
Microelectronics Reliability 124 (2021) 114297

Available online 5 August 2021
0026-2714/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Novel lockstep-based fault mitigation approach for SoCs with roll-back and
roll-forward recovery

Server Kasap a,*, Eduardo Weber Wächter b, Xiaojun Zhai c, Shoaib Ehsan c, Klaus D. McDonald-
Maier c

a School of Computing, Electronics and Mathematics, Coventry University, Coventry, UK
b School of Engineering, Warwick University, Coventry, UK
c School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK

A R T I C L E I N F O

Keywords:
Lockstep
Reliability
Fault tolerance
Soft error mitigation
Zynq APSoC
ARM cortex-a processor
MicroBlaze processor

A B S T R A C T

All-Programmable System-on-Chips (APSoCs) constitute a compelling option for employing applications in ra-
diation environments thanks to their high-performance computing and power efficiency merits. Despite these
advantages, APSoCs are sensitive to radiation like any other electronic device. Processors embedded in APSoCs,
therefore, have to be adequately hardened against ionizing-radiation to make them a viable choice of design for
harsh environments. This paper proposes a novel lockstep-based approach to harden the dual-core ARM Cortex-
A9 processor in the Xilinx Zynq-7000 APSoC against radiation-induced soft errors by coupling it with a Micro-
Blaze TMR subsystem in the programmable logic (PL) layer of the Zynq. The proposed technique uses the
concepts of checkpointing along with roll-back and roll-forward mechanisms at the software level, i.e. software
redundancy, as well as processor replication and checker circuits at the hardware level (i.e. hardware redun-
dancy). Results of fault injection experiments show that the proposed approach achieves high levels of protection
against soft errors by mitigating around 98% of bit-flips injected into the register files of both ARM cores while
keeping timing performance overhead as low as 25% if block and application sizes are adjusted appropriately.
Furthermore, the incorporation of the roll-forward recovery operation in addition to the roll-back operation
improves the Mean Workload between Failures (MWBF) of the system by up to ≈19% depending on the nature of
the running application, since the application can proceed faster, in a scenario where a fault occurs, when treated
with the roll-forward operation rather than roll-back operation. Thus, relatively more data can be processed
before the next error occurs in the system.

1. Introduction

Cleaning up the legacy of nuclear waste is one of Europe's most
critical and complicated environmental remediation projects, which is
expected to cost as much as £220bn over the next 120 years [1]. Because
of the extreme adverse effects of the ionizing radiation on biological
tissues, it is perilous for humans to clean up radioactive waste inside a
nuclear power plant, which is abundant in these areas especially after a
nuclear accident. As a result, deploying robots are highly encouraged
and desired in radiation environments such as nuclear power plants and
radioactive waste disposal sites.

Although human beings are spared from entering harsh environ-
ments when employing robots, this is not an easy task, since the

electronic circuits in these robots are prone to radiation effects as well.
Following a series of meltdowns at the Fukushima Daiichi nuclear power
plant in Japan as a consequence of a tsunami strike [2], this has become
even clearer as the robots dispatched to track radiation levels and
expedite the clean-up process broke down very quickly, because of the
radiation-induced damage to their circuits. Therefore, adverse effects of
radiation on electronic circuits have to be substantially mitigated if ro-
bots are to be employed in nuclear environments; microprocessors
should be particularly treated against radiation as they are responsible
for the control and coordination of operations within the system.

High-energy particles (e.g. alpha particles, heavy ions, neutrons) or
electromagnetic waves (e.g. X-rays, gamma rays) striking the semi-
conductor substrate provoke faults which might lead to soft errors in

* Corresponding author.
E-mail addresses: server.kasap@coventry.ac.uk (S. Kasap), eduardo.weber-wachter@warwick.ac.uk (E.W. Wächter), xzhai@essex.ac.uk (X. Zhai), sehsan@essex.

ac.uk (S. Ehsan), kdm@essex.ac.uk (K.D. McDonald-Maier).

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

https://doi.org/10.1016/j.microrel.2021.114297
Received 5 August 2020; Received in revised form 6 July 2021; Accepted 18 July 2021

mailto:server.kasap@coventry.ac.uk
mailto:eduardo.weber-wachter@warwick.ac.uk
mailto:xzhai@essex.ac.uk
mailto:sehsan@essex.ac.uk
mailto:sehsan@essex.ac.uk
mailto:kdm@essex.ac.uk
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2021.114297
https://doi.org/10.1016/j.microrel.2021.114297
https://doi.org/10.1016/j.microrel.2021.114297
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2021.114297&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microelectronics Reliability 124 (2021) 114297

2

electronic circuits under radiation [3]. While these errors have a tran-
sient behaviour that does not permanently harm digital/analogue cir-
cuits, they have a significant impact on system reliability and reliability,
particularly more as feature size of transistors scales down resulting in
very densely integrated microchips [4]. Many mission-critical applica-
tions could have been implemented in All-Programmable Systems-on-
Chips (APSoCs) which combine programmable logic (PL) layer (i.e.
SRAM-based FPGA layer) with embedded processors in the processor
subsystem (PS) layer. Such APSoCs enjoy the merits of higher perfor-
mance, lower energy consumption, and favourable time-to-market and
cost [5]. Unfortunately, these highly-integrated circuits, which involve a
set of homogeneous or heterogeneous processor cores, are very sus-
ceptible to transient faults that might even lead to total system failures.

Soft errors affect processors by corrupting values stored in memory
elements such as registers, cache, data and instruction memories, which
may cause the processor to execute an application inaccurately, thus
resulting in silent data corruptions (SDCs) or functional interrupts (FIs),
such as hangs and crashes, in the system. In the PL side, soft errors can
manipulate the SRAM memory storing the configuration bitstream along
with user memories such as Flip-Flops (FFs) and Block RAMs (BRAMs),
all of which might induce shifts in the device functionality and perfor-
mance. Therefore, the adoption of techniques to mitigate radiation-
induced transient faults is the only viable way to leverage the benefits
of APSoCs in radiation environments. In this regard, several fault-
mitigation methods have been proposed in the literature. However,
most of them protect the device from either SDCs or FIs; few methods are
successful against both.

To improve the reliability and availability of the dual-core ARM
Cortex-A9 processor embedded in the Xilinx Zynq-7000 APSoC, we have
adapted a fault mitigation technique, the triple-core lockstep technique
(TCLS). The TCLS approach proposed in this work couples these two
ARM cores in the PS with one MicroBlaze core implemented in the PL in
order to replicate the execution of the same application in a lockstep
manner, along with a checker module monitoring and checking the
outputs of the ARM cores for any inconsistencies. The MicroBlaze core in
the FPGA part is protected against soft errors using a Triple Modular
Redundancy scheme. Furthermore, the proposed technique combines
both checkpointing and roll-back/roll-forward operations at the soft-
ware level to provide dependability. Fault-free copies of processor core
states are stored in safe memories during checkpoints, whereas roll-back
and roll-forward operations constitute fault recovery mechanisms,
which respectively restore a processor core to a previous safe state or to
the current safe state of the other core which happens to be healthy [6].
The innovation in our research lies in the fact that, in a lockstep-based
methodology, this is the first time a MicroBlaze core is coupled with
hard-core ARM processors in order to support roll-forward recovery
along with roll-back recovery. With the introduction of the roll-forward
recovery, system performance has been improved in terms of Mean
Workload between Failures (MWBF), as will be discussed in the results
section of the paper. Furthermore, the approach can be conveniently
extended to Xilinx Zynq UltraScale+ MPSoCs.

Fault injection experiments, which emulate bit-flips in ARM register
files in a non-intrusive manner, were performed to analyze the effi-
ciency, effectiveness and fault coverage of our proposed TCLS technique.
Experiments indicate that the TCLS approach applied to the dual-core
ARM Cortex-A9 processor embedded in Xilinx Zynq-7000 APSoC is
capable of mitigating around 98% of the bit-flips injected while keeping
the timing performance overhead as low as 25%, when certain condi-
tions are satisfied, under fault-free conditions.

The paper is set out as follows. Section 2 presents the impact of ra-
diation on electronics, particularly on processors, as well as a summary
of current fault mitigation strategies with a particular focus on the
lockstep technique. Section 3 elaborates on the architecture and
implementation methodology of the proposed TCLS approach, while
Section 4 describes the fault injection mechanism employed during
validation experiments for the approach. Implementation and

experimental results are subsequently evaluated in Section 5. Finally,
conclusions are drawn in Section 6 along with plans for future.

2. Background

This section motivates the need for protection against soft errors by
addressing the effects of radiation on electronics in general and then
discusses the effects of soft errors in processors. Furthermore, several
significant fault-tolerance techniques are introduced as reported in the
literature. The lockstep technique is then particularly discussed as it is
one of the most promising techniques.

2.1. Radiation effects on electronics

Ionizing radiation can potentially harm electronics in three major
ways. The first-way radiation exposure affects electronics is called Total
Ionizing Dose (TID) [7], which relates to an electronic device's accu-
mulated, irreversible damage (i.e. hard error) that results in the degra-
dation of the device over the time. It happens when charge carriers are
inserted, as radiation strikes, into the insulators of the device, where
they are trapped and thereby change the electrical characteristics [8].
The second major group of harmful effects caused by radiation is
commonly called Single-Event Effects (SEEs) [7]. These faults are most
frequently temporary (i.e. soft error) and do not cause permanent harm
like TID; however, they can provoke undesired changes in behaviour.
Excess charge carriers, produced as silicon atoms get ionized under ra-
diation, are responsible for these transient effects. If a large amount of
these charges accumulates in a particular region, an event called Single-
Event Transient (SET) might arise where logical values of lines in that
region are briefly disrupted till the dissipation of the excess charges.
Nevertheless, if a storage unit latches the new value of a line, a longer-
lasting effect on the system output, i.e. Single-Event Upset (SEU), will
occur which can generally be resolved by restoring all values through a
system reset. However, Single-Event Functional Interrupts (SEFIs), a
type of SEU, cannot be dealt with a simple reset [9]. Displacement
Damage (DD) [7] is the third and final major irradiation effect occurring
when a high-speed particle hits and displaces silicon atoms from their
locations. These movements cause defects in the silicon substrate; thus,
the electrical features of the device are altered.

2.2. Effects of soft errors in processors

SEUs can readily affect the data-flow and control-flow of a processor,
which is a significant concern for safety-critical applications. Upsets in
the values stored in memory elements can lead to data-flow errors
caused by the execution of incorrect operations or data manipulation.
The execution of an incorrect operation occurs when a bit-flip corrupts
the program code, leading to an incorrect instruction. On the other hand,
if the bit-flip affects data used as an input by an operation, outputs of
that operation would most probably be incorrect. In both types of data-
flow errors, the final outputs of the application would be inaccurate,
which is classified as SDC.

When an SEU affects the control-flow, the processor may execute the
program incorrectly, thus causing either an application crash or a pro-
cessor hang, which is classified as FIs. Upsets in the control-flow may
lead to branch errors, such as erroneous creation or deletion of a branch
and incorrect branch decision. The erroneous creation is due to a bit-flip
that sets a non-branch instruction into a branch, which leads the pro-
gram flow to an incorrect address, whereas the erroneous deletion oc-
curs when the branch instruction is transformed into another
instruction; thus, a due branch may not be taken. A bit-flip in a condi-
tional branch may also result in an incorrect decision regarding taking
the branch or not. Furthermore, an SEU can modify the register holding
the target address of a branch instruction, thus assigning an incorrect
address to the program execution. Moreover, if the program counter
(PC) is affected by a soft error, the next instruction to be executed

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

3

changes, leading the program flow to an incorrect address.

2.3. Fault-tolerance techniques

As the sophistication of embedded systems grows, their vulnerability
to errors is adversely affected due to an increase in critical points of
failure. The adoption of fault mitigation or fault tolerance techniques is
therefore vital if APSoCs are to be used in radiation environments. Fault
tolerance techniques that enhance embedded processor reliability can
be categorised as hardware-, software- and hybrid-based techniques
[10].

The hardware-based techniques, which mainly rely on spatial
redundancy, provide two or more instances of a hardware component,
such as processors, memories, buses or power supplies, for protection
against soft errors. This class of techniques include Triple Modular
Redundancy (TMR) [11], Duplication with Comparison (DWC) [7] and
hardware monitors [12] which incorporate watchdog or checker mod-
ules to monitor the system and detect errors by verifying the control-
flow related memory accesses of the target processor. These tech-
niques can protect the system from errors in the computation outputs, i.
e. SDCs, as exemplified in [13].

Software-implemented hardware fault tolerance (SIHFT) approaches
handle hardware malfunctions by merely shielding the software without
any hardware alteration. These techniques rely on adding redundant
software code for comparison to detect errors. However, they exhibit a
high-performance overhead, which may not be viable for some real-time
systems. This kind of techniques, such as ABFT [14], HETA [15] and S-
SETA [16], detect control-flow faults leading to FIs, which manifest
themselves as hangs or crashes, and then place the system into a fail-safe
state. In general, both hardware- and software-based techniques are not
capable of correcting errors, but rather detecting them, to avoid a failure
which would have adverse effects on the entire mission. Furthermore,
they protect the system either from SDCs or FIs, but not both. However,
there are some exceptional SHIFT techniques, such as SWIFT-R [17] and
S-SWIFT-R [18], which provide data-flow level protection supporting
both the detection and recovery of SDCs as well as FIs; some faults in the
data-flow can produce FIs and consequently can be avoided through
data protection mechanisms like SWIFT-R.

The hybrid techniques are the ones that use a SIHFT method com-
bined with a hardware intellectual property (IP), which performs con-
sistency checks in the processor, making them effective against both
SDCs and FIs. For instance, the lockstep technique is a hybrid fault-
tolerance technique based on software and hardware redundancy. It
employs the concepts of checkpointing and recovery mechanisms (e.g.
roll-back recovery, roll-forward recovery) at the software level, and
processor replication and checker circuits at the hardware level, as
explained in the next sections. Therefore, it is capable of both error
detection and correction.

2.4. Lockstep technique

A standard lockstep technique works by simultaneously and sym-
metrically running the same programme on identical processors with
identical code and data inputs. The status of the processors is, therefore,
the same from clock to clock during regular operation. Consequently,
they are assumed to carry out the same operations, in an error-free
execution, thus allowing the monitoring of the processor's data,
address and control buses.

As mentioned before, within a lockstep based system, there is a
checker module that tracks the processors and systematically examines
their state checking for any discrepancies; verification points are inser-
ted into the application programme where the execution of the appli-
cation is locked to facilitate this process of state evaluation. If no
discrepancy is identified among processor states, processors are deemed
to be faultless, and a checkpoint operation is carried out; otherwise, the
lockstep system recovers the processors to a healthy state through either

a roll-back or a roll-forward mechanism.
Checkpointing is an operation where processors’ error-free contexts

are stored in secure memories which are protected against soft errors by
using an Error-Correcting Code (ECC), a TMR scheme or any other
appropriate method. Note that ECC can catch and fix single-bit errors
and merely catch double-bit errors [19]. The context of a processor is
identified as the data resources, e.g. data values in registers, caches and
main memory, processed during its execution of a programme which are
required for the system repair in case of a failure. Furthermore, roll-back
is a recovery method which restores a fault-free copy of a processor's
previous context from the secure memory for all the relevant processors.
In contrast, the current context of a processor that happens to be healthy
is loaded into a faulty processor, within the roll-forward recovery
operation, from the associated secure memory. Processors are recovered
to a safe state without errors as a result of the roll-back operation, and
then restart the execution of their programme from that past stage, thus
potentially wasting valuable run-time. As for the roll-forward recovery,
again all processors are set to a safe, consistent state, but not to a pre-
vious state; therefore, there is no need for a re-execution, thus facili-
tating a lower performance overhead.

The lockstep technique's most significant merit is its ability to detect
and correct both SDCs and FIs, in contrast to many other fault tolerance
techniques. Several researchers have developed and implemented their
lockstep technique version, such as those in [20–25], to make a range of
processors resistant to radiation-induced soft errors, extensively
analyzed and compared in [26]. Two of these significant works are
discussed next.

Oliveira et al. introduced dual-core lockstep (DCLS) technique to
counteract radiation-caused faults in ARM-A9 processors embedded in
Zynq-7000 APSoC using roll-back recovery [24]. Their DCLS system was
composed of a dual-core ARM processor, two BRAM memories, an
external SDRAM memory along with a checker module. The proposed
DCLS executed the same application program in both ARM cores
concurrently, where the programme was partitioned into blocks with a
verification point (VP) placed between each. When a VP is reached,
DCLS will pause the execution, and the hardware module will compare
the outputs of two ARM cores. In the case where no discrepancy is
observed, the system will be deemed healthy, and the execution of the
next block will be initiated. Otherwise, both cores will be recovered
using the roll-back mechanism via processor interruption.

The work in [25] presents a similar dual-core lockstep approach
where software-based data error detection and recovery through
redundant parallel threads has been combined with hardware-based
control-flow error detection through an external module tracing both
cores. The proposed technique provides a very high error coverage
where only data-flow errors are corrected via a roll-back based recovery
scheme.

Our work has been developed to expand on the above works through
the addition of a third processor core, thus evolving it into a triple-core
lockstep approach with support for the roll-forward operation which
proves to be very beneficial, as explained in the remainder of the paper.

3. Proposed triple-core lockstep technique

The proposed TCLS technique is implemented on the dual-core ARM
processor along with a MicroBlaze processor in the Xilinx Zynq-7000
APSoC [27] which incorporates a 28 nm programmable logic (PL)
layer along with an embedded ARM processor on its processing sub-
system (PS) layer. In this paper, we employ a TUL PYNQ-Z2 design and
development board [28], featuring a wire-bonded Zynq XC7Z020-
1CLG400C chip, i.e. the device under test (DUT), for implementation
purposes.

The PL part of the DUT is based on an Artix-7 SRAM-based FPGA
incorporating 630 KB fast Block RAM (BRAM), 13.3 K logic slices and
220 digital signal processing (DSP) slices; this is the part hosting the
MicroBlaze core. Furthermore, the PS is composed of a 32-bit dual-core

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

4

ARM Cortex-A9 processor, a 256 KB dual-port on-chip SRAM memory
(OCM), dynamic memory controller with 8 DMA channels and four high-
performance AXI3 slave ports along with several types of input/output
(I/O) units. Each ARM core has independent 32 KB L1 data and in-
struction caches, while a 512 KB unified cache is shared between them.
Moreover, the PYNQ-Z2 board incorporates an external 512 MB Double
Date Rate 3 (DDR3) SDRAM with a 16-bit bus along with a 16 MB Quad-
SPI flash memory.

3.1. Architecture

The proposed TCLS system architecture is composed of two ARM
cores (CPU0 and CPU1), a MicroBlaze core (CPU2), a Checker-Injector
module, three dual-port BRAM memory blocks, an external DDR SDRAM
memory and other miscellaneous blocks (see Fig. 1). The MicroBlaze
core has been implemented in the PL side of the Zynq APSoC and is
triplicated at the module level using the TMR scheme, where each input/
output port has been connected to a voter which chooses an output bit
based on the majority of input bits for each individual bit in the port.
This scheme has been adopted to protect the MicroBlaze core from soft
errors which may occasionally occur in the configuration memory
associated with the core. User memories internal to the core are pro-
tected against bit-flips by this scheme, as well. Note that TMR-protected
MicroBlaze core is acting as one single core. Furthermore, all MicroBlaze
cores have been configured in such a way that they support all arith-
metical operations including floating-point operations. The ARM cores
on the other hand are application-level Cortex processors. Therefore,
there are no limitations in our system pertaining to arithmetical com-
putations. Note that all cache levels available for both ARM and
MicroBlaze processors have been disabled within software to enhance
the system reliability; it has been shown that caches increase the radi-
ation sensitivity of processor-based systems [29].

As illustrated in Fig. 1, each ARM and MicroBlaze core is attached to
its respective dual-port BRAM memory, which is used to store the
application data and processor context of the corresponding core.
However, processor cores are sharing the external SDRAM memory,
which stores program instructions for each core at distinct locations.
These three BRAM memory blocks, whose size are adjusted based on the
given application, are located in the PL part of the Zynq APSoC and are
accessed through an individual AXI BRAM controller via an Advanced
eXtensible Interface (AXI) Interconnect block by both ARM cores.
However, the MicroBlaze core can only access its own allocated BRAM
memory, i.e. BRAM Memory2, through a private AXI BRAM controller
(not shown in Fig. 1). Furthermore, the MicroBlaze core is connected to

the SDRAM memory via an AXI SmartConnect block. BRAM Memory0
and BRAM Memory1 were protected against soft errors using the TMR
scheme, whereas ECC circuitry has been added to both BRAM controllers
associated with the BRAM Memory2 to achieve the same goal.

As shown in Fig. 1, Checker-Injector module is connected to the sec-
ond ports of BRAM Memory0 and BRAM Memory1, and is assigned with
two tasks: 1) to control the lockstep execution and verify the consistency
of CPU0 and CPU1 at each step; 2) to inject faults into the system for
testing purposes as will be further detailed in Section 4. This module is a
custom IP designed in VHDL and implemented in the PL side of the Zynq
APSoC; it is protected against soft errors using the TMR scheme as
applied to the MicroBlaze core. It is noteworthy to mention that while
the intermediate output data of both ARM cores are stored in their
respective BRAM memories, so that Checker-Injector module can perform
comparison operations across them, final data outputs of ARM cores are
transferred to the SDRAM memory; thus, they can be examined to check
whether they match up to the expected, golden, data outputs. Further-
more, the MicroBlaze core holds its intermediate output data in its
corresponding BRAM memory as well, and its final outputs are also
transferred to the SDRAM memory to be used as golden data outputs.
Finally, all components in the PL side of our system are clocked at ≈91
MHz, while the dual-core ARM processor in the PS is running at 650
MHz.

3.2. Methodology

The given lockstep approach works by simultaneously running the
same application software in all three cores, where the programme is
partitioned into code execute blocks, i.e. portions of the original appli-
cation code coupled with redundant code required for realizing a veri-
fication point (VP) which incorporates consistency check,
checkpointing, and recovery routines. As such, a VP is present between
each code block and at the beginning of the programme code. It is worth
noting that, depending on the application specifications, the number of
code blocks in which the initial programme is partitioned can be
customized.

The functional block diagram for the proposed TCLS technique is
given in Fig. 2. Furthermore, the execution flowchart for the processor
cores applying the given lockstep technique is illustrated in Fig. 3. As
soon as the program execution reaches a VP on an ARM core, the status
of that particular core, which is a signature representing the actual CPU
state, is written on its own BRAM memory, and then the execution on the
core is locked as can be observed in Fig. 3. When both ARM cores are
waiting locked at the same VP, the Checker-Injector module, also referred

D
D

R
3

SD
R

AM
M

em
or

y

AWDT1

ARM Core0
(CPU0)

ARM Core1
(CPU1)

GIC

PSUART

AX
I I

nt
er

co
nn

ec
t

AXI BRAM
Controller0

AXI BRAM
Controller1

ECC
AXI BRAM
Controller2

TMR BRAM
Memory0

TMR BRAM
Memory1

BRAM
Memory2

TMR
Checker-Injector

Module

TMR
MicroBlaze

(CPU2)

Concat

Inj0 Inj1

PL

Zynq

AXI
SmartConnect

AWDT0

Fig. 1. Block diagram of the proposed triple-core lockstep technique (TCLS).

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

5

to as ChkInj IP, generates an interrupt for each core, i.e. CPU0 and CPU1,
to facilitate access to the registers of both ARM cores. Subsequently, first
output results and then register files of CPU0 and CPU1 are checked and
compared by the Checker-Injector module as denoted by the sign CKR in
Fig. 2. If no discrepancy is observed between the outputs and register
values of CPU0 and CPU1, the system is deemed to be in a safe state, and
then a new interrupt is individually generated by the Checker-Injector
module for CPU0 and CPU1 to launch a checkpoint operation and save
the ARM cores’ context, which is further explained in the subsection 3.4.

However, in such a case where discrepancies between the output
results of ARM cores are detected, the outputs generated by the Micro-
Blaze core, i.e. CPU2, for the current VP are fetched from its corre-
sponding BRAM memory to be compared against the respective outputs
of the two ARM cores. If the outputs of CPU2 match with the outputs of
one of the ARM cores, i.e. CPU0 or CPU1, then the core with matching
results would be deemed to be healthy and the other one to be faulty. In
such a case, an interrupt will be generated by the Checker-Injector
module to recover the faulty ARM core using the roll-forward mecha-
nism explained in the subsection 3.5. However, if output results of
neither CPU0 nor CPU1 matches with these of CPU2, both ARM cores
would be recovered using the roll-back mechanism (see subsection 3.5)
following an interrupt generation by the Checker-Injector module. Note
that in the case where output results of CPU0 and CPU1 match, but there
is a discrepancy between their registers files which indicates that an
output error is imminent, the roll-back operation is carried out, as well,
for both cores to preclude any future errors. In such a scenario, trig-
gering roll-forward mechanism is not viable because the ARM cores and
the MicroBlaze core have distinct programmer's models, that is, they
have different register file structures making it unfeasible to perform
register file comparisons to detect which ARM core is faulty. Therefore,
fault mitigation with the roll-forward operation is not applicable in this
case.

At the end of the checkpoint or roll-back/roll-forward operations
mentioned above, the Checker-Injector module writes a flag on the two
BRAM memories associated with the ARM cores, i.e. CPU0 and CPU1, to
unlock them, thus enabling their execution of the application till the
next VP, where the same cycle will repeat as shown in Fig. 3. Note that
although the MicroBlaze core, i.e. CPU2, operates synchronously with
CPU0 and CPU1, no checkpoint or recovery operation is particularly
performed for it, as it is assumed to be immune to soft errors thanks to its
TMR protection, for the sake of improving overall system performance.
Furthermore, the MicroBlaze cores do not actually constitute a signifi-
cant performance bottleneck in our system although it runs much slower
than ARM cores. The reason is that under normal conditions when there
are no faults detected, the pair of ARM Cortex-A9 cores and MicroBlaze
core operate independently with no direct interference between them;
thus, the MicroBlaze core do not slow down the ARM cores during the
fault-free operation. It is only when a fault is detected in the system is the
MicroBlaze core waited upon to synchronize with the ARM cores. Only
in this case, a timing performance loss is incurred due to the MicroBlaze

core for the benefit of saving the system from an SDC or a crash using
one of the provided recovery methods. Nevertheless, our experiments
show that the time overhead due to the MicroBlaze core is relatively
small (less than 10%) compared to the execution time of a block within

Init VP0 Block1 VP1 Block2 VP2

Init CKR Wait CKR Wait CKR

Init VP0 Block1 VP1 Block2 VP2

Init Block1 O/P Block2 O/P

CPU0

ChkInj
IP

CPU1

CPU2

BlockN VPN End

Wait

BlockN

BlockN

VPN

O/P

CKR End

End

End

time

Fig. 2. Functional block diagram for the proposed TCLS technique (Init =
Initialization, CKR = Checker), O/P = Outputs).

Data Init

Flag in BRAM
ok? no

VP

Execute
Block

yes

Write Status
to BRAM

Flag in BRAM
ok? no

VP

yes

Write Status
to BRAM

Execute
Block

Flag in BRAM
ok? no

VP

yes

Write Status
to BRAM

Start

End

Fig. 3. Flowchart for the processor cores applying the TCLS technique.

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

6

the process; this is mainly because when computationally useful oper-
ations are halted in ARM cores within the verification points, the
MicroBlaze core keeps executing its instructions which helps it to keep in
pace with the ARM cores operating with a larger clock frequency.

3.3. Interrupt implementation

As mentioned above, interrupt mechanism is frequently employed in
the TCLS technique through the General Interrupt Controller (GIC) in
Zynq SoC (see Fig. 1) to perform many operations, i.e. consistency
check, checkpoint, roll-back and roll-forward operations. Before we
delve into these operations, the way interrupts work in a processor
system will be briefly explained next in this subsection.

When a processor core processes an interrupt, the following steps are
carried out in the sequence provided: I) the actual thread under execu-
tion is paused; II) the register file of the processor core, i.e. the context, is
saved into the corresponding stack memory; III) the dedicated interrupt
routine is executed to serve the given interrupt; IV) the saved context is
restored by the processor core from the stack at the end of the interrupt
routine mentioned in step III; V) the previous thread continues its
execution on the processor core from the point it left off. It is noteworthy
that during the execution of interrupt routines, both ARM cores are
switched from the IRQ operation mode to the privileged System mode,
which uses the same registers as the User mode. Since ARM adopts the
scheme of Banked Registers [30], this is a vital step to facilitate access,
within interrupt routines, to the same register contents as in the normal
program execution.

3.4. Consistency check and checkpoint implementations

The Checker-Injector module is a special-purpose IP which is designed
to snoop the operations of the two ARM cores by interrupting them and
accessing their own BRAM memories. This module exhibits two modes
of operation: In the first mode, it checks and compares the execution of
CPU0 and CPU1, and takes one of the remedial actions if any inconsis-
tency is detected between the cores, as illustrated in Fig. 4, depending on
the current value of the Recovery Counter (see Table 1); the second mode
of operation is pertaining to the fault injection which will be discussed in
Section 4. Note that it can be configured to operate in the first mode
alone or in both modes at the same time.

3.4.1. Consistency check operation
As mentioned before, the data verification is required when proces-

sor cores reach a VP to ensure that they are in a correct state. By this
token, the Checker-Injector module compares the ARM cores’ registers in
its first mode of operation after verifying the consistency of their output
results. If no mismatch is detected in either registers or outputs, the
module initiates a checkpoint operation as discussed later in this sub-
section. Note that at the beginning of programme execution, the general-
purpose registers at CPU0 and CPU1 are set to null values to start with a
consistent state.

The ARM cores are individually interrupted, to facilitate the con-
sistency check operation for the registers, during which the register files
of both ARM cores are saved into their respective stack memories (see
step II in subsection 3.3). Following this step, the interrupt routine
customized for the checkpoint operation is individually launched on
CPU0 and CPU1, at step III, which accesses the stack memory of the
processor core it is executing on and duplicates the register values stored
on the stack into a particular location within the BRAM memory asso-
ciated with the core. The Checker-Injector module then accesses these
locations on BRAM memories assigned for CPU0 and CPU1 to make
comparisons and detect any inconsistencies. On the other hand, com-
parisons for the output results of the processor cores are readily appli-
cable since results produced by an ARM core are always stored on its
corresponding BRAM memory at known locations.

The Checker-Injector module incorporates a watchdog timer to ensure

that the application execution will not hang in one of the code blocks
due to a fault occurring in either ARM cores. At the beginning of every
code block, this timer is configured with a time amply suitable for the
given code block. If both of the ARM cores, i.e. CPU0 and CPU1, do not
reach to the same VP before the allocated time elapses, the Checker-
Injector module would interpret this as a system inconsistency; therefore,
it will initiate one of the available recovery mechanisms (see Fig. 4).

3.4.2. Checkpoint operation
When the consistency between CPU0 and CPU1 is confirmed, a

checkpoint operation is initiated by the Checker-Injector module to save
consistent states (or contexts) of the ARM processor cores through the
utilization of the interrupt mechanism. In the following discussion, an
ARM core's context would be assumed to contain general-purpose reg-
isters (i.e. R0-R12), a stack pointer (i.e. SP or R13), a link register (i.e. LR
or R14) and a program counter (i.e. PC or R15). All these registers are
located within the register file of the processor core. Note that appli-
cation data stored in BRAMs are not included in the checkpointing
process as part of the processor context since these BRAM blocks have
already been secured against soft errors through TMR or ECC tech-
niques. Furthermore, cache memories have been disabled for all cores.

As mentioned above, the ARM cores are individually interrupted to
facilitate the checkpoint operation in which register files of these cores
are saved into the stack memories. Subsequently, the checkpoint-related
interrupt routines triggered on CPU0 and CPU1 individually start

Reset Recovery
counter

Read BRAM
Memories

CPU0 VS CPU1
Status Match? no

yes

CPU0 VS CPU1
Outputs Match?

CPU0 VS CPU1
Registers Match?

yes

Generate INT
for Recovery

no

no

Generate INT
for Checkpoint

Reset Recovery
counter

Increment
Recovery counter

write Flag
to BRAMS

Reset Watchdog
Timer

Watchdog Timer
Over? yes

no

Start

yes

Fig. 4. Process flowchart for the Checker-Injector module.

Table 1
Recovery method options.

Recovery counter value Recovery method

0 Roll-Forward or Roll-Back
1 Roll-Back First
2 Application Reset
3 Soft System Reset

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

7

accessing stack memories of the processor cores in order to copy the
register values on stack memories into specific locations within
respective BRAM memories where they are stored until the next
checkpoint. The checkpoint operation is completed by the time pro-
cessor core returns from the interrupt routine at step V.

It is worth noting that context is redundantly written into a second
location within the relevant BRAM memory during the first checkpoint
operation, which is preserved until the end of the application execution;
the goal of this approach is to protect the system against soft errors
occurring during the context storage. By this way, it is possible to
recover the system to the beginning of the first code block. Furthermore,
a partial checkpoint is performed by default at the very start of the
application to facilitate a software reset, i.e. a return to the beginning of
the application, when necessary. The next subsection will explain those
two approaches.

3.5. Roll-back, roll-forward and soft reset implementations

If a mismatch is detected in either registers or outputs by the Checker-
Injector module during the consistency check operation, one of the
available recovery options will be triggered depending on the current
value of the recovery counter incorporated in the Checker-Injector
module, as shown in Table 1. The recovery counter is incremented after
each time a recovery operation is triggered and is reset to zero after each
time a checkpoint operation is launched, as illustrated in Fig. 4. The next
method of recovery from Table 1 will be thus selected and applied in the
given order if an applied recovery method does not help to reach a safe
and consistent state between ARM cores (at which point a new check-
pointing takes place). As a note from the table, either a roll-forward
operation or a roll-back operation is performed when the recovery
counter has the zero value, depending on the nature of the mismatch
detected during the consistency check. For other values of the recovery
counter, there are different methods, which are based on the roll-back
recovery, to be deployed in the increasing order of severity for persis-
tent errors (see Table 1). These recovery methods will be explained in
the following subsections.

3.5.1. Roll-forward operation
If a mismatch is detected between the outputs of CPU0 and CPU1, but

the outputs of CPU2 match the outputs of either ARM core, i.e. CPU0 or
CPU1, the core with matching results is considered to be healthy, while
the other one is deemed to be faulty. In this case, the roll-forward
mechanism is initiated by the Checker-Injector module using the inter-
rupt mechanism to recover the faulty ARM core.

Within the roll-forward operation, the ARM cores’ contexts are
individually accessed by utilizing the interrupt mechanism, as is the case
for the checkpoint operation. During the dedicated interrupt routine for
the roll-forward operation, stack memory locations of the faulty ARM
core, i.e. either CPU0 or CPU1, storing the relevant register file are
overwritten with the corresponding register values, i.e. context, of the
healthy ARM core via a transfer from the specific locations of the BRAM
memory associated with the healthy core. However, some modifications
are required on these register values before loading them into the faulty
core, since the ARM cores are operating on different program and data
memory locations, although they are executing the same application
program with the same input data. Therefore, differences between reg-
ister values of the ARM cores should be pre-evaluated at run-time,
especially for the special purpose registers (i.e. SP, LR, PC), for each
individual application before the actual execution.

These evaluated differences should be taken into account while
transferring context from one core to another in order to assure a healthy
roll-forward operation. When the faulty ARM core restores the trans-
ferred context from its stack memory into its registers at step IV of the
interrupt mechanism (see subsection 3.3), it would be recovered to the
same, safe state as the healthy processor. Thus, there would be no need
to return to a previous point and re-execute any past code block, which is

illustrated in Fig. 5 where the faulty CPU1 core is recovered to the state
of the healthy CPU0 core after a mismatch detection in VP7. Conse-
quently, in Fig. 5, both cores proceed with their execution with Block8
with no re-execution of past code execute blocks. Note that roll-forward
operation is only applied on the faulty core, while the healthy core
simply waits.

3.5.2. Roll-back operation
If the aforementioned roll-forward operation is not applicable,

because output results of neither CPU0 nor CPU1 matches with those of
CPU2 or because their output results match, but there is a discrepancy
between their register values, both ARM cores would be recovered using
the roll-back operation launched by the Checker-Injector module through
individual interruptions of both cores. A roll-back operation is deployed
to recover the system to a previous safe state (or context) saved into the
relevant BRAM memory during one of the checkpoints.

As in the case of the roll-forward operation, the interrupt mechanism
is employed to access ARM cores’ contexts individually. While the
interrupt routine for the roll-back operation is executed, specific stack
memory locations of CPU0 and CPU1 allocated to store register files are
respectively overwritten with the corresponding register values, i.e.
context, saved at certain locations within relevant BRAM memories.
When an ARM core restores its context from the relevant stack memory
at step IV of the interrupt mechanism, it would be recovered to a safe
and healthy state. In this case, the application execution in both ARM
cores returns to a previous verification point, and the relevant code
execute block is re-executed, as illustrated in Fig. 6, where a mismatch is
detected during VP7 that causes a roll-back operation, therefore Block7
is repeated in both ARM cores subsequently.

Under normal circumstances, the roll-back operation will recover the
system to the immediately preceding checkpoint, e.g. VP6 in Fig. 6.
However, for some reason, that checkpoint may not constitute a safe
state; therefore, the recovery would be unsuccessful. In such a case, the
recovery will be made to the first checkpoint as discussed towards the
end of subsection 3.4. This operation is referred to as roll-back first re-
covery, and is illustrated in Fig. 7 where the execution re-starts at Block1
after VP7. If this does not work either, the checkpoint performed at the
very beginning of the application will be the next destination for the
recovery operation; this process amounts to an application reset where
the application will be executed all the way from the start, which is
clearly depicted in Fig. 8.

3.5.3. Soft system reset operation
If neither roll-forward nor roll-back operations have been successful

in recovering the system due to a hang or crash in either ARM cores, the
only remaining solution is to apply a system-wide soft reset via the
configuration of the individual watchdog timers of ARM cores (i.e.
AWDT0 and AWDT1) [27], which is located within the processing sub-
system (see Fig. 1), to fire after a short time. This configuration is ex-
pected to be carried out by the surviving ARM core. When either AWDT0
or AWDT1 fires at the set time, the ARM cores would be re-booted with
the same application program and the programmable logic, i.e. FPGA,

Block6 Wait CKP Block7 Wait Block8 VP8

Wait CMP Wait Wait CMP Wait Wait CKR

Block6 Wait CKP Block7 Wait Block8 VP8RF

time

VP6 VP7

CPU0

ChkInj
IP

CPU1

Fig. 5. Execution flow for the roll-forward operation (CMP = Compare, CKP =
Checkpoint, CKR = Checker).

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

8

part of the system would be reconfigured with the same bitstream; thus,
the entire system will have a fresh start. Note that if both of the ARM
cores are suffering a severe issue, then soft reset would not work as
expected; the only option, in this case, would be power-cycling the
entire system, i.e. a hard reset.

4. Fault injection technique

In order to evaluate the efficiency of the soft error mitigation pro-
vided by our TCLS approach, we have adopted a fault injection tech-
nique which emulates hardware faults by injecting bit-flips at the
registers of the ARM cores within the processing subsystem of the Zynq
APSoC. As the ARM cores under consideration constitute a hard-core
Cortex-A9 processor, only a set of registers within it can be accessed
for carry out fault injections. These target registers are the general-
purpose (i.e. R0-R12) and special-purpose registers (i.e. SP, LR, PC)
within the register file of an ARM core. Since these registers are widely
used by any application, bit-flip injections to these register would likely
cause an output error. The fault injection strategy adopted in our work is
the same one as in [31] and employs the interrupt mechanism, which is
detailed in subsection 3.3, in order to be as less intrusive as possible
[32], [33]. The system architecture and methodology of this fault in-
jection approach will be elaborated on next in this section.

4.1. Architecture

Fault injection experiments are taking place in the same environment
as the one presented in Fig. 1 with an addition of a host computer
connected through the UART peripheral core within the PS of the Zynq
APSoC. The setup used to perform and analyze fault injection experi-
ments is composed of the following two units:

• The system logger module: is a Python script running a host computer
whose duty is to receive and store the outcomes of the fault injection
experiments as transmitted from the Zynq APSoC through a UART-
based serial communication.

• The Checker-Injector module: is the same module discussed in sub-
section 3.4, but this time it is operated in its second mode of oper-
ation as well as the first mode in order to perform the fault injection
procedure following the methodology discussed in the next
subsection.

4.2. Methodology

The methodology for the fault injection procedure mentioned above
is composed of two main steps as described next. At the beginning of the
application execution, the ARM core CPU0 configures the Checker-
Injector module with a random injection time, a random code block
number, and a random target location containing the number (0 or 1) of
the ARM core under consideration and the number (from 0 to 15) of the
register into which the fault injection will take place along with the
number (from 0 to 31) of the specific bit to be flipped within that reg-
ister. It is noteworthy to mention that the randomly evaluated injection
time is relative to the execution time of the randomly selected code
block; thus, a bit-flip can be injected at any time during that code block.
Furthermore, the ability to select the code block results in a better-
controlled fault injection process.

When the Checker-Injector module is launched after its configuration,
it waits until the selected code block is reached, and then starts counting
the clock cycles with a timer until it hits the specified injection time.
When the time is up, the Checker-Injector module individually interrupts
both ARM cores. However, at the chosen ARM core only, the interrupt
routine customized for the fault injection applies an XOR mask to the
target register, thus flipping the specified bit in the register.

During our experiments, we have classified errors occurring due to
the injected faults based on a scheme depicted in Table 2. In this scheme,
the injected fault is labeled as UNACE (unnecessary for architecturally
correct execution) when it does not affect either the register values or
the output values of the ARM processor system. However, if the final
output results generated by at least one of the ARM cores mismatch the
golden results when compared at the end of the application, it is
assumed that SDC (silent data corruption) has occurred during appli-
cation execution. Furthermore, the case where an injected bit-flip causes
a hang or a crash in the system is classified as Hang.

On the other hand, Mitigated Faults w/ RF and Mitigated Faults w/ RB
occur when a mismatch in output results or register files of the ARM
cores is detected and corrected by a roll-forward operation or a roll-back
operation, respectively. Furthermore, Mitigated Faults w/ RBF represent
faults which have been corrected by a roll-back to the first checkpoint,

Block6 Wait CKP Block7 Wait Block7 VP7

Wait CMP Wait Wait CMP Wait Wait CKR

Block6 Wait CKP Block7 Wait Block7 VP7RB

time

VP6 VP7

CPU0

ChkInj
IP

CPU1

RB

Fig. 6. Execution flow for the roll-back operation (CMP = Compare, CKP =
Checkpoint, RB = Roll-back, CKR = Checker).

Block6 Wait CKP Block7 Wait Block1 VP1

Wait CMP Wait Wait CMP Wait Wait CKR

Block6 Wait CKP Block7 Wait Block1 VP1RB First

time

VP6 VP7

CPU0

ChkInj
IP

CPU1

RB First

Fig. 7. Execution flow for roll-back to the first checkpoint (CMP = Compare,
CKP = Checkpoint, RB First = Roll-back First, CKR = Checker).

Block6 Wait CKP Block7 Wait Init VP0

Wait CMP Wait Wait CMP Wait Init CKR

Block6 Wait CKP Block7 Wait Init VP0

time

VP6 VP7

CPU0

ChkInj
IP

CPU1

App
Reset

App
Reset

Block1

Wait

Block1

Fig. 8. Execution flow for the application reset operation (CMP = Compare,
CKP = Checkpoint, App Reset = Application Reset, CKR = Checker).

Table 2
Error classification for fault injection experiments.

Classification Description

UNACE Ineffective faults
SDC Output result errors
Hang System hangs/crashes

Mitigated Faults w/ RF Correction by roll-forward operation
Mitigated Faults w/ RB Correction by roll-back operation
Mitigated Faults w/ RBF Correction by roll-back first operation
Mitigated Hangs/Crashes Recovery by soft system reset

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

9

including the cases where an application reset have been applied.
Moreover, Mitigated Hangs represent cases where a system hang or crash
is detected and recovered by a soft system reset within the TCLS tech-
nique. Note that no bit-flip injection experiments were performed in the
PL configuration memory of the Zynq chip since the focus of our work
has been to verify the behaviour of the hard-core ARM Cortex-A9 pro-
cessor as faults are injected into its registers.

5. Implementation and experimental results

This section presents the analysis of the implementation results, and
describes the outcomes of the timing and fault injection performance
experiments performed on TCLS-based design, referred to as TCLS
design, and on other design setups. We have selected two benchmark
applications to evaluate the timing and fault-injection performances of
the proposed TCLS approach. The first benchmark application performs
matrix multiplications, which are compute intensive operations widely
used in real-life applications [34], while the second benchmark appli-
cation encrypts electronic data using 256-bit Advanced Encryption
Standard (AES) Algorithm [35] which is a memory-bounded algorithm
that takes plain data in groups of 256 bits and converts them into
ciphered data using keys of 256 bits.

Within each matrix-multiplication benchmark application, several
matrix multiplication operations are performed on different input
matrices made up of 32-bit signed data, where each full matrix multi-
plication operation corresponds to one code block, as shown in Fig. 3,
surrounded by VPs. Within our experiments, we have considered
benchmark applications operating with different matrix sizes (i.e.
20×20, 30×30, 40×40, 50×50, 60×60) and a different number of full
matrix multiplication operations (i.e. 3, 6 and 12) to analyze how the
block size and the number of block partitions affects the timing and soft-
error recovery capacity of the proposed approach. On the other hand,
the 256-bit AES benchmark application encrypts 32 integers in each
block partition for a total of 3200 integer data over 10 blocks. Note that
all benchmark applications are running in a bare-metal environment.

To compare and validate the efficiency of the TCLS approach, three
other design versions have been set up in addition to TCLS design,
namely Unhardened design, Unprotected design and Dual-Core Lockstep
(DCLS) design (DCLS design). The Unhardened design version executes its
applications only on CPU0 where BRAM Memory0 is used to store rele-
vant application data. Therefore, it has no protection against soft errors
other than TMR protection enabled on its BRAM memory. Furthermore,
the Unprotected design version is equivalent to TCLS design with all pro-
tection mechanisms disabled, whereas the DCLS design version is on par
with the design presented in [24], which does not support the feature of
roll-forward operation as the MicroBlaze core has been removed. Note
that Unprotected design is employed during fault injection experiments
rather than Unhardened design because it still has reporting features
enabled for the errors detected during verification points.

5.1. Resource consumption analysis

Tables 3 and 4 present resource consumption in terms of the number
of LUTs, registers and slices, along with DSP block, Block RAM (BRAM)
and ARM core utilization counts, for Unhardened design and TCLS design,

respectively. Note that utilization counts of BRAM and controller pairs
are listed under the major module (i.e. TMR ChkInj IP or TMR Micro-
Blaze) they are associated with.

As shown in the given tables, TCLS design requires considerably more
resources compared to Unhardened design mainly because of the tripli-
cated MicroBlaze core involved that is configured to be an application
processor with a Memory Management Unit (MMU) where all types of
exceptions and arithmetic operations are supported. The benefit, how-
ever, is that it supports running applications with high run-time per-
formance requirements under any bare-metal or operating system
environment. Nonetheless, if a typical microcontroller configuration is
chosen for the MicroBlaze cores which does not include a MMU and
supports minimal types of exceptions, significantly less resource usage
can be achieved (see Table 5) while still preserving the same perfor-
mance as its arithmetical unit is not compromised. The only caveat with
the typical MicroBlaze configuration is that it does not support any
traditional operating system.

Under the application processor settings, the TMR MicroBlaze
module consumes over 22 K and 18 K slice LUTs and registers, respec-
tively, along with 23 BRAMs and 18 DSP blocks. However, when
MicroBlaze cores are typically configured as mentioned, LUT and reg-
ister consumption of the TMR MicroBlaze module considerably drops to
17 K and 13 K, respectively, with a slight reduction in the count of
BRAMs and no change in the consumption of DSP blocks. For both cases,
TMR ChkInj IP (i.e. TMR Checker-Injector module) uses much fewer slice
resources than TMR MicroBlaze; however, it is the module which con-
sumes the highest count of BRAMs because BRAM memories employed
by TMR ChkInj IP are protected against soft errors through the appli-
cation of the TMR technique, as well. Finally, the resource overhead of
TCLS design is 100% in terms of the ARM core utilization in any case.
Note that the resource utilization of some auxiliary modules is not
individually listed in Tables 4 and 5, but rather included in the total
count column.

5.2. Timing performance analysis for matrix multiplication benchmarks

Table 7 reports timing figures in milliseconds (ms) as required by
Unhardened design and TCLS design to execute matrix multiplication
benchmarks mentioned above, under a fault-free scenario, for five
different matrix sizes and three different application sizes in terms of the
number of block partitions. Table 7 also presents the percentage per-
formance overhead of TCLS design for each case with respect to Unhar-
dened design. Note that for TCLS design, compiler optimization level O3

Table 3
Resource consumption for unhardened design implementation

Resource Type Total Utilization Rate

ARM Cores 1 50%
Slice LUTs 1218 2.3%

Slice Registers 1165 1.1%
Slices 564 4.3%

Block RAMs 48 34.3%
DSP Blocks 0 0.0%

Table 4
Resource consumption for TCLS design implementation (Application Processor
Configuration).

Resource Type TMR ChkInj IP TMR MicroBlaze Total Utilization Rate

ARM Cores – – 2 100%
Slice LUTs 4491 22,132 28,683 53.9%

Slice Registers 2648 18,341 23,286 21.9%
Slices 1615 6950 8775 66.0%

Block RAMs 96 23 119 85.0%
DSP Blocks 0 18 18 8.2%

Table 5
Resource consumption for TCLS design implementation (Typical Processor
Configuration).

Resource Type TMR ChkInj IP TMR MicroBlaze Total Utilization Rate

ARM Cores – – 2 100%
Slice LUTs 4500 17,160 23,730 44.9%

Slice Registers 2649 13,474 18,420 17.3%
Slices 1584 5504 7516 56.5%

Block RAMs 96 20 116 82.9%
DSP Blocks 0 18 18 8.2%

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

10

has been employed for the subroutines of the benchmark programs
evaluating matrix multiplication operations in order to boost the per-
formance; level O0 has been used on the other hand for the remaining
parts of the benchmarks to disable any optimization in the source code
which has potential to corrupt the lockstep-based execution of TCLS
design. However, benchmark programs were entirely compiled with
level O3 for Unhardened design to facilitate a realistic comparison.

Clearly, timing performance overheads are considerably higher
when the matrix size (i.e. block size) is very small, for instance, over-
heads reach up to 96.4%, 122.9% and 155.9% for the applications sizes
of 12, 6 and 3 blocks, respectively, when the matrix size of 20×20 is
chosen. However, as the block size is increased, time overheads tend to
fall significantly, as low as to 25.7% at the matrix size of 60×60 for the
case of 12 block partitions. This point leads us to the conclusion that
timing efficiency in TCLS design is achieved when the execution time of
the useful computation (e.g. matrix multiplication) has a higher fraction
over the total block execution time relative to redundant operations (i.e.
consistency check and checkpoint operations) inside a verification
point. Table 6 supports this conclusion by presenting execution times of
a single block & VP case, for varying matrix sizes, along with percentage
ratios of VP over block execution times. It is clear that as the matrix size
(i.e. block size) increases, the VP ratio drops to 12.1% as opposed to
62.6% for the smallest block size.

Another conclusion can be drawn from Table 7; as more code execute
blocks are employed within an application, that is to say, as the appli-
cation size grows, timing performance overheads of TCLS design become
more favourable for the given matrix size. Finally, although time over-
heads associated with TCLS design may not suit some hard real-time
systems, these overheads would be tolerable for many systems
requiring high reliability and dependability under harsh environments
once block and application sizes are appropriately adjusted through trial
and error based on the nature of the given application program.

5.3. Fault-injection performance analysis for matrix-multiplication
benchmarks

An intensive fault injection run was carried out in Xilinx Zynq-7000
APSoC mounted on the PYNQ-Z2 board for three design setups in order
to evaluate and validate the soft error resiliency of the proposed TCLS
approach via the matrix-multiplication benchmark which is a compute-
intensive application. Tables 8, 9 and 10 present the fault injection re-
sults for Unprotected design, DCLS design and TCLS design, respectively,
with error margins (EM) and confidence intervals (CI) for the 95th
percentile, where over 3000 runs of 50×50 matrix-multiplication
benchmarks were performed for each design with the application size
of 12 blocks. Note that one bit-flip was injected per application run
employing the mechanism explained in Section 4.

The given tables, along with the bar chart provided in Fig. 9 to aid
visualization, demonstrate that rates for SDCs and Hangs are quite high,
i.e. 10.3% and 30.9%, respectively, for Unprotected design, while DCLS
design and TCLS design have been able to significantly lower the rates of
SDCs and Hangs down to as low as 0.1% and 0.9%, respectively, for a
compute-intensive application, due to their possession of several error
protection mechanisms (see Section 3). Although DCLS design and TCLS
design mitigate hangs & crashes almost at the same rate by a soft system
reset, the total application rate of roll-back and roll-back first operations
is not same for these two designs, which is 52.0% for DCLS design and

44.7% for TCLS design. This drop of 7.3% is due to the provision of roll-
forward feature in TCLS design, which is very beneficial for considerably
reducing the overall execution time of the application under exposure to
fault injections. The rationale behind this reduction is that the re-
execution of even one block partition, which is mandated by roll-back
based recovery operations, can waste many milliseconds depending on
the block size as proven in Table 6. This drop in the execution time under
faulty conditions will result in a higher MWBF which is defined to be the
amount of data precisely processed before a failure happens [36]; this is
because more data can be processed before a fatal error when a

Table 6
Single block and VP computation times for TCLS design.

Matrix Size Block Time (ms) VP Time (ms) VP Ratio

60×60 2.87 0.35 12.1%
40×40 1.34 0.21 15.6%
20×20 0.48 0.19 39.3%
10×10 0.19 0.12 62.6%

Table 7
Timing Performance comparison of the TCLS design with respect to Unhardened
design.

Application
Size (# Blocks)

Matrix
Size

Unhardened
Design Execution
Time (ms)

TCLS Design
Execution
Time (ms)

TCLS
Design
Overhead

12

60×60 32.62 41.01 25.7%
50×50 22.64 30.21 33.4%
40×40 14.54 19.70 35.5%
30×30 8.20 12.91 57.5%
20×20 3.70 7.27 96.4%

6

60×60 18.54 23.81 28.4%
50×50 12.83 17.59 37.1%
40×40 8.27 11.57 39.8%
30×30 4.66 7.75 66.3%
20×20 2.10 4.69 122.9%

3

60×60 11.32 15.30 35.2%
50×50 7.85 11.28 43.7%
40×40 5.05 7.65 51.4%
30×30 2.85 5.17 81.4%
20×20 1.27 3.25 155.9%

Table 8
Fault injection results for 50×50 matrix multiplication with no protection
enabled (Unprotected design).

Count Rate EM 95% CI

UNACE 2183 58.8% 1.58% 57.2% - 60.4%
SDC 384 10.3% 0.98% 9.4% - 11.3%
Hang 1145 30.9% 1.49% 29.4% - 32.3%
Total 3712

Table 9
Fault injection results for 50×50 matrix multiplication with no roll-forward
correction enabled (DCLS design).

Count Rate EM 95% CI

UNACE 816 26.1% 1.54% 24.5% - 27.6%
SDC 3 0.1% 0.10% 0.0% - 0.2%
Hang 27 0.9% 0.32% 0.5% - 1.2%

Roll-Back 1613 51.5% 1.75% 49.8% - 53.3%
Roll-Back First 16 0.5% 0.25% 0.3% - 0.8%

Soft System Reset 657 21.0% 1.43% 19.6% - 22.4%
Total 3132

Table 10
Fault injection results for 50×50 matrix multiplication with full protection
enabled (TCLS design).

Count Rate EM 95% CI

UNACE 811 26.7% 1.57% 25.2% - 28.3%
SDC 3 0.1% 0.10% 0.0% - 0.2%
Hang 28 0.9% 0.34% 0.6% - 1.3%

Roll-Forward 194 6.4% 0.87% 5.5% - 7.3%
Roll-Back 1303 43.0% 1.76% 41.2% - 44.7%

Roll-Back First 50 1.7% 0.45% 1.2% - 2.1%
Soft System Reset 645 21.3% 1.46% 20.0% - 22.7%

Total 3034

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

11

recoverable error is treated faster with the roll-forward operation rather
than an operation based on roll-back recovery.

The TCLS design version exhibits almost the same fault injection
performance when executing matrix multiplication applications for
different matrix sizes as proven by stacked bar charts in Fig. 10. Notice
from the given tables and charts that SDCs occur very seldom, i.e. 0.1%
of the time, for TCLS design, but they do still happen because faults
injected into the special-purpose registers falsely directs the application
execution to the end. In such a misdirection case, since all protection
mechanisms are bypassed, and output results are not entirely computed,
SDCs are most possibly detected when comparisons with the golden
output data are performed at the end. Furthermore, some hangs and
crashes cannot be recovered by TCLS design, albeit infrequently. Such
Hangs occur when a bit-flip injected into critical bits of the special-
purpose registers cause severe data or prefetch aborts which cannot be
recovered even when a soft system reset is applied.

The effect of bit-flips on individual registers has also been analyzed
in this work, and reported in the form of stacked bar charts shown in
Figs. 11 and 12 for Unprotected design and TCLS design, respectively,
where same benchmark application as in Fig. 9 was harnessed for the
sake of consistency. All general-purpose and special-purpose registers (i.
e. SP, LR and PC) have been included in the analysis where it has been
considered that R11 is used as Frame Pointer (FP) during execution to
control stack access mechanism along with SP; thus, R11 is treated
separately from other general-purpose registers which are encoded as

Fig. 9. Comparison of fault injection experiment results for designs with different protection schemes – 50×50 matrix multiplication application.

Fig. 10. Comparison of fault injection experiment results for different size
matrix multiplication applications – fully protected design (TCLS design).

Fig. 11. Fault injection experiment results for different registers – design with
no protection (Unprotected design), 50×50 matrix multiplication.

Fig. 12. Fault injection experiment results for different registers – fully pro-
tected design (TCLS design), 50×50 matrix multiplication.

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

12

R0-R10+R12 in the figures. As observed, 9.2% and 0.3% of bit-flips
result in SDCs and Hangs, respectively, for general-purpose registers in
Unprotected design, whereas both of these rates are effectively annulled
in the TCLS design primarily via roll-back and roll-forward operations.
Furthermore, fault injections into SP do not cause errors for both designs
because SP is updated by FP on return from a subroutine. Therefore, bit-
flips in FP have serious effects in Unprotected design, that is to say, Hangs
occur over 91% of the time when FP is affected by fault injections.
However, these hangs or crashes are significantly reduced in TCLS design
with the application of soft system resets and roll-back operations.
Finally, bit-flips in LR and PC cause high rates of SDC (up to 26.3%) and
Hang (up to 88.2%) in Unprotected design as anticipated. The total rate of
these errors are lowered to as small as 1.4% in TCLS design, which is
achieved overwhelmingly by soft system resets, i.e. over 60% of the
time.

If we compare the proposed approach with a similar work in [24],
where two hard-core ARM Cortex-A9 processors are used without a
TMRed MicroBlaze processor to support the roll-forward recovery
operation, a decrease in the process disruptions are observed; for a
similar matrix-multiplication application, hangs or SDCs occur at the
rate of 2.59% in [24] whereas these incidents are observed at a fraction
of that rate, i.e. at 1% of time (0.9% due to hangs and 0.1% due to SDCs),
within our protection scheme. Furthermore, we provide a premise for a
roll-forward recovery at the rate of 6.4% for the same matrix-
multiplication experiments, which reduces the overall execution time
compared to an approach based merely on roll-back recovery as in [24]
for the reasons explained above.

5.4. Fault-injection performance analysis for 256-bit AES encryption
benchmarks

Another intensive fault injection run was carried out in Xilinx Zynq-
7000 APSoC for two design setups in order to evaluate and validate the
soft error resiliency of the proposed TCLS approach, this time, via a
memory-bounded application, i.e. the aforementioned 256-bit AES
encryption benchmark. Tables 11 and 12 present the fault injection re-
sults for Unprotected design and TCLS design, respectively, with error
margins (EM) and confidence intervals (CI) for the 95th percentile,
where over 3000 runs of 256-bit AES encryption of plain data were
performed for each design with the application size of 10 blocks. Again,
one bit-flip was injected per application run.

A bar chart is also provided in Fig. 13 based on the given tables which
proves that TCLS design has been successful in reducing the rates of SDCs
and Hangs down to 0.7% and 1.2%, respectively, for a memory-bounded
application, from the corresponding rates of 20.4% and 31.1% for Un-
protected design. However, compared to the fault-injection experiments
conducted for the compute-intensive application in Section 5.3, the rate
at which a roll-forward recovery operation are called to mitigate soft
errors detected in the system has risen from 6.4% to 18.9% for TCLS
design. This increase in the roll-forward recovery rate directly translates
into a system performance increase at a similar rate for the given
application in terms of MWBF, compared to the case where no roll-
forward recovery is supported.

Actually, all memory-bounded applications will enjoy a better
MWBF thanks to the proposed approach because as data memories are
frequently accessed by the application under faulty conditions, the

Checker-Injector module would more often detect mismatches across the
intermediate output data of ARM cores, i.e. CPU0 and CPU1, stored
within BRAM Memory0 and BRAM Memory1 memories (see Fig. 1).
Consequently, more roll-forward recovery operations are triggered than
roll-back recovery operations when faults are occurring due to radiation,
which significantly improves the system MWBF for the reasons
explained in Section 5.3.

As a last note, an alternative approach to employing ARM Cortex
cores in radiation environments is to utilize TMR-based protection
schemes in the FPGA fabric which seems to present better reliability
than our approach to a certain extent. The work in [37] presents good
estimations of functional failures when different versions of TMR are
used to implement Cortex-M0 soft-core processors on Xilinx 7-series
FPGA; it is shown that TMR can mask upsets on the FPGA configura-
tion memory while incurring a hardware footprint 6.7 times larger than
the unhardened version. However, the accumulation of bit-flips in the
configuration memory can still lead to faults on multiple modules and
overcome the TMR masking capability over the time. Even a distributed
fine-grain TMR implementation reinforced with configuration memory
scrubbing provides 100% of reliability till the accumulation of merely
five faults; further accumulation of bit-flips in the configuration memory
will overcome the TMR masking capability, thus the reliability will drop
considerably. These results indicate that TMRed versions of ARM Cortex
soft-cores in the FPGA fabric cannot sustain 100% reliability too long
while incurring an area overhead of 6.7× even for the simplest and
tiniest ARM Cortex core. Clearly, application-grade ARM Cortex pro-
cessors which are widely used in radiation environments would not even
fit into the FPGA fabric when its hardware is triplicated in a course-grain
fashion under a TMR-based protection scheme.

Thus, we can assert that our approach which combines hard-core
ARM Cortex-A9 processor with TMRed MicroBlaze processor in the
FPGA fabric presents an optimal solution against radiation-induced soft
errors where hard-core ARM processor is not affected by the bit-flips
occurring in the FPGA configuration memory, while TMRed Micro-
Blaze processor enables the roll-forward based recovery which improves
the mean workload between two failures. Note that even when the
TMRed MicroBlaze processor fails due to the excessive bit-flips in the
configuration memory, our approach can still protect the process on the
ARM cores by degrading itself to the dual-core lockstep (DCLS) tech-
nique and merely supporting roll-back based recovery schemes.

6. Conclusion

All-Programmable System-on-Chips (APSoCs) are a desirable
implementation choice for systems utilised in nuclear environments due
to their high-performance computing and power efficiency merits.
Despite the advantages APSoCs possess, they are sensitive to radiation
like any other electronic device. Processors incorporated in APSoCs,
therefore, should be well hardened against radiation to become a viable
option for unfavourable environments. This paper introduces a novel
triple-core lockstep (TCLS) approach to accomplish fault tolerance for
the dual-core ARM Cortex-A9 processor in the Xilinx Zynq-7000 APSoC
against soft errors; this is achieved by coupling the ARM processor with a

Table 11
Fault injection results for 256-bit AES encryption with no protection enabled
(Unprotected design).

Count Rate EM 95% CI

UNACE 1660 48.5% 1.68% 46.9% - 50.2%
SDC 697 20.4% 1.35% 19.0% - 21.7%
Hang 1063 31.1% 1.55% 29.5% - 32.6%
Total 3420

Table 12
Fault injection results for 256-bit AES encryption with full protection enabled
(TCLS design).

Count Rate EM 95% CI

UNACE 650 21.3% 1.45% 19.8% - 22.7%
SDC 20 0.7% 0.29% 0.4% - 1.0%
Hang 35 1.2% 0.38% 0.8% - 1.5%

Roll-Forward 578 18.9% 1.39% 17.5% - 20.3%
Roll-Back 1412 46.3% 1.77% 44.5% - 48.0%

Roll-Back First 15 0.5% 0.25% 0.2% - 0.7%
Soft System Reset 343 11.2% 1.12% 10.1% - 12.4%

Total 3053

S. Kasap et al.

Microelectronics Reliability 124 (2021) 114297

13

MicroBlaze TMR subsystem implemented in the FPGA logic. The pro-
posed technique uses the concepts of checkpointing along with roll-back
and roll-forward mechanisms at the software level (i.e. software
redundancy), and the processor replication and checker circuits at the
hardware level (i.e. hardware redundancy).

Fault injection experiments have been performed to evaluate the
proposed TCLS approach. The results confirm that the given approach
has enhanced the reliability and availability of the hard-core ARM
processor with a high rate (i.e. around 98%) of corrected and recovered
faults. Furthermore, timing performance overhead is as low as 25%
under fault-free conditions when block and application sizes are
adjusted appropriately. Moreover, integrating the roll-forward process
into the system results in up to ≈19% higher MWBF which is because,
when handled with the roll-forward operation rather than the roll-back
operation, the programme will progress quicker in the cases of fault
occurrence. Thus, more data can be computed before the next error
occurs. Note that memory-bounded applications tend to benefit more
from this approach in terms of better MWBF because, in this case, the
Checker-Injector module would more often detect mismatches across the
intermediate output data of ARM cores stored within their allocated
BRAM memories, thus triggering a roll-forward recovery operation
rather than a roll-back operation when a soft error occurs.

As future works, we plan to submit our system to neutron radiation
experiments in order to validate the approach in real harsh environ-
ments. Furthermore, operating benchmark applications on a chosen
embedded Linux OS or RTOS distribution is envisaged to evaluate shifts
in the timing and soft-error correction performances of the proposed
TCLS approach under operating system environments as compared to
bare-metal. Finally, we are working upon adapting our approach for
Zynq UltraScale+ MPSoCs where we can take advantage of the available
heterogeneous processing subsystem incorporating both a quad-core
ARM Cortex-A53 processor and a dual-core ARM Cortex-R5 processor.

CRediT authorship contribution statement

Server Kasap: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Writing – original draft, Writing –
review & editing. Eduardo Weber Wächter: Investigation, Methodol-
ogy, Validation, Writing – review & editing. Xiaojun Zhai: Supervision,
Resources, Writing – review & editing. Shoaib Ehsan: Funding acqui-
sition, Writing – review & editing. Klaus D. McDonald-Maier: Funding
acquisition, Project administration, Supervision, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work is supported by the UK Engineering and Physical Sciences
Research Council through grants EP/P017487/1, EP/R02572X/1 and
EP/V000462/1.

References

[1] NDA. https://www.gov.uk/government/publications/nuclear-provision-explainin
g-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the
-cost-of-cleaning-up-britains-nuclear-legacy.

[2] Fukushima Daiichi nuclear power plant accident. https://www.scmp.com/news/a
sia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-fa
lters-six-years.

[3] R. Baumann, Soft errors in advanced computer systems, IEEE Des. Test Comput. 22
(3) (May 2005) 258–266.

[4] T. Li, J.A. Ambrose, R. Ragel, S. Parameswaran, Processor design for soft errors:
challenges and state of the art, ACM Comput. Surv. 49 (3) (Nov. 2016), https://doi.
org/10.1145/2996357 [Online]. Available:.

[5] S. Hauck, A. DeHon, Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computation. 1em plus 0.5em minus 0.4em, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

[6] D.K. Pradhan, N.H. Vaidya, Roll-forward and rollback recovery: performance-
reliability trade-off, IEEE Trans. Comput. 46 (3) (March 1997) 372–378.

[7] D.K. Pradhan (Ed.), Fault-tolerant Computer System Design. 1em plus 0.5em minus
0.4em, Prentice-Hall Inc., Upper Saddle River, NJ, USA, 1996.

[8] T. Nidhin, A. Bhattacharyya, R. Behera, T. Jayanthi, K. Velusamy, Understanding
radiation effects in SRAM-based field programmable gate arrays for implementing
instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol.
49 (8) (2017) 1589–1599.

[9] M. Wirthlin, High-reliability FPGA-based systems: space, high-energy physics, and
beyond, Proc. IEEE 103 (3) (March 2015) 379–389.

[10] S. Kasap, E.Weber Wächter, X. Zhai, S. Ehsan, K. Mcdonald-Maier, Survey of soft
error mitigation techniques applied to LEON3 soft processors on SRAM-based
FPGAs, IEEE Access 8 (2020), pp. 28 646–28 658.

[11] C. Carmichael, Triple Module Redundancy Design Techniques for Virtex FPGAs,
Xilinx Inc., San Jose, CA, USA, 2006. XAPP197 Application Note.

[12] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M.S. Reorda, L. Sterpone,
A new hybrid nonintrusive error-detection technique using dual control-flow
monitoring, IEEE Trans. Nucl. Sci. 61 (6) (Dec 2014) 3236–3243.

[13] H. Quinn, Z. Baker, T. Fairbanks, J.L. Tripp, G. Duran, Robust duplication with
comparison methods in microcontrollers, IEEE Trans. Nucl. Sci. 64 (1) (Jan 2017)
338–345.

[14] Kuang-Hua Huang, J.A. Abraham, Algorithm-based fault tolerance for matrix
operations, IEEE Trans. Comput. C-33 (6) (June 1984) 518–528.

[15] J.R. Azambuja, M. Altieri, J. Becker, F.L. Kastensmidt, HETA: hybrid error-
detection technique using assertions, IEEE Trans. Nucl. Sci. 60 (4) (Aug 2013)
2805–2812.

[16] E. Chielle, G.S. Rodrigues, F.L. Kastensmidt, S. Cuenca-Asensi, L.A. Tambara,
P. Rech, H. Quinn, S-SETA: selective software-only error-detection technique using
assertions, IEEE Trans. Nucl. Sci. 62 (6) (Dec 2015) 3088–3095.

[17] G.A. Reis, J. Chang, D.I. August, Automatic instruction-level software-only
recovery, IEEE Micro 27 (1) (2007) 36–47.

[18] F. Restrepo-Calle, A. Martínez-Álvarez, S. Cuenca-Asensi, A. Jimeno-Morenilla,
Selective SWIFT-R, J. Electron. Test. 29 (2013) 825–838.

[19] G.C. Clark, J.B. Cain, Error-correction Coding for Digital Communications, 1st ed.,
Springer Publishing Company Inc., New York, NY, USA, 1981.

[20] H.H. Ng, PPC405 Lockstep System on ML310, Xilinx Inc., San Jose, CA, USA, 2007.
XAPP564 Application Note.

[21] F. Abate, L. Sterpone, C.A. Lisboa, L. Carro, M. Violante, New techniques for
improving the performance of the lockstep architecture for SEEs mitigation in
FPGA embedded processors, IEEE Trans. Nucl. Sci. 56 (4) (Aug 2009) 1992–2000.

[22] M. Violante, C. Meinhardt, R. Reis, M.Sonza Reorda, A low-cost solution for
deploying processor cores in harsh environments, IEEE Trans. Ind. Electron. 58 (7)
(July 2011) 2617–2626.

Fig. 13. Comparison of fault injection experiment results for unprotected and fully protected designs – 256-bit AES encryption application.

S. Kasap et al.

https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
https://www.scmp.com/news/asia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-falters-six-years
https://www.scmp.com/news/asia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-falters-six-years
https://www.scmp.com/news/asia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-falters-six-years
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938405457
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938405457
https://doi.org/10.1145/2996357
https://doi.org/10.1145/2996357
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924162270
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924162270
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924162270
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938431543
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938431543
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937403201
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937403201
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937584532
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937584532
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926041837
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926041837
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926041837
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919364995
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919364995
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938010250
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938010250
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938010250
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938048246
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938048246
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938048246
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926564406
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926564406
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919385737
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919385737
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919385737
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938049799
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938049799
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938049799
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938065287
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938065287
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938089418
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938089418
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919534980
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919534980
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920366690
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920366690
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938097215
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938097215
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938097215
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290930386437
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290930386437
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290930386437

Microelectronics Reliability 124 (2021) 114297

14

[23] H. Pham, S. Pillement, S.J. Piestrak, Low-overhead fault-tolerance technique for a
dynamically reconfigurable softcore processor, IEEE Trans. Comput. 62 (6) (June
2013) 1179–1192.

[24] A.B. de Oliveira, G.S. Rodrigues, F.L. Kastensmidt, N. Added, E.L.A. Macchione, V.
A.P. Aguiar, N.H. Medina, M.A.G. Silveira, Lockstep dual-Core ARM A9:
implementation and resilience analysis under heavy ion-induced soft errors, IEEE
Trans. Nucl. Sci. 65 (8) (Aug 2018) 1783–1790.

[25] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas, L. Entrena,
A. Martínez-Álvarez, S. Cuenca-Asensi, Dual-Core lockstep enhanced with
redundant multithread support and control-flow error detection, Microelectron.
Reliab. 100–101 (2019), 113447.

[26] E.W. Wächter, S. Kasap, X. Zhai, S. Ehsan, K. McDonald-Maier, Survey of lockstep
based mitigation techniques for soft errors in embedded systems, in: Computer
Science and Electronic Engineering Conference (CEEC 2019), 2019, pp. 124–127.

[27] Zynq-7000 SoC, Xilinx Inc., San Jose, CA, USA, 2018. UG585 Technical Reference
Manual.

[28] TUL PYNQ-Z2 board. http://www.tul.com.tw/ProductsPYNQ-Z2.html.
[29] L.A. Tambara, P. Rech, E. Chielle, J. Tonfat, F.L. Kastensmidt, Analyzing the impact

of radiation-induced failures in programmable SoCs, IEEE Trans. Nucl. Sci. 63 (4)
(Aug 2016) 2217–2224.

[30] ARM Cortex-A Series Programmer’s Guide v4.0, ARM Inc., Cambridge, UK, 2013.
[31] Á.B. de Oliveira, L.A. Tambara, F.L. Kastensmidt, Exploring performance overhead

versus soft error detection in lockstep dual-Core ARM cortex-A9 processor

embedded into xilinx zynq APSoC, in: International Symposium on Applied
Reconfigurable Computing (ARC 2017), April 2017, pp. 189–201.

[32] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, J.R. Mingo, Estimating error rates in
processor-based architectures, IEEE Trans. Nucl. Sci. 48 (5) (2001) 1680–1687.

[33] R. Velazco, S. Rezgui, R. Ecoffet, Predicting error rate for microprocessor-based
digital architectures through C.E.U. (Code emulating Upsets) injection, IEEE Trans.
Nucl. Sci. 47 (6) (2000) 2405–2411.

[34] H. Quinn, W.H. Robinson, P. Rech, M. Aguirre, A. Barnard, M. Desogus, L. Entrena,
M. Garcia-Valderas, S.M. Guertin, D. Kaeli, F.L. Kastensmidt, B.T. Kiddie,
A. Sanchez-Clemente, M.S. Reorda, L. Sterpone, M. Wirthlin, Using benchmarks for
radiation testing of microprocessors and FPGAs, IEEE Trans. Nucl. Sci. 62 (6)
(2015) 2547–2554.

[35] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, J. Dray,
Advanced Encryption Standard (AES), 2001, 2001-11-26.

[36] J. Lienig, H. Bruemmer, in: Fundamentals of Electronic Systems Design, Springer
International Publishing, Cham, 2017, pp. 45–73, ch. Reliability Analysis.

[37] L.A.C. Benites, F. Benevenuti, A.B. De Oliveira, F.L. Kastensmidt, N. Added, V.A.
P. Aguiar, N.H. Medina, M.A. Guazzelli, Reliability calculation with respect to
functional failures induced by radiation in TMR arm cortex-M0 soft-Core
embedded into SRAM-based FPGA, IEEE Trans. Nucl. Sci. 66 (7) (2019)
1433–1440.

S. Kasap et al.

http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920395931
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920395931
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920395931
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921077586
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921077586
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921077586
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921395627
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921395627
http://www.tul.com.tw/ProductsPYNQ-Z2.html
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938137070
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938137070
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938137070
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290931127970
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290936146126
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290936146126
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938251868
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938251868
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938251868
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922396112
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922396112
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290923269825
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290923269825
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880

	Novel lockstep-based fault mitigation approach for SoCs with roll-back and roll-forward recovery
	1 Introduction
	2 Background
	2.1 Radiation effects on electronics
	2.2 Effects of soft errors in processors
	2.3 Fault-tolerance techniques
	2.4 Lockstep technique

	3 Proposed triple-core lockstep technique
	3.1 Architecture
	3.2 Methodology
	3.3 Interrupt implementation
	3.4 Consistency check and checkpoint implementations
	3.4.1 Consistency check operation
	3.4.2 Checkpoint operation

	3.5 Roll-back, roll-forward and soft reset implementations
	3.5.1 Roll-forward operation
	3.5.2 Roll-back operation
	3.5.3 Soft system reset operation

	4 Fault injection technique
	4.1 Architecture
	4.2 Methodology

	5 Implementation and experimental results
	5.1 Resource consumption analysis
	5.2 Timing performance analysis for matrix multiplication benchmarks
	5.3 Fault-injection performance analysis for matrix-multiplication benchmarks
	5.4 Fault-injection performance analysis for 256-bit AES encryption benchmarks

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

