushed

back for unacceptable amounts of time.

The JumpCount must undergo sleep period correction, which leads to the possibility of a tasks

TTL expiring during a long hibernation period. This limitation is acceptable because the

predefined delay is adjustable for this possibility and the cost of processing the extra

intelligence of dealing with the corner case is not worth the gains.

[204]

Stack Services

The stack itself gets broken down into several different services which encapsulate both

required and optional modules. The interface is simplistic in design for the sole reason of

operating within energy constraints far smaller than those it saves.

Figure 98 below shows the general outline of the services and how they integrate. The stack

consists of seven modular services working together to provide an execution management

system that overviews the work expected to be done by the application software.

97

Figure 97: Stack Services Overview

[205]

• Calibrator: Provides an interface to measure and maintain tasks actual energy

consumption characteristics against a common scale.

• Task-Receptor: Surfaces an interface to the application software, allowing task

management message exchanges, hibernation control and result feedback.

• Power-Trender: Measures and maintains real-time energy consumption.

• Planner: Organises incoming tasks against priorities, requirements and restrictions.

• Allocator: Controls the flow of the planned tasks, assisted by a schedular, through the

executor.

• Executer: Executes the task, keeps track of it and processes its end status.

• Monitor: Provides logging and data collection facilities allowing analysis of the stacks

operating efficiency.

Calibrator Service

The Calibrator module dramatically expands the flexibility of which tasks (jobs) the device can

and cannot perform. It allows the device to measure and normalise every task’s expected

consumption rates against a unified scale. It moves the complication of providing the task

consumption predictions from design-time into run-time, creating more autonomy.

The simplest solution to energy costings is to pre-document the consumption costs of all the

tasks the device will support and provision the device with this dataset during the design phase.

However, there are a few corner-case situations that have the potential to cause field failure:

1. Execution of the task exhibits considerable consumption difference from the predicted

cost due to unexpected environmental impacts.

2. Receiving a new task while operational in the field; of which it has no prior knowledge

of consumption requirements.

[206]

Environmental impacts have to be taken into account as they could significantly change the

amount of energy needed to complete the task. These impacts could be down to weather,

terrain, light levels, distances, and any other influencing factor that will cause the task currently

executing to consume additional energy.

This change in consumption cost for a task will impact the planning and scheduling of it and

the other tasks the device has to maintain. A feedback loop is needed, so tolerances for the

differences between planned usage and actual usage reconcile; a separate Power-Trender

service provides this feature set.

However, if the change's impact is more significant than frequent planning tweaks can satisfy

whilst in its current environment, a mechanism has been proposed to recalibrate the task in-

situ.

In the case of recalibration, the device will perform the task in its entirety in its current

environment.

The successful execution of the calibration cycle must have access to more energy than the task

is expected to use to acquire a completion status. If the task's rates are truly unknown, the

energy store charge level must be maximum before calibration executes.

[207]

98

Figure 98: Calibration Procedure

The calibration sequence shown in Figure 99 above illustrates the following steps:

1. Wake-up and check energy store level requirements are satisfied

2. Wait a predetermined amount of time

3. Take an energy store sample level

4. Signal application to execute the task

5. Wait for the application to signal successful task completion

[208]

6. Take an energy store sample level

7. Update the task operating specifications of the task to the new value

8. Hibernate or continue further task execution as appropriate

Suppose the Calibrator cannot finish the task execution with the energy constraints the device

has given it. In that case, the task calibration will fail, and either the previous prediction value

gets retained, or in the case of a new unknown task, the task gets entirely rejected.

Using the Calibrator service nullifies the need to measure and provide task predicted

consumption costs during the device commissioning stage. It allows the device to be passed a

task and do a self-calibration within itself before its initial deployment, thus mostly aiding the

production and preparation stages. Prior knowledge of the maximum possible consumption of

a task must still be estimated. This method should cater to worst-case scenarios as it only

enforces control after consuming the most energy the designer permits for that task ever to

have.

The benefits of performing this initial self-calibration run during commissioning include

supplying the device with an alternative permanent power source, thus removing the fluctuating

incoming energy stream additions from the harvesting systems during the calibration process.

The Calibration service also has its minimum costs in terms of energy consumption. It must

also pass the extra parameter of maximum energy allowed for a task, and this is the value that

allows the device to determine calibration success or failure for the task and schedule the

calibration routine based on its energy needs.

Initiation of the calibration procedure is through the Task-Receptor service. Automatic task

recalibration can be forced by the system when a running task gets forcibly terminated due to

a significant overrun of its predicted energy consumption.

[209]

Self-Calibration

As an internal function, the Calibrator is also used to measure the stack itself's consumption

costs. By following a predefined self-calibration procedure, It can self discover consumption

predictions for:

• Hibernating and waking up for a known interval

• Sampling the energy store

• Scheduling tasks

• The cost of a false-wake

The internal calibration routine gets run during commissioning and has access to an area of

non-volatile storage where these variables can be stored and retrieved. The routine steps

through each of the required measurements using dummy task profiles requiring the application

to signal task completion at specific time durations.

[210]

99

Figure 99: Self-Calibration Loop

The first step of the self-calibration routine, as illustrated in Figure 100 above is to measure the

current rate of incoming energy. This rate measurement involves issuing two consecutive

[211]

SampleEnergyStore requests spaced at a predefined duration, assuming that this incoming

energy rate will not change significantly until the end of the calibration cycle.

The need to characterise the incoming energy stream at this point is due to the continual

charging element it places on the energy store. If manual intervention is available, then

removing the incoming energy supply before the process begins can provide the most accurate

results, as long as the store can hold a charge large enough to achieve task completion.

100

Figure 100: Cactual Flow

Figure 101 above illustrates the constant charging effect. The currently executing task will be

consuming from the store (Cpredicted) while the incoming energy flow is trying to charge it

(Charvested), making it very hard to measure the task consumption in isolation accurately.

Equation 53

�_h��_l = ��aWJkh�WJ − �g_a`Wc�WJ

[212]

If Charvested is deterministic, the cost measurement can be adjusted to account for it. If this is a

problem, running the analysis multiple times with incoming energy stream measurements

performed in between, then averaging the result can smooth out any significant discrepancies

delivered from the energy harvesting systems. The effects of increasing accuracy beyond this

are considered diminished returns. As the stack can adapt to differences and tweak its

parameters as it runs, it can self-mitigate many initial calibration errors over time.

This method's secondary benefit is the accurate costing of the application's overhead consumed

when initiating a task and signalling back to the application software regarding completion.

Figure 100 above illustrates this function's principal idea; it consists of executing a task called

100ms and a task called 1s, which both get scheduled and consecutively signalled to start by

the stack.

The application must then wait a time duration in a loop of either 100ms or 1s, depending on

the executing task. After the period, the application must immediately signal to the stack that

task completion has been successful.

By sampling the energy store levels at specific times during the process, enough data gets

collected to enable stack profiling of its interface requirements and consumptions.

The aim is to internally self-model the platform the stack is implemented on and then make the

most accurate hibernation and schedule predictions for its tasks.

It is clear from the context that the need to obtain an accurate measure of the energy store's

current level is critical to the stack's operation, and this requirement is solely a hardware-related

one that needs resolving during the design process.

Battery level monitoring and battery management are already widespread in devices on the

market, and most will provide the ability to pass their primary energy store level in some form

[213]

or another. The complication in implementing the stack is that accurate measurement of the

current energy level is directly related to the interface's efficient operation.

Energy Store Level Monitoring

At its simplest form, an energy store voltage measurement gets sampled and converted into the

digital domain. This process will likely involve an ADC (Analog to Digital Converter) device

quantising and digitising its analogue input level signal.

It is at this point that the design decisions must be analysed carefully. ADC peripherals have

various limitations which constrain their performance characteristics. The three variables

which have the most impact are:

1. Resolution of the ADC in the form of bits

2. Noise and bit-error characteristics of the module

3. The reference voltage source(s) associated with the ADC module

The ADC module's resolution will directly impact how efficiently the stack is able to utilise

every drop of incoming energy.

When considering the ADC’s incoming voltage level, the stack must also be aware of the

‘Empty’ sample value and the ‘Full’, which may well fall between two arbitrary values. This

dynamic range will already reduce the effective bit rate offered by the ADC module.

The ADC's bit width determines the quantisation steps possible between the modules' negative

and positive reference points. This working window, in turn, dictates the size of the smallest

unit of energy the stack would be able to manipulate effectively. The quantisation step process

over a rising voltage is illustrated in Figure 102 below.

[214]

101

Figure 101: Quantisation Step Rise

Taking a particularly poor example shows how the effects of the incoming signals’ dynamic

range not satisfactorily fitting the window provided between the positive and negative

references coupled to the ADC module decrease the module's effective bit rate. Adding to this

the inadequate amount of bits available to do reasonable quantisation, the energy level

precision quickly deteriorates.

Minimum Store Level STmin 0 V

Maximum Store Level STmax 10 V

Current Store Level LVLcur var V

Minimum Voltage Level LVLmin 2 V

Maximum Voltage Level LVLmax 8 V

Negative ADC Reference ADCneg 0 V

Positive ADC Reference ADCpos 1 V

ADC Bit Width ADCwidth 8 bits

Table 5: Test Variable Values

[215]

For simplicity, let us assume some very high-value resistors are used in a divider network to

drop the input voltage level down to one that will fall between the reference voltage window

of 0 – 1V. The equivalent circuit is drawn below in Figure 103.

Equation 54

�f�� = �km × 	�	7 + 	�

102

Figure 102: Basic Voltage Divider

Giving R1 12 MΩ and R2 1.33 MΩ, a 10V Vin will give roughly 0.9977V at Vout

LVLmin and LVLmax define the usable region of the energy store for which the services will work.

Figure 104 below illustrates the breakdown of the store levels.

[216]

103

Figure 103: Energy Store Level Detail

The ADC device divides the 0-1V operating window, denoted by the potential difference

between the negative and positive ADC references, into 256 quantisation steps. In this

particular case, each quantisation step can detect a change between levels as small as

0.003906V.

Equation 55

61c�W� = �0���fc − 0��mWb�0��c�W�c

The example case's LVLmin level sample value will be 51.2 and LVLmax 204.8, giving us 153

useful quantisation steps over the 2-8V level range available for use by the stack.

In task execution terms, this equates to the smallest task the system can most efficiently handle,

which consumes energy in measures that fit neatly in blocks of this size. Figure 105 below

shows the variable mappings provided by the ADC device for the test case.

[217]

104

Figure 104: 8bit ADC Values

Increasing the bit resolution of the ADC to just 10 bits (ADCsteps = 1024) changes the smallest

measurable unit (STstep) down to 0.011V, providing a significant increase in accuracy and

performance; Figure 106 below shows the ADC value difference such a change would incur.

105

Figure 105: 10bit ADC Values

To further any measurement error present, the ADC module itself will have a noise tolerance

level which will also need factoring into any calculation, typically measured in (loss of) bits.

The quantisation noise level of the ADC and its SNR (signal-to-noise ratio) are the

characteristics that significantly govern the effectiveness of the transfer function from the

[218]

analogue domain to the digital. Figure 107 below shows an illustration representing the best

possible transfer function [125]:

106

Figure 106: Ideal Quantisation Noise

In this ideal model, any value of error is equally likely, creating a uniform distribution range

of:

− �2 � + �2

The quantisation error becomes:

Equation 56

��mfkcW = �√12

The relation between the bits of the digital representation and the originating signal is expressed

as the SNR (Signal to Noise Ratio). Assuming the full dynamic range of the difference between

[219]

the positive and negative ADC references being used to represent a sinusoidal signal whose

peak-to-peak value equals the ADC reference levels, its RMS value is:

Equation 57

�aNc = �aW[√2} = 2��√2}

In this equation, N represents the number of ADC bits, and Q represents each Quantum.

The SNR is the RMS of the input signal dived by the RMS of the quantisation noise:

Equation 58

6�	 = 20log � �aNc��mfkcW� = 20log
⎝
⎛

2��√2}�√12 ⎠
⎞ = 20log �2�√12√2} �

Equation 59

→ 20log�2�� + 20log �√62 �
Equation 60

6�	 = 6.02� + 1.76�%/�

Further analysis of ADC error functions is available from [126].

Signal Conditioning

The most desirable design goal is providing some type of input conditioning enabling the

energy store level sensor output to scale into the same operating window as the ADC references

span, thus maximising the ADCs dynamic measurement range and creating the smallest

minimum useful measurement size.

[220]

As the heart of the stack revolves around the periodic tick signal sent from the application

software, its rate gets factored into the predicted task energy expenditure measurements and

the minimum energy block unit capable of being measured.

Equation 61

Consumption = task cost – Incoming energy

The incoming energy rate will be continuously charging the store, and the task execution will

be consuming from the store. The tick call will sample the store's current level. It is desirable

to have the tick interval set to ensure the task execution has consumed at least one complete

minimum measurable unit. If the tick rate is too fast, the sample’s digitised value may not have

changed as the ADC engine’s step thresholds may not have yet to be breached. The speed of

change here is not critical to the stack's correct operation, so this fast sample rate returning

unchanged values is considered a deficiency.

It may be that the host hardware can provide a CPU off-loaded, interrupt-driven autonomous

periodic ADC sample of the store, which proves to be the most efficient way to operate the

sampling engine; in these cases, the oversampling occurring may not be of issue.

[221]

Task-Receptor Service

107

Figure 107: Task-Receptor Interface Outline

The task-receptor service receives a high-level task request from the devices application

software. The service micro-manages the task’s lifecycle via the other supporting services

interfaces until its execution has come to an end. Management of the task includes retrieving

its current status and cancelling its execution prematurely.

When a task is received, it assumes the initialising PENDING state. As the task passes through

the stack, it will traverse several other states defined by Figure 109 below:

[222]

108

Figure 108: Task State Enumeration

The Task-Receptor is considered the interface with the application software where a particular

device's list of tasks is assigned. Tasks get identified by ID number, and once a task has been

added via the respective interface, calibration and execution attributes get created and resources

reserved accordingly.

The tasks are tracked and managed throughout their life by the Task-Receptor service; the stack

is ultimately responsible for providing and releasing a planned energy slot for the application

to execute the task within.

Other interfaces surfaced by the service include status monitoring querying, task cancelling,

pausing, resuming and adding.

Internally, the service maintains a task list that stores the task ID, the task’s initial and current

priority, calibration state, and current status. By default, a newly created task will assume either

a PLANNING or CALIBRATING state.

Reception of a new task causes the receptor to search its list and see if it has previously

encountered or executed said task, and if it has, the task is scheduled based on the associated

incoming priority. From previous encounters with the requested task, the device will have

already established predicted consumption data.

[223]

If the task is a new one, it must either supply accurate energy consumption predictions or allow

the device to initiate a task calibration routine.

When a task requires calibration, the stack will schedule this timeslot based on the requested

priority and the priority of the currently executing task schedule. As no previous data will be

available for the tasks predicted consumption, it uses the maximum allowable charge level for

the tasks initial execution. Rejection is possible of a new task, but this will only be known if

the task requires and fails a calibration cycle.

Any rejection or failure of the task at hand triggers the stack to signal the issue back to the

application software.

Power-Trender Service

The Power-Trending service actively tracks and trends the ‘actual’ power consumption induced

by the stacks overhead, task execution and the underlying application software and hardware

consumption costs – this allows the stack to retrieve a predicted power demand for a particular

task. This prediction, in turn, is used to assign a costing to a particular task request. The costing

allows a planning service to schedule the task for execution. The Power-Trender also keeps

track of the current charge level of the energy store and its current charge change rate. This

information is calculated and provided by the independent Supervisor service.

The trending process allows the energy costs for particular tasks to be dynamically adjusted

based on the device’s current environmental impact. An example of where this is significant

is when considering a typical ‘journey’ to the shops, one of which happens on a warm summer's

day, another during a hurricane and storm. The environmental impacts that affect the journey

during the storm cause the traveller to burn far more energy to achieve the same journey.

[224]

The Power-Trender needs to consider these kinds of real-time changing environmental

impacts; all considered random events.

Monitoring the progress of the currently executing task is achieved by regular samples of the

energy store. The period of this monitoring is dependent on how often the application software

calls the Tick function. This Tick function initiates an energy store level sample and consumes

its energy cost. It then allows the Power-Trender to analyse its current progress against its

predictions. The Power-Trender will allow a certain amount of leeway when enforcing its

energy allowances. However, if the current task uses considerably more energy than predicted,

the Power-Trender can terminate the task.

During the termination progress, the Power-Trender may also mark the task as needing a re-

calibration, allowing a possible way to re-start the task's execution in the future.

The Power-Trender will always initiate an energy store level sample at the end of every task

execution, regardless of the success state. This strategy allows an accurate update of the current

situation before hibernation and the ability to feed the actual task energy consumption data

back into the stacks feedback loop. Every time a task achieves successful completion, it will

average its actual energy cost with the currently associated energy estimate, allowing future

executions of the same task using more realistic energy consumption predictions.

Planning Service

The Planning Service organises tasks in priority and energy cost order, and its job is to map all

the tasks the stack needs runtime execution information for. This organisation allows the task

allocation to best satisfy the energy store capability at the point of the wake.

The Planning Service is also responsible for governing the length of time the next device

hibernation will consume. It allows for rearranging its pre-hibernation plans if circumstances

[225]

changed during hibernation, which impacted its charge accumulation potential, either

negatively or positively.

The latest hibernation plan is re-assessed under current operating conditions, and new decisions

on which task or collection of tasks get execution time during the wake cycle are made. As

such, it knows how long the hibernation period should be to achieve the necessary charge.

Upon wake, the energy store level sample will reveal if the device is in a position to be able to

achieve its pre-hibernation plan fully.

Suppose the store level charge is higher than expected. In that case, the planner can rearrange

the planned tasks of the same priority level, adding additional tasks to utilise the extra resource

surplus.

If, on the other hand, the charge level has not risen as expected, the planner can take other

appropriate action which it decides is more beneficial to overall efficiency than accepting a

false-wake and trying to correct the level deficiently with further hibernation. Remedial action

to prevent this may include swapping the task for a smaller task of equal priority but younger

in terms of its pending execution wait or processing a predefined fail-safe task that requires

some kind of regular servicing in any case.

The stack assumes that the variables needing persistency get stored in an area of RAM that can

retain its data during deep hibernation states. If this is not the case, steps are needed to provide

some kind of non-volatility for the current operation. The Planning Service contains such

critical variables, as it will need to be aware upon the wake of the pre-hibernation task

execution plan devised of which it intends to follow.

If other means of non-volatile storage are needed, this can be incorporated in the wake and

hibernate areas of the message flow. Here it can be assumed that a table of variables gets

flushed to a non-volatile storage area once directly before hibernation occurs. As the dataset's

[226]

size should be constant, this process should be considered deterministic and adjust the

consumption costings related to these stages.

It is necessary to read the data from the storage medium and re-instate the correct variable

values to ensure the stacks continued proper operation upon wake. This process is considered

deterministic and occurs as soon as possible directly after a wake event.

The stack places no restrictions on what application code gets executed during these stages, but

they must have an accurately predictable current consumption. Having large amounts of

processing in these areas is generally not advised as they will incur potentially large

consumption losses during false-wake events.

The planner size represents the total amount of forward-planning the system can schedule. If

the stack's desired operation mode is to wake, perform as many tasks as possible, then

hibernate, the planner size denotes how many of these tasks can be prepared and scheduled.

After every task completion, the Planning Service gets refreshed, allowing the released work-

slot occupied by the previous task to be immediately re-available. The plan list utilises a FIFO

(First In First Out) type buffer (Figure 110 below) where the Schedular Service removes tasks

pushed on by the Planning Service as their execution time depletes.

109

Figure 109: Planner FIFO

[227]

The Planning Service receives task messages. The contents of which include a predefined

taskID and any task execution constraints. The service will analyse the message and, by using

the taskID parameter, determine if the request involves a ‘single executable task’ or a ‘group

of executable tasks’ of which successful execution of all grouped tasks in the correct order

must occur before completion gets recorded. These collections of subtasks empower the

implementer to reuse common and shared consumption predictions for shared hardware

resources. The Power-Trending Service is responsible for establishing the ‘actual energy cost’

needed for each subtask in the same way it would a regular task. This grouping feature allows

the application software to specify the tasks where time-dilation introduction is entirely

acceptable.

A task delivered to the Task-Receptor service is considered the highest-level or ‘parent task’.

The application software knows how it can physically solve the tasks expected of it and has

prepared the stack; therefore, the stack knows if the task is or is not a grouping task by

interrogating a list maintained by the Task-Receptor Service (Figure 111 below).

[228]

110

Figure 110: Parent Tasks

Grouped tasks will only be marked as complete when all the individual subtasks have reached

completion without error. Grouping tasks in this way offers significant resource-saving

benefits.

The planner in its current state will only allow work on a single task at any one time, and as

such, there is only ever one work task that’s currently in a transitional stage towards

completion; all the other pending tasks within the Planning Service are queued and made ready

for execution. The Allocator Service has the power to mark a task as ‘paused’, forcing the

planner to reconsider the plan.

[229]

The services use FIFO buffer type queues where new tasks are continually added to the bottom

of the queue as space is made available from processing and removing the tasks at the top of

the queue.

This singular task execution thread restriction does not in itself pose a problem for devices that

implement Real-Time Operating Systems (RTOS), as the task can represent a time window

where the RTOS schedules its operations using the CPU time as it wishes (illustrated in Figure

112 below) with knowledge of how much time it has remaining.

111

Figure 111: RTOS Topology

When the wake event causes the RTOS to start or resume multiple simultaneous threads of

execution, each trying to complete their requirements successfully, the task completion status

is only updated when every one of these threads signal termination or suspension. In this

configuration, the duty of ensuring proper thread suspension before energy depletion is that of

[230]

the RTOS executive or application software. Failure to properly manage this will result in

forced task suspension and unplanned hibernation by the stack

Supervisor Service

The supervisor service creates, allocates and controls work slots. A work slot is a time/energy

cost-specified window of execution. The quantity and size of the available work slots get

determined by data provided by the Planning Service, Power Trending Service, data collected

from known environmental circumstances, energy charge rates, and the charging rate trend

over periods. The dataset is processed using various self-modifying algorithms to provide the

most efficient wake-up/sleep cycles. Each of the wake cycles has one or more work slots

assigned to it. The Supervisor Service monitors the allocation of these work slots, the work

slots' order, the tasks assigned to the slots, the state of the work slots, and their completion

management.

A finite number of work slots are available, depending on the success of the previous charge

period. The Supervisor Service maintains this list of prepared work slots and passes them to

the Allocator Service for task assignment as needed.

The service tracks task predicted consumption costs needed to complete the planned task list,

and it will also optionally evaluate other constraining variables which may influence the way

the task gets passed through the stack for execution. These variables may include time limits

that determine the maximum amount of time spent working on the job in its entirety (including

the time taken to hibernate to recharge energy). Breaching these limits causes the Supervisor

Service to declare the job's failure in part or in full, mark it as such, and move on to the next

task pending.

[231]

Other execution constraints may accompany the pending tasks, such as periods where the task

execution is either allowed or prohibited, dependencies of the prior completion of other jobs in

the queue, or dependencies involving jobs that first must be completed by other devices

working in co-operation.

Environmental changes may also have implications, both positively and negatively, on

executing the tasks queued, and this must be detected and fed back for adjustments by the

Power-Trender Service.

Allocation Service

The Allocation Service effectively allocates the work tasks to the CPU via the application

software for execution. This service receives a task and its subtasks from the planning service

by looking at the top of the planning queue and taking the next available item, and at this point,

the planning service has already mapped the estimated power cost of each of the individual

subtasks. The implementer will then allocate the tasks into empty work slots provided by the

Supervisor Service. These work slots represent scheduled operation slots and originate from

the Supervisor service. Once every subtask has successfully been mapped to a work slot, the

task gets marked as in-progress.

The Allocation Service can reorder the slots for execution if needed; however, it will always

try and follow any predefined priorities and sequence ordering as far as possible.

There may be instances where the device has woken after a pre-determined hibernation time,

expecting that it will have a predicted energy store size ready for work utilisation. This

outcome may not happen if the ambient energy source currently being suckled for energy has

disappeared or dried up. In this case, the device may well find itself in a position that the

execution plan becomes unachievable due to the lack of energy reserves.

[232]

Two options are available in this instance. Firstly, the device can recalculate its hibernation

period based on the new ambient energy levels and go back to sleep, thus losing any chance of

completing any work task during the current cycle.

The second option involves a little more intelligence, where the energy store level is evaluated

against the energy level requirements from the other pending tasks waiting for execution time.

If it finds one that it can complete or progress using the energy stores remaining charge, the

service can re-arrange its tasks to achieve reasonable progress during the remainder of the

cycle.

The allocator must also be aware of job priorities and re-evaluate its task priorities to some

level during every wake cycle. The high-level user or controller may add, remove, re-prioritise,

or re-order the jobs currently in the queue at any ‘wake’ time. The Allocator Service needs to

respond to these changes and re-evaluate any imminent allocation accordingly; whilst it is

nearly always inefficient to cancel an uncomplete job, this may be unavoidable during some

kinds of critical operations. The overall assumption is that a work units size becomes the

smallest unit available to deliver useful contributions to the overall tasks, so cancelling a

currently executed task should not be needed.

Finally, the Allocation Service is aware of any tasks showing signs of error or failure and must

either remove said task or find a way to continue execution while consciously avoiding

potential looping or stuck job issues that could result.

Executor Service

The Executor Service duties include mapping tasks found in the currently scheduled work slot

to the actual hardware subsystems by passing control back to the application software. The

Executor prioritises any time limits and energy limits imposed by the Supervisor Service for

[233]

the executing task, and it evaluates any environmental, dependent or period restriction imposed

by the constraints of the task. The Executor Service works closely with the Power-Trender

and the Supervisor Service to achieve the goals required to progress the task state towards

completion. The service periodically updates the power usage and trending calculations with

the real-time consumption caused by the hardware needed to achieve this goal.

This system represents the feedback (Figure 113 below) loop that makes the power

consumption adjustments imposed by the environmental conditions currently being

experienced.

112

Figure 112: Feedback Correction Loop

The Executor Service will accept a single task, analyse its job parameters and constraints, mark

its status as IN-PROGRESS, and pass control to the application software to execute the task.

The executor sends the taskStart signal to the application software and passes the taskID of

the task it is expecting execution.

[234]

The stack waits for the application software to signal back, indicating an end of execution has

occurred, accompanied by the result status code.

The only monitoring that the Executor Service performs is on the current tasks’ energy store

level samples every time the application software calls the stacks Tick function.

The executor will compare the energy store level drop to the expected consumption of the task

in hand; if an overshoot situation occurs breaching the stacks permitted tolerance, then the stack

will signal to the application software that it should forcibly stop the execution of the task as

something unexpected has occurred. The application software should honour the request as

soon as possible and allow the stack to mitigate the situation best. This damage-limitation

typically involves requesting re-calibration services for the task at the next possible opportunity

and going into a hibernation state to replenish its energy consumption losses.

Consumption Rate Monitoring

The stack in its current form does not see time as a metric for monitoring; it merely sees a drop

in the energy store level. The rate of drop is the consequence of processing done by the

application software and hardware executing the task at hand. To include energy rate

consumption monitoring in this area would enable the stack to decide better if the task at hand

is becoming unmanageable, can cease the execution of the task at an earlier stage and thus

reduce its incurred losses; the overhead to manage this feature, however, is considerable.

For this research, the feature's implementation contains the following conditions; Individual

task consumption analysis performed whilst the device is attached to an oscilloscope and high

accuracy current clamp probe allows accurate plotting of the current consumption at the

different stages of the task. The areas where a consumption step change is significantly

[235]

noticeable gets broken down into smaller subtasks. Each subtask has a time duration, and its

consumption level is plotted and divided into a hierarchical structure.

The plan organisation stays the same, and the planning is still performed based on the task

consumption prediction without regard to these newly identified subtasks, ensuring certainty

that if a task gets scheduled, there is adequate energy available in the store to execute all of the

tasks subtasks fully.

As the task execution begins, the executor will send the individual subtasks information to the

application software for processing and comparatively monitor the consumption rate changes

against the predefined rate measurements taken during commissioning.

The complication with this implementation comes when the overhead of these extra monitoring

and measuring requirements consume more energy than they save. Inevitable, this type of

monitoring will only pay justice if there are frequent occurrences of tasks overshooting their

predicted consumption rates, which points to the system not performing as intended.

RTOS Costings

When using the stack with an RTOS, it is unreasonable to expect an accurate prediction of

consumption rates when tasks could consist of work distributed to multiple unmanaged threads.

In this case, the timeslot of execution relates to its energy usage versus charge level.

This proposal centres around two particular cooperation strategies; the first involves treating

each task as having identical consumptions and providing average consumption predictions via

multiple executions. The efficiency of execution depends on the accuracy of this average

versus the actual energy consumed for all the RTOS execution threads running. If the

consumption overshoots too often, then the gains of management diminish, so in this scenario,

[236]

it is essential to try and have all the threads running balanced loads. Even if the threads can be

deterministic, it is still unknown if any other threads get scheduled by the RTOS executive in

the same period.

The second method uses the tick function to monitor a level usage threshold defined at the

point of wake. This threshold allows the RTOS to self-manage energy and gets signalled when

it is time to hibernate. At this point, the Planning Service can utilise its algorithms to determine

the best charge time based on the incoming energy stream, which will reflect how much time

the RTOS will next be given to service its threads.

This average costing method also allows for the RTOS to signal to the stack that all of its

threads have suspended and the system no longer needs to be in the ‘wake’ state. The executor

will then arrange to go into early hibernation. The unused energy at this point gets rescheduled

for use during the next wake period.

The RTOS configuration must ensure that the signal sent from the stack requesting execution

termination followed by hibernation gets treated as the highest priority interrupt. The

application software must carefully manage the time between this signal and the call-back to

the stack, which will initiate device hibernation. Enforcing this can be a significant

complication as the threads will have an unknown amount of processing left to execute. In such

situations, thread pausing is a viable option if the hardware peripherals can be isolated and put

into the same state they would have assumed during a calibration cycle. The main point to note

here is that if paused tasks cause additional parts of the system to remain consuming energy

during the hibernation period, then the charge predictions will be incorrect, and the risk of a

false-wake significantly increased.

[237]

If pausing the thread and disabling the systems associated with the execution will cause the

thread to terminate unexpectedly, then a graceful exit routine must be implemented to close

down the situation as soon as possible.

Communicator Service

An interface exists which allows for the control of synchronised message flow between devices

or base stations. The interface allows management and initiation of synchronisation, reception,

and transmission functions; however, the messages' content is entirely application-specific.

The physical building, transmission, reception, and decoding of messages is the application

software's responsibility, and the stack will merely coordinate timing, add some additional

control data, and pass messaging requests to and from the application software.

The messaging interface consists of the following functions:

• addMsg()

The stack will send the following signal requests originating from the signal() call:

• requestSendMsg

• requestRecieveMsg

The configuration constants available to tweak this stacks responsiveness to the device’s

minimum design requirements include manipulating the maximum frequency of message

sending and maximum duration to wait for an expected incoming message to arrive.

The tick function of the stack takes on a more essential and managerial role when synchronised

communication is required. The tick function allows the stack to schedule message

[238]

transmission requests and service predicted receptions, enabling the foundation to trigger a

timely response to messages it has scheduled to receive.

For the communication synchronisation, the periodic tick call from the application software to

the stack during task execution increments an internal tick counter, providing and maintaining

a time scheduling facility.

The stack will schedule wake-up times to exchange messages with other devices using this tick

counter and ensure the process does not breach the global settings' maximum transmission rate.

For devices to communicate directly with each other (peer-to-peer), they have two options.

The first will require the devices to share precisely the same Tick repetition rates among them.

The second involves providing a conversion routine.

During a communication setup from either a base station or a peer-to-peer direct message

transfer, the units will synchronise their times to achieve a coordinated wake event. This

synchronisation does not necessarily enforce the designer to implement a timekeeper routine

or real-time clock. It can be done efficiently with basic tick counting and wait times which will

ideally coincide with task execution events.

Time conversion routines allow the stack to perform a ticks-to-time translation. The stack can

then schedule a communications slot for 15 seconds by using this routine to calculate the

number of ticks needed to satisfy the period relative to its specific hardware platform running

frequencies.

The message waiting period provides a mechanism for dealing with the inaccuracies or

differences of timekeeping between devices. An essential goal of the planner is to keep track

of any scheduled messaging slots that are pending and make sure that the device is in a wake

state at the appropriate time. Ideally, the device will have already woken at its most efficient

point, and task execution will be underway, coinciding with the scheduled communication

[239]

timing slots. These slots need regular serving and have enough additional execution time

remaining to ensure either completion of the message transfer or expiry of the predefined

maximum wait period. If device wake must occur when energy stores are yet to reach a

successful task execution level, then the additional cost of the wake will significantly reduce

efficiency calculations in terms of useful work done versus energy input. The planner will use

its algorithms to maximise the possibilities of making sure the communication slot timing

always occurs during a useful task execution period, and this is a metric used to evaluate the

stack's performance within its application.

During hibernation state, the Planning Service must keep track of the tick count it would have

accrued if awake and executing tasks. This loss needs recovering, and a time-to-ticks

conversion routine or the application-specific method of keeping time during hibernation can

accomplish this and replenish the counter's value. The Planner Service must ensure that after

it has a viable plan and has calculated its hibernation period regarding its incoming energy

stream, there are no scheduled message slots that need servicing during the sleep.

Discovering a clash where a scheduled radio event will miss service causes the planner to either

try a different combination of same level tasks and sleep patterns or, as a last resort, schedule

a dedicated wake event intended solely to service the communication, causing the device to

consume additional energy.

Wake Time Latency

Another reason for carefully considering the predefined maximum message wait period reflects

the latency introduced by the application software between the stack requesting a

sendMessage signal and the actual message bitstream electronically transmitting through the

air. If not a base station, the reception side will inevitably also need time between a request for

[240]

message reception and the actual point the hardware would be capable of electrically receiving

and processing it. The Planner Service must take wake time latency into account, as different

types of devices do not know the scheduled wake times of other devices. A predefined

tolerance value is added to the scheduled wake time to cater to these variances and unknown

influences, as shown in below in Figure 114.

If the device schedules for a message reception event, it should wake at the scheduled time

minus its wake-time-latency at the absolute minimum.

113

Figure 113: Radio Overhead Tolerance

Monitoring Service

The Monitoring Service allows long-term data collection of all performance and efficiency

metrics. The service allows the mesh controller to retrieve and analyse every hardware unit's

[241]

performance within the network. This information allows a real-time GUI user interface where

the task execution and hardware units become visualised.

It also provides a messaging foundation to pass certain events back to the controllers, such as

survival messages, scheduled hibernation times, scheduled hibernation durations, and

remaining work time and energy datasets.

Before the device goes into hibernation, it will send a status-packet message destined towards

the controller's logging service. This packet summarises the devices decisions made, the current

environmental state, and the current health state since the last log packet transmission. It also

contains the current energy store level and the average rate of change this source is currently

experiencing alongside the rate of charge accumulated during the hibernation period.

Message Management

Messaging between devices and between the controller and user are done using a synchronised

time message delivery system. Both ‘pass-your-message’ exchange styles and direct-

messaging are supported using a calendar scheduling service.

Messages passed to the device are serviced during wake periods, and message exchanges

scheduled using the log message transmission process. Message exchanges originating from a

device and targeted to the controller are allowed anytime the device is in a wake state. The

controller acts as a post office; if inter-device communication is required, the message is

addressed to the destination device and passed to the controller for forwarded delivery when

possible.

[242]

When the device passes its messages, it also asks if it has any pending messages waiting and

proceeds to retrieve them. The controller will pass all broadcast messages and all pending

messages holding the device's address during this message exchange.

The devices are also able to communicate directly with one another after creating a friendship

bond. This bond is achieved by initially asking the controller to be introduced to the target

destination device.

If the controller allows this activity based on its predetermined security and privacy settings, it

will pass a message back to the device, revealing the target devices next wake-up time. It will

also pass a message to the target device giving details of the requested friendship bond. Figure

115 below shows the message flow diagram outlining the process; the meet time gets agreed

in this case as @1.

When the target device next enters its wake period, it will request its messages from the

controller and see the pending friendship request. At this point, it will schedule and turn on its

receiver, waiting at the prearranged time for the potential contact.

[243]

114

Figure 114: Peer-To-Peer Message Exchange Setup

Meanwhile, the transmitting device received the reply from the controller that its friendship

request is pending with the target device, and it now knows the next time the targeted device

will be listening for incoming messages.

[244]

The transmitting device must now schedule itself to wake simultaneously, so the two devices

effectively synchronise their wake patterns for the next message exchange.

When the wake cycle occurs, the transmitting device can repeatedly send its message until it

receives a reply from the target. At this point, the friendship bond becomes stable (Figure 116

below illustrates this sequence), and they can then resync their next wake-up message exchange

directly with each other; no further arbitration from the controller necessary.

[245]

115

Figure 115: Continued Friendship Meetings

Ultimately this direct messaging system is the most energy-efficient way of sustained

communications. The only real commitment needed is the synchronisation of a mutually

[246]

agreed wake-up time. Complications arise due to the energy store predictions that need taking

into consideration.

A two-way mutually agreeable system needs establishing, which deals with either device's need

to reject a wake-up proposal due to its personal constraints, and the arbitration process

reworked until an acceptable timing strategy for both units is agreed.

Wake failure also needs consideration. The entire communication process has an obvious

energy expenditure cost, which should be mostly deterministic. This cost should also be

considered a system cost as opposed to a work task cost.

When a device wakes due to its hibernation duration expiring, the device may well discover

that its recharge cycle has not been sufficient, and its current store level is below the cost level

of even primitive essential communication; in this type of situation, an immediate re-

hibernation is the only real option for survival. This case presents a missed communication

opportunity; one or both devices need a fallback plan to re-establish message exchange

synchronisation.

The recovery plan can take two forms, the first involving immediately revoking the friendship

bond, and as such, will need to re-execute the initial bond setup procedure involving controller

arbitration to re-establish initial synchronisation.

This option's major disadvantage is the constant dependency of a controller unit situated within

the effective radio communication range. There is the desirability given by using direct

messaging, that devices can work together and communicate even if they are not within the

range of or have any type of contact with a controller device.

Retention of this flexibility is achievable when the devices can provide an internal mechanism

of automatically repeating resynchronisation messages. Both the devices can immediately fall

[247]

back into a periodic wake and try routine until the two devices eventually successfully achieve

a new contact, after which the standard communication protocols can resume.

Mimicking some of the features presenting in the BLE Mesh protocol [34], a device can repeat

a message and perform all functions required of a typical message repeater. This facility proves

very useful when the distance between a portion of devices and controllers becomes too great.

Flood routing allows addressed-and-targeted message broadcasts to every device within the

radio communication range. If a device receives the message that is not the destination device,

it forwards it one time to every other device it encounters within a predefined period. The

message's creation time, embedded in the message payload, gets compared against a predefined

ageing value. Once the ageing value has determined the message has become too old, it

removes the message from its message queue.

Using this method, even if receiving LPDs are vastly out of range from the sending device,

their messages can still get delivered by hopping it over other devices positioned between the

sender and the destination devices.

These broadcast messages are far more expensive in terms of time and energy to utilise, but

they can still be deterministic in terms of predictability. The general rule to follow is to predict

the worst-case cost scenario, and if the task comes in under budget, the Power-Trender will

adjust its calculations and the unused energy left in the store.

Dedicated Wake Channels

It is acknowledged that the current trend towards communication in ultra low power sensor

nodes often revolves around setting up and monitoring a low frequency/low data rate out-of-

band radio wake-up channel [74]. This type of wake-on-radio strategy allows the devices to

[248]

enjoy very low current consumption sleep periods and only wake and incur higher consumption

levels when the radio signals target them.

Although this method is a proven method to maximise incoming message collections, it is not

predictable in terms of when the energy needs to be made available.

When considering this type of operation alongside the stack, it highlights some major

compatibility issues. The operational idea behind the principle involves leaving the radio on

all the time in a very low power receive mode. If a message is detected, it can bring the other

systems out of hibernation.

Having the radio receiving hardware always energised is only an option if the incoming energy

is in surplus; however, this type of receiver's consistent consumption cost would consistently

enforce the need to reserve far larger blocks of energy per task.

The receiver could be duty-cycled, thus reducing its sustained consumption and allowing a

deep hibernation recharge period. This recharge cycle aids in better scheduling of the messages

and the ability to determine the delivery frequency. This method is more manageable, as the

low power receiver can be energy consumption predicted, planned, and executed, just like the

other tasks. From the base station's point of view, duty cycling the reception could cost

multiple message re-transmissions, as the base station will have to ensure that the device's radio

was on a duty period during the transmission. If the base station is unaware of the devices duty

rate, then resending the same message until either a reply is received or the probability of duty

after multiple messages sendings is high enough for it not to be an issue.

The secondary benefit to this method is that although every device will receive the low power

message wake-up, the contents of the message's payload contains the targeted device's address.

As such, only the devices addressed as intended recipients will progress to powering up their

main radio interfaces in preparation for receiving the actual message.

[249]

The usefulness of using this technology to wake the device from hibernation is

counterproductive in the sense that the energy management control would have to move to

within the base station area, which will create far more communication overhead by the

incurred message exchanges needed to pass the status and energy parameters back and forth

between all devices.

Employing this solution needs careful consideration towards dealing with the incoming

messages scheduled during hibernation periods. The wake-up, receive the message, and re-

hibernate out-of-plan is one option. The other solution is to utilise the Planner Service to

schedule a task that will coincide with the messages estimated arrival time.

The stack already has the facilities to keep track of and time tasks by tick counting, so the

ability to schedule and wake for message reception is feasible. The main primary radio channel

is powered down entirely during this message wait period. The responsibility of ensuring that

the target radios are in a duty cycle and in a position to receive messages transmitted from a

base station is entirely that of the transmitting device.

Initial Comissioning

Implementing the stack within the test environment was relatively straightforward, allowing

complete control of the energy input stream experienced by the LPDs in multiple forms and

assigning elementary tasks that turn on LED lights for different periods.

These assigned rudimentary LED flashing jobs break down into individual tasks turning on up

to three different LEDs for individually specified lengths of time. These tasks are then

randomly sent to the devices for execution, and the resulting logging data from each device

retrieved and combined for evaluation. The input energy stream was varied for multiple runs

[250]

of the same experiments to prove the devices' behaviour is of an expected nature during

environmental impacts.

Altogether six units were deployed and monitored in different positions relative to the two

different energy streams. Each unit had to make sure they woke for execution only when they

had accrued enough charge. This cycle was only achievable by energy scavenging during

hibernation, followed by successfully executing and completing the pending task.

The communication setup configuration involved a periodic message window spaced 60

seconds apart, and the initial task calibration cycles successfully executed during periods of

extremely high input energy levels.

Four LED test reference tasks are specified and assigned globally recognised taskID numbers:

1. LED 1 ON, LED 2 OFF, LED 3 OFF, WAIT 1000mS

2. LED 1 OFF, LED 2 ON, LED 3 ON, WAIT 800mS

3. LED 1 ON, LED 2 OFF, LED 3 ON, WAIT 500mS

4. LED 1 ON, LED 2 ON, LED 3 ON, WAIT 500mS

The retrieved log data makes it possible to evaluate the Power-Trender’s performance and the

settle-down time seen by analysing the feedback loop. It also clearly shows how the group can

respond to and rebound from environmental changes randomly introduced during the

experimentation periods.

[251]

Chapter Summary

All of the stacks services operate together to provide a low-level management protocol that

tightly integrates with a radio interface such as the current BLE offerings. The stack integrates

within its Protocol API and allows any higher-level application to make use of the features.

An implementer needs only to provide the hardware subsystem driver implementation (App-

Specific peripheral drivers) and the application Profiles and Services, illustrated below in

Figure 117. WIMP can go into a learning mode to gain an initial idea of the energy input vs

energy output availabilities. This data is then used to begin the power trending calculations.

116

Figure 116: nRF BLE Block Diagram

[252]

WIMP also integrates the logging communication service, which shares the task, energy usage,

and energy charge rates with all the other devices within its group. The Supervisor and

Allocator services use this facility to distribute high-level tasks to the application software for

execution. This tight integration allows a distributed team-working solution to complete a task

using multiple hardware units in synchronisation. Each unit will take on individual subtasks,

and the meshing nature of the setup will allow them to all track the state of the overall task's

progress.

A significant change of direction for this project has been upgrading the BLE stack to a

Bluetooth version 5 compliant version. This component-level change allows an immediate

gain of some valuable features, including:

• The notable increase of sensitivity of the receiving hardware

• Bluetooth long-range mode – this takes advantage of the increased receiver

sensitivity and implements new reduced data rate protocols allowing reliable

data transmission of multiple kilometres.

• Increased broadcast capacity

• Improved coexistence

• Concurrent multirole technologies

• Greater net throughput

• Improved fault tolerance

This enhancement caused a hardware modification in terms of IC swap out from all current

hardware units; however, the gain in the receiver sensitivity allowing harnessing the long-range

offerings deemed it worthwhile.

[253]

Chapter 7: Findings, Phase 3

WIMP has been modelled at various stages of its design and has cumulated into a physical

software implementation executed on the research platform introduced in chapter 1.

The research implementation of the WIMP stack uses the ‘C‘ programming language. Every

module and service’s code is written as per the previous design discussions, with slight

modifications that allow statistical and real-time monitoring of the internal algorithms. The

test studies' are generally directed towards comparing the WIMP stack's added intelligence

capabilities with both the previous analysis’s on fixed and adaptive wake strategies.

The test setup consisted of the RF energy transmitter and solar lamp working together to control

the energy streams passing over the eight individual hardware prototyping units, illustrated in

Figure 118 below.

117

Figure 117: WIMP Test Platform Layout

[254]

Of these eight units, two operate using a fixed time wake pattern, two devices uses adaptive

wake patterns, and the final four devices boast full WIMP stack implementations.

The four WIMP devices get randomly placed at different positions relative to the primary

incoming energy stream sources.

Device positioning involved two adaptive units placed next to two of the WIMP units and the

fixed unit placed next to an adaptive unit.

Two other units running the WIMP stack are placed at random positions to aid in data collection

and comparisons.

The devices were all given the same six predefined jobs detailed below, and the WIMP devices

were allowed to calibrate by themselves. The last WIMP device came preconfigured at design

time with task consumption predictions instead of self-calibration.

1. WAIT PULSE, LED 1 ON, LED 2 OFF, LED 3 OFF, WAIT 1000mS, WRITE LOG

2. WAIT PULSE, LED 1 OFF, LED 2 ON, LED 3 ON, WAIT 800mS, WRITE LOG

3. WAIT PULSE, LED 1 ON, LED 2 OFF, LED 3 ON, WAIT 500mS, WRITE LOG

4. WAIT PULSE, LED 1 ON, LED 2 ON, LED 3 ON, WAIT 500mS, WRITE LOG

5. WAIT PULSE, LED 1 ON, LED 2 OFF, LED 3 ON, WAIT 500mS, WRITE LOG

6. WAIT PULSE, LED 1 ON, LED 2 ON, LED 3 ON, WAIT 500mS, WRITE LOG

A rudimentary radio protocol uses the research platform's 2.4GHz RF interface to listen for a

4-byte periodic message transmitted from a bespoke external device (Figure 119 below).

[255]

118

Figure 118: Time Sync RF Message

This message is an incrementing count value (represented as a 32bit unsigned integer number)

transmitted every 100mS and facilitates time synchronisation services.

For every task the LPDs are expected to execute, they must first turn on their RF receiver

interface and wait for the next time sync count transmission to arrive, illustrated below in

Figure 120. The message payloads value then provides synchronisation and timing information

which get tagged to log messages for later analysis.

[256]

119

Figure 119: Task Time Sync Points

After the reception of the time sync count message, the devices can disable all radio interfaces

and preserve as much energy as possible for task execution.

The final part of any of the tasks, before hibernation can commence, is to wait for another count

pulse to be transmitted. At this point, the devices again must enable their RF interfaces and

wait for the external time count message to arrive (as illustrated in Figure 120 above).

However, during this period, the unit will time how long it spent waiting since the task

execution was finished locally, and the external count message arrived wirelessly.

Along with recording the energy store levels at the wakeup, hibernate and job task execution

points, the tasks also involve measuring their incoming charge rate (via the Tick function).

This measurement requires two consecutive energy store level samples surrounding a known

period of inactivity (Figure 121 below illustrates the various measurement points). Although

not considered the most accurate representation of incoming useful energy, it serves as a

[257]

reference point so the different locations of the devices relative to the energy streams can

correlate during data analysis.

120

Figure 120: Task Energy Level Sample Points

As to minimise the use of additional components and software libraries, the logging data gets

written to the microcontrollers internal flash area. This process is quite an expensive job in

terms of both time and energy and needs to be the last operation before hibernation begins.

Care ensuring that the upper energy store level threshold gets set correctly is critical. The

setpoint should recognise that even during failure, there is a reserve requirement to retain

enough energy to record incident reasons; this is solely the cost of keeping the CPU alive until

it has signalled its internal flash write routine has finished. Failure in this area could easily

corrupt the entire logging contents and void the experiment as MCUs typically have very large

flash erase and write page sizes.

The devices all share the same type of 12bit successive approximation ADC modules.

[258]

Logging

The logging system records all the critical time points needed for efficiency analysis. The life

cycle of a task involves the following logging points:

• Ts-mk: Start session count marker (generated inside LPD)

• Ts-lvl-A: Start Energy store Level value

• Ts-wt: Time since wake event and count sync message received.

• Ts-cnt: Start Time Sync Count message value

• Ts-lvl-B: Start Energy store Level value

• Ptasks: Planned tasks after adjustment

• Pexe: One or more Task start, Task End timestamps relative to the wake-up point

• Phib: Planned hibernation duration

• Ppost: Planned tasks to execute after hibernation

• Te-lvl-C: Start Energy store Level value

• Te-wt: Time spent waiting for next Time Sync Count message

• Te-cnt: End Time Sync Count message value

• Te-lvl-D: End Energy Store Level value

• Te-mk: End session marker

All the time values apart from the time waiting for the final count sync message are translatable

to delta values referenced from the point of waking.

Figure 122 below details the points in the cycle where the variable measurements get taken.

[259]

121

Figure 121: LPD Variable Measurement Points

The incoming charge rate gets measure twice per wake event cycle, once between the wake-up

time and the first Time Sync Count reception. The second measurement gets taken just after

task execution has finished and ends just before the final Time Sync Count message's reception.

The average charge rate provided by the incoming energy stream gets calculated by dividing

the change in concentration over the period by the time interval.

Equation 62

6∆ = �1cl`lM − 1cl`lK��1chm� − 1cNj� & �∆ = �1Wl`l� − 1Wl`l¨��1WNj − 1Whm��

Figure 123 below illustrates that the points used to measure the incoming charge rates are

outside the task execution area, giving the best chance to make a realistic measurement.

[260]

122

Figure 122: Charge Rate Measurement Areas

During hibernation, the incoming charge rate is measurable using the period between two

consecutive tasks, from the Te-mk point to the following Ts-mk point and using the delta

between Te-lvl-D and Ts-lvl-A. Energy store charge saturation during hibernation will invalidate

this measurement. A basic check for Ts-lvl-A being less than the energy stores full value ensures

integrity.

Figure 124 below shows a time-correlated Gantt type picture that illustrates the four LPDs

running the WIMP stack executing their tasks against the global time-synchronised counter.

The chart datapoints are derived from the downloaded log entries stored within the LPDs

internal flash area.

[261]

123

Figure 123: Correlated Execution Patterns

The LPD log entries, shown in Figure 125 below, contain historic execution records with time

stamps and level readings. The data requires post-processing to correctly correlate the

timepiece differences between the LPDs internal timekeeping and the global Time Sync

Counter messages.

The LPDs keep an internal tick counter which gets used to time application software events.

A division of this tick also gets fed into the WIMP stack as its periodic Tick() call.

To correctly correlate everything together onto the same timeline, an LPD translation function

converts the local tick counter into milliseconds. The tick delta between Ts-mk and Te-mk allow

the total wake time to be calculated, and the other task internal measurement points are derived

using similar delta calculations. All these values then get converted into their corresponding

time values.

[262]

124

Figure 124: Downloaded Logs

The adaptive and fixed devices send zero values for the parameters which are not relevant to

their implementation; this ensures messages from all devices are equal in size and effort.

Any device experiencing any kind of false-wake must still try and accomplish the Time Sync

Count message wait before re-hibernation. If even this (dictated by the energy store level)

procedure is not possible, then a last-ditch attempt is made to mark its internal log indicating

that a false-wake has occurred.

[263]

Test Schedule

Ten initial test runs get performed where constant energy streams are permanently available

and stable for harvesting. A further ten test runs followed where the energy streams were both

relocated and varied in output power.

Each test run executes for 24hours, and the logging incorporated within both the tasks

themselves and the modifications made to the stack implementation were stored in the device’s

persistent storage for later retrieval and analysis.

Every device had the same energy store level setup, the same harvesting setup, same thresholds

and same internal self-calibration results, the devices themselves are identified as single

characters from ‘A’ to ‘H.’

When an experiment reaches completion, the devices get collected together, and their logging

data retrieved from internal flash storage for continued analysis.

A timeline gets drawn representing the periodic transmission of the count value from the

external radio syncronisation device. Each device gets its wake and work periods transcribed

to this same timeline, and at each point in time, the energy gets trended against incoming

strength vs device expenditure rate.

As when woken, the devices can also keep their own timekeeping. It highlights how the

planner's algorithms perform in relation to the decisions other LPDs made, precisely what gets

scheduled, and how accurate the schedule predictions are to the actual predictions.

[264]

125

Figure 125: Charge vs Execution

An average random task execution run can be seen graphically in Figure 126 above. The graph

line shows the charge level and rate of the energy store for a selected LPD. The numbering

found above the peaks of this line represents the task the unit is starting to execute at that point.

The rising slopes represent the charging hibernation periods, and the falling slopes the task

execution energy consumption rate. The stacks minimum threshold, for this case, is 2V,

leaving a good reserve in place for exception mitigation such as false-wakes.

The illustration clarifies that the stack's operation and performance follow the discussed design

patterns very tightly and unlocks and delivers the extra efficiency predicted. Tasks 4 and 6

both involve a 500mS delay, and task 3 utilises an 800ms delay. The graph clearly illustrates

the change in consumption prediction between the task types when their execution time arrives.

The transition between task 6 and 2 exemplifies the extra hibernation time needed to complete

the longer executing task successfully.

[265]

The test runs visualised in Figure 126 above shows how the stacks expected operation performs

with proper configuration and initialisation values, including successful completion of all self-

calibration and task calibration procedures. The results, however, show that for the timespan

the graph covers, efficiency in terms of maximising task execution based on incoming energy

allowance is near perfect. The only way to increase output further is to look for additional cost

and speed savings within the hardware and application layers and designs. From the point of

view of intelligent energy management protocols, no more can be done to realise further

worthwhile returns.

It does not prove easy to quantify the efficiency increase presented with this solution, as the

operational aspects of the different strategies are so different. Figure 127 below shows a typical

run of the LPD using an adaptive protocol; its charge time is similar in ramp, but the need to

charge to set levels without underlying knowledge of the change in consumption work tasks

experience between jobs cripples its maximum possible efficiency output.

126

Figure 126: Basic Adaptive Comparison

[266]

Two areas of risk where inefficiencies can manifest themselves when using a properly

calibrated WIMP strategy are false-wakes and error-correction settle time.

A false-wake is a situation in where a wake event has occurred intending to execute and

complete a specific pre-costed task fully; however, the expected charge level is not yet

available within its energy store. The typical choice made at this point is to immediately

recalculate the hibernation time needed to complete the energy store charge and then go back

to sleep for that duration.

The in-efficiency accrues when the false-wake procedure's energy cost eats into and uses the

energy being harvested and reserved for a task.

127

Figure 127: False Wake

Figure 128 above illustrates a false-wake occurrence. The procedure itself will consume both

energy and time, both of which will affect the overall efficiency score.

False-wakes effects may be evident for a considerable time after their occurrences. Due to the

Planner service slightly overcompensating in fear of provoking further consecutive false-

wakes, the extended hibernation that follows may well have resulted in a more significant

[267]

accumulation of charge available than needed, as illustrated in Figure 129 below. It is visible

that the execution of the task completed with considerable surplus left in the store. This unspent

energy is not lost, simply included in the next tasks scheduling plan. The inefficiency, in this

case, gets measured by the fact that the previous task could have executed a little sooner. The

stack considers the unused energy at this point is due to a prediction error that needs smoothing

out.

128

Figure 128: Prediction Error

For these tests, the planning service uses a basic PID (Proportional Integral Derivative) type

closed-loop error correction algorithm to consolidate the inaccuracies where task prediction

values do not align with actual execution values for whatever reason.

The loop configuration treats the task execution as the process variable and the time in

hibernation as the control variable. The loop uses a mathematical function to control the

[268]

process variable via a feedback path which denotes the charge remaining in the store after

execution has ceased.

Three coefficients are available to tune the loop's performance, and they all play an effect on

the final efficiency score.

1. Proportional Gain – The “P” within the PID acronym. A proportional gain is the most

fundamental scheme of control. As the process variable deviates further from the target,

the control target gets increased. As the process variable approaches the target, the

proportional gain applies considerable smaller change values on the control variable.

2. Integral Gain – The “I” within the PID acronym. An integral control scheme that gets

based on the time the error is present in the system.

3. Derivative Gain – The “D” within the PID acronym. A derivative gain will monitor

the error and determine the trend of the direction. If the error is decreasing, the

derivative gain only has a small impact. However, as the error begins to increase, the

derivative gain will start applying more considerable changes to the control variable.

Mathematically, the PID control algorithm used for the first runs is:

Equation 63

[269]

@��� = ������ + �k # ����%� + �� %�%�

Where:

u(t) PID Control Variable

Kp Proportional Gain

e(t) Error Value

Ki Integral Gain

de Change In Error Value

dt Change In Time

Running a model over this equation with some generic input test data shows that the algorithm

can produce a lovely ringing type settle pattern as shown in Figure 130 below; this will allow

the LPD to quickly return into maximum efficiency operating areas when deviance gets

encountered.

129

Figure 129: Error Correction Model

[270]

The LPD will not be able to replicate this smooth corrective path as its feedback part occurs

only upon task completion, so the loop responsiveness towards the process is incredibly slow

in real terms. The error correction effects in operation are highlighted in Figure 131 below,

where the output shows the LPD executing the same task multiple times.

130

Figure 130: Adaptive Feedback

It can be seen that the correction gets applied at a much larger rate during the first feedback

cycle. This tweak then gets followed by smaller change increments which ultimately created

an overshoot situation. The test run's final feedback loop detected this breach and introduced

a final correction that results in the task execution consuming near precisely the energy that got

predicted for its execution.

[271]

Chapter Summary

The research platform was used to successfully host experiments that allowed implementing of

the proposed WIMP software stack.

By aligning the hardware to self-discover the consumption requirements needed to execute a

given task, it works towards providing a self-correcting charge-to-work operation strategy that

allows maximum possible efficiency realisation.

Building on this single task-efficiency realisation, this just-in-time energy charge loop can be

adapted to process a stream of tasks in sequence, each requiring its own pre-discovered

consumption requirement, to truly exploit the idea of time dilation at its most granular levels.

It is clear from the results that once the system has adapted to its incoming energy position, the

only inefficiencies introduced from adopting this method come from the error correction settle

time and mispredictions.

There are a vast many paths to explore using these types of energy management strategies,

including what types of planning algorithms perform best, which error correction algorithms

are most efficient. All of this also concerns the actual application being addressed.

However, these experiments have shown that it is very possible to use basic intelligence in a

way where real energy gains get realised, which critically sum greater than the overhead

introduced in the process.

[272]

Chapter 8: Field Test, Oyster Monitoring (Original Content)

Progressing a joint research venture with the biological life sciences department, an exciting

and relevant intelligent energy management design has been deployed into service.

The problem stems from trying to understand the reproductive cycles of oysters in order to gain

the ability to calculate the best times for fishing them. The idea presented was to monitor the

oysters' opening and closing in their usual habitat and use it, along with other datasets of similar

measurements, to trend the habits.

A data collection hardware unit has been designed which allows field-effect sensors coupled

with magnets to be attached to the oyster shells; readings are then periodically taken, which

represent the angle of oyster opening at that point in time.

Various operational challenges hinder this problem, such as the harsh sea environment, the

number of oysters needing concurrent monitoring, the fact that a permeant power source is not

available, and the length of time the monitoring needs to be active.

Clearly, of interest for this particular research area is energy management which benefits

significantly from being introduced into this kind of sensor deployment. To achieve the

longevity of monitoring the team were looking for, coupled with the power needed to achieve

the actual sensor readings, three critical points needed to be present:

• A large energy store

• The ability to re-charge this energy store when possible

• Precise control of the energy consumption

The unit's design allows simultaneous monitoring of up to sixteen oysters. The sample rate

used to capture all of the sixteen monitored oysters' current opening state will be a dynamic

variable mostly dependent on the current energy store levels considered alongside incoming

[273]

charge levels. However, a ‘requested’ value is accepted, which the unit will always strive to

achieve were possible.

The unit is intended to be deployed for extended periods in potentially harsh and hard to access

environments (Figure 132 below illustrates the hardened design characteristics). The unit's

data only gets retrieved when the data collection size has been considered sufficient or another

potentially problematic issue has arisen. For this reason, a sizeable slow-release energy store

has been selected in the form of a rechargeable battery. The battery, in this instance, is

continuously charged during daylight hours via a solar panel physically attached to the outside

of the unit.

131

Figure 131: Environmentally Hardened Unit

The microprocessor selected to operate the unit has full control of powering down as many of

its ancillary subsystems as possible to minimise its idle current footprint. It is also able to enter

itself into a timed deep-sleep mode when its tasks have completed execution. Its analogue-

[274]

digital converters can accurately monitor the current charge level of the battery against a fixed

reference voltage.

[275]

The Unit of Walton

To create an intelligent dynamic energy management algorithm for this problem scenario, the

following key aspects need considering:

1. The current charge level of the energy store

2. The incoming charge rate delivered from the solar panel

3. The energy consumption hit obtained from waking up, taking 16 oyster measurement

samples and a battery level sample, writing the data to non-volatile storage, and then

going back to sleep.

4. The ability to dynamically control the sampling frequency with a priority that reflects

the requested sampling rate for optimal data collection

The algorithm deployed to help reach the targets utilised a novel approach to classifying and

organising blocks of energy using a unit of measure proposed as a ‘Walton.’

A Walton is a measurement quantity which can be defined as “the minimum amount of energy

needed to wholly achieve the highest priority task.” In the Oyster monitoring case, a single

Walton would equate to the energy needed to wake up, take the sample, write the data to non-

volatile storage and go back to sleep. This sampling sequence is defined as the ‘main and

highest priority task’ that the unit is designed to, and has to, achieve. Any other tasks that have

to be accomplished by the unit will have their energy needs measured in multiples or fractions

of this now defined single Walton unit.

Now the Walton has been defined and quantified for this particular solution; the measurement

unit gets used to further characterise the other components in the system. Examples of these

categorisations include how many Waltons the battery can store when fully charged and the

number of Waltons per hour average obtained from the solar panel. The task can also break

down into milli or micro Waltons, for example:

[276]

1. Wake up and initialise: 0.15 Waltons

2. Take samples: 0.35 Waltons

3. Write to non-volatile storage: 0.35 Waltons

4. Post-process: 0.10 Waltons

5. Sleep: 0.05 Waltons

The algorithm that controls the wake cycle and task execution cycle can now use this Waltons

unit to predict both the optimal times to wake up and perform its tasks, keeping in mind the

operator's requested sampling rate. It is agreed in this particular case that if the battery cannot

retain charge to accomplish successful samples at the requested sample rate, then slowing down

this sample rate is the primary objective. Obtaining fewer consistently spaced samples is better

than random and abrupt, lengthy stoppages altogether, which will result in large gaps in the

dataset where the energy in the store has completely depleted.

To accomplish this, the overall input and output Walton rates need to be carefully monitored

and fed back into the wake/work/sleep loop so these decisions can be made well in advance of

entering any type of critical depletion phase.

As of writing, seven units have been deployed into the field and actively monitor just over 100

oysters. The units store the sampled data onto internal SD Card storage and require an operator

to visit the individual units at regular intervals to retrieve and download the datasets for their

research analysis.

The next phase of this project will add several other subsystems to the package, including a 4G

modem and mesh communication, and this also provides a perfect opportunity to put this

research into practice in a real-life situation.

The modem will allow the units to automate data delivery, resulting in a truly autonomous

product that requires very little maintenance to provide very long term unattended use.

[277]

This radio medium also allows us to experiment with cooperative energy management

protocols. The idea of cooperation allows us to provide a truly impenetrable data sampling

solution with extremely high uptime and MTBF levels (Mean Time Before Failure).

As an example, let us consider just two of the units working together cooperatively. We know

that each unit can monitor sixteen oysters, so if we assume that we have thirty-two oyster’s

setup, we are only interested in measuring sixteen of them in any one period. Here we can

place the second unit in extended deep sleep mode with all sensor reading subsystems

deactivated. Using the modem for the message exchange, the first unit performs the sampling

tasks and transmits the data packets to the listening host, and it also uses the internal meshing

communication protocols via the modem to transfer its current energy position in Waltons to

the secondary unit. The second unit only wakes to retrieve and digest this broadcasted energy

position information. If the first unit suffers prolonged higher energy expenditure vs energy

input over time, the second unit can effectively ‘take over’ the job of the oyster measuring.

Both the units now reconfigure themselves and swap duties. The first unit can now go into

extended deep sleep mode and replenish its energy store while listening to the energy position

broadcasts now being made from the second unit.

This cooperative mode of operation can significantly impact increasing a sensor networks level

of fault tolerance. The inherent redundancy allows us to reduce the risk of any unknown

influencing factors that often appear in sensor network measurement situations, such as weather

conditions.

Deployment is managed by boat and a team with marine research experience; the current

deployment location is in Mersea, Essex, UK (Figure 133 below).

[278]

132

Figure 132: Initial Deployment Configuration

The field-effect sensors are attached to the hard oyster shell using an underwater adhesive putty

on the top part. On the bottom part, a neodymium magnet gets attached; this is shown in Figure

134 below. As the shell opens and closes, the microcontrollers ADC port can sample the tiny

voltage changes, which is then post-processed before being stored.

[279]

133

Figure 133: Field-Effect Sensor

Groups of oysters are connected to the same unit and spaced apart when placed back into the

habitat, shown below in Figure 135.

134

Figure 134: Oyster Grouping

[280]

As shown below in Figure 136, using holed crates dramatically simplifies the sensor attachment

and deployment process.

135

Figure 135: Sensor Submersion

The unit is anchored on a floating platform (shown below in Figure 137) to maximise its solar

exposure, and the solar panel is rated above the energy usage, so weather conditions permitting,

the units could be considered immortal.

[281]

136

Figure 136: Floating Controller Platform

The internal subsystems have five significant parts:

1. Battery (Energy Store - Figure 138)

2. Solar Panel (Energy Harvester - Figure 139)

3. Battery Charge Manager (Figure 138)

4. Automated Sampler PCB (Microchip PIC Based [107] - Figure 138)

5. Microcontroller (Linux based OS- Figure 138)

[282]

137

Figure 137: Controller Unit Internals

The size of both the battery and solar panel can be adjusted if needed.

138

Figure 138: Controller Solar Panel

[283]

139

Figure 139: Controller Sensor Entry

The finished unit is sealed in a hardened flight case, all the cable entries are via compression

grommets, and a splash-proof enclosure further protects the internal PCBs.

140

Figure 140: Internal Components

[284]

141

Figure 141: Aquisition PCB and CPU

142

Figure 142: Units Ready For Deployment

[285]

Unit Deployment

The units will spend the next two to three months collecting data and monitoring their own

performance in being self-sufficient. There is a real-time clock in operation which stamps all

of the log entries. The unit's data gets retrieved and analysed for battery charge/discharge logs,

which then get cross-referenced with weather reports and temperatures. The syncronised dates

and times provide correlation and further understanding of how the algorithms are themselves

performing, how scalable the current solution is, and whether any upgrades or modifications

will be needed to achieve maximum efficiency.

It would also be beneficial to further reduce the unit's operational energy requirements and

increase the features and efficiency of the ambient energy harvesting facilities it currently has

available.

Increasing solar panel size, and adding other transducers such as mechanical movement/wave

generators to the setup may allow the battery's replacement entirely with supercapacitors. This

component swap would allow the realisation of a machine that can live forever.

The battery is currently dictating the unit's life expectancy, as eventually, the efficiency of its

charge/use cycle will degenerate to a level of un-usability. At this point, the unit's operation

will be unpredictable and ultimately gets decommissioned until a battery replacement can be

organised. Obviously, this situation needs to be avoided. The goal will be a unit that can

achieve many decades of self-sustained operation in the field, where it continually transmits its

data inshore and can maintain its existence solely on the energy it can harvest from its

surrounding ambient offerings.

For this particular use case, the unit itself is engineered to a point where it can outlive the life

span of all of the oysters it is set up to monitor.

[286]

The next iteration of development for this unit is to remove the need for operator attendance

completely during its deployment periods.

The unit has realised this goal by utilising Bluetooth connectivity and an LTE modem for direct

connection to a mobile network.

Implementing and using the stacks discussed in this thesis has allowed the unit to predict the

energy costs and times needed for the sensor readings and implements the messaging

capabilities via the mobile network, allowing direct delivery of the unit's datasets.

The unit now passes its energy status message to a monitoring controller connected to the

internet. The mobile network talks directly with this LPN and alerts the operators if there are

any issues that need addressing. It successfully monitors and adjusts its sample polling time

based on the need for regular data measurements and the need to stay operational for as long

as possible.

The BLE long-range [109] is also available, allowing the units to implement direct messaging

and co-operative working to ensure its longevity is continued. Redundancy can easily be

introduced and is limited only by budget restrictions.

Data is scheduled for transmission as quickly as possible based on the flow of incoming energy

to outgoing usage, and the software can quickly detect and tag the environmental changes

which have the biggest impact on their future survival.

[287]

Field Results

As a direct comparison, a previous incarnation of the controller unit that adopted a fixed

wake/sleep operation strategy was placed side by side with a unit running the WIMP stack

variant. Both units were left to run on three separate occasions in three different lighting

conditions, and both units left to run until total exhaustion.

The standard unit failed after 14, 17 and 21 days; the new WIMP stack unit never reached a

point of failure whilst testing in any of the runs, the experiment was closed after five weeks.

This field test was an exciting opportunity to put the theories out in the field, solving a real-life

problem. The units had an opportunity to test an original theoretical idea and provide vital

feedback in real terms regarding the proposed research questions.

The research operation's feedback was that the unit modifications made to the hardware

incorporating the WIMP stack enabled their project to complete successfully. Previously, the

unit failure rate prohibited progression.

[288]

Chapter Summary

The entire concept of intelligent energy management protocols has been working now in harsh

real-life environment sensing solutions. The units are showing significant advantages over

standard design implementations.

Analysing the oyster units' operational data shows they quickly adapt to their environments and

keep nice regular communication intervals during most environmental changes.

The oyster project simplifies the problem quite nicely as it poses no movement possibility to

‘seek’ better energy sources and currently has only solar as its feeding supply.

Thus, it is quite clear how the protocols adapt to weather changes while maintaining nice

regular communication intervals.

The cost of establishing a connection with a mobile network, sending a packet, and retrieving

any pending messages can vary depending on current signal conditions, and which cell zones

are currently operable. This situation proves difficult to predefine a Walton unit, so several

units are kept as a reserve just in case a re-registration event with the cellular network is needed.

This over-planning is a good example though of being able to adapt to unexpected kinds of

environmental change.

It is clear from the results that further effort to push the efficiency of basic adaptive energy

management routines yields excellent results. A balance is needed, though, ensuring the right

amount of intelligence is wrapped around the fundamentally basic decisions the stack has to

make.

It is impossible to cater to every situation; it is just as impossible to continually accurately

predict something which can take on so many forms and introduce so many dynamic variables.

[289]

The art is closely comparable to waking up in the morning, and adjusting one's schedule to

counter the unforeseen environmental changes the new day is bringing. Dynamic decision-

making is needed; tasks get reorganised to fill the available working hours better as long as

they retain their prioritisation.

When parallels get drawn, one knows what one wants to do the next day before sleep

commences, but its no guarantee of what will actually occur. These fundamental realities are

dealt with on the fly and usually take no effort. This decision process is transferrable; it does

not need over-complication in terms of extensive forward decision algorithms or artificial

intelligence, it is just a question of a few measurements and a little ‘dynamics’ in terms of job

execution order.

The planning algorithms implemented are easily customisable to best suit the device's needs

and complexity. The operating overhead of the stack running in this form is very low indeed,

apart from the regular Tick requirement, it imposes virtually no interference with its host

hardware. This lightweight and ease of implementation are vital if the stack gets deployed on

a large scale, and it is large-scale deployment of these kinds of technologies working together

where the real energy savings can be measured.

A configuration stage must be understood; however, the calibrator service's introduction

greatly eases the need to have in-depth measurement procedures that have to be re-initiated

every time a design change is made.

It is understood that the use of a battery in this field experiment counters a lot of the original

target of this research piece. However, at the time of consideration, it was deemed that the

benefits awarded from a real-life test environment and problem-solving situation to test the

effectiveness of the protocol were too great to miss and still wholly beneficial.

[290]

Chapter 9: Integrating and Benefitting from Mother Nature (Original Content)

Parallels between S3 Devices and Animate Lifeforms

The Machine That Lives Forever is a concept which describes a self-sufficient electronic device

that harvests and manages its energy requirements, adapts to its environment, and survives by

drawing parallels with various human and animal life-form models.

A basic life cycle is realised that follows the rest-feed-work process ingrained into every living

creature. The critical challenges are finding and storing energy; when enough energy gets

accumulated, a work ‘task’ gets executed, when the energy store is depleted, deep-sleep energy

conversation hibernation occurs, allowing for recharge.

This cycle then repeats forever. It is known that if a devices program provides a set of

hardcoded rules, these rules get followed without question. Having collections of the same

devices all then exhibit the same predictable behaviour and share very similar outcomes until

their programs are changed.

This chapter aims to document research based on a stigmergic ‘survival by evolution and

learning’ algorithm, which draws influences from some of nature’s phenomenal successes.

Throughout this research, several parallels between the concept of a self-sustaining

microcontroller and real-life forms can and do get drawn.

When mother nature gets considered, it shows that life exists everywhere, from the smallest

bacterial type through to the highly evolved and intelligent beings that have got to the tops of

their food-chains. The more evolved and advanced life forms enjoy a somewhat better and

more engaging quality of existence, but it must also be said that every life form shares the same

survival and basic existence fundamentals.

[291]

When different forms of life are studied to see how they survive or deal with problems, there

is always a variance of reaction displayed when the numbers increase. This variance ensures

some kind of randomness, which may well result in decisions chosen that have a successful

outcome instead of a fail.

The survival rate gets increased simply because there is some kind of randomness; in fact, it

could be argued that success is directly related to randomness in this way.

It is desirable to retain and pass on these self-inflicted leanings to be better informed the next

time a similar decision is required.

A collection of these learnings can grow inside the MCUs resources as it experiences and

records the success or failure of some of the decisions it makes; these datasets form an

experience set that can be merged and passed on with others through collaborative teaching

type strategies.

The MCU code gets extended in various ways to explore introducing seeds of randomness

within its operation as a primitive form of artificial learning and intelligence.

The WIMP stack has been further modified to enable basic virtual personality traits to influence

management decisions.

Simulations have then indicated the outcomes and trends observed when introducing survival

driven random choice type decision making.

The author acknowledges the sheer size and scope of this type of research and does not seek to

offer an implementable solution that draws it to a conclusion. However, he feels that it is a

natural extension to the previously proposed intelligent management protocol to explore this

type of personality-driven survival decision framework, thus fulfilling the philosophical part

of this PhD thesis.

[292]

At the highest level, several life traits can be identified, which appear to be present in all

animate forms of life, these traits get identified as coronaries.

Coronaries

Survival

Col1 Stay alive: one of the primary objectives of the machine should be to stay alive. This

fundamental should be at the cost of all other objectives. Strategies should include adjusting

sleep times and predicting wakes to coincide with any future time-based energy resources.

Work levels should be reduced or suspended completely to match actual or perceived

resources. Cautious contingency should be employed.

Balance

Col2 Do an appropriate amount of work: Working too hard will deplete resources. Working

too little will result in a failure to prosper. The optimum point lies in analysing incoming arrival

versus outgoing energy consumption and implies instantaneous knowledge of any associated

time constants. Considerable gains are possible for the correct selection of values.

Hardware wear and increased probability of failure will incur if the LPD continually

overexerts; one must keep the expected requirements in mind to achieve correct balance and

longevity.

Sustenance

Col3 Sustenance: Any MCU device will necessarily expend energy just in being. The average

energy supply available must exceed the minimum energy required to survive, or life becomes

impossible. Accumulation of energy to target long-term averages becomes advisable.

[293]

Starvation

Col4 Heading towards starvation: If the MCU goes under-voltage due to capacitor depletion

(typically less than the device's specified absolute minimum), it can be deemed to have starved

as it can no longer metabolise. This slow death should not come without warning, and its

prediction should result in increased periods of sleep to conserve energy until more resource is

available

Gluttony

Col5 Gluttony: If the capacitor remains in a charged state all of the time, even during active

work execution, then the MCU is doing insufficient work for a given resource. It has become

bloated, and the awake sleep ratio reduced to redress this.

Over-exertion

Col6 Over-exertion: doing too much work can result in instantaneously dipping below v_min.

This burnout can be considered the equivalent of a heart attack. Resources are available, but

the device has become corrupt and should be considered dead. The machine's reincarnation

becomes difficult due to the energy hump (startup inertia) that needs to be overcome and serves

little purpose if vital information has been lost. Overexertion can be avoided by careful time

constant analysis.

[294]

Birth

Col7 Birth: Being born requires energy. The voltage should be greater than v_min. If the

microcontroller sees under voltage, it will consume considerably more power than normal

operation due to the MOSFETs' quiescent state. Under-voltage protection can mitigate the

problem, but any circuitry will be parasitic. Alternatively, a one-off connection once v_min is

exceeded permits birth.

Maturity

Col8 Maturity: A recently born device does not know the nature of any available resource

unless hardcoded into its genetics. It may not even know the size of the storage capacitor it

carries or the load it consumes, leaving it vulnerable to overexertion or starvation. As it begins

to mature, it will learn about its resources and capabilities and any long-term changes.

Prosper

Col9 Prosper: In our context, a prosperous entity is one that achieves the maximum amount of

work per unit of time for a given resource. Death would not be prosperous, nor would a poorly

designed work strategy such as sleeping too long.

Accumulate Resources

Col10 Accumulate resources: A full accumulator is the best the machine can hope for and can

be considered rich. For a capacitor, this means fully charged, i.e.5 time-constants (τ) or more.

The energy arrival rate knowledge should govern the depth of any discharge cycle, but a fully

charged device comes better placed to deal with the future than one that is partially discharged

[295]

or poor. Strategies should accumulate resources during times of plenty and attempt to maintain

them.

Rest

Col11 Rest: In the rest or sleep mode, very little energy gets consumed. Long sleep durations

are possible and more efficient, but they risk missing useful incoming resources that will not

get used efficiently. Checking the incoming resource costs energy and is parasitic, so it needs

using with caution. The energy consumed while sleeping is very low indeed, and it is assumed

the accumulator has sufficient energy for the device to survive for days.

Awareness of Surroundings

Col12 Awareness of surroundings: The inbuilt accumulator in the form of a capacitor has two

distinct time constants; the charging and the discharging. The discharging time constant will

consist of the capacitor and a generally fixed load. The charging time constant will have the

same capacitor but a time-varying impedance associated with the current source. Accurately

determining these two-time constants is key to the efficient utilisation of the resource. A

machine with an awareness of the source and load model can be shown to perform better.

Consider the Worst

Col13 Consider the worst: As a device heads towards starvation, has been sleeping for

extended periods, but things do not appear to improve, it must begin to consider the worst. In

the event of death, any vital information should be conserved for recovery if reincarnated.

Writing critical information such as the time constants, sensor readings and critical data to

ROM in the last throws of life should be considered, providing future restoration opportunities.

[296]

Learn

Col14 Learn: Learning gets considered in several ways: short term such as the instantaneous

time constants and long term such as the diurnal of day and night, e.g., for a photovoltaic.

Knowing information such as mean and deviation etc., makes for a better-informed entity with

a greater chance of survival.

Burn Out

Col15 Burn Out: Failure to correctly manage resources can result in the stored voltage

exceeding the maximum rating of the circuit; in the absence of over-voltage protection, the

device will experience permanent damage and die

Diurnal and long term cycles

Thus far, we have been concerned with a resource used to charge a capacitor that, when

appropriately charged, is discharged through a load. For efficiency, this requires acquired

knowledge of charging and discharging time constants. However, it may not be the only cycle

that is present. Corollary 1 (Col1) requires that the entity stay alive. With no knowledge of the

system, this is difficult. Immediate strategies may include monitoring the rate of energy arrival

and basing future decisions on this. Col2 requires appropriate work but should be subject to Col1.

Without knowledge of diurnal or long-term patterns, the best available strategy is to

accumulate, avoiding Col15 and discharge to a predetermined level, thus obeying Col2. However,

if a Col4 event (famine) unexpectedly occurs, an immediate and automated response is to resort

to Col10 and sleep for long periods hoping that the Col4 event passes.

[297]

If the Col4 event time is known a priori, then contingency can be made for it. Col9 requires the

accumulation of resources. By curtailing the Col2 requirement to do useful work and instead of

adhering to Col9 until Col4 is achieved. Then when the Col4 event does arrive, the entity is best

prepared for a long Col10 period.

[298]

Stigmergy

Stigmergy is defined as a “mechanism of indirect coordination in which the trace left by an

action in a medium stimulates subsequent actions” [127]. It can be considered a fundamental

mechanism that helps both self-organisation and provides pathways allowing localised

independent actions to stimulate globally coordinated activities.

Survival from the perspective of both organic life-forms and energy dependant self-sufficient

LPDs entails a core of basic instinctive features that ultimately must be considered their highest

priority goals (tasks).

1. Must be conscious of energy requirements (How much food it needs)

2. Must be conscious of energy usage (How quickly energy gets consumed)

3. Must rest to conserve and process energy (Sleep and repair/recharge)

4. Must replicate to pass on its DNA to evolve and survive

All life forms share these same fundamental requirements, regardless of other influences; these

are the most critical factors that must hold true to survive as beings.

How individual species and beings go about meeting these goals are dependent on functional

factors such as:

• Basic Instincts (Cognitive functions)

• Inherited instincts (Evolution, genetic inheritance)

• Imitation (Copying success patterns)

• Intelligent Learning (Actively pursuing new success patterns)

OCEAN

Personality traits greatly influence how these functional skills are obtained, used, and nurtured.

When considered alongside task requirements, they assist in determining success, leadership

[299]

and natural selection. Personality traits are widely researched and categorised under five main

headings referred to as OCEAN [128].

1. Openness: willingness to try new things, to be vulnerable, the ability to think

outside the box. (Imaginative, Creative, Curious, Perceptive)

2. Conscientiousness: the ability to delay gratification, work within the rules, plan

and organise effectively (Persistent, Predictable, Resourceful, Hardworking,

Planner)

3. Extraversion: draw energy or “recharge” from interacting with others (Sociable,

Friendly, Outgoing, Assertive)

4. Agreeableness: a construct that rests on how one generally interacts with others

(Patient, Unselfish, Helpful, Considerate)

5. Neuroticism: encompasses one’s emotional stability and general temper

(Fearful, Timid, Unstable, Wary)

Seven Deadly Sins

Behaviours are further influenced negatively by the introduction of the famous seven deadly

sins [129],

• Lust (Over replication)

• Gluttony (Neglecting the feed-work balance)

• Greed (Overindulging the feed-rest balance)

• Sloth (Neglecting the work-rest balance)

• Wrath (Preventing others from achieving balance)

• Envy (Over imitation)

• Pride (Ignoring lessons by others)

[300]

The randomness associated with acquiring and maturing a personality is what defines

individuality. These individualities enable infinite possibilities of achieving the given tasks.

When we couple this with the fact that traits of both parent’s personalities are inherited by new-

borns, along with potential mutations and changes, it is clear the richness of diversity is a key

component towards the survival of the fittest.

Personality Mappings

Personality gets mapped to device functions to gain the biological success achieved in nature

and apply it to the hardware realm. Personality traits are defined and used to represent

chromosomes and build a DNA chain for an LPD. Each chromosome gets mapped to a

cognitive or decision function within the LPD.

The primary cognitive functions are the ability to move in any direction at various speeds.

Using radio, LPDs both talk and listen, providing vocal interaction. Energy harvesting based

on RF scavenging, solar, thermal, chemical, electromagnetic, and electrostatic gets used (and

considered different food types) to collect energy and feed. An energy store in the form of

capacitors is considered the food store or stomach.

The task, kept in its simplest form, is to scavenge and find food. Success is measured by how

efficiently and repeatable this task is achieved.

A personality algorithm processes, weights, maps, and control the LPD’s functions and

decisions based on the following (inconclusive list of) categories:

• Willingness to move

• The typical speed of movement

• Maximum possible speed

[301]

• Willingness to be a distance from parents

• Willingness to talk to others

• Willingness to listen to parents

• Willingness to listen to others

• Willingness to share information

• Desire for food

• The maximum amount of food before considered full

• The minimum amount of food before a rest period gets forced

• Desire to over-indulge

• Desire to work

• Desire to succeed

• Desire to sleep

• Fear of loneliness, losing contact

• Desire to lead

• Desire to find a partner

• Ability to understand topological surroundings

Life Cycle

Birth

An LPD initially executes a basic skeleton program; it contains only the necessary code to

operate its cognitive and sensing functions. Structures are defined, allowing it to independently

manipulate its personality and store vital information such as its age, parent’s identity, life

[302]

success score, friends, and learning memory. LPDs are always aware of their energy levels,

and the basic instinct to scavenge and find food is ingrained into their program.

1. A ‘new-born’ LPD is placed into the environment and allowed to charge its energy

store for the first time. When appropriate threshold levels have been reached, it wakes

from this hibernation and enables its radio, broadcasting a ‘cry’ (Basic instinct)

2. The ‘cry’ alerts two potential ‘parent’ LPDs (the two most successful LPDs from the

list of LPDs that reply to it; or the single most successful LPD and its partner who

happens to also be in range) who reply to the cry by sending it their own virtual DNA

chains.

3. The new-born then creates its own DNA chain by randomly combining the received

chains from its parents and permanently storing its parent’s identifications into its

memory.

4. The new-born may or may not randomly mutate one of these chromosome entries.

When a child has discovered its parents, its parents also become partners if they are not already.

Learning

A new-born LPD initially learns as much as possible from mimicking its parent’s behaviour.

Its parents communicate everything they learn immediately to their siblings. The sibling

typically tries to follow their parents, but this is very much determined by their age and

personality traits.

Learning involves executing a randomly chosen act and then analysing whether it allowed them

to perform their task better. This result is stored in memory using a scoring system against the

act’s entry. Acts with scores that grow high are kept in long-term memory and frequently used;

acts with scores that get smaller eventually get forgotten.

[303]

A sibling LPD can immediately store a learning result, using a low score, received from its

parents without performing the task itself. Depending on its personality, it may also (as it ages)

apply the same learning storage process to information received from other (friend) LPDs.

Friends get formed from the learning transfer process itself. The LPD learns something from

a stranger; the LPD stores the stranger's identity in its memory and associates the new friend

with a score. Being a friend increases the willingness to learn further from that LPD, and as

more information gets exchanged from that LPD, the friend score increases, making it ‘more

of a friend.’ Ultimately the top scorer is considered a best friend.

Learning acts consist of one of the following:

• Explore an unoccupied area for a food source

• Make a new friend

• Have a random nap and see if it has benefitted

• Change direction

• Move towards a friend

• Move away from a friend

Communication

Every LPD hears every message sent by every other LPD; however, it only ‘listens’ to the

messages which come from its immediate family, friends, or leaders – and the willingness to

listen gets driven by both its personality and the leadership position of the transmitting LPD.

Other messages, stranger messages and shouts, are consumed to acquire new friends,

information, and new skills based on personality.

The LPD sends messages as it discovers information or food sources by itself or learns new

skills; typically, it addresses these messages to its parents and friends (personality driven).

[304]

LPDs can also ‘shout out’ a message, which then has more chance of being heard by strangers.

This broadcasting feature is used in times of distress, for example, when its energy levels have

reached a critical level.

Feeding

The LPD’s sole task is to scavenge, hunt out and consume enough food to survive. How the

LPD achieves success in this is resultant on the boundaries described within its personality. As

food sources get discovered, the LPD questionably communicates this to other surrounding

LPDs, who then use it to determine whether the LPD is currently better positioned to feed than

themselves.

Success gets declared upon discovering food supplies, so the LPD's internal success counter

increases upon successful discoveries. This internal counter is used to measure the

personality's success, which elevates that LPD within the group's hierarchy. This status level

increases the chance of becoming the group leader and increases the chance of passing its

virtual DNA into a new-born and evolving.

Success counters get reduced due to prolonged periods of being unsuccessful in finding and

utilising food sources.

Situation Awareness

The LPDs use an RSSI based location discovery algorithm to identify their position and the

position of the LPDs surrounding them. Each LPD maintains a MAC table that records the ID

of a transmitting LPD and the RSSI level when the message was received. Periodically every

LPD broadcasts its version of this table to every other LPD. This data exchange enables every

LPD to build a virtual topology of the network. As LPDs move around and re-broadcast the

[305]

new RSSI data, the physical positions of each surrounding LPD are calculated by the LPDs,

resulting in creating a geographical map. This mapping gets used to remember feeding

locations, locate parents or friends, and explore unoccupied areas.

A leadership structure is assigned based on the success scores of the LPDs. The highest scorer

(the most successful LPD) becomes the leader. A leader can command the group to do other

specialised tasks, for example, forming geometry patterns, exploring particular areas, or

prohibiting various actions. The leader is the only LPD who can communicate with the ‘outside

world.’ If extraneous activities are required of the group, driven by the outside world, this must

be agreed upon by communication with the leader.

Intelligence

The LPDs must intelligently control their energy storage and usage. They must keep constant

track of the level and usage patterns to avoid situations where they starve themselves. They

can learn repeatable feeding patterns allowing them to recharge and interact consistently.

When needed, they must rest in a deep-hibernation state, and this may get induced by the fact

that they have learned when food sources are scarce or running low on energy themselves. The

length of the hibernation is also decided based on these variables.

The LPD's current energy levels determine the depth of the sleep; if they are adequate based

on its personality traits, sleeping commences while still listening to other LPD's messages and

updating its memory areas. However, if a critically low level is being measured, the LPD must

shutdown every available system in an attempt to reduce its energy use to an absolute minimum

in order to survive its drought.

[306]

Interaction

Interaction occurs when a need has arisen to prevent an LPD from starving; teamwork gets

employed to identify the closest source of food for the LPD in need. The LPD then reacts

immediately to try and benefit from the source.

Group activities also require interaction. If the master sends a command, then everyone must

try and work together to solve the problem. For example, if the command is to form geometry,

then the LPDs must use their situation awareness, leadership ladder, and memory to position

themselves correctly.

Reproduction

After an LPD has reached a certain age, and based on its willingness to breed, it becomes

capable of responding to the cry of a new-born. If it is successful in this process and becomes

a parent, it has the opportunity to pass on its DNA to the new-born. The parent retains in its

memory the identity of its new sibling alongside the other successful parent's identity. The

other parent also becomes its partner. If either parent already has a different partner, this

adulterous act causes the original partner to get removed from its memory, and that original

partner’s success score is lowered, along with it also forgetting the ex-partner.

Being a parent increases the speed of its own learning as it immediately consumes new learning

discoveries from both the siblings and the other parent. The creation of a new child also

increases the success score of both of the parents.

[307]

Personality Algorithms

Any movement or decision the LPD makes results from processing the desired action by the

personality algorithm. Every possible command gets stored in a list; these commands are in

the simplest form, examples of which are Move, sleep, communicate, listen, learn, etc. The

general process is as follows:

• Randomly select a list of 5 to 25 possibly commands from the entire list; this

may get weighted by decisions based on current needs (energy, tasks).

• Establish which personality traits affect each of the commands.

• Generate a score by adding (positive trait) or subtracting (negative trait) against

each command for every trait it affects.

• Select the command with the highest score.

• Establish the extra parameters needed for the command (speed, direction,

duration, destination, LPD).

• Select values for the parameters by again establishing links from the personality

traits along with links from any previous learning results

• Execute the command.

• Repeat process when the command has finished.

Social Standings

LPDs will become alive, provisioned, and available at different undetermined times. The

devices will need to communicate and integrate into their new surroundings, and a

synchronisation procedure allows a communally accepted protocol.

The controller is a dedicated piece of hardware connected to the external world. However, the

controlling task can be passed to, or taken on by, an LPD if desired. During such localised

[308]

control scenarios, the traditional connection to the outside world gets severed, and the LPD

must revert to being entirely self-sufficient.

1) When a provisioned device wakes up, it sends a power level broadcast into the

network or group.

2) A controller or message partner device will acknowledge this message with a specific

response:

Response time value of 0: this means that that device will become the master time

device. It will assume this responsibility. It must then set up its next wake-up time to a

self-determined value and send a message back to the controller, sharing this value.

Response time value other than 0: this value is how many seconds until the next time

the master device will wake up and process its messages.

3) The device will set its wake-up timer to coincide with the next wake-up event of the

time master, thus allowing message processing to become synchronised.

After the devices have become time synchronised, a LED blink order and sequence gets

established between them, as the devices will all receive the message at approximately the same

time. This method is more energy-efficient than the overhead involved of having an onboard

real-time clock and associated crystal running on every device.

Enable the Emotion Chip

The LPNs’ ability to communicate peer-to-peer opens up the research platform to introduce

autonomy and evolution patterns. This enhancement allows firmware extensions so the LPNs

can successfully construct a leadership tree and work together to solve problems and exchange

relevant information.

[309]

A significant portion of this research identifies various biological attributes found in other life-

forms that directly impact their survival success. Different decision-making processes based

on personality traits provide simple foundations, enabling the nodes to learn from these

decisions and remembering how to apply them repeatedly to improve their quality of life.

The learning outcomes can then be passed to other family members or siblings (LPDs) to ensure

they also have the best chance of survival. Merging these digital genetics of generations in

such a way will allow an evolutional-based improvement approach touching upon the realms

of ‘survival of the fittest,’ retaining the genetics best geared for the environment the most

substantial chance of success.

Various personality traits (which can be considered chromosomes) are identified, weighted,

and implemented within the firmware to influence individual devices' decisions and choices.

This combination of these virtual chromosomes provides the LPDs with an artificial DNA

sequence. The outcomes of the LPD's choices and decisions will be evaluated and fed back

into its personality. Using this feedback method, successful decisions will, in effect, get

rewarded, and their personality traits updated to reflect, unsuccessful decisions will oppositely

get penalised. They will provide the foundation to be able to avoid negative decision-making.

As new LPDs introduce themselves into the group, they will have a randomised personality

and receive the artificial DNA from other devices; the new device can combine two of these

DNA sequences with its own, creating a unique and evolved ‘artificial individual.’

Joining the Group

With careful consideration of the security implications, an LPD can automatically assume the

provisioner's role for another LPD. This idea takes the provisioning role away from the

[310]

provisioner, resulting in the prior knowledge of the types of nodes allowed to join the network

having to get synchronised with the LPDs themselves.

However, this does allow segmented groups of devices to continue their work and

communications and award alternative devices the ability to introduce stranger devices that

may have been purposely deployed or perhaps even lost from a different segmented group.

Discovering Neighbours

For every message received by an LPD, a slightly more in-depth understanding of its direct

neighbours and their immediate movements can be made. The message itself gets tagged with

an RSSI value representing the signal strength of the received message. Although inherently

inaccurate due to RF reflections, environmental conditions and colliding object permeabilities

all uniting to detriment its accuracy, introducing simple techniques like including the

transmitters power value used during transmission and knowledge on the LPD’s own antenna

characteristics and calibration points can allow an averaging algorithm to present a relatively

consistent and probable answer.

The managed flooding protocol used by the mesh allows each node to dynamically build an

internal routing table that lists the network nodes and how many hops a message needs to take

to reach it. The hop count gets derived from the reception of multiple versions of the same

message arriving from different peers and containing different TTL values.

Deciding Social Position

Once a topology of neighbouring LPDs has been built, knowledge of which LPDs are closest

and which LPDs are available to initiate peer-to-peer communications gets continually

updated.

[311]

To achieve a radio synchronisation between two devices directly, a decision of which device

will get promoted to the role of controller denotes who will make the appropriate

synchronisation timing decisions.

This requirement also holds when an LPD wishes to send a message to multiple devices all

within its area of peer-to-peer communications. In this case, the group must communally agree

on which LPD will become the leader.

If a group of devices becomes segmented from the network as a whole, for example, when two

groups of deployed mobile sensors all move in different ways, eventually, some kind of

network breakdown will occur as a whole. However, there will still be groups of devices

available for peer-to-peer messaging. The loss will be the controller and potentially some

friend devices.

Social position must also prevail in these types of situations, strengthing the choice of who will

take on organising and passing work task messages, if needed. The need for the friend device

to propagate the messages gets mitigated using direct peer-to-peer or peer-to-group

synchronisation and messaging procedures.

The actual choice of who will take on the leadership role can be subject to various conditions

that can range from the node holding the most number of directly contactable peers within its

routing tables, the node with the most surplus energy, or the node which has simply survived

the longest.

Synchronisation

Synchronisation follows the same procedure previously described for a wake synchronisation

event issued by the controller. However, the data representing the scheduled wake time's

decision gets transmitted by the new socially selected controller LPD.

[312]

The same LPD also has the power, if needed, to send task commands into the network, taking

the place of the user control portion of the platform.

[313]

Simulation

The BluBot Mesh Controller Application (Figure 144 below) is updated to implement and

prove the discussed algorithms within a simulated environment.

The simulation is an object-orientated implementation; the solar lamp (SUN), the energy

beaming antenna (ANT), the environment container they sit in and the LPDs are all represented

as uncoupled objects offering a standard set of interaction functions.

143

Figure 143: BluBot Mesh Controller Application

The SUN and ANTs power attributes inflict their energy offerings upon every LPD object in

the vicinity based on their relative positions and distances. This periodically driven input is

collected from the energy providers and delivered to the consumers via a simulation executive.

[314]

The executive sits-over, monitors, and progresses the simulation by moving pending messages

between LPDs and piping the providers' energy streams into the LPD objects (Figure 145

below). The rate of this sequential LPD update occurs denotes the desired simulation speed.

144

Figure 144: Simulation Executive Overview

The executive's basic flow of duties involves an iteration process triggered periodically by the

simulation speed settings. When triggered, the executive will contact every power source in

the simulation and request their current power value.

Then the executive continues by contacting every LPD in the simulation and initiates a control

message exchange which:

• Computes the distance between the LPD and power source and attenuates the power

signal accordingly.

• Updates the LPDs incoming energy amount

• Retrieves any pending messages it has and stores them in its internal broadcast list

[315]

• Sends all other pending messages currently stored in the internal broadcast list which

have not yet been forwarded

The transferral of messages simulates a controller base store-and-forward setup, the alternative

being an immediate transferral of new messages upon arrival to all other LPDs currently not in

sleep mode.

Each LPD object requires two main parameters from the executive in order to live:

1. Energy_In, calculated and delivered by a decaying propagation type formulae driven

by the distance between the energy source and the LPD

2. Clock_Tick, which gets derived from the frequency the Energy_In variable is updated

by the executive

All the other object attributes are concerned with what the device is doing. The Clock_Tick

member gets incremented every ‘time’ iteration and increments the individual devices' internal

timekeeping device.

Energy_In represents the flow of energy delivered to the Device at any point in time. This

attribute gets broken down into multiple instances, which each individually represents a

different source of incoming energy available for harvesting.

So the parent will infer the Clock_Tick members period by passing a value to Energy_In once

every second (or as the simulated time ratio value depicts), which in turn invokes the

personality model of the individual devices to process its behaviour patterns.

Each LPD object internally maintains an energy store; this is a counter that gets incremented

upon energy deliverance and decremented to represent any consumption incurred.

The LPDs themselves are aware they have a task to execute and control their sleep/wake

patterns based on the parent's feed time being delivered. The task they are assigned comes with

[316]

a pre-defined energy prediction; the algorithms must balance the execution of the tasks against

feeding and exploring. The LPDs personality registers get preconfigured and then perform

adaption as previously described.

Each LPD has a different coefficient map which weight the following attributes around a

midpoint of 50

• Desire for food: Controls the balance of the food/work ratio

• Fear of loneliness: Influences the LPDs cognitive functions based on the current

positioning of other group members

• Desire to lead: Influences the types of message exchanges that occur and as to whether

messages containing jobs and work-tasks get sent or not

• Desire to travel: Influences the LPDs cognitive functions based on how far wandering

is tolerated before decisions to return to the starting point get made

• Fear of strangers: Influences if the LPD will actively avoid an approaching unknown

LPD

• Desire to talk: Influences the message transmission and reception frequency

• Desire to sleep extra: Influences how much reserve gets kept in the energy store

• Desire to share: Influences if food source position information is to be included in

message exchanges or not

The application interface gets used to predefine and tweak any of the personality registers and

provide startup conditions (Figure 146 below).

[317]

145

Figure 145: Personality Registers

The devices may or may not be enabled to be mobile, in which case they can control their

visible X and Y screen coordinate position during their wake cycles, thus representing

movement. Cognitive functions have a consumption cost in energy usage which can be

manipulated based on the device's current environmental challenges. This cost is currently

preconfigured, and the objects movement speed is constant, one pixel per iteration.

As the LPDs wake, the decisions they make based on using their available time are entirely

self-justified. The actual choices made are based on logic ladders and code constructs which

use the personality coefficients as weightings to control the decision process flow. The signal

and energy flow of the LPD object are illustrated in Figure 147 below.

[318]

146

Figure 146: LPD Object Detail

Self Criticism

The LPDs also process the feedback loop, allowing the conscious realisation of the decision's

cause-effect outcome. This feedback system can be considered a reward/punish based approach

where success is measured in increased or sustained energy income and rewarded by increasing

the weighting of making the previous collection of choices again.

Failure, on the other hand, where the energy income measurably diminishes due to previous

choices, then their weighting is reduced to promote adopting a different set of choices in the

future.

This long-term decision outcome resulting from this form of basic self-learning concept get

influenced by the recording of weighting logs based on decision collections for success or

[319]

failure. These logs can look at individual choices themselves and rate them based on how

useful they have been over the LPDs lifetime. Groups of consecutively made decisions, and

their success rating also get logged and refined. This data forms an experience database that

gets developed and grown over long periods through assimulating the results of the decisions

made by the LPD. This database gets repeatedly referred to during decision-making situations,

and its contents make further weighting changes to the personality traits to sway influence.

The energy cost of the task in hand will be subtracted from the device's energy store every time

a part of the job gets executed. There is also an energy cost for the devices operational state;

even during hibernation, energy gets consumed. The cost of this energy is simulated using

time, and this is derived from the simulation executive. The sleep rate gets subtracted from the

energy store during every clock pulse from the executive, and if the device is awake, then the

awake rate is deducted.

The combination of the operational costs and task execution costs represent the device's total

energy expenditure, and the rate of this compared with the rate of incoming energy is what the

devices will use to spur their choices of how to utilise their awake time best.

As the personality weightings registers are randomly assigned at birth, followed by coercion

and manipulations from the devices parents, it is interesting to note the diversity of operation

which results.

Messages

To observe the benefits of sharing learning experiences, a simple message payload structure

captures the necessary fields allowing visibility of another LPDs previous feeding success – if

that LPD is willing to share it, of course.

[320]

The message payload takes the following form:

• Current Position

• Current Power

• Last Power Input Rate

• Closest Friend LPD

• My Leader LPD

• Last Feed Position

• Last Feed Rate

• Last Feed Duration

• Spoken Before?

Depending on the message receiving LPDs personality traits and weightings, the message's

contents may or may not influence its preceding decision making.

Messages are generated every ‘multiple of Clock_Tick’ interval and can get set using the

application configuration. The application logs all messages from all LPDs to a common

output, as shown in Figure 148 below.

[321]

147

Figure 147: Simulation Message Log

A dump of the current experience database and personality registers is also possible for

analysis.

[322]

Chapter Summary

The simulation shows results that mimic traits of AI systems; however, the goal is not to require

the levels of resources and CPU cycles typically demanded by these types of solutions. The

goal is to achieve success in survival with minimalistic amounts of effort and available IQ.

Simulating for the same set period using different personality weightings quickly illustrates the

tiny coefficient differences needed to make very dominant generational changes.

Randomness also needs to be introduced into the energy sources power levels to visualise the

full dynamic range offered by the different personality trait registers and how it influences

feeding habits. However, if we ignore the time durations needed to get to the results, the

general conclusion is that the more choices marked as successful are associated with choices

made from traits tending towards greed and aggression. Adding more personality traits

significantly influences these results, and the weighting adjustments after a period of settlement

become relatively small indeed.

Simulation has proven to be the only viable way to get this experiment started due to the need

to establish so many different coefficient values that potentially influence the LPDs survival

outcome.

Using personality traits to induce decision-making randomness will considerably increase the

survival batch's size upon operation conclusion. It ensures that devices will not all reach their

demise in the same predictable way and enriches the possibilities of the tasks the LPD may be

instructed to do, offering a type of redundancy that provides dependable results from multiple

different pathways.

[323]

Chapter 10: Conclusions

This research has surrounded the idea of machines or devices, which can survive indefinitely.

The driving force behind this being the loss of reliance on the mortal primary fuel cell.

Breaking the problem down into parts within this research has shown the common factor being

the energy requirement. The relentless demand for some kind of fuel injection proportional in

size to the task at hand. This constant need for fresh fuel supplies can only be managed,

mitigated or even changed by reduction.

Reduction requires careful understanding and control of consumption. If consumption is

running wild, then the reduction is impossible.

Reduction is best achieved by removal (total reduction), power removal, for example, or load

removal. Hibernation, sleeping and idling are all forms of load removal.

The research has focused on different types of strategy in which this load removal attribute gets

manipulated. Four different methods (fixed, variable, adaptive and intelligent) have been

presented and evaluated.

A method of harnessing wireless energy and solar energy has been introduced to provide a real-

world experimentation environment.

Using this energy supply platform, the energy management protocols were put into practice

and used to prove that intelligent knowledge and control of the devices energy consumption

requirements can result in near-perfect work/sleep ratios which can continually adapt to its

changing environmental surroundings.

It was shown that manipulating time by dilations is the answer to maximise useful work task

output against incoming energy quality.

[324]

So being able to scavenge for and harness our own energy requirements from the environment

we live in and have the control and knowledge on how best to use what we have available, we

can gain the best possible chance of successfully achieving our assigned tasks and sustain life

in the form of existence itself.

Alas, this alone is not enough; being able to eat, work, and sleep is a great start, but to be

successful and progress, one must also communicate. Of course, communication must also

happen within these same environmental and energy constraints we have already become

accustomed to.

A low-energy wireless mesh network gets evaluated, which facilitates inter-device

communication, peer-to-peer communication and broadcasting. The interface was

encapsulated within the energy management interface allowing hibernation cycles to

synchronise with radio reception events, allowing the smallest consumption costs for

activation.

So now, with the full skillset available, eating, sleeping, working, talking, the only thing left to

do is survive—survival of the fittest.

The research took ideas from natures evolved and proven survival tactics—deployment in large

numbers with natural pairings, groupings and randomness.

Associating these attributes as personality traits and using them as pivot points to apply random

levels of weighting effectively influencing their long-term survival chances for the better.

Taking this a stage further, a feedback loop gets introduced where the results of the decisions

the device is making are analysed and scored. This score then gets fed back into the personality

weighting registers and used to mature and tweak the device's characteristic traits.

[325]

Storing the result of a particular decision and other influencing variables visible simultaneously

allows the creation of a long-term memory store that can be nurtured and developed over a

prolonged period of decision-making. This information store then allows the device to refer to

its own experience for guidance when confronted with a decision to make.

Finally, taking these learnings and passing them on to close partners and siblings to provide

them with a survival advantage of some sorts allows the benefits and successes of learned

experiences to be passed across generations of devices, allowing them to evolve into more

powerful, more intelligent entities.

The research has presented all of these personality-based improvements within a simulation

engine that gets used to test the viability of deployment. It shows that introducing various pivot

points used to control a decision flow allows more natural types of group hierarchy to develop,

and a leader device quickly emerges. The simulations also show the speed gains associated

with introducing new devices into an existing environment in terms of adaption after getting

helped along by a parent device sharing its knowledge.

[326]

Further Research

This research has delivered new ideas and with it brings further research areas and questions.

The conclusions of the experiments and simulations ran throughout this study all show that real

gains are available. As always, with electronics, the quick summation of all the tiny parts

makes a significant result.

Within the basic implementation of the WIMP stack, the planning algorithm plays a big part in

how much forward-planning and multitasking can be performed per wake cycle. Further

research is needed here to evaluate various planning and scheduling methods.

This possibility is also very much true for the error correction feedback algorithms found within

the Power-Trender service. The settling time needed to correct prediction errors can be

improved considerably. This area of operation has an enormous impact on efficiency.

The coronary view of existence clearly shows significant promise in providing basic survival

intelligence needs, and this potential needs further investigation. The world is full of life forms

that have mastered survival skills with very little perceived intelligence, contrary to the AI

processor and power-consuming algorithms that repeatedly cause implementors to consider the

gains not worth the overhead.

The sole purpose of the platform designed, developed, and implemented within this research is

to test new and original ideas and proposals relating to promoting low-power device self-

sufficiency. The platform, therefore, is more than capable of continuing research within this

arena and can adopt a real implementation of the personality trait engine allowing observations

outside of the simulation environment.

[327]

References

[1] T. W. Versloot, D. J. Barker and X. O. One, “Optimization of Near-Field Wireless

Power Transfer Using Evolutionary Strategies,” in The 8th European Conference on

Antennas and Propagation, Netherlands, 2014.

[2] J. Wang, S. Ho, W. Fu and M. Sun, “Analytical design study of a novel WiTricity

charger with lateral and angular misalignments for efficient wireless energy

transmission,” Magnetics, IEEE Transactions on, vol. 47, no. 10, pp. 2616-2619, 2011.

[3] A. Mahmood, A. Ismail, Z. Zaman, H. Fakhar, Z. Najam, M. Hasan and S. Ahmed, “A

Comparative Study of Wireless Power Transmission Techniques,” Journal of Basic

and Applied Scientific Research, vol. 4, no. 1, pp. 321-326, 2014.

[4] O. Rönnbäck, “Optimization of Wireless Power,” Luleå University of Technology,

2013.

[5] T. Imura and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant

coupling for wireless power transfer using equivalent circuit and neumann formula,”

Industrial Electronics, IEEE Transactions, vol. 58, no. 10, pp. 4746-4752, 2011.

[6] V. Jiwariyavej, T. Imura and Y. Hori, “Coupling Coefficients Estimation of Wireless

Power Transfer System via Magnetic Resonance Coupling using Information from

Either Side of the System,” in International Conference on Broadband and Biomedical

Communication, Australia, 2012.

[328]

[7] D. Chaurasia and S. Ahirwar, “An Optimal Parameter Estimation Technique for

Wireless Electricity Transmission,” Research India Publications, vol. 3, no. 1, pp. 1-

9, 2013.

[8] V. Marian, C. Vollaire, J. Verdier and B. Allard, “Rectenna circuit topologies for

contactless energy,” HAL, Eindhoven, 2011.

[9] A. Etinger, M. Pilossof, B. Litvak, D. Hardon, M. Einat and B. Kapilevich,

“Characterization of a Schottky Diode Rectenna for Millimeter Wave Power Beaming

Using High Power Radiation Sources,” in 12th Symposium of Magnetic Measurements

and Modeling, Czestochowa–Siewierz, 2016.

[10] H. S. Khaliq, “A High Gain Six Band Frequency Independent Dual CP Planar Log

Periodic Antenna for Ambient RF Energy Harvesting,” 2017 Progress in

Electromagnetics Research Symposium - Fall, pp. 3024-3028, 2017.

[11] A. Khemar, “Design and experiments of a dual-band rectenna for ambient RF energy

harvesting in urban environments,” Iet Microwaves Antennas & Propagation, vol. 12,

no. 1, pp. 49-55, 2018.

[12] J. Liu and X. Y. Zhang, “Compact Triple-Band Rectifier for Ambient RF Energy

Harvesting Application,” IEEE, 2018.

[13] S. Mekid, “Energy Harvesting from Ambient Radio Frequency: Is it Worth it?,”

Arabian Journal for Science and Engineering, vol. 42, no. 7, pp. 2673-2683, 2017.

[14] A. Bindra, “Energy Harvesting: A Sustainable Ambient Source to Ultralow Power

Devices.,” Ieee Power Electronics Magazine, vol. 4, no. 4, pp. 4-8, 2017.

[329]

[15] S. Lee, “Opportunistic wireless energy harvesting in cognitive radio networks.,” IEEE

Transactions on Wireless Communications, vol. 12, no. 9, pp. 4788-4799, 2013.

[16] D. L. Andrews and e. Inc., “Energy harvesting materials,” Hackensack, NJ, World

Scientific Pub. Co., p. 388.

[17] S. Beeby, “Energy harvesting for autonomous systems.,” Artech House Series Smart

Materials, Structures, and Systems.

[18] Ottman, G. K., et al, “Adaptive piezoelectric energy harvesting circuit for wireless

remote power supply.,” IEEE Transactions on power electronics, vol. 17, no. 5, pp.

669-676, 2002.

[19] N. Muensit and E. Inc, “Energy harvesting with piezoelectric and pyroelectric

materials,” Materials science foundations.

[20] M. Z. Chaari, H. Ghariani and M. Lahiani, “Aquire Energy from the Radiation Emitted

by the Compact Fluorescent Lights,” vol. 3, no. 3, 2018.

[21] T. Thabet, J. Woods and C. Uk, “An Approach to Calculate the Efficiency for an N-

Receiver Wireless Power Transfer System.,” Essex University, Colchester, 2016.

[22] P. Nintanavongsa, U. Muncuk, D. R. Lewis and K. R. Chowdhury, “Design

optimization and implementation for RF energy harvesting circuits,” Emerging and

Selected Topics in Circuits and Systems, IEEE Journal, vol. 2, no. 1, pp. 24-33, 2012.

[23] V. Dyo, T. Ajmal, B. Allen, D. Jazani and I. Ivanov, “Design of a ferrite rod antenna

for harvesting energy from medium wave broadcast signals,” The Journal of

Engineering, vol. 2013, no. 12, pp. 89-96, 2013.

[330]

[24] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher and M. Soljačić,

“Wireless power transfer via strongly coupled magnetic resonances,” Science, vol.

317, no. 5834, pp. 83-86, 2007.

[25] P. Groap, “Powerharvester Receivers,” [Online]. Available:

http://www.powercastco.com/test566alpha/wp-

content/uploads/2009/03/powerharvester-brochure.pdf. [Accessed 20 08 2018].

[26] P. Group, “P2110B Datasheet,” [Online]. Available:

http://www.powercastco.com/test566alpha/wp-content/uploads/2009/03/p2110b-

datasheet-v12.pdf. [Accessed 23 08 2018].

[27] Tecate Group, “Ultracapacitor & Supercapacitor Frequently Asked Questions,”

[Online]. Available: https://www.tecategroup.com/ultracapacitors-

supercapacitors/ultracapacitor-FAQ.php. [Accessed 06 06 2019].

[28] Pierre Mars, VP of Quality and Applications Engineering, “Coupling a Supercapacitor

with a Small Energy Harvesting Source,” 24 01 2012. [Online]. Available:

https://www.eetimes.com/document.asp?doc_id=1279362#. [Accessed 06 06 2019].

[29] Electronics Tutorials, “RC Charging Circuit,” [Online]. Available:

https://www.electronics-tutorials.ws/rc/rc_1.html. [Accessed 29 01 2021].

[30] s. (https://physics.stackexchange.com/users/82906/shadi), “What happens to half of

the energy in a circuit with a capacitor?,” 05 06 2015. [Online]. Available:

https://physics.stackexchange.com/q/187825. [Accessed 02 02 2021].

[331]

[31] Microchip Incorporated, “Atmel 8-bit AVR Microcontroller with 2/4/8KBytes In-

System Programmable Flash,” 08 2013. [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-AVR-8-bit-

Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet-Summary.pdf. [Accessed

02 02 2021].

[32] J. Woods and T. Thabet, “Using Input Impedance to Calculate the Efficiency

Numerically of Series-Parallel Magnetic Resonant Wireless Power Transfer Systems,”

Advances in Science, Technology and Engineering Systems, vol. 3, no. 3, pp. 38-42,

2018.

[33] A. O. Kaka, M. Toycan and S. D. Walker, “Miniaturized stacked implant antenna

design at ISM band with biocompatible characteristics,” COMPEL - The international

journal for computation and mathematics in electrical and electronic engineering, vol.

34, no. 4, pp. 1270-1285, 2015.

[34] Bluetooth SIG, Inc, “Bluetooth Technology Website,” Bluetooth SIG, Inc, 2019.

[Online]. Available: https://www.bluetooth.com/bluetooth-technology/solutions/.

[Accessed 01 04 2019].

[35] M. M. Marian-Emanuel Ionascu, “Energy Profiling for Different Bluetooth Low

Energy Designs,” in The 9th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems, Bucharest, Romania , 2017.

[36] F. J. Ensworth and S. M. Reynolds, “BLE-Backscatter: Ultralow-Power IoT

NodesCompatible With Bluetooth 4.0 LowEnergy (BLE) Smartphones and Tablets,”

[332]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 65, no.

9, p. 3360, 2017.

[37] M. Siekkinen, M. Hiienkari, J. K. Nurminen and J. Nieminen, “How low energy is

bluetooth low energy? Comparative measurements with ZigBee/802.15.4,” in 2012

IEEE Wireless Communications and Networking Conference Workshops (WCNCW),

Paris, 2012.

[38] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE

Communications Magazine, vol. 43, no. 9, pp. S23-S30, 2005.

[39] J. Lee, M. Dong and Y. Sun, “A preliminary study of low power wireless technologies:

ZigBee and Bluetooth Low Energy,” in 2015 IEEE 10th Conference on Industrial

Electronics and Applications (ICIEA), Auckland, 2015.

[40] N. Baker, “ZigBee and Bluetooth: Strengths and weaknesses for industrial

applications,” IEE Computing & Control Engineering, vol. 16, no. 2, pp. 20-25, 2005.

[41] J. S. Lee, Y. W. Su and C. C. Shen, “A comparative study of wireless protocols:

Bluetooth UWB ZigBee and Wi-Fi,” in Proc. Annual Conf. IEEE Industrial

Electronics Society (IECON), 2007.

[42] E. Georgakakis, S. A. Nikolidakis, D. D. Vergados and C. Douligeris, “An analysis of

Bluetooth ZigBee and Bluetooth Low Energy and their use in WBANs,” in Wireless

Mobile Communication and Healthcare, Springer, 2011.

[333]

[43] R. Tabish, A. B. Mnaouer, F. Touati and M. Ghaleb, “A comparative analysis of BLE

and 6LoWPAN for U-HealthCare,” in Proc. IEEE Gulf Cooperation Council (GCC)

Conference and Exhibition, 2013.

[44] J. R. Lin, T. Talty and O. K. Tonguz, “An empirical performance study of intra-

vehicular wireless sensor networks under WiFi and Bluetooth interference,” in Proc.

IEEE Global Communications Conf. (GLOBECOM), 2013.

[45] K. Shahzad and B. Oelmann, “A comparative study of in-sensor processing vs. raw

data transmission using ZigBee BLE and Wi-Fi for data intensive monitoring

applications,” in Proc. Int. Symp. Wireless Communication Systems, 2014.

[46] M. Siekkinen, M. Hiienkari, J. K. Nurminen and J. Nieminen, “How low energy is

Bluetooth Low Energy? Comparative measurements with ZigBee/802.15.4,” in IEEE

Wireless Communications and Networking Conf. (WCNC), 2012.

[47] A. Dementyev, H. Steve, T. Stuart and S. Joshua, “Power consumption analysis of

Bluetooth Low Energy ZigBee and ANT sensor nodes in a cyclic sleep scenario,” in

Proc. Int. Wireless Symp, 2013.

[48] C. Gomez, J. Oller and J. Paradells, “Overview and evaluation of Bluetooth Low

Energy: An emerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp.

11734-11753, 2012.

[49] J. Higuera, E. Kartsakli, J. L. Valenzuela, L. Alonso, A. Laya and R. Martinez,

“Experimental study of Bluetooth ZigBee and IEEE 802.15.4 technologies on board

high-speed trains,” in IEEE Conf. Vehicular Technology (VTC Spring), 2012.

[334]

[50] K. Mikhaylov, N. Plevritakis and J. Tervonen, “Performance analysis and comparison

of Bluetooth Low Energy with IEEE 802.15.4 and SimpliciTI,” J. Sens. Actuator

Networks, vol. 2, no. 3, pp. 589-613, 2013.

[51] K. Shahzad and B. Oelmann, “A comparative study of in-sensor processing vs. raw

data transmission using ZigBee, BLE and Wi-Fi for data intensive monitoring

applications,” in 2014 11th International Symposium on Wireless Communications

Systems (ISWCS), Barcelona, 2014.

[52] K. Shahzad, P. Cheng and B. Oelmann, “Architecture exploration for a high-

performance and low-power wireless vibration analyzer,” IEEE Journal on Sensors,

vol. 13, no. 2, pp. 670-682, 2013.

[53] M. Imran, K. Khursheed, N. Lawal, M. O'Nils and N. Ahmad, “Implementation of

Wireless Vision Sensor Node for Characterization of Magnetic Particles in Fluids,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, pp. 1634-

1643, 2012.

[54] A. Dementyev, S. Hodges, S. Taylor and J. Smith, “Power consumption analysis of

Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario,,” in

IEEE International Wireless Symposium, Beijing, 2013.

[55] H. Cao, V. Leung, C. Chow and H. Chan, “Enabling technologies for wireless body

area networks: a survey and outlook,” IEEE IComM, vol. 47, no. 12, pp. 84-93, 2009.

[56] J. Lee, Y. Su and C. Shen, “A comparative study of wireless protocols: Bluetooth,

UWB, ZigBee, and Wi-Fi,” IEEE IECONN, pp. 46-51, 2007.

[335]

[57] Monsoon Solutions Inc, “Low Voltage Power Monitor,” 2012. [Online]. Available:

https://www.msoon.com/lvpm-product-documentation. [Accessed 02 02 2021].

[58] Silicon Laboratories, “Bluegiga Bluetooth Smart Software Stack,” 2021. [Online].

Available: https://www.silabs.com/developers/bluegiga-bluetooth-smart-software-

stack. [Accessed 7 2 2021].

[59] Texas Instruments Incorporated, “CC2450 Bluetooth Low Energy Wrieless MCU with

USB,” 2021. [Online]. Available: https://www.ti.com/product/CC2540. [Accessed 01

02 2021].

[60] Texas Instruments Incorporated, “MSP430F2274 16 MHz MCU with 32KB FLASH,

1 KB SRAM, 10-bit ADC, 2 OpAmp, I2C/SPI/UART,” 2021. [Online]. Available:

https://www.ti.com/product/MSP430F2274. [Accessed 01 02 2021].

[61] Texas Instruments Incorporated, “CC2530 Zigbee and IEEE 802.15.4 wireless MCU

with 256kB Flash and 8kB RAM,” 2021. [Online]. Available:

https://www.ti.com/product/CC2530. [Accessed 01 02 2021].

[62] FieldComm Group, “HART Communication Protocol,” 2021. [Online]. Available:

https://www.fieldcommgroup.org/technologies/hart/hart-technology-detail. [Accessed

01 02 2021].

[63] Hart communication Foundation, “HART7 Specification,” HCF, 2007.

[64] T. Lennvall, S. Svensson and F. Hekland, “A comparison of WirelessHART and

ZigBee for industrial applications,,” in IEEE International Workshop on Factory

Communication Systems, Dresden, 2008.

[336]

[65] M. D. Yacoub, Wireless Technology Protocols, Boca Raton: CRC Press LLC, 2002.

[66] P. Hatzold, Digitale Kommunikation über Funk, Poing: Franzis Verlag GmbH, 1999.

[67] C. A. Balanis, Antenna Theory Analysis and Design, New Jersey: John Wiley & Sons,

Inc, 2005.

[68] E. Mackensen, W. Kuntz and C. Mueller, “Smart wireless autonomous microsystems

(SWAMs) for sensor actuator networks,” in SIcon 2004 Conference, New Orleans,

2004.

[69] ZigBee Alliance, “ZigBee Specification 2005 0534744r05, Version 1.0,” ZigBee

Alliance, 2005.

[70] Texas Instruments Incorporated, “CC2540F256 2.4-GHz Bluetooth low energy

System-on-Chip Datasheet SWRS084F,” Texas Instruments, Dallas, 2010.

[71] T. I. Incorporated, “BLE-STACK Bluetooth Low Energy Stack,” Texas Instruments,

2021. [Online]. Available: https://www.ti.com/tool/BLE-STACK#descriptionArea.

[Accessed 01 02 2021].

[72] T. M. Wendt and L. M. Reindl, “Wake-Up Methods to Extend Battery Life Time of

Wireless Sensor Nodes,” in IEEE Instrumentation and Measurement Technology

Conference, Victoria, 2008.

[73] J. A. Gutiérrez, E. H. Gallaway and R. L. Barret Jr., “Low-Rate Wireless Personal Area

Networks,” IEEE Press,, New York, 2003.

[337]

[74] M. S. Durante and S. Mahlknecht, “An Ultra Low Power Wakeup Receiver for

Wireless Sensor Nodes,” in 2009 Third International Conference on Sensor

Technologies and Applications, Athens, 2009.

[75] G. Lu, D. De, M. Xu, W.-Z. Song and J. Cao, “TelosW: Enabling ultra-low power

wake-on sensor network,” in 2010 Seventh International Conference on Networked

Sensing Systems (INSS), Kassel, 2010.

[76] P. Dutta, M. Feldmeier, J. Paradiso and D. Culler, “Energy metering for free:

Augmenting switching regulators for real-time monitoring,” in SPOTS'08 IPSN

Conference Proceedings, 2008.

[77] Maxim Integrated, “MAX1724 1.5µA IQ, Step-Up DC-DC Converters in TSOT and

µDFN,” 26 09 2017. [Online]. Available: 1.5µA IQ, Step-Up DC-DC Converters in

TSOT and µDFN. [Accessed 02 02 2021].

[78] “Z-Wave, Safer, smarter homes start with Z-Wave,” 2021. [Online]. Available:

https://www.z-wave.com/learn. [Accessed 02 02 2021].

[79] S. J. Danbatta and A. Varol, “Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth

Wireless Technologies Used in Home Automation,” in 7th International Symposium

on Digital Forensics and Security (ISDFS), Barcelos, 2019.

[80] Zigbee Alliance, “Project Connected Home Over IP,” 2021. [Online]. Available:

https://www.connectedhomeip.com/. [Accessed 02 02 2021].

[338]

[81] Thread Group, “Thread, Built for IoT,” 2021. [Online]. Available:

https://www.threadgroup.org/What-is-Thread/Thread-Benefits. [Accessed 01 02

2021].

[82] E. Mackensen and M. Lai, “Bluetooth Low Energy (BLE) based wireless sensors,” in

SENSORS, 2012 IEEE, Taipei, 2012.

[83] E. Mackensen and T. M. Wendt, “Energy-Harvesting-basierte Energieversorgungen

für drahtlose Sensor-Systeme,” in Elektronik energy harvesting congress 2012,

München, 2012.

[84] Z. Feng, L. Mo and M. Li, “Analysis of low energy consumption wireless sensor with

BLE,” in 2015 IEEE SENSORS, Busan, 2015.

[85] P. Zenker, S. Krug, M. Binhack and J. Seitz, “Evaluation of BLE Mesh capabilities: A

case study based on CSRMesh,” in 2016 Eighth International Conference on

Ubiquitous and Future Networks (ICUFN), Vienna, 2016.

[86] Bluetooth SIG, “Introducing Bluetooth Mesh Networking,” Bluetooth SIG, 2019.

[Online]. Available: https://www.bluetooth.com/blog/introducing-bluetooth-mesh-

networking/. [Accessed 03 06 2019].

[87] A. Chiumento, B. Reynders, Y. Murillo and S. Pollin, “Building a connected BLE

mesh: A network inference study,” in 2018 IEEE Wireless Communications and

Networking Conference Workshops (WCNCW), Barcelona, 2018.

[339]

[88] H.-S. Kim, J. Lee and J. W. Jang, “BLEmesh: A Wireless Mesh Network Protocol for

Bluetooth Low Energy Devices,” in 2015 3rd International Conference on Future

Internet of Things and Cloud, Rome, 2015.

[89] Y. Murillo, B. Reynders, A. Chiumento, S. Malik, P. Crombez and S. Pollin,

“Bluetooth now or low energy: Should BLE mesh become a flooding or connection

oriented network?,” in 2017 IEEE 28th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), Montreal, 2017.

[90] C.-M. Yu and Y.-B. Yu, “Reconfigurable Algorithm for Bluetooth Sensor Networks,”

IEEE Sensors Journal, vol. 14, no. 10, pp. 3506-3507, 2014.

[91] Z. Guo-Sheng, L. Qun, W. Hui-Qiang and W. Jian, “A new topology formation

algorithm for Bluetooth scatternet,” in Second International Conference on Embedded

Software and Systems (ICESS'05), Xian, 2005.

[92] L. Kajdocsi, J. Kovács and C. R. Pozna, “A great potential for using mesh networks in

indoor navigation,” in 2016 IEEE 14th International Symposium on Intelligent Systems

and Informatics (SISY), Subotica, 2016.

[93] Y. Yun, J. Lee, D. An, S. Kim and Y. Kim, “Performance Comparison of Indoor

Positioning Schemes Exploiting Wi-Fi APs and BLE Beacons,” in 2018 5th

NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh

City, 2018.

[340]

[94] M. Ji, J. Kim, J. Jeon and Y. Cho, “Analysis of positioning accuracy corresponding to

the number of BLE beacons in indoor positioning system,” in 2015 17th International

Conference on Advanced Communication Technology (ICACT), Seoul, 2015.

[95] R. Twohig, D. Newell and M. Duffy, “Effect of energy management circuitry on

optimum energy harvesting source configuration for small form-factor autonomous

sensing applications,” Journal of Industrial Information Integration, vol. 11, no. 1, pp.

1-10, 2018.

[96] “Power management system for a 2.5 W remote sensor powered by a sediment

microbial fuel cell,” Journal of Power Sources, vol. 196, no. 3, pp. 1171-1177, 2011.

[97] S. Chung-Yang and T. Nan-Chyuan, “Human powered MEMS-based energy harvest

devices,” Applied Energy, vol. 93, no. 1, pp. 390-403, 2012.

[98] “Improved Energy Management System for LowVoltage, Low-Power Energy

Harvesting Sources,” Journal of Physics: Conference Series, vol. 773, 2016.

[99] Ranvijay, R. S. Yadav, A. Kumar and S. Agrawal, “Energy Management for Energy

Harvesting Real Time System with Dynamic Voltage Scaling,” in Communications in

Computer and Information Science, Berlin, 2011.

[100] A. R. M. Khairudin and H. Salleh, “Multisource Energy Harvesting Circuit for Low

Power Application”.

[101] D. Squires and F. Huff, “Energy Harvesting for Low-Power Sensor Systems,” Renesas

Electronics America Inc, 2015.

[341]

[102] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang and G. Zussman,

“Ultra-Low-Power Energy-Harvesting Active Networked Tags (EnHANTs),”

Columbia University, New York.

[103] R. Moghe, D. Divan and F. Lambert, “Powering low-cost utility sensors using energy

harvesting,” in 2011 14th European Conference on Power Electronics and

Applications, Birmingham, 2011.

[104] A. M. Zungeru, L.-M. Ang, S. R. S. Prabaharan and K. P. Seng, “Radio Frequency

Energy Harvesting and Management for Wireless Sensor Networks,” Green Mobile

Devices and Networks: Energy Optimization and Scavenging Techniques, pp. 341-368,

2011.

[105] A. Kansal, J. Hsu, S. Zahedi and M. B. Srivastava, “Power management in energy

harvesting sensor networks,” ACM Transactions on Embedded Computing Systems,

vol. 6, no. 4, 2007.

[106] Nordic Semiconductor, “nRF52832 / Bluetooth low energy / Products / Home - Ultra

Low Power Wireless Solutions from NORDIC SEMICONDUCTOR,” Nordic

Semiconductor, [Online]. Available:

http://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832.

[Accessed 9 March 2018].

[107] Microchip Technology Inc, “Microchip,” Microchip Technology Inc, 1998-2021.

[Online]. Available: https://www.microchip.com/. [Accessed 02 02 2021].

[342]

[108] Texas Instruments, "BQ25570 Ultra Low Power Harvester Power Management IC

with Boost Charger, and Nanopower Buck Converter," 6 March 2015. [Online].

Available: http://www.ti.com/lit/ds/symlink/bq25570.pdf. [Accessed 9 March 2018].

[109] Bluetooth SIG, Inc., “Radio Versions | Bluetooth Technology Website,” Bluetooth

SIG, Inc., 2018. [Online]. Available: https://www.bluetooth.com/bluetooth-

technology/radio-versions. [Accessed 11 March 2018].

[110] M. Walton and J. Woods, “The Machine that Lives: Blubot,” COJ Elec Communicat.,

vol. 1, no. 5, p. 6, 2020.

[111] Texas Instruments, “DRV8836 1.5A Low Voltage Stepper or Single/Dual Brushed DC

Motor Driver,” Texas Instruments Incorporated, 2017. [Online]. Available:

http://www.ti.com/product/DRV8836. [Accessed 9 March 2018].

[112] Texas Instruments, “Ultra Low Power Management IC, Boost Charger Nanopowered

Buck Converter Evaluation Module,” Texas Instruments Incorporated, 2017. [Online].

Available: http://www.ti.com/tool/BQ25570EVM-206. [Accessed 04 22 2018].

[113] C. A. Balanis, Antenna Theory Analysis and Design, Noida: Wiley, 2017.

[114] Tektronix Inc., “TTR500 Series Vector Network Analyzer,” Tektronix Inc., 2021.

[Online]. Available: https://uk.tek.com/vna/ttr500. [Accessed 03 02 2021].

[115] Ofcom, “Short Range Devices Information Sheet,” 20 July 2010. [Online]. Available:

https://www.ofcom.org.uk/__data/assets/pdf_file/0021/115653/Draft-IR-2030.pdf.

[Accessed 28 November 2018].

[343]

[116] ETSI, “ETSI,” 2010. [Online]. Available:

https://www.etsi.org/deliver/etsi_en/300300_300399/30033001/01.07.01_60/en_300

33001v010701p.pdf. [Accessed 28 November 2018].

[117] E. Ali, Z. Yahaya, N. &. Nallagownden and M. Perumal & Zakariya, “A Novel

Rectifying Circuit for Microwave Power Harvesting System,” International Journal

of RF and Microwave Computer-Aided Engineering., vol. 10.1002, no. mmce.21083,

p. 27, Febuary 2017.

[118] Broadcom Inc, “Broadcom Inc,” Broadcom Inc, 2005-2021. [Online]. Available:

https://www.broadcom.com/. [Accessed 25 02 2021].

[119] University of Illinois, “Dielectric Constants of Various Materials,” 01 05 2018.

[Online]. Available:

web.hep.uiuc.edu/home/serrede/P435/Lecture_Notes/Dielectric_Constants.pdf.

[Accessed 02 02 2021].

[120] SEGGER Microcontroller GmbH , “Embedded Studio — A Complete All-In-One

Solution,” SEGGER Microcontroller GmbH , 2019. [Online]. Available:

https://www.segger.com/products/development-tools/embedded-studio/. [Accessed

2019 06 01].

[121] SEGGER Microcontroller GmbH , “J-Link Debug Probes,” SEGGER Microcontroller

GmbH , 2019. [Online]. Available: https://www.segger.com/products/debug-probes/j-

link/. [Accessed 21 05 2019].

[344]

[122] Zephyr Project, “Bluetooth Mesh - Zephyr Project,” 10 08 2018. [Online]. Available:

https://zephyrproject.org/. [Accessed 20 02 2021].

[123] G. Zhai, Y. Zhou and Y. Xuerong, “A Tolerance Design Method for Electronic Circuits

Based on Performance Degradation,” Quality and Reliability Engineering

International, vol. 31, no. 4, pp. 635-643, 2015.

[124] S. Banerjee and et al, Capacitor to Supercapacitor, Springer: Springer Nature

Switzerland AG 2020, 2020.

[125] W. Kester and A. Devices, “Taking the Mystery out of the Infamous Formula, "SNR

= 6.02N + 1.76dB," and Why You Should Care,” Analog Devices, Inc, 2009.

[126] Maxim Integrated, “The ABCs of Analog to Digital Converters: How ADC Errors

Affect System Performance,” 2020. [Online]. Available:

https://www.maximintegrated.com/en/design/technical-

documents/tutorials/7/748.html. [Accessed 18 02 2021].

[127] F. Heylighen , “Stigmergy as a Universal Coordination Mechanism: components,

varieties and applications,” Vrije Universiteit Brussel, Brussel, 2015.

[128] S. Rothmann and E. P. Coetzer, “The big five personality dimensions and job

performance,” SA Journal of Industrial Psychology, vol. 29, no. 1, p. a88, 2003.

[129] S. Tucker, The Virtues and Vices in the Arts: A Sourcebook., Cascade, 2015.

[130] M. Siekkinen, M. Hiienkari, J. Nurminen and J. Nieminen, “How low energy is

Bluetooth low energy? Comparative measurements with ZigBee,” in IEEE Wireless

Communications and Networking Conference Workshops (WCNCW), Paris, 2012.

[345]

[346]

[347]

