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Abstract— Spectrum sharing deployment of femtocells brings 
interferences which dramatically degrade network performance. 
Hence, interference control is a crucial challenge for femtocell 
networks. In this paper, we propose a power optimization 
approach for 5G femtocell networks consisting of macrocell and 
underlying femtocells to manage the interference. Firstly, we 
formulate the problem based on a non-cooperative game to 
analyze the competition among the users to access shared 
spectrum. We then design a pricing mechanism in the utility 
function to guarantee quality of service (QoS) requirements of 
macro users. The mechanism lets the macro users experience 
lower interference and achieve the minimum required data rate. 
As a result, QoS requirements of both macro and femto users are 
fulfilled in a non-cooperative manner. We also design a minimax 
decision rule to optimize the worst-case performance and find an 
optimal transmission power for each user. By adjusting the 
optimal power for each user, the maximum aggregate interference 
is minimized, and the network throughput is maximized. Finally, 
we develop an iterative learning- based algorithm to implement 
the proposed scheme and achieve the game equilibrium. 
Theoretical analysis and simulation results verifies the 
effectiveness of the proposed mechanism in terms of throughput 
maximization, QoS assurance and interference mitigation. 

Keywords— 5G Femtocell networks, game theory, power 
optimization, QoS guarantees. 

I. INTRODUCTION 

A two-tier 5G femtocell network consisting of femto base 
stations (FBSs) underlaid with macro base stations (MBSs) that 
helps to achieve load balancing and capacity enhancement 
through the network [1], [2]. In this way, Femtocells 
considerably increase cellular coverage and capacity; 
particularly, for indoor users. On the other hand, the 
deployment of FBSs in MBS coverage area and shared use of 
the spectrum cause the mutual interference between macro user 
equipment (MUEs) and femto user equipment (FUEs) [3]-[5] 
which dramatically degrades network performance. Therefore, 
the interference management is one of the most important 
challenges in femtocell networks. Resource allocation [6]-[12] 
and power control strategies [13]-[15] are promising techniques 
for interference mitigation [16], [17] in wireless femtocell 
networks. 
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There are many power control approaches proposed in the 
literature for wireless femtocell networks. The authors in [18] 
proposed a power control and subcarrier allocation scheme 
considering rate maximization and proportional fairness. Study 
[19] developed a power allocation scheme for downlink 
communications in two-tier femtocell network. The authors 
considered co-channel interference to improve the performance 
of the network.  Authors in [20] introduced a joint resource and 
power allocation problem in hybrid spectrum access 
femtocells. They aimed to guarantee users’ QoS requirements, 
while allowing spectrum sharing between MBS and the 
underlying FBSs.  In [21], a power control approach was 
designed in a downlink heterogeneous network (HetNet). They 
formulated a worst-case robust power minimization problem 
considering imperfect channel estimation. A weighted 
bandwidth–power optimization was proposed in [22] for 
orthogonal frequency division multiple access (OFDMA)-
based femtocell networks. The authors improved the network 
throughput while mitigating cross-tier interference between 
MUEs and FUEs. A power minimization scheme with 
interference allowance was presented for wireless HetNet in 
[23]. The authors designed an on-off scenario for FUEs activity 
in which MBSs measure and alleviate the aggregated 
interference from FUEs for uplink transmission. The authors in 
[24] developed a rate adaptation power control scheme to 
mitigate cross-tier interference for macrocell-femtocell 
networks. The Foschini-Miljanic (FM) algorithm is applied to 
maximizes their individual utility. The authors claimed that the 
algorithm achieves the maximum data rate in each tier. Study 
[25] designed a robust power control method under uncertain 
channel state information (CSI) for the two-tier femtocell 
network. The authors used the fuzzy logic system (FLS) to 
adapt the power allocation to dynamic channel states. FLS-
based method estimates the instantaneous channel gain and then 
adjust the power optimal allocation to guarantee the quality of 
service of each user. They also introduced a price regulation 
strategy to reduce the intra-tier interference. The author also 
developed the successive convex approximation (SCA) method 
based on logarithmic approximation to transform the original 
nonconvex problem into a convex form. They then applied the 
Lagrangian decomposition to solve the optimization problem. 
Finally, they proposed an iterative algorithm with a fast 
convergence speed to implement the proposed method. Game 
theory is a powerful distributed framework that analyzes the 
strategic decision-making problems in interactive multiuser 
systems. In [26], a game-based power allocation approach was 
formulated that maximizes the FUEs’ utilities with satisfactory 
QoS. The authors developed a worst-case scenario in order to 
take into account the imperfect CSI in the power optimization 
problem. The authors in [27] formulated a joint price 



assignment and power control mechanism for interference 
avoidance using the Stackelberg game. Study [28] presented a 
hierarchical game-based framework for the power optimization 
problem. Authors claimed that different service requirements 
for users are satisfied. A distributed game-based framework 
was designed in [29] to uplink power control and interference 
mitigation in OFDMA-based femtocell networks. The authors 
also took into account different service requirements for 
wireless users. A robust game-based algorithm was developed 
in [30] for joint resource allocation and power adjustment in 
downlink femtocell network. The authors modeled the problem 
as a Stackelberg game and defined a utility function based on 
the particle swarm optimization to find the best response for 
each player of the game. They also used a water-filling 
algorithm to implement the game and obtain the best response. 
Authors proposed a non-cooperative game-based setting in [31] 
for robust power allocation in hierarchical OFDMA femtocell 
network system. Authors in [32] proposed a robust resource 
allocation algorithm under bounded channel gain uncertainties 
which maximizes the sum data rate of microcell users. A game-
theory based approach was presented in [33] for femtocell 
networks under spectrum sharing. The problem is modeled as a 
convex optimization problem to obtain maximum utility 
function. In [34], users’ sum-rate maximization problem was 
formulated for HetNet. The problem was converted to convex 
optimization problem and optimal power allocation scheme 
was derived. Study [35] proposed a join sub-channel allocation 
and power optimization for wireless cognitive networks. They 
presented a coalitional game in partition form considering both 
co-tier and cross tier interference. The objective was to 
maximize the uplink data rate while satisfying delay constraint 
for FUEs. A novel power allocation scheme was developed in 
[36]. The authors claimed that the method can mitigate cross-
tier interference efficiently by assigning sub-channels in a 
profit-calculating method when the idle sub-channels are 
unavailable. In particular, the total interference from FUEs to 
the MUE is kept under an acceptable level. Authors in [37] 
formulated the joint Multi-service Up-link transmission Power 
and data Rate Allocation Problem in two-tier femtocell 
networks (MUPRAP). They defined a two-variable utility 
function to express resource allocation via the independent 
variables (i.e., power and rate) based on the relevant tier of the 
users - either macrocell or femtocell. The problem then was 
formulated as a non-cooperative game while the theory of 
supermodular games was utilized to achieve the Nash 
equilibrium as the solution of the game. The theory of 
supermodular games help to tackle the inherent challenges 
stemming from the joint two-variable consideration. Finally, 
they proposed a distributed and iterative algorithm to show the 
convergence to the NE point and simultaneously update the 
optimal values of transmission power and data rate for each 
user. A power control scheme was proposed for OFDMA-based 
cellular networks under the channel uncertainty in [38]. The 
authors presented a hierarchical game to minimize both the 
inter-tier and intra-tier interferences through the network and 
obtain the tradeoff between QoS satisfaction and lower power 
consumption. In [39], authors studied the resource allocation 
and the channel estimation problem for multiuser 5G systems 
under imperfect CSI. The problem was formulated by 
Lagrangian duality to compute an optimal power for wireless 

users. In [40], the authors proposed a joint power and frequency 
allocation scheme for Self–Organizing OFDMA Femtocell 
Networks using Foschini-Miljanic algorithm. A frequency 
allocation method was presented in [41] for 5G HetNet using 
master–slave algorithm in which works are assigned to the 
slave nodes by the master node. The authors defined three 
areas: inner area, outer area, and most-outer area and 
frequencies are assigned to femtocells in these areas. However, 
power optimization faces technical challenges such as 
providing minimum target Signal-to-Interference-Plus-Noise 
Ratio (SINR) for macro users due to the lack of coordination 
between the macro user and femto user. 
In this work, we propose a game-based power optimization 
approach to guarantee both MUEs and FUEs requirements. In 
the presented approach, wireless users compete with each other 
to raise the transmission rate and satisfy their QoS 
requirements. The main contributions of the proposed work are 
summarized as follows:  

• We propose a power control approach using game theory for 
5G femtocell networks. Game theory helps model the 
strategic interactions among wireless users and find an 
optimal transmission power for each user. In the proposed 
game model, the transmission power levels are the strategies. 
Each user as a player chooses a power level and then receives 
payoff in terms of received SINR. Users compete with each 
other to obtain higher payoff and fulfill their QoS 
requirement.   

• Different from prior studies in the literature, we define a 
pricing strategy in utility function formulation to restrain 
both co-tier and cross-tier interference. MUEs charge an 
interference-price to interfering FUEs which discourages the 
FUEs for transmitting at high power. This helps MUEs to be 
better protected from FUEs interferences. Thus, MUEs’ QoS 
requirements will be guaranteed since MUEs experience 
lower interference and their target SINR are satisfied. 

• We design a minimax strategy that optimizes the worst-case 
performance. The proposed strategy reflects the worst 
operating point in the game with the maximum interference 
level. We then find an optimal transmission power for each 
user to maximize the users’ utilities under the worst-case 
interference scenario.  

• We then theoretically analyze the existence and uniqueness 
of an equilibrium point as the solution of game. Theoretical 
analyses prove the convergence of the game to the 
equilibrium point and achieve the global solution of the 
problem. 

• Finally, we develop an iterative learning-based algorithm to 
implement the power optimization game. Interference 
reduction is obtained through the optimal power allocation 
for all the users in several rounds of the algorithm. Simulation 
results demonstrate that the algorithm can effectively 
suppress both co-tier and cross-tier interferences, maximizes 
all users’ utilities and meets target SINR for all MUEs.  
The rest of the paper is organized as follows: Section II 

describes the system model and assumptions of the problem. 
Section III provides a game-theoretic formulation of the 
problem followed by theoretical analyses for existence and 
characterization of the game equilibrium (GE). A distributed Q-
learning based algorithm is developed for the proposed model 



in Section V. Section VI gives the simulation results and 
performance evaluation of the proposed approach. Finally, the 
conclusions are drawn in Section VII.  

II. SYSTEM DESCRIPTION  
We consider a 5G femtocell network consists of a MBS and 
𝐾 − 1 FBSs serving 𝐹 active FUEs coexists with 𝑀 active 
MUEs. We focus on the uplink transmission of the two-tier 
network system. We assume the MUEs and FUEs are 
distributed according to the homogeneous Poisson point 
process (PPP), with intensity 𝜆!" and 𝜆#" respectively. For 
simplicity, we assume that both macrocell and femtocell 
coverage area are circular. Thus the number of users is 𝑁" =
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆"𝜋𝑅$) in the circular covered area of radius 𝑅, (𝜆" ∈
	{𝜆!", 𝜆#"}, 𝑢	 ∈ 	 {𝑀𝑈𝐸, 𝐹𝑈𝐸}) and 𝑁" = |𝐹𝑈𝐸𝑠|⋃|𝑀𝑈𝐸𝑠|. 
We consider that the network bandwidth 𝑊 is divided into 𝑁% 
sub-channels and sub-channels all are shared by the all users. 
In fact, a sub-channel/time resource is the smallest resource unit 
assignable to a user.  We model the sub-channels distribution 
among users as a Poisson process. Thus, the probability of 𝑛%& 
sub-channels are allocated to 𝑘 users for a given time 𝑡 can be 
expressed as follows:  

𝑃(𝑛%& , 𝑘𝑡) = 𝑃𝑟(𝑘) = 	𝑒'() 	(())
!"#

(,"#)!
,			𝑛%& = 1,2,… ,𝑁%       (1) 

In a two-tier 5G femtocell network, wireless users are 
constantly looking for a BS that fulfills their QoS requirements. 
Users choose a BS that provides them the maximum SINR to 
be able to satisfy their QoS requirements. Each wireless user 
chooses a BS with probability 𝑝 and observes the received 
SINR from this BS. The user then changes its BS if the received 
SINR is lower than SINR target.  The probability that user 𝑖 will 
choose the BS 𝑗 can be calculated as [6]: 

𝑝.
/ = E1 +
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                                          (2) 

Where 𝑝.
/ is the probability that user 𝑖 chooses BS 𝑗 and 𝜆6	 

represents the intensity of BSs in the 𝑘)8 tier. In a spectrum 
sharing scenario, FUEs and MUEs simultaneously access to the 
same channel. As a result, it might be raised two types of 
interference in the network. One is created by MUE to adjacent 
FUEs, and the other is caused by nearby FUEs to the MUE. 
Therefore, the transmission power of UEs need to be reduced 
to control interference among them. On the other hand, wireless 
users require a certain transmission rate to satisfy their QoS 
requirements. As a result, for an interference-limited scenario, 
an effective power optimization method is essential to limit the 
transmission power in order to the minimum required 
transmission rate of users are fulfilled. Let us define the 
following two requirements for MUEs and FUEs: 

1) The maximum transmission rate for FUEs 
Each FUE tends to achieve the maximum transmission rate. The 
transmission rate of a FUE is significantly improved by 
increasing the FUE’s SINR.  The SINR of FUE 𝑖)8	on sub-
channel 𝑠𝑐 can be calculated by: 
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Where 𝐼%& states the macro user’s activity over the sub-channel 
𝑠𝑐 at time 𝑡, 𝐼%& = 1 if the sub-channel is under the influence of 
macro user’s activity; otherwise 𝐼%& = 0,  𝑃.,%& is the 
transmission power of user 𝑖 over sub-channel 𝑠𝑐, 𝑔.,%& 
identifies channel gain on sub-channel 𝑠𝑐, and 𝜎,$ is the 
variance of white noise, ∑ 𝑃/,%&T𝑔/,%&T

$#
/=5,/>.  denotes the total 

interference caused by all interfering FUEs and 𝜚? =
𝑃!@A,%&T𝑔!@A,%&T

$
 represents the interference caused by MUE 

transmission over sub-channel 𝑠𝑐. In other words, we can 
rewrite (3) as bellow: 
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Where 𝑞 identifies the probability that the sub-channel 𝑠𝑐 at 
time t is busy. Therefore, the SINR of FUE 𝑖)8 can be written 
as: 
𝛾. = ∑ 𝑥%&,)𝛾.,%&

B"
%&=5                                                                  (5) 

 
Where 𝑥%&,) indicates if the sub-channel 𝑠𝑐 at time 𝑡 is busy or 
not. 𝑥%&,) = 1 when the sub-channel 𝑠𝑐 is allocated to a MUE 
at time slot 𝑡; otherwise 𝑥%&,) = 0. Accordingly, the 
maximization problem is formulated as follows: 

max
2',"#

^ 𝑥%&,)𝛾.,%&

B"

%&=5

 

  s.t.  𝐶5 ∶     𝑥%&,) ∈ {0,1},				∀𝑠𝑐, 𝑡                                                                        

       	𝐶$:						0 ≤ 𝑃. ≤ 𝑃CDE                                                    (6) 
 
Where 𝑃CDE denotes the maximum transmission power 
constraint for the user 𝑖.  The interference from an interfering 
MUE to a typical FUE can be expressed as: 
	𝜇? = |𝑔%&|$ 	∫ 𝐸{𝜚?(𝑓)}	𝑑𝑓

F/
G 	                                                (7) 

Where 𝑟? 	= 	 T𝑓. − 𝑓/T  is the frequency reuse distance and 
𝐸{𝜚?(𝑓)} denotes expected value of MUE interference after L-
Fast-Fourier-transform (FFT) processing that can be expressed 
as [42]: 

𝐸{𝜚?(𝑓)} = 	g
5
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(8) 
Where 𝜙%&!@A(𝑒'/$HJ)) the interference power spectral density 
(PSD) at frequency 𝑓.  

2) The minimum target SINR of MUE  
To MUE’s QoS guarantees, the aggregate interference from the 
all interfering FUEs should not exceed a predefined threshold 
𝜏. Thus, we have 

∑ 𝑃.,%&T𝑔.,%&T
$#

.=5 	< 	𝜏                                                                      (9) 



In addition, we can calculate the interference power spectral 
density for FUEs  at frequency 𝑓 as:  

𝜙%&#@A(𝑓) = 	𝑃J	𝑇	 g
MNOH	J	P
H	J	P

h
$
                                                     (10) 

Where 𝑃J represents the total transmission power at 
frequency 𝑓 in duration 𝑇. Thus, the aggregate interference 
from FUEs to MUE 𝑗 on sub-channel 𝑠𝑐 at frequency 𝑓 can 
calculated as follows: 

𝑆?#@A(𝑓) = |𝑔%&|$	𝑃J𝑇∫ gMNOHJP
HJP

h
$
	𝑑𝑓Q'-

G                                (11) 

where 𝑑./ =	 T𝑓. − 𝑓/T represents the spectral distance between 
subcarrier 𝑖 and center frequency 𝑓/ of MUE 𝑗.  
Hence, the optimization problem in (6) can be formulated as 
follows: 
 
max
2',"#

∑ ∑ 𝑥%&,)𝛾.,%&
B"
%&=5

B0
.=5                      

𝑠. 𝑡.			𝐶5 :					∑ 𝑃.,%&T𝑔.,%&T
$#

.=5 	< 	𝜏    

        𝐶$ ∶     𝑥%&,) ∈ {0,1},				∀𝑠𝑐, 𝑡                                                                        

       	𝐶R:						0 ≤ 𝑃. ≤ 𝑃CDE                                                (12) 

III. OPTIMAL POWER BASED ON GAME THEORETIC 
APPROACH  

We formulate the strategic power optimization problem using 
game theory in order to model the users’ competition over 
shared spectrum. In the proposed game, wireless users who 
adjust a transmission power level to maximize their own 
utilities are referred to as the players. The utility of a player is 
evaluated in terms of the transmission rate of the player. We 
also assume that the set of power levels which a player can 
select are its strategy set. In a spectrum sharing scenario, we 
consider the interference levels as the operating points of the 
game. Now, we define our proposed game model formally as 
𝐺(𝒫, 𝒮, 𝑈) where 𝒫	 = 𝑃5 × 𝑃$ ×…× 𝑃B0  denotes the 
strategy set in which 𝑃. = {𝑃.5, 𝑃.$, … , 𝑃.,}  is referred to as the 
set of pure strategies of user 𝑖, 𝒮 identifies the operating points, 
and 𝑈 ∶ 𝒫	 × 𝒮 → ℝ defines the utility function which is 
minimized over 𝒮 and maximized over 𝒫. More precisely, the 
utility function of player 𝑖 is expressed as below: 
𝑈.(𝑃. , 𝑃'.) = 	𝑅.(𝑃. , 𝑃'.) − 𝐶.(𝑃. , 𝑃'.)                                    (13) 
 
Where 𝑅.(𝑃. , 𝑃'.) identifies the revenue of player 𝑖 in the form 
of the achieved transmission rate that is given as: 

 𝑅.(𝑃. , 𝑃'.) = 𝐵. log$ E1 +
2',"#34',"#3

)

:!);∑ 2-,"#34-,"#3
).

-*+,-,'
G               (14) 

And 𝐶.(𝑃. , 𝑃'.) is the cost function which denotes the 
interference-price paid by interfering FUEs. On the other hand, 
FUEs pay more price when they increase their transmission 
power.  The cost function can be written as follows:  
𝐶.(𝑃. , 𝑃'.) = 𝑐.𝑆?                                                                 (15) 
Where 𝑐. denotes the interference-price multiplier and 𝑆? is the 
interference power from FUE 𝑖 to the MUE that is calculated 
similar to (11).  
In strategic power optimization scenario, wireless users tend to 
maximize its transmission power in order to achieve the highest 
transmission rate. On the other hand, the higher transmission 

power brings more cross-tier interference over sub-channel. To 
guarantee the QoS of MUE, the aggregate interference from the 
FUEs should not be larger than a threshold. Therefore, the 
transmission power of FUEs should be optimized. We define a 
worst operating point 𝑆?STF%) which reflects the maximum 
aggregate interference from FUEs on a sub-channel. We define 
𝑆?STF%) as: 

𝑆!"#$%&"𝑃'$ 	∈ arg		min(!)*
𝑈+(𝑃+ , 𝑃,+; 𝑆!) 	≜ 𝑊"𝑆! , 𝑃'$ ,			𝑗 ∈

𝑈𝐸𝑠	𝑎𝑛𝑑	𝑗 ≠ 𝑖                                                                                (16) 
The objective is to find an optimal transmission power for each 
user under 𝑆?STF%) in order to optimize the worst-case 
performance as follows: 
𝑃.
TU) ∈ arg max

GV2'V2123
𝑈.(𝑃. , 𝑃'.; 𝑆?)                                     (17) 

 
Theorem 1. if W𝑃.

TU) , 𝑆?STF%)X  is a saddle point of the game 𝐺 
then 𝑃.

TU) is an optimal power for the game. 
 
Proof. See Appendix A.                                                      ∎ 
 
Theorem 2. There are two critical values 𝑆?IWD%) and 𝑆?STF%) for 
𝑆? on each sub-channel as follows: 

𝑆?IWD%) =	
√𝑃CDE

}−𝑐.
|𝑔.| −	(𝜎,$ + 𝜚?	) 

And  
 
𝑆?STF%) =	−	(𝜎,$ + 𝜚?	)                                                          (18) 
 
And there exists a unique GE for the power optimization game 
if  𝑆?IWD%) ≤ 𝑆? ≤ 𝑆?STF%); otherwise, no GE exists. 
 

Proof. See Appendix B.                                                      ∎ 

IV. ITERATIVE LEARNING-BASED POWER OPTIMIZATION 
ALGORITHM  

In this section, we develop a Q-learning based algorithm to 
achieve the equilibrium of the proposed power optimization 
game. In the proposed Q-learning based algorithm, the 
transmission power levels 𝑃. are the actions in state 𝑠.. The 
received SINR is defined as a reward for each action. The 
algorithm stores a Q-table consisting Q-values (i.e., 𝑄. ) that 
reflects the received rewards for actions (i.e., 𝑃. ). First, each 
user randomly adjusts a transmission power level. The user then 
observes the reward of the chosen action. Users continuously 
look for an action with the largest reward. Therefore, the user 
changes its transmission power level if received reward is lower 
than the minimum required SINR for QoS guarantees as: 
𝑃. = 𝑎𝑟𝑔	max

2
W∑ 𝑄/W𝑠/ , 𝑃X5V/VB X                                       (19) 

The user then updates the value of 𝑄. according to the 
following: 
𝑄.,WS(𝑠.(𝑘), 𝑃.) = 	 (1 − 𝜌)𝑄.TXQ(𝑠.(𝑘), 𝑃.) + 𝜌[𝑈.(𝑘) +
𝛽max𝑄.(𝑠.(𝑘 + 1), 𝑃)]                                                       (20) 
 
Where 𝑠.(𝑘) identifies the state of the user 𝑖 in iteration  𝑘,  0 ≤
𝜌 ≤ 1 denotes learning rate, 0 ≤ 𝛽 ≤ 1 is discount factor and 
max𝑄.(𝑠.(𝑘 + 1), 𝑃) is an estimate of optimal future value. 



The main goal of the algorithm is to maximize the received 
rewards of all users by taking a series of actions. Users 
independently learn from their own past information to adjust 
its best transmission power level and refine the power adaption 
strategy.  Thus, the algorithm reduces the communication 
overhead. The algorithm is repeated over time and the optimal 
transmission power is obtained for each user. The pseudo-code 
of the algorithm is presented in Algorithm 1. 
 

Algorithm 1. Iterative power optimization algorithm 
Initialize 𝑃+,%(𝑘) , 𝑔% and starting state 𝑠+(𝑘) 
Set 𝑘 = 1  
Repeat  
   if rand ≤ 	𝜀 then 
       Randomly adjust 0	 ≤ 𝑃+(𝑘) ≤ 𝑃./0 
   else  
       Choose 𝑃+∗(𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥	𝑄+(𝑠+(𝑘), 𝑃)  
    end if 
   if  ∑ 𝑃+,%24𝑔+,%24

34
+56 	> 	𝜏 go to step 3 

   observe 𝑈+(𝑘) and next state 𝑠+(𝑘) 
   update 𝑄+(𝑠+(𝑘), 𝑃+) = 	 (1 − 𝛼)𝑄+(𝑠+(𝑘), 𝑃+) + 𝛼[𝑈+(𝑘) +
𝛽max𝑄+(𝑠+(𝑘 + 1), 𝑃)] 
   𝑠+(𝑘) = 𝑠+(𝑘 + 1) 
   𝑘 = 𝑘 + 1 
Until all users’ power is adjusted 

 

V. PERFORMANCE EVALUATION 
In the following section, we discuss numerical results to verify 
the effectiveness of the proposed power optimization approach. 
We consider the uplink communication of an OFDMA-based 
femtocell network composed of one MBS, five FBSs and 40 
users. The proportion of MUEs is 25% of the total user 
population. All users are assumed randomly distributed over a 
1300 × 1300 m2 area and results are averaged over 200 
independent runs. According to the distance to BSs, we set the 
transmission power of MUEs in the range of 10dBm to 35dBm. 
We compare the network performance of our approach with the 
results of two existing methods: a fuzzy-based power allocation 
algorithm [25] and a game-based uplink power control method 
[37]. The simulation was carried out in MATLAB and the 
simulation setting is listed in Table I.  

TABLE I 
SIMULATION PARAMETERS 

Parameters Values 
Number of FBS 5 
MBS radius 700m 
FBS radius 8m 
Number of FUEs 30 
Number of MUEs 10 
Bandwidth 12MHz 
𝜏 20W 
Target SINR of MUE 12dB 
𝜎73 0.01 
𝑃./0 3W 
𝜚! -14dB 
𝜌 0.3 
𝛽 0.5 
𝜃 3.7 

 

Fig. 1 depicts the FUEs’ utilities under different transmission 
powers. We varied the transmission power of the FUEs from 
2dBm to 16dBm. It is observable that, the higher transmission 
power of FUEs leads to increase FUE’s utilities. In the other 
words, the utilities of FUEs increase with increasing of their 
transmission power. However, the FUEs’ utilities gradually 
reach a steady level because of the interference-price paid by 
FUEs. More precisely, MUEs impose a price to FUEs in order 
to reduce the interference from the interferer FUEs. Increasing 
the interference level from FUEs results in an increase in 
interference-price. Consequently, the utilities decrease as the 
interference-price increases. Thus, FUEs have to decrease their 
power to decrease the interference-price which leads to 
decreasing the FUEs’ utilities. 
 

 
 
Fig.  1. FUEs’ utilities under different transmission power. 
 
Fig. 2 illustrates the relationship between FUEs’ transmission 
power, average utility, and interference-price for the existing 
approaches. We perform the experiments for 40 users under two 
different values of the interference-price multiplier 𝑐. = 0.2 
and 𝑐. = 0.4 while keeping the network deployment and the 
number of FBSs and MBS are the same. The MUEs proportion 
is considered 20% of the total users. We change FUEs’ 
transmission power from 10dBm to 20dBm. As expected, in all 
approaches, average utility of users will increase as the 
transmission power of the FUEs increase. However, the 
increasing FUEs’ transmission power gives rise to interference 
among FUEs and MUEs results in reducing users’ utilities. On 
the other hand, in high transmission power, MUE charges the 
interference-price to a larger value to discourages the FUEs for 
transmitting at high power in order to reduce the cross-tier 
interference. Thus, high transmission power results in an 
increase in the interference-price that leads to decrease users’ 
revenues slowly and decline the average utilities for all 
approaches. The figure also demonstrates a smaller decrease in 
average utilities of all methods for smaller values of 𝑐.. Finally, 
average utilities reach a stable level and does not change much 
for higher transmission power of FUEs. That is because 
wireless users gradually learn their optimal transmission 
powers which maximize their utilities. Moreover, there is a 
significant decrease gap in FUE’s utility among the MUPRAP 
algorithm, FLS scheme and the proposed approach which 
means our proposed algorithm outperforms than these methods. 
The gap gradually grows as the transmission power increases. 



 
Fig.  2. Average utility of FUEs for different transmission power of FUEs.  
 
Fig. 3 demonstrates the performance improvement of the 
proposed algorithm in terms of interference mitigation 
compared to two other schemes. We run the experiments with 
8 active FUEs coexists with a MUE. It is shown that our 
approach significantly suppresses both co‐tier and cross‐tier 
interference. This is expected since there is an interference-
price in our algorithm. The interference-price is increased with 
an increase in the UEs’ transmission power; this leads to a 
marked decrease in the utility of users. Thus, users adjust their 
transmission power to a proper value that not only reduces 
interference but also improves the user’s utility. In fact, using 
the learning-based algorithm, users learn the best value of their 
transmission power which help mitigate interference.  
 

 
Fig.  3. The interference comparison. 
 
In Fig. 4, we investigate MUEs’ QoS guarantees under different 
number of users in the proposed approach. We consider an 
interference scenario in which there exist three MUEs coexist 
with number of FUEs. We vary the number of FUEs from 5 to 
40. The minimum required SINR is set to 12 dB in order to 
fulfill QoS requirements for each MUE. As it can be seen, the 
number of users has significant impact on the MUEs’ QoS 
guarantees. Clearly, the SINR of MUEs reduces as the number 
of inferring FUEs increases. In fact, as the number of nearby 
FUEs grows the total interference from FUEs to MUEs 
increases and the MUEs experience heavier interference. 
Therefore, the average received SINR reduces for MUEs. 

However, the figure confirms that the proposed method fulfills 
QoS requirements for all MUEs so that the actual SINRs are 
greater than the minimum required SINR of MUEs.  
 
  

 
Fig.  4. QoS guarantee for MUEs under different number of users. 
 
We also study the outage probability of the three existing 
methods under different number of users and fixed BSs density 
(i.e., with one MBS and five FBSs) in Fig. 5. The outage 
probability, 𝑝T") is defined as the probability that the received 
power of a typical user who is located at a distance 𝑟 from its 
serving BS falls below 𝑃C., as follows [44]: 
 𝑝T")(𝑃C.,, 𝑟) = 𝑝(𝑃.F(𝑟) < 𝑃C.,) = 1 −

𝑄 �21'!'Y2'
4;5G Z[\+56'5G] Z[\+5YF ^L __

:678
�                                     (21) 

Where 𝑃C., is the minimum required transmission power for 
user 𝑖 , 𝑃.F denotes the receive power of user 𝑖 , 𝑃.) states the 
transmission power of user 𝑖, 𝐾 states a constant based on the 
average channel attenuation, 𝜃 is the path loss exponent, 𝑅 
identifies a reference distance and 𝜎`78 denotes standard 
deviation of 𝜓Qa in which 𝜓Qa is a random variable with a log-
normal distribution that denotes the ratio of transmit-to-receive 
power. 
The experiments were conducted for a given distance of 600m 
away from BSs under the target outage probability 𝑝T"),b =
0.36 and repeated 80 times. We vary the number of users from 
10 to 40. The findings show that the outage probability of 
MUEs are more than the FUEs’ outage probability in all 
existing approach. That is mainly because a MUE may be 
located at a long distance of the MBS (i.e., edge-user) and not 
be able to receive the same power level compared to cell-center 
users. On the other hand, cross-tier interference is much more 
significant than co-tier interference. The figure also shows that 
as the number of users increase the outage probability becomes 
worse. The reason is that more users cause excessive 
interference to neighboring users that will reduce transmission 
power of them and leads to performance becomes unacceptable. 
However, although, in all existing approach, the outage 
probability is smaller than the target value, the proposed 
method provides better results. Thus, it can be concluded that 
the proposed approach supports minimum power requirement 
for all users even though at high user densities.  



 
Fig.  5. Outage probability at different number of users for 𝜃 = 3.7, 𝑘	 =
	−31𝑑𝐵, 𝑅	 = 	1𝑚, 𝑃!"# = 8𝑑𝐵, 𝜎$!" = 3.6𝑑𝐵 . 
 
Fig. 6 and Fig. 7 depict the convergence of the proposed 
approach in terms of the transmission power and the users’ 
throughput.  

 
 
Fig.  6. Average transmission power for MUEs and FUEs at different iterations. 

 
Fig.  7. Convergence of the proposed algorithm. 
 
The results demonstrate that the algorithm converges to the 
equilibrium point very fast in approximately 15 iterations. We 
observe that the transmission power of FUEs slightly increases 
in first iterations. However, FUEs decrease their transmission 
power as they are penalized for transmitting at high power. 
Eventually, the transmission power reaches to the stable 
solution. Similarly, the average throughput of users is felled for 
some first iterations. Eventually, it remains almost the same 
after fifteenth iteration. We also present the required number of 
iterations for convergence to the equilibrium point for the 
existing methods under different number of users in Table II. 

 
TABLE II 

THE NUMBER OF ITERATIONS FOR CONVERGENCE TO THE 
EQUILIBRIUM 

 Average 
throughput 
(Mbps) 

MUE 
optimal 
SINR 

MUE 
target 
SINR 

Iterations 

The 
proposed 
algorithm 

3.8163 14.5237 13 15 

MUPRAP 3.2845 13.1369 12 17 
FLS 3.5 10.912 10 5 

 
In Fig. 8, we explore the performance of our approach in terms 
of the spectral efficiency when the network scales up. The 
spectral efficiency is described as the amount of information 
that can be transmitted over a given bandwidth and is measured 
in bps/Hz [45]. We investigate the spectral efficiency for 
different number of users up to 60 with 5 FBSs and one MBS. 
The transmission power of FBSs is set to 18 dBW and it is set 
to 35dBW for MBS. As it can be seen from the figure, spectral 
efficiencies are relatively close to each other for all existing 
methods when the number of users is small. However, with the 
growing in the number of users, the proposed approach 
achieves higher spectral efficiency compared to the other two 
methods. The reason is that the transmission power adaption 
policy degrades both co‐tier and cross‐tier interference among 
wireless users that leads to increase data rate and enhance 
spectral efficiency. 
 

 
 
Fig.  8. Spectral efficiency under different number of users. 
 
Fig. 9 shows the communication overhead of the proposed 
method for comparison methods. We run the experiments for 
different number of users ranging from 10 to 90. The results 
prove that increasing the number of wireless users increases the 
overall signaling overhead. When the number of users is 20, the 
number of exchanged signaling messages is 1300 in the 
proposed method whereas this amount reaches 3800 messages 
when the number of users exceeds 90. However, the proposed 
approach significantly reduces the communication overhead by 
around 22% compared to the schemes under study. That is 
mainly because the power adaption decisions are made by each 
user in a distributed manner without any interaction with a 
central controller. Thus, the number of signaling exchanged 
messages is reduced across the network that leads to enhance in 



the available bandwidth for data transmission. Moreover, 
signaling overhead reduction not only increases the network 
capacity, but also reduces power consumption that leads to 
energy efficiency. 
 

 
Fig.  9. The average number of messages exchanged in the network. 

VI. CONCLUSION 
In this paper, a power optimization approach was proposed for 
5G femtocell networks. We formulated the problem as a non-
cooperative game to model the competitive behavior of rational 
users to access shared spectrum. The QoS constraint in terms of 
minimum required SINR were taken into account for all MUEs. 
Unlike other studies, we designed a pricing strategy in utility 
function to suppress cross-tier interference from FUEs to 
MUEs. We also take into consideration the maximum 
interference level as a worst-case scenario to find an optimal 
transmission power for each user and optimize the worst-case 
performance. We then derived theoretically a saddle point for 
the game under a given worst operating point. Finally, we 
designed a learning-based algorithm which solved the problem 
in a distributed manner. The proposed algorithm helps users 
make decisions based on their own knowledge toward 
maximizing utilities. Extensive simulation results demonstrate 
the performance improvement of our approach in terms of the 
interference mitigation, QoS satisfaction and throughput 
improvement.  
Our future study focuses on accurate estimation of CSI to adapt 
the transmissions with the true channel conditions. Some 
methods in the literature have taken into account the imperfect 
CSI in the power optimization problem. Nevertheless, they 
estimate CSI using the known training sequence which leads to 
huge amount of CSI feedback and weak synchronization 
between transmitter and receiver. Developing a robust 
estimation approach can reduce the channel estimation error 
and optimize the power allocation for wireless users. Also, 
investigating user mobility and examining different type of 
service models are among the future plans of this work.   

APPENDIX A 

PROOF OF THEOREM 1 
  

First, we assume that W𝑃.
TU) , 𝑆?STF%)X is a saddle point to the 

game, then we show that 𝑃J
TU) is an optimal power for the game. 

let consider a game G′(𝒫′, 𝒮′, 𝑈′) so that 
𝒫 ⊂ 	𝒫′ ; 𝒮c ⊂ 	𝒮	                                                                  

sup
2'	∈𝒫

𝑈W𝑃.	, 𝑆/X = sup
2'	∈𝒫f

𝑈W𝑃.	, 𝑆/X , ∀𝑆/ ∈ 𝒮′                          

inf
g-∈𝒮

𝑈TU)W𝑆/X = inf
g-∈𝒮f

𝑈TU)W𝑆/X                                             (A.1)                                                   

We define a least favorable operating point 𝑆/IWD%) as duality of 
the worst operating point for the game. If the worst operating 
point does not exist for the game, a least favorable operating 
point can be replaced. The least favorable operating point can 
be written as bellow: 
𝑆/IWD%) 	 ∈ arg		ming-∈𝒮

𝑈TU)W𝑆/X	                                               (A.2) 

Now, using (A.1), we can obtain the following: 

∀	W𝑃.IWD%), 𝑆/IWD%)X ∈ 𝒫c × 𝒮c,	 
	 inf
g-∈𝒮f

𝑈W𝑃.IWD%), 𝑆/X 	≤ 	 infg-∈𝒮
𝑈W𝑃.IWD%), 𝑆/X ≤

𝑠𝑢𝑝
2'	∈𝒫

𝑖𝑛𝑓
g-∈𝒮

𝑈W𝑃.	, 𝑆/X 	≤ 𝑖𝑛𝑓
g-∈𝒮

𝑠𝑢𝑝
2'	∈𝒫

𝑈W𝑃.	, 𝑆/X =

	𝑖𝑛𝑓
g-∈𝒮f

𝑠𝑢𝑝
2'	∈𝒫f

𝑈W𝑃.	, 𝑆/X 	≤	 𝑠𝑢𝑝
2'	∈𝒫f

𝑈W𝑃.	, 𝑆/IWD%)X                           (A.3)                   

It is obvious, (𝑃.IWD%) = 𝑃.
TU)) is an optimal power for the game 

G′,  when W𝑃.IWD%), 𝑆/IWD%)X is a saddle point solution to the game. 
That means no other transmission power level gives better 
behavior at 𝑆/IWD%). Thus, the worst-case performance of the 
game is obtained at 𝑆/IWD%). 

Since both sides of the equation are equal, we replace the 
inequalities in (A.3) into the following equalities. Therefore, we 
have: 
inf
g-∈𝒮

𝑈W𝑃.IWD%), 𝑆/X = 	 sup
2'	∈𝒫

inf
g-∈𝒮

𝑈W𝑃.	, 𝑆/X                             (A.4)                                                                              

This completes the second part of the proof.  Now, we show 
that W𝑃.IWD%), 𝑆/IWD%)X is a saddle point solution to the game	𝐺. 
Therefore, the following can be derived mathematically: 

𝑈W𝑃.	, 𝑆/IWD%)X 	≤ 	𝑈W𝑃.IWD%), 𝑆/IWD%)X 	≤ 	𝑈W𝑃.IWD%), 𝑆/X         (A.5)                                                                   
We can also transform (A.5) as: 

𝑈TU)W𝑆/IWD%)X = 𝑈(𝑃.IWD%), 𝑆/IWD%))                                       (A.6)                                                                               

The above equality express that 𝑃.IWD%) is the optimal 
transmission power under 𝑆/IWD%), i.e., 𝑃.IWD%) = 𝑃.

TU)W𝑆/IWD%)X. 
We need to prove that 𝑆/IWD%) is the worst operating point for 
𝑃.IWD%), (𝑆/IWD%) = 𝑆STF%)(𝑃.IWD%))) if and only if it is the least 
favorable operating point for the game. We can show 𝑈TU)(. ) 
is convex in 𝒮 as the following: 

𝑆/D = (1 − 𝛼)𝑆/i + 	𝛼𝑆/& ,			∀		0 ≤ 𝛼 ≤ 1			𝑎𝑛𝑑			𝑆/i , 𝑆/& ∈ 𝒮  
(A.7) 

We also know that: 

sup
2'∈𝒫

𝑈W𝑃. , 𝑆/DX 	≤	 sup
2'∈𝒫

�(1 − 𝛼)𝑈W𝑃. , 𝑆/iX + 𝛼𝑈W𝑃. , 𝑆/&X� ≤

(1 − 𝛼)	 sup
2'∈𝒫

𝑈W𝑃. , 𝑆/iX +𝛼	 sup
2'∈𝒫

𝑈W𝑃. , 𝑆/&X                         (A.8) 

Thus, we obtain the right inequality according to the convexity 
assumption 𝑈(𝑃.	, . ) on 𝒮 for every 𝑃.	 ∈ 𝒫. Using [43], the 
following can be powerful: 
𝑓(0) ≤ 𝑓(𝛼)	, ∀𝛼 ∈ [0,1] 		⇔ 0	 ≤ 	 𝑙𝑖𝑚

j→G

5
j
[𝑓(𝛼) − 	𝑓(0)] 	<

	+∞                                                                                      (A.9) 
where 𝑓: [0,1] → 	ℝ is a convex function. Therefore, we 
showed that 𝑆/IWD%) is a least favorable operating point for the 



game 𝒢, based on the assumption that 𝒮 is considered convex 
and if 
∀𝑆/ ∈ 	𝒮, 𝐿W𝑆/ , 𝑆/IWD%)X ≜ lim

j→G

5
j
	�𝑈TU) g𝑆/IWD%) + 𝛼W𝑆/ −

𝑆/IWD%)Xh − 𝑈TU)W𝑆/IWD%)X  ≥ 	0                                          (A.10) 

On the other hand, 𝑆/IWD%) can be defined as the worst 
operating point for 𝑃.IWD%),  if and only if 

𝑊W𝑆/ , 𝑃.IWD%), 𝑆/IWD%)X 	≜ lim
j→G

5
j
	�𝑈 g𝑃.IWD%), 𝑆/IWD%) + 𝛼W𝑆/ −

𝑆/IWD%)Xh − 𝑈W𝑃.IWD%), 𝑆/IWD%)X  	≥ 0                                   (A.11) 

According to the following: 

𝑆/j = (1 − 𝛼)𝑆/IWD%) + 𝛼𝑆/                                                (A.12) 

We can write as: 

𝑈TU)W𝑆/jX −	𝑈TU)W𝑆/IWD%)X = 	𝑈TU)W𝑆/jX − 𝑈W𝑃.IWD%), 𝑆/jX +
𝑈W𝑃.IWD%), 𝑆/jX − 	𝑈W𝑃.IWD%), 𝑆/IWD%)X                                   (A.13) 

Taking two opposite limits lim
j→G

5
j
	[. ] of the above equation 

results in 𝐿W𝑆/ , 𝑆/IWD%)X = 𝑊W𝑆/ , 𝑃.IWD%), 𝑆/IWD%)X, ∀𝑆/ ∈ 	𝒮. Thus, 
it can be concluded that 𝑆/IWD%) is the worst operating point for 
𝑃.IWD%) if and only if it is the least favorable operating point for 
the game G. It was proved that W𝑃.IWD%), 𝑆/IWD%)X is a saddle point 
solution to the game and this completes the proof.                         ∎                                                   

APPENDIX B 

PROOF OF THEOREM 2 
We know that 𝑆? denotes the aggregate interference power from 
interfering FUEs to the user 𝑖 (i.e., 𝑀𝑈𝐸, 𝐹𝑈𝐸).  Thus, we can 
write:  
𝑆? = ∑ 𝑃/,%&T𝑔/,%&T

$#
/=5,/>.                                                      (B.1) 

 
It is obvious that 𝑈. is differentiable at each point in its domain 
as follows: 
 
l@'
lg/

= l
lg/
�2',"#34',"#3

)

:!);</	;g/
� −	𝑐.                                                   (B.2) 

 
For the sake of simplicity, we use 𝑃. instead of 𝑃.,%&  and |𝑔|$  
for T𝑔.,%&T

$
, ∀𝑖, in the rest of this paper. We consider  𝑆?IWD%) and 

𝑆?STF%) as critical points of 𝑈.. As a result, the critical values of 
𝑆? can be calculated as follows: 
 
l@
lg/

= 0                                                                                  (B.3) 
 
Therefore,  
 
l@
lg/

= '2'|4'|)

Y:!);</	;g/_
)−	𝑐. = 0                                                    (B.4) 

 
And 
 
𝑆? =	

n2'
n'&'

|𝑔.| −	(𝜎,$ + 𝜚?	)                                                 (B.5) 

 

Where 𝑐. 	< 0 in order to describe the interference-price which 
FUE has to pay. 
According to  0	 ≤ 	𝑃. 	≤ 	𝑃CDE, 𝑈. has a minimum value when 
𝑃. = 𝑃CDE as the below: 

𝑆?XWD%) ≜ min E n2'
n'&'

|𝑔.| −	(𝜎,$ + 𝜚?	)G = 	
√2123

n'&'
|𝑔.| −	(𝜎,$ +

𝜚?	)    
                                                                                            (B.6) 
We can also obtain a maximum value of 𝑈. when 𝑃. = 0 as 
follows: 

𝑆?STF%) ≜ max E n2'
n'&'

|𝑔.| −	(𝜎,$ + 𝜚?	)G = −	(𝜎,$ + 𝜚?	)	  (B.7) 

This proves the existence of two critical values 𝑆?IWD%) and 
𝑆?STF%) for 𝑆?. Now, we show that a GE exists for the game only  
when 𝑆?IWD%) ≤ 𝑆? ≤ 𝑆?STF%). 
By taking a first-order derivative of 𝑃., we conclude that 𝑈. is 
continuous in all 𝑃.. On the other hand, since a second-order 
derivative of 𝑃. is less than zero, we obtain that the function is 
concave as follows: 
l)@
l2'

) < 0                                                                                  (B.8) 

Let 𝑦. be an indicator that represent whether player 𝑖 
participates in the game or not. If player 𝑖 select its best strategy 
(i.e., adjust optimal power) 𝑦. = 1; otherwise 𝑦. = 0. Thus, we 
define a nonnegative weighted sum of utility functions as: 
𝑓(𝑃, 𝑦) = ∑ 𝑦.𝑈.(𝑃. , 𝑃'. , 𝑆?)

B0
.=5                                             (B.9) 

It is obviously that 
l)J(2,p)
l2'

) < 0                                                                             (B.10) 

From (B.3), (B.4) and (B.8), we can conclude that the optimal 
point of the utility function is unique. On the other hand, we 
know the optimal point of the function is the solution to the 
problem where each player selects its optimal power to the 
strategies of the other players i.e., GE. It can be concluded that 
there exists a GE for the game and it is unique. So, the theorem 
holds.                                                                                        ∎                                                         
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