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A B S T R A C T   

All-Programmable System-on-Chips (APSoCs) constitute a compelling option for employing applications in ra-
diation environments thanks to their high-performance computing and power efficiency merits. Despite these 
advantages, APSoCs are sensitive to radiation like any other electronic device. Processors embedded in APSoCs, 
therefore, have to be adequately hardened against ionizing-radiation to make them a viable choice of design for 
harsh environments. This paper proposes a novel lockstep-based approach to harden the dual-core ARM Cortex- 
A9 processor in the Xilinx Zynq-7000 APSoC against radiation-induced soft errors by coupling it with a Micro-
Blaze TMR subsystem in the programmable logic (PL) layer of the Zynq. The proposed technique uses the 
concepts of checkpointing along with roll-back and roll-forward mechanisms at the software level, i.e. software 
redundancy, as well as processor replication and checker circuits at the hardware level (i.e. hardware redun-
dancy). Results of fault injection experiments show that the proposed approach achieves high levels of protection 
against soft errors by mitigating around 98% of bit-flips injected into the register files of both ARM cores while 
keeping timing performance overhead as low as 25% if block and application sizes are adjusted appropriately. 
Furthermore, the incorporation of the roll-forward recovery operation in addition to the roll-back operation 
improves the Mean Workload between Failures (MWBF) of the system by up to ≈19% depending on the nature of 
the running application, since the application can proceed faster, in a scenario where a fault occurs, when treated 
with the roll-forward operation rather than roll-back operation. Thus, relatively more data can be processed 
before the next error occurs in the system.   

1. Introduction 

Cleaning up the legacy of nuclear waste is one of Europe's most 
critical and complicated environmental remediation projects, which is 
expected to cost as much as £220bn over the next 120 years [1]. Because 
of the extreme adverse effects of the ionizing radiation on biological 
tissues, it is perilous for humans to clean up radioactive waste inside a 
nuclear power plant, which is abundant in these areas especially after a 
nuclear accident. As a result, deploying robots are highly encouraged 
and desired in radiation environments such as nuclear power plants and 
radioactive waste disposal sites. 

Although human beings are spared from entering harsh environ-
ments when employing robots, this is not an easy task, since the 

electronic circuits in these robots are prone to radiation effects as well. 
Following a series of meltdowns at the Fukushima Daiichi nuclear power 
plant in Japan as a consequence of a tsunami strike [2], this has become 
even clearer as the robots dispatched to track radiation levels and 
expedite the clean-up process broke down very quickly, because of the 
radiation-induced damage to their circuits. Therefore, adverse effects of 
radiation on electronic circuits have to be substantially mitigated if ro-
bots are to be employed in nuclear environments; microprocessors 
should be particularly treated against radiation as they are responsible 
for the control and coordination of operations within the system. 

High-energy particles (e.g. alpha particles, heavy ions, neutrons) or 
electromagnetic waves (e.g. X-rays, gamma rays) striking the semi-
conductor substrate provoke faults which might lead to soft errors in 
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electronic circuits under radiation [3]. While these errors have a tran-
sient behaviour that does not permanently harm digital/analogue cir-
cuits, they have a significant impact on system reliability and reliability, 
particularly more as feature size of transistors scales down resulting in 
very densely integrated microchips [4]. Many mission-critical applica-
tions could have been implemented in All-Programmable Systems-on- 
Chips (APSoCs) which combine programmable logic (PL) layer (i.e. 
SRAM-based FPGA layer) with embedded processors in the processor 
subsystem (PS) layer. Such APSoCs enjoy the merits of higher perfor-
mance, lower energy consumption, and favourable time-to-market and 
cost [5]. Unfortunately, these highly-integrated circuits, which involve a 
set of homogeneous or heterogeneous processor cores, are very sus-
ceptible to transient faults that might even lead to total system failures. 

Soft errors affect processors by corrupting values stored in memory 
elements such as registers, cache, data and instruction memories, which 
may cause the processor to execute an application inaccurately, thus 
resulting in silent data corruptions (SDCs) or functional interrupts (FIs), 
such as hangs and crashes, in the system. In the PL side, soft errors can 
manipulate the SRAM memory storing the configuration bitstream along 
with user memories such as Flip-Flops (FFs) and Block RAMs (BRAMs), 
all of which might induce shifts in the device functionality and perfor-
mance. Therefore, the adoption of techniques to mitigate radiation- 
induced transient faults is the only viable way to leverage the benefits 
of APSoCs in radiation environments. In this regard, several fault- 
mitigation methods have been proposed in the literature. However, 
most of them protect the device from either SDCs or FIs; few methods are 
successful against both. 

To improve the reliability and availability of the dual-core ARM 
Cortex-A9 processor embedded in the Xilinx Zynq-7000 APSoC, we have 
adapted a fault mitigation technique, the triple-core lockstep technique 
(TCLS). The TCLS approach proposed in this work couples these two 
ARM cores in the PS with one MicroBlaze core implemented in the PL in 
order to replicate the execution of the same application in a lockstep 
manner, along with a checker module monitoring and checking the 
outputs of the ARM cores for any inconsistencies. The MicroBlaze core in 
the FPGA part is protected against soft errors using a Triple Modular 
Redundancy scheme. Furthermore, the proposed technique combines 
both checkpointing and roll-back/roll-forward operations at the soft-
ware level to provide dependability. Fault-free copies of processor core 
states are stored in safe memories during checkpoints, whereas roll-back 
and roll-forward operations constitute fault recovery mechanisms, 
which respectively restore a processor core to a previous safe state or to 
the current safe state of the other core which happens to be healthy [6]. 
The innovation in our research lies in the fact that, in a lockstep-based 
methodology, this is the first time a MicroBlaze core is coupled with 
hard-core ARM processors in order to support roll-forward recovery 
along with roll-back recovery. With the introduction of the roll-forward 
recovery, system performance has been improved in terms of Mean 
Workload between Failures (MWBF), as will be discussed in the results 
section of the paper. Furthermore, the approach can be conveniently 
extended to Xilinx Zynq UltraScale+ MPSoCs. 

Fault injection experiments, which emulate bit-flips in ARM register 
files in a non-intrusive manner, were performed to analyze the effi-
ciency, effectiveness and fault coverage of our proposed TCLS technique. 
Experiments indicate that the TCLS approach applied to the dual-core 
ARM Cortex-A9 processor embedded in Xilinx Zynq-7000 APSoC is 
capable of mitigating around 98% of the bit-flips injected while keeping 
the timing performance overhead as low as 25%, when certain condi-
tions are satisfied, under fault-free conditions. 

The paper is set out as follows. Section 2 presents the impact of ra-
diation on electronics, particularly on processors, as well as a summary 
of current fault mitigation strategies with a particular focus on the 
lockstep technique. Section 3 elaborates on the architecture and 
implementation methodology of the proposed TCLS approach, while 
Section 4 describes the fault injection mechanism employed during 
validation experiments for the approach. Implementation and 

experimental results are subsequently evaluated in Section 5. Finally, 
conclusions are drawn in Section 6 along with plans for future. 

2. Background 

This section motivates the need for protection against soft errors by 
addressing the effects of radiation on electronics in general and then 
discusses the effects of soft errors in processors. Furthermore, several 
significant fault-tolerance techniques are introduced as reported in the 
literature. The lockstep technique is then particularly discussed as it is 
one of the most promising techniques. 

2.1. Radiation effects on electronics 

Ionizing radiation can potentially harm electronics in three major 
ways. The first-way radiation exposure affects electronics is called Total 
Ionizing Dose (TID) [7], which relates to an electronic device's accu-
mulated, irreversible damage (i.e. hard error) that results in the degra-
dation of the device over the time. It happens when charge carriers are 
inserted, as radiation strikes, into the insulators of the device, where 
they are trapped and thereby change the electrical characteristics [8]. 
The second major group of harmful effects caused by radiation is 
commonly called Single-Event Effects (SEEs) [7]. These faults are most 
frequently temporary (i.e. soft error) and do not cause permanent harm 
like TID; however, they can provoke undesired changes in behaviour. 
Excess charge carriers, produced as silicon atoms get ionized under ra-
diation, are responsible for these transient effects. If a large amount of 
these charges accumulates in a particular region, an event called Single- 
Event Transient (SET) might arise where logical values of lines in that 
region are briefly disrupted till the dissipation of the excess charges. 
Nevertheless, if a storage unit latches the new value of a line, a longer- 
lasting effect on the system output, i.e. Single-Event Upset (SEU), will 
occur which can generally be resolved by restoring all values through a 
system reset. However, Single-Event Functional Interrupts (SEFIs), a 
type of SEU, cannot be dealt with a simple reset [9]. Displacement 
Damage (DD) [7] is the third and final major irradiation effect occurring 
when a high-speed particle hits and displaces silicon atoms from their 
locations. These movements cause defects in the silicon substrate; thus, 
the electrical features of the device are altered. 

2.2. Effects of soft errors in processors 

SEUs can readily affect the data-flow and control-flow of a processor, 
which is a significant concern for safety-critical applications. Upsets in 
the values stored in memory elements can lead to data-flow errors 
caused by the execution of incorrect operations or data manipulation. 
The execution of an incorrect operation occurs when a bit-flip corrupts 
the program code, leading to an incorrect instruction. On the other hand, 
if the bit-flip affects data used as an input by an operation, outputs of 
that operation would most probably be incorrect. In both types of data- 
flow errors, the final outputs of the application would be inaccurate, 
which is classified as SDC. 

When an SEU affects the control-flow, the processor may execute the 
program incorrectly, thus causing either an application crash or a pro-
cessor hang, which is classified as FIs. Upsets in the control-flow may 
lead to branch errors, such as erroneous creation or deletion of a branch 
and incorrect branch decision. The erroneous creation is due to a bit-flip 
that sets a non-branch instruction into a branch, which leads the pro-
gram flow to an incorrect address, whereas the erroneous deletion oc-
curs when the branch instruction is transformed into another 
instruction; thus, a due branch may not be taken. A bit-flip in a condi-
tional branch may also result in an incorrect decision regarding taking 
the branch or not. Furthermore, an SEU can modify the register holding 
the target address of a branch instruction, thus assigning an incorrect 
address to the program execution. Moreover, if the program counter 
(PC) is affected by a soft error, the next instruction to be executed 
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changes, leading the program flow to an incorrect address. 

2.3. Fault-tolerance techniques 

As the sophistication of embedded systems grows, their vulnerability 
to errors is adversely affected due to an increase in critical points of 
failure. The adoption of fault mitigation or fault tolerance techniques is 
therefore vital if APSoCs are to be used in radiation environments. Fault 
tolerance techniques that enhance embedded processor reliability can 
be categorised as hardware-, software- and hybrid-based techniques 
[10]. 

The hardware-based techniques, which mainly rely on spatial 
redundancy, provide two or more instances of a hardware component, 
such as processors, memories, buses or power supplies, for protection 
against soft errors. This class of techniques include Triple Modular 
Redundancy (TMR) [11], Duplication with Comparison (DWC) [7] and 
hardware monitors [12] which incorporate watchdog or checker mod-
ules to monitor the system and detect errors by verifying the control- 
flow related memory accesses of the target processor. These tech-
niques can protect the system from errors in the computation outputs, i. 
e. SDCs, as exemplified in [13]. 

Software-implemented hardware fault tolerance (SIHFT) approaches 
handle hardware malfunctions by merely shielding the software without 
any hardware alteration. These techniques rely on adding redundant 
software code for comparison to detect errors. However, they exhibit a 
high-performance overhead, which may not be viable for some real-time 
systems. This kind of techniques, such as ABFT [14], HETA [15] and S- 
SETA [16], detect control-flow faults leading to FIs, which manifest 
themselves as hangs or crashes, and then place the system into a fail-safe 
state. In general, both hardware- and software-based techniques are not 
capable of correcting errors, but rather detecting them, to avoid a failure 
which would have adverse effects on the entire mission. Furthermore, 
they protect the system either from SDCs or FIs, but not both. However, 
there are some exceptional SHIFT techniques, such as SWIFT-R [17] and 
S-SWIFT-R [18], which provide data-flow level protection supporting 
both the detection and recovery of SDCs as well as FIs; some faults in the 
data-flow can produce FIs and consequently can be avoided through 
data protection mechanisms like SWIFT-R. 

The hybrid techniques are the ones that use a SIHFT method com-
bined with a hardware intellectual property (IP), which performs con-
sistency checks in the processor, making them effective against both 
SDCs and FIs. For instance, the lockstep technique is a hybrid fault- 
tolerance technique based on software and hardware redundancy. It 
employs the concepts of checkpointing and recovery mechanisms (e.g. 
roll-back recovery, roll-forward recovery) at the software level, and 
processor replication and checker circuits at the hardware level, as 
explained in the next sections. Therefore, it is capable of both error 
detection and correction. 

2.4. Lockstep technique 

A standard lockstep technique works by simultaneously and sym-
metrically running the same programme on identical processors with 
identical code and data inputs. The status of the processors is, therefore, 
the same from clock to clock during regular operation. Consequently, 
they are assumed to carry out the same operations, in an error-free 
execution, thus allowing the monitoring of the processor's data, 
address and control buses. 

As mentioned before, within a lockstep based system, there is a 
checker module that tracks the processors and systematically examines 
their state checking for any discrepancies; verification points are inser-
ted into the application programme where the execution of the appli-
cation is locked to facilitate this process of state evaluation. If no 
discrepancy is identified among processor states, processors are deemed 
to be faultless, and a checkpoint operation is carried out; otherwise, the 
lockstep system recovers the processors to a healthy state through either 

a roll-back or a roll-forward mechanism. 
Checkpointing is an operation where processors’ error-free contexts 

are stored in secure memories which are protected against soft errors by 
using an Error-Correcting Code (ECC), a TMR scheme or any other 
appropriate method. Note that ECC can catch and fix single-bit errors 
and merely catch double-bit errors [19]. The context of a processor is 
identified as the data resources, e.g. data values in registers, caches and 
main memory, processed during its execution of a programme which are 
required for the system repair in case of a failure. Furthermore, roll-back 
is a recovery method which restores a fault-free copy of a processor's 
previous context from the secure memory for all the relevant processors. 
In contrast, the current context of a processor that happens to be healthy 
is loaded into a faulty processor, within the roll-forward recovery 
operation, from the associated secure memory. Processors are recovered 
to a safe state without errors as a result of the roll-back operation, and 
then restart the execution of their programme from that past stage, thus 
potentially wasting valuable run-time. As for the roll-forward recovery, 
again all processors are set to a safe, consistent state, but not to a pre-
vious state; therefore, there is no need for a re-execution, thus facili-
tating a lower performance overhead. 

The lockstep technique's most significant merit is its ability to detect 
and correct both SDCs and FIs, in contrast to many other fault tolerance 
techniques. Several researchers have developed and implemented their 
lockstep technique version, such as those in [20–25], to make a range of 
processors resistant to radiation-induced soft errors, extensively 
analyzed and compared in [26]. Two of these significant works are 
discussed next. 

Oliveira et al. introduced dual-core lockstep (DCLS) technique to 
counteract radiation-caused faults in ARM-A9 processors embedded in 
Zynq-7000 APSoC using roll-back recovery [24]. Their DCLS system was 
composed of a dual-core ARM processor, two BRAM memories, an 
external SDRAM memory along with a checker module. The proposed 
DCLS executed the same application program in both ARM cores 
concurrently, where the programme was partitioned into blocks with a 
verification point (VP) placed between each. When a VP is reached, 
DCLS will pause the execution, and the hardware module will compare 
the outputs of two ARM cores. In the case where no discrepancy is 
observed, the system will be deemed healthy, and the execution of the 
next block will be initiated. Otherwise, both cores will be recovered 
using the roll-back mechanism via processor interruption. 

The work in [25] presents a similar dual-core lockstep approach 
where software-based data error detection and recovery through 
redundant parallel threads has been combined with hardware-based 
control-flow error detection through an external module tracing both 
cores. The proposed technique provides a very high error coverage 
where only data-flow errors are corrected via a roll-back based recovery 
scheme. 

Our work has been developed to expand on the above works through 
the addition of a third processor core, thus evolving it into a triple-core 
lockstep approach with support for the roll-forward operation which 
proves to be very beneficial, as explained in the remainder of the paper. 

3. Proposed triple-core lockstep technique 

The proposed TCLS technique is implemented on the dual-core ARM 
processor along with a MicroBlaze processor in the Xilinx Zynq-7000 
APSoC [27] which incorporates a 28 nm programmable logic (PL) 
layer along with an embedded ARM processor on its processing sub-
system (PS) layer. In this paper, we employ a TUL PYNQ-Z2 design and 
development board [28], featuring a wire-bonded Zynq XC7Z020- 
1CLG400C chip, i.e. the device under test (DUT), for implementation 
purposes. 

The PL part of the DUT is based on an Artix-7 SRAM-based FPGA 
incorporating 630 KB fast Block RAM (BRAM), 13.3 K logic slices and 
220 digital signal processing (DSP) slices; this is the part hosting the 
MicroBlaze core. Furthermore, the PS is composed of a 32-bit dual-core 
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ARM Cortex-A9 processor, a 256 KB dual-port on-chip SRAM memory 
(OCM), dynamic memory controller with 8 DMA channels and four high- 
performance AXI3 slave ports along with several types of input/output 
(I/O) units. Each ARM core has independent 32 KB L1 data and in-
struction caches, while a 512 KB unified cache is shared between them. 
Moreover, the PYNQ-Z2 board incorporates an external 512 MB Double 
Date Rate 3 (DDR3) SDRAM with a 16-bit bus along with a 16 MB Quad- 
SPI flash memory. 

3.1. Architecture 

The proposed TCLS system architecture is composed of two ARM 
cores (CPU0 and CPU1), a MicroBlaze core (CPU2), a Checker-Injector 
module, three dual-port BRAM memory blocks, an external DDR SDRAM 
memory and other miscellaneous blocks (see Fig. 1). The MicroBlaze 
core has been implemented in the PL side of the Zynq APSoC and is 
triplicated at the module level using the TMR scheme, where each input/ 
output port has been connected to a voter which chooses an output bit 
based on the majority of input bits for each individual bit in the port. 
This scheme has been adopted to protect the MicroBlaze core from soft 
errors which may occasionally occur in the configuration memory 
associated with the core. User memories internal to the core are pro-
tected against bit-flips by this scheme, as well. Note that TMR-protected 
MicroBlaze core is acting as one single core. Furthermore, all MicroBlaze 
cores have been configured in such a way that they support all arith-
metical operations including floating-point operations. The ARM cores 
on the other hand are application-level Cortex processors. Therefore, 
there are no limitations in our system pertaining to arithmetical com-
putations. Note that all cache levels available for both ARM and 
MicroBlaze processors have been disabled within software to enhance 
the system reliability; it has been shown that caches increase the radi-
ation sensitivity of processor-based systems [29]. 

As illustrated in Fig. 1, each ARM and MicroBlaze core is attached to 
its respective dual-port BRAM memory, which is used to store the 
application data and processor context of the corresponding core. 
However, processor cores are sharing the external SDRAM memory, 
which stores program instructions for each core at distinct locations. 
These three BRAM memory blocks, whose size are adjusted based on the 
given application, are located in the PL part of the Zynq APSoC and are 
accessed through an individual AXI BRAM controller via an Advanced 
eXtensible Interface (AXI) Interconnect block by both ARM cores. 
However, the MicroBlaze core can only access its own allocated BRAM 
memory, i.e. BRAM Memory2, through a private AXI BRAM controller 
(not shown in Fig. 1). Furthermore, the MicroBlaze core is connected to 

the SDRAM memory via an AXI SmartConnect block. BRAM Memory0 
and BRAM Memory1 were protected against soft errors using the TMR 
scheme, whereas ECC circuitry has been added to both BRAM controllers 
associated with the BRAM Memory2 to achieve the same goal. 

As shown in Fig. 1, Checker-Injector module is connected to the sec-
ond ports of BRAM Memory0 and BRAM Memory1, and is assigned with 
two tasks: 1) to control the lockstep execution and verify the consistency 
of CPU0 and CPU1 at each step; 2) to inject faults into the system for 
testing purposes as will be further detailed in Section 4. This module is a 
custom IP designed in VHDL and implemented in the PL side of the Zynq 
APSoC; it is protected against soft errors using the TMR scheme as 
applied to the MicroBlaze core. It is noteworthy to mention that while 
the intermediate output data of both ARM cores are stored in their 
respective BRAM memories, so that Checker-Injector module can perform 
comparison operations across them, final data outputs of ARM cores are 
transferred to the SDRAM memory; thus, they can be examined to check 
whether they match up to the expected, golden, data outputs. Further-
more, the MicroBlaze core holds its intermediate output data in its 
corresponding BRAM memory as well, and its final outputs are also 
transferred to the SDRAM memory to be used as golden data outputs. 
Finally, all components in the PL side of our system are clocked at ≈91 
MHz, while the dual-core ARM processor in the PS is running at 650 
MHz. 

3.2. Methodology 

The given lockstep approach works by simultaneously running the 
same application software in all three cores, where the programme is 
partitioned into code execute blocks, i.e. portions of the original appli-
cation code coupled with redundant code required for realizing a veri-
fication point (VP) which incorporates consistency check, 
checkpointing, and recovery routines. As such, a VP is present between 
each code block and at the beginning of the programme code. It is worth 
noting that, depending on the application specifications, the number of 
code blocks in which the initial programme is partitioned can be 
customized. 

The functional block diagram for the proposed TCLS technique is 
given in Fig. 2. Furthermore, the execution flowchart for the processor 
cores applying the given lockstep technique is illustrated in Fig. 3. As 
soon as the program execution reaches a VP on an ARM core, the status 
of that particular core, which is a signature representing the actual CPU 
state, is written on its own BRAM memory, and then the execution on the 
core is locked as can be observed in Fig. 3. When both ARM cores are 
waiting locked at the same VP, the Checker-Injector module, also referred 
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to as ChkInj IP, generates an interrupt for each core, i.e. CPU0 and CPU1, 
to facilitate access to the registers of both ARM cores. Subsequently, first 
output results and then register files of CPU0 and CPU1 are checked and 
compared by the Checker-Injector module as denoted by the sign CKR in 
Fig. 2. If no discrepancy is observed between the outputs and register 
values of CPU0 and CPU1, the system is deemed to be in a safe state, and 
then a new interrupt is individually generated by the Checker-Injector 
module for CPU0 and CPU1 to launch a checkpoint operation and save 
the ARM cores’ context, which is further explained in the subsection 3.4. 

However, in such a case where discrepancies between the output 
results of ARM cores are detected, the outputs generated by the Micro-
Blaze core, i.e. CPU2, for the current VP are fetched from its corre-
sponding BRAM memory to be compared against the respective outputs 
of the two ARM cores. If the outputs of CPU2 match with the outputs of 
one of the ARM cores, i.e. CPU0 or CPU1, then the core with matching 
results would be deemed to be healthy and the other one to be faulty. In 
such a case, an interrupt will be generated by the Checker-Injector 
module to recover the faulty ARM core using the roll-forward mecha-
nism explained in the subsection 3.5. However, if output results of 
neither CPU0 nor CPU1 matches with these of CPU2, both ARM cores 
would be recovered using the roll-back mechanism (see subsection 3.5) 
following an interrupt generation by the Checker-Injector module. Note 
that in the case where output results of CPU0 and CPU1 match, but there 
is a discrepancy between their registers files which indicates that an 
output error is imminent, the roll-back operation is carried out, as well, 
for both cores to preclude any future errors. In such a scenario, trig-
gering roll-forward mechanism is not viable because the ARM cores and 
the MicroBlaze core have distinct programmer's models, that is, they 
have different register file structures making it unfeasible to perform 
register file comparisons to detect which ARM core is faulty. Therefore, 
fault mitigation with the roll-forward operation is not applicable in this 
case. 

At the end of the checkpoint or roll-back/roll-forward operations 
mentioned above, the Checker-Injector module writes a flag on the two 
BRAM memories associated with the ARM cores, i.e. CPU0 and CPU1, to 
unlock them, thus enabling their execution of the application till the 
next VP, where the same cycle will repeat as shown in Fig. 3. Note that 
although the MicroBlaze core, i.e. CPU2, operates synchronously with 
CPU0 and CPU1, no checkpoint or recovery operation is particularly 
performed for it, as it is assumed to be immune to soft errors thanks to its 
TMR protection, for the sake of improving overall system performance. 
Furthermore, the MicroBlaze cores do not actually constitute a signifi-
cant performance bottleneck in our system although it runs much slower 
than ARM cores. The reason is that under normal conditions when there 
are no faults detected, the pair of ARM Cortex-A9 cores and MicroBlaze 
core operate independently with no direct interference between them; 
thus, the MicroBlaze core do not slow down the ARM cores during the 
fault-free operation. It is only when a fault is detected in the system is the 
MicroBlaze core waited upon to synchronize with the ARM cores. Only 
in this case, a timing performance loss is incurred due to the MicroBlaze 

core for the benefit of saving the system from an SDC or a crash using 
one of the provided recovery methods. Nevertheless, our experiments 
show that the time overhead due to the MicroBlaze core is relatively 
small (less than 10%) compared to the execution time of a block within 

Init VP0 Block1 VP1 Block2 VP2

Init CKR Wait CKR Wait CKR

Init VP0 Block1 VP1 Block2 VP2

Init Block1 O/P Block2 O/P

CPU0

ChkInj
IP

CPU1

CPU2

BlockN VPN End

Wait

BlockN

BlockN

VPN

O/P

CKR End
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time

Fig. 2. Functional block diagram for the proposed TCLS technique (Init =
Initialization, CKR = Checker), O/P = Outputs). 
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Fig. 3. Flowchart for the processor cores applying the TCLS technique.  
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the process; this is mainly because when computationally useful oper-
ations are halted in ARM cores within the verification points, the 
MicroBlaze core keeps executing its instructions which helps it to keep in 
pace with the ARM cores operating with a larger clock frequency. 

3.3. Interrupt implementation 

As mentioned above, interrupt mechanism is frequently employed in 
the TCLS technique through the General Interrupt Controller (GIC) in 
Zynq SoC (see Fig. 1) to perform many operations, i.e. consistency 
check, checkpoint, roll-back and roll-forward operations. Before we 
delve into these operations, the way interrupts work in a processor 
system will be briefly explained next in this subsection. 

When a processor core processes an interrupt, the following steps are 
carried out in the sequence provided: I) the actual thread under execu-
tion is paused; II) the register file of the processor core, i.e. the context, is 
saved into the corresponding stack memory; III) the dedicated interrupt 
routine is executed to serve the given interrupt; IV) the saved context is 
restored by the processor core from the stack at the end of the interrupt 
routine mentioned in step III; V) the previous thread continues its 
execution on the processor core from the point it left off. It is noteworthy 
that during the execution of interrupt routines, both ARM cores are 
switched from the IRQ operation mode to the privileged System mode, 
which uses the same registers as the User mode. Since ARM adopts the 
scheme of Banked Registers [30], this is a vital step to facilitate access, 
within interrupt routines, to the same register contents as in the normal 
program execution. 

3.4. Consistency check and checkpoint implementations 

The Checker-Injector module is a special-purpose IP which is designed 
to snoop the operations of the two ARM cores by interrupting them and 
accessing their own BRAM memories. This module exhibits two modes 
of operation: In the first mode, it checks and compares the execution of 
CPU0 and CPU1, and takes one of the remedial actions if any inconsis-
tency is detected between the cores, as illustrated in Fig. 4, depending on 
the current value of the Recovery Counter (see Table 1); the second mode 
of operation is pertaining to the fault injection which will be discussed in 
Section 4. Note that it can be configured to operate in the first mode 
alone or in both modes at the same time. 

3.4.1. Consistency check operation 
As mentioned before, the data verification is required when proces-

sor cores reach a VP to ensure that they are in a correct state. By this 
token, the Checker-Injector module compares the ARM cores’ registers in 
its first mode of operation after verifying the consistency of their output 
results. If no mismatch is detected in either registers or outputs, the 
module initiates a checkpoint operation as discussed later in this sub-
section. Note that at the beginning of programme execution, the general- 
purpose registers at CPU0 and CPU1 are set to null values to start with a 
consistent state. 

The ARM cores are individually interrupted, to facilitate the con-
sistency check operation for the registers, during which the register files 
of both ARM cores are saved into their respective stack memories (see 
step II in subsection 3.3). Following this step, the interrupt routine 
customized for the checkpoint operation is individually launched on 
CPU0 and CPU1, at step III, which accesses the stack memory of the 
processor core it is executing on and duplicates the register values stored 
on the stack into a particular location within the BRAM memory asso-
ciated with the core. The Checker-Injector module then accesses these 
locations on BRAM memories assigned for CPU0 and CPU1 to make 
comparisons and detect any inconsistencies. On the other hand, com-
parisons for the output results of the processor cores are readily appli-
cable since results produced by an ARM core are always stored on its 
corresponding BRAM memory at known locations. 

The Checker-Injector module incorporates a watchdog timer to ensure 

that the application execution will not hang in one of the code blocks 
due to a fault occurring in either ARM cores. At the beginning of every 
code block, this timer is configured with a time amply suitable for the 
given code block. If both of the ARM cores, i.e. CPU0 and CPU1, do not 
reach to the same VP before the allocated time elapses, the Checker- 
Injector module would interpret this as a system inconsistency; therefore, 
it will initiate one of the available recovery mechanisms (see Fig. 4). 

3.4.2. Checkpoint operation 
When the consistency between CPU0 and CPU1 is confirmed, a 

checkpoint operation is initiated by the Checker-Injector module to save 
consistent states (or contexts) of the ARM processor cores through the 
utilization of the interrupt mechanism. In the following discussion, an 
ARM core's context would be assumed to contain general-purpose reg-
isters (i.e. R0-R12), a stack pointer (i.e. SP or R13), a link register (i.e. LR 
or R14) and a program counter (i.e. PC or R15). All these registers are 
located within the register file of the processor core. Note that appli-
cation data stored in BRAMs are not included in the checkpointing 
process as part of the processor context since these BRAM blocks have 
already been secured against soft errors through TMR or ECC tech-
niques. Furthermore, cache memories have been disabled for all cores. 

As mentioned above, the ARM cores are individually interrupted to 
facilitate the checkpoint operation in which register files of these cores 
are saved into the stack memories. Subsequently, the checkpoint-related 
interrupt routines triggered on CPU0 and CPU1 individually start 

Reset Recovery
counter

Read BRAM
Memories

CPU0 VS CPU1
Status Match? no

yes

CPU0 VS CPU1
Outputs Match?

CPU0 VS CPU1
Registers Match?
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Generate INT
for Recovery

no

no

Generate INT
for Checkpoint

Reset Recovery
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Increment
Recovery counter
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to BRAMS

Reset Watchdog
Timer

Watchdog Timer
Over? yes

no

Start

yes

Fig. 4. Process flowchart for the Checker-Injector module.  

Table 1 
Recovery method options.  

Recovery counter value Recovery method  

0 Roll-Forward or Roll-Back  
1 Roll-Back First  
2 Application Reset  
3 Soft System Reset  

S. Kasap et al.                                                                                                                                                                                                                                   



Microelectronics Reliability 124 (2021) 114297

7

accessing stack memories of the processor cores in order to copy the 
register values on stack memories into specific locations within 
respective BRAM memories where they are stored until the next 
checkpoint. The checkpoint operation is completed by the time pro-
cessor core returns from the interrupt routine at step V. 

It is worth noting that context is redundantly written into a second 
location within the relevant BRAM memory during the first checkpoint 
operation, which is preserved until the end of the application execution; 
the goal of this approach is to protect the system against soft errors 
occurring during the context storage. By this way, it is possible to 
recover the system to the beginning of the first code block. Furthermore, 
a partial checkpoint is performed by default at the very start of the 
application to facilitate a software reset, i.e. a return to the beginning of 
the application, when necessary. The next subsection will explain those 
two approaches. 

3.5. Roll-back, roll-forward and soft reset implementations 

If a mismatch is detected in either registers or outputs by the Checker- 
Injector module during the consistency check operation, one of the 
available recovery options will be triggered depending on the current 
value of the recovery counter incorporated in the Checker-Injector 
module, as shown in Table 1. The recovery counter is incremented after 
each time a recovery operation is triggered and is reset to zero after each 
time a checkpoint operation is launched, as illustrated in Fig. 4. The next 
method of recovery from Table 1 will be thus selected and applied in the 
given order if an applied recovery method does not help to reach a safe 
and consistent state between ARM cores (at which point a new check-
pointing takes place). As a note from the table, either a roll-forward 
operation or a roll-back operation is performed when the recovery 
counter has the zero value, depending on the nature of the mismatch 
detected during the consistency check. For other values of the recovery 
counter, there are different methods, which are based on the roll-back 
recovery, to be deployed in the increasing order of severity for persis-
tent errors (see Table 1). These recovery methods will be explained in 
the following subsections. 

3.5.1. Roll-forward operation 
If a mismatch is detected between the outputs of CPU0 and CPU1, but 

the outputs of CPU2 match the outputs of either ARM core, i.e. CPU0 or 
CPU1, the core with matching results is considered to be healthy, while 
the other one is deemed to be faulty. In this case, the roll-forward 
mechanism is initiated by the Checker-Injector module using the inter-
rupt mechanism to recover the faulty ARM core. 

Within the roll-forward operation, the ARM cores’ contexts are 
individually accessed by utilizing the interrupt mechanism, as is the case 
for the checkpoint operation. During the dedicated interrupt routine for 
the roll-forward operation, stack memory locations of the faulty ARM 
core, i.e. either CPU0 or CPU1, storing the relevant register file are 
overwritten with the corresponding register values, i.e. context, of the 
healthy ARM core via a transfer from the specific locations of the BRAM 
memory associated with the healthy core. However, some modifications 
are required on these register values before loading them into the faulty 
core, since the ARM cores are operating on different program and data 
memory locations, although they are executing the same application 
program with the same input data. Therefore, differences between reg-
ister values of the ARM cores should be pre-evaluated at run-time, 
especially for the special purpose registers (i.e. SP, LR, PC), for each 
individual application before the actual execution. 

These evaluated differences should be taken into account while 
transferring context from one core to another in order to assure a healthy 
roll-forward operation. When the faulty ARM core restores the trans-
ferred context from its stack memory into its registers at step IV of the 
interrupt mechanism (see subsection 3.3), it would be recovered to the 
same, safe state as the healthy processor. Thus, there would be no need 
to return to a previous point and re-execute any past code block, which is 

illustrated in Fig. 5 where the faulty CPU1 core is recovered to the state 
of the healthy CPU0 core after a mismatch detection in VP7. Conse-
quently, in Fig. 5, both cores proceed with their execution with Block8 
with no re-execution of past code execute blocks. Note that roll-forward 
operation is only applied on the faulty core, while the healthy core 
simply waits. 

3.5.2. Roll-back operation 
If the aforementioned roll-forward operation is not applicable, 

because output results of neither CPU0 nor CPU1 matches with those of 
CPU2 or because their output results match, but there is a discrepancy 
between their register values, both ARM cores would be recovered using 
the roll-back operation launched by the Checker-Injector module through 
individual interruptions of both cores. A roll-back operation is deployed 
to recover the system to a previous safe state (or context) saved into the 
relevant BRAM memory during one of the checkpoints. 

As in the case of the roll-forward operation, the interrupt mechanism 
is employed to access ARM cores’ contexts individually. While the 
interrupt routine for the roll-back operation is executed, specific stack 
memory locations of CPU0 and CPU1 allocated to store register files are 
respectively overwritten with the corresponding register values, i.e. 
context, saved at certain locations within relevant BRAM memories. 
When an ARM core restores its context from the relevant stack memory 
at step IV of the interrupt mechanism, it would be recovered to a safe 
and healthy state. In this case, the application execution in both ARM 
cores returns to a previous verification point, and the relevant code 
execute block is re-executed, as illustrated in Fig. 6, where a mismatch is 
detected during VP7 that causes a roll-back operation, therefore Block7 
is repeated in both ARM cores subsequently. 

Under normal circumstances, the roll-back operation will recover the 
system to the immediately preceding checkpoint, e.g. VP6 in Fig. 6. 
However, for some reason, that checkpoint may not constitute a safe 
state; therefore, the recovery would be unsuccessful. In such a case, the 
recovery will be made to the first checkpoint as discussed towards the 
end of subsection 3.4. This operation is referred to as roll-back first re-
covery, and is illustrated in Fig. 7 where the execution re-starts at Block1 
after VP7. If this does not work either, the checkpoint performed at the 
very beginning of the application will be the next destination for the 
recovery operation; this process amounts to an application reset where 
the application will be executed all the way from the start, which is 
clearly depicted in Fig. 8. 

3.5.3. Soft system reset operation 
If neither roll-forward nor roll-back operations have been successful 

in recovering the system due to a hang or crash in either ARM cores, the 
only remaining solution is to apply a system-wide soft reset via the 
configuration of the individual watchdog timers of ARM cores (i.e. 
AWDT0 and AWDT1) [27], which is located within the processing sub-
system (see Fig. 1), to fire after a short time. This configuration is ex-
pected to be carried out by the surviving ARM core. When either AWDT0 
or AWDT1 fires at the set time, the ARM cores would be re-booted with 
the same application program and the programmable logic, i.e. FPGA, 

Block6 Wait CKP Block7 Wait Block8 VP8

Wait CMP Wait Wait CMP Wait Wait CKR

Block6 Wait CKP Block7 Wait Block8 VP8RF

time

VP6 VP7

CPU0

ChkInj
IP
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Fig. 5. Execution flow for the roll-forward operation (CMP = Compare, CKP =
Checkpoint, CKR = Checker). 
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part of the system would be reconfigured with the same bitstream; thus, 
the entire system will have a fresh start. Note that if both of the ARM 
cores are suffering a severe issue, then soft reset would not work as 
expected; the only option, in this case, would be power-cycling the 
entire system, i.e. a hard reset. 

4. Fault injection technique 

In order to evaluate the efficiency of the soft error mitigation pro-
vided by our TCLS approach, we have adopted a fault injection tech-
nique which emulates hardware faults by injecting bit-flips at the 
registers of the ARM cores within the processing subsystem of the Zynq 
APSoC. As the ARM cores under consideration constitute a hard-core 
Cortex-A9 processor, only a set of registers within it can be accessed 
for carry out fault injections. These target registers are the general- 
purpose (i.e. R0-R12) and special-purpose registers (i.e. SP, LR, PC) 
within the register file of an ARM core. Since these registers are widely 
used by any application, bit-flip injections to these register would likely 
cause an output error. The fault injection strategy adopted in our work is 
the same one as in [31] and employs the interrupt mechanism, which is 
detailed in subsection 3.3, in order to be as less intrusive as possible 
[32], [33]. The system architecture and methodology of this fault in-
jection approach will be elaborated on next in this section. 

4.1. Architecture 

Fault injection experiments are taking place in the same environment 
as the one presented in Fig. 1 with an addition of a host computer 
connected through the UART peripheral core within the PS of the Zynq 
APSoC. The setup used to perform and analyze fault injection experi-
ments is composed of the following two units:  

• The system logger module: is a Python script running a host computer 
whose duty is to receive and store the outcomes of the fault injection 
experiments as transmitted from the Zynq APSoC through a UART- 
based serial communication. 

• The Checker-Injector module: is the same module discussed in sub-
section 3.4, but this time it is operated in its second mode of oper-
ation as well as the first mode in order to perform the fault injection 
procedure following the methodology discussed in the next 
subsection. 

4.2. Methodology 

The methodology for the fault injection procedure mentioned above 
is composed of two main steps as described next. At the beginning of the 
application execution, the ARM core CPU0 configures the Checker- 
Injector module with a random injection time, a random code block 
number, and a random target location containing the number (0 or 1) of 
the ARM core under consideration and the number (from 0 to 15) of the 
register into which the fault injection will take place along with the 
number (from 0 to 31) of the specific bit to be flipped within that reg-
ister. It is noteworthy to mention that the randomly evaluated injection 
time is relative to the execution time of the randomly selected code 
block; thus, a bit-flip can be injected at any time during that code block. 
Furthermore, the ability to select the code block results in a better- 
controlled fault injection process. 

When the Checker-Injector module is launched after its configuration, 
it waits until the selected code block is reached, and then starts counting 
the clock cycles with a timer until it hits the specified injection time. 
When the time is up, the Checker-Injector module individually interrupts 
both ARM cores. However, at the chosen ARM core only, the interrupt 
routine customized for the fault injection applies an XOR mask to the 
target register, thus flipping the specified bit in the register. 

During our experiments, we have classified errors occurring due to 
the injected faults based on a scheme depicted in Table 2. In this scheme, 
the injected fault is labeled as UNACE (unnecessary for architecturally 
correct execution) when it does not affect either the register values or 
the output values of the ARM processor system. However, if the final 
output results generated by at least one of the ARM cores mismatch the 
golden results when compared at the end of the application, it is 
assumed that SDC (silent data corruption) has occurred during appli-
cation execution. Furthermore, the case where an injected bit-flip causes 
a hang or a crash in the system is classified as Hang. 

On the other hand, Mitigated Faults w/ RF and Mitigated Faults w/ RB 
occur when a mismatch in output results or register files of the ARM 
cores is detected and corrected by a roll-forward operation or a roll-back 
operation, respectively. Furthermore, Mitigated Faults w/ RBF represent 
faults which have been corrected by a roll-back to the first checkpoint, 
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Block6 Wait CKP Block7 Wait Block7 VP7RB

time

VP6 VP7

CPU0
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Fig. 6. Execution flow for the roll-back operation (CMP = Compare, CKP =
Checkpoint, RB = Roll-back, CKR = Checker). 

Block6 Wait CKP Block7 Wait Block1 VP1

Wait CMP Wait Wait CMP Wait Wait CKR

Block6 Wait CKP Block7 Wait Block1 VP1RB First

time

VP6 VP7

CPU0

ChkInj
IP

CPU1

RB First

Fig. 7. Execution flow for roll-back to the first checkpoint (CMP = Compare, 
CKP = Checkpoint, RB First = Roll-back First, CKR = Checker). 
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Fig. 8. Execution flow for the application reset operation (CMP = Compare, 
CKP = Checkpoint, App Reset = Application Reset, CKR = Checker). 

Table 2 
Error classification for fault injection experiments.  

Classification Description 

UNACE Ineffective faults 
SDC Output result errors 
Hang System hangs/crashes 

Mitigated Faults w/ RF Correction by roll-forward operation 
Mitigated Faults w/ RB Correction by roll-back operation 
Mitigated Faults w/ RBF Correction by roll-back first operation 
Mitigated Hangs/Crashes Recovery by soft system reset  
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including the cases where an application reset have been applied. 
Moreover, Mitigated Hangs represent cases where a system hang or crash 
is detected and recovered by a soft system reset within the TCLS tech-
nique. Note that no bit-flip injection experiments were performed in the 
PL configuration memory of the Zynq chip since the focus of our work 
has been to verify the behaviour of the hard-core ARM Cortex-A9 pro-
cessor as faults are injected into its registers. 

5. Implementation and experimental results 

This section presents the analysis of the implementation results, and 
describes the outcomes of the timing and fault injection performance 
experiments performed on TCLS-based design, referred to as TCLS 
design, and on other design setups. We have selected two benchmark 
applications to evaluate the timing and fault-injection performances of 
the proposed TCLS approach. The first benchmark application performs 
matrix multiplications, which are compute intensive operations widely 
used in real-life applications [34], while the second benchmark appli-
cation encrypts electronic data using 256-bit Advanced Encryption 
Standard (AES) Algorithm [35] which is a memory-bounded algorithm 
that takes plain data in groups of 256 bits and converts them into 
ciphered data using keys of 256 bits. 

Within each matrix-multiplication benchmark application, several 
matrix multiplication operations are performed on different input 
matrices made up of 32-bit signed data, where each full matrix multi-
plication operation corresponds to one code block, as shown in Fig. 3, 
surrounded by VPs. Within our experiments, we have considered 
benchmark applications operating with different matrix sizes (i.e. 
20×20, 30×30, 40×40, 50×50, 60×60) and a different number of full 
matrix multiplication operations (i.e. 3, 6 and 12) to analyze how the 
block size and the number of block partitions affects the timing and soft- 
error recovery capacity of the proposed approach. On the other hand, 
the 256-bit AES benchmark application encrypts 32 integers in each 
block partition for a total of 3200 integer data over 10 blocks. Note that 
all benchmark applications are running in a bare-metal environment. 

To compare and validate the efficiency of the TCLS approach, three 
other design versions have been set up in addition to TCLS design, 
namely Unhardened design, Unprotected design and Dual-Core Lockstep 
(DCLS) design (DCLS design). The Unhardened design version executes its 
applications only on CPU0 where BRAM Memory0 is used to store rele-
vant application data. Therefore, it has no protection against soft errors 
other than TMR protection enabled on its BRAM memory. Furthermore, 
the Unprotected design version is equivalent to TCLS design with all pro-
tection mechanisms disabled, whereas the DCLS design version is on par 
with the design presented in [24], which does not support the feature of 
roll-forward operation as the MicroBlaze core has been removed. Note 
that Unprotected design is employed during fault injection experiments 
rather than Unhardened design because it still has reporting features 
enabled for the errors detected during verification points. 

5.1. Resource consumption analysis 

Tables 3 and 4 present resource consumption in terms of the number 
of LUTs, registers and slices, along with DSP block, Block RAM (BRAM) 
and ARM core utilization counts, for Unhardened design and TCLS design, 

respectively. Note that utilization counts of BRAM and controller pairs 
are listed under the major module (i.e. TMR ChkInj IP or TMR Micro-
Blaze) they are associated with. 

As shown in the given tables, TCLS design requires considerably more 
resources compared to Unhardened design mainly because of the tripli-
cated MicroBlaze core involved that is configured to be an application 
processor with a Memory Management Unit (MMU) where all types of 
exceptions and arithmetic operations are supported. The benefit, how-
ever, is that it supports running applications with high run-time per-
formance requirements under any bare-metal or operating system 
environment. Nonetheless, if a typical microcontroller configuration is 
chosen for the MicroBlaze cores which does not include a MMU and 
supports minimal types of exceptions, significantly less resource usage 
can be achieved (see Table 5) while still preserving the same perfor-
mance as its arithmetical unit is not compromised. The only caveat with 
the typical MicroBlaze configuration is that it does not support any 
traditional operating system. 

Under the application processor settings, the TMR MicroBlaze 
module consumes over 22 K and 18 K slice LUTs and registers, respec-
tively, along with 23 BRAMs and 18 DSP blocks. However, when 
MicroBlaze cores are typically configured as mentioned, LUT and reg-
ister consumption of the TMR MicroBlaze module considerably drops to 
17 K and 13 K, respectively, with a slight reduction in the count of 
BRAMs and no change in the consumption of DSP blocks. For both cases, 
TMR ChkInj IP (i.e. TMR Checker-Injector module) uses much fewer slice 
resources than TMR MicroBlaze; however, it is the module which con-
sumes the highest count of BRAMs because BRAM memories employed 
by TMR ChkInj IP are protected against soft errors through the appli-
cation of the TMR technique, as well. Finally, the resource overhead of 
TCLS design is 100% in terms of the ARM core utilization in any case. 
Note that the resource utilization of some auxiliary modules is not 
individually listed in Tables 4 and 5, but rather included in the total 
count column. 

5.2. Timing performance analysis for matrix multiplication benchmarks 

Table 7 reports timing figures in milliseconds (ms) as required by 
Unhardened design and TCLS design to execute matrix multiplication 
benchmarks mentioned above, under a fault-free scenario, for five 
different matrix sizes and three different application sizes in terms of the 
number of block partitions. Table 7 also presents the percentage per-
formance overhead of TCLS design for each case with respect to Unhar-
dened design. Note that for TCLS design, compiler optimization level O3 

Table 3 
Resource consumption for unhardened design implementation  

Resource Type Total Utilization Rate 

ARM Cores  1  50% 
Slice LUTs  1218  2.3% 

Slice Registers  1165  1.1% 
Slices  564  4.3% 

Block RAMs  48  34.3% 
DSP Blocks  0  0.0%  

Table 4 
Resource consumption for TCLS design implementation (Application Processor 
Configuration).  

Resource Type TMR ChkInj IP TMR MicroBlaze Total Utilization Rate 

ARM Cores  –  –  2  100% 
Slice LUTs  4491  22,132  28,683  53.9% 

Slice Registers  2648  18,341  23,286  21.9% 
Slices  1615  6950  8775  66.0% 

Block RAMs  96  23  119  85.0% 
DSP Blocks  0  18  18  8.2%  

Table 5 
Resource consumption for TCLS design implementation (Typical Processor 
Configuration).  

Resource Type TMR ChkInj IP TMR MicroBlaze Total Utilization Rate 

ARM Cores  –  –  2  100% 
Slice LUTs  4500  17,160  23,730  44.9% 

Slice Registers  2649  13,474  18,420  17.3% 
Slices  1584  5504  7516  56.5% 

Block RAMs  96  20  116  82.9% 
DSP Blocks  0  18  18  8.2%  
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has been employed for the subroutines of the benchmark programs 
evaluating matrix multiplication operations in order to boost the per-
formance; level O0 has been used on the other hand for the remaining 
parts of the benchmarks to disable any optimization in the source code 
which has potential to corrupt the lockstep-based execution of TCLS 
design. However, benchmark programs were entirely compiled with 
level O3 for Unhardened design to facilitate a realistic comparison. 

Clearly, timing performance overheads are considerably higher 
when the matrix size (i.e. block size) is very small, for instance, over-
heads reach up to 96.4%, 122.9% and 155.9% for the applications sizes 
of 12, 6 and 3 blocks, respectively, when the matrix size of 20×20 is 
chosen. However, as the block size is increased, time overheads tend to 
fall significantly, as low as to 25.7% at the matrix size of 60×60 for the 
case of 12 block partitions. This point leads us to the conclusion that 
timing efficiency in TCLS design is achieved when the execution time of 
the useful computation (e.g. matrix multiplication) has a higher fraction 
over the total block execution time relative to redundant operations (i.e. 
consistency check and checkpoint operations) inside a verification 
point. Table 6 supports this conclusion by presenting execution times of 
a single block & VP case, for varying matrix sizes, along with percentage 
ratios of VP over block execution times. It is clear that as the matrix size 
(i.e. block size) increases, the VP ratio drops to 12.1% as opposed to 
62.6% for the smallest block size. 

Another conclusion can be drawn from Table 7; as more code execute 
blocks are employed within an application, that is to say, as the appli-
cation size grows, timing performance overheads of TCLS design become 
more favourable for the given matrix size. Finally, although time over-
heads associated with TCLS design may not suit some hard real-time 
systems, these overheads would be tolerable for many systems 
requiring high reliability and dependability under harsh environments 
once block and application sizes are appropriately adjusted through trial 
and error based on the nature of the given application program. 

5.3. Fault-injection performance analysis for matrix-multiplication 
benchmarks 

An intensive fault injection run was carried out in Xilinx Zynq-7000 
APSoC mounted on the PYNQ-Z2 board for three design setups in order 
to evaluate and validate the soft error resiliency of the proposed TCLS 
approach via the matrix-multiplication benchmark which is a compute- 
intensive application. Tables 8, 9 and 10 present the fault injection re-
sults for Unprotected design, DCLS design and TCLS design, respectively, 
with error margins (EM) and confidence intervals (CI) for the 95th 
percentile, where over 3000 runs of 50×50 matrix-multiplication 
benchmarks were performed for each design with the application size 
of 12 blocks. Note that one bit-flip was injected per application run 
employing the mechanism explained in Section 4. 

The given tables, along with the bar chart provided in Fig. 9 to aid 
visualization, demonstrate that rates for SDCs and Hangs are quite high, 
i.e. 10.3% and 30.9%, respectively, for Unprotected design, while DCLS 
design and TCLS design have been able to significantly lower the rates of 
SDCs and Hangs down to as low as 0.1% and 0.9%, respectively, for a 
compute-intensive application, due to their possession of several error 
protection mechanisms (see Section 3). Although DCLS design and TCLS 
design mitigate hangs & crashes almost at the same rate by a soft system 
reset, the total application rate of roll-back and roll-back first operations 
is not same for these two designs, which is 52.0% for DCLS design and 

44.7% for TCLS design. This drop of 7.3% is due to the provision of roll- 
forward feature in TCLS design, which is very beneficial for considerably 
reducing the overall execution time of the application under exposure to 
fault injections. The rationale behind this reduction is that the re- 
execution of even one block partition, which is mandated by roll-back 
based recovery operations, can waste many milliseconds depending on 
the block size as proven in Table 6. This drop in the execution time under 
faulty conditions will result in a higher MWBF which is defined to be the 
amount of data precisely processed before a failure happens [36]; this is 
because more data can be processed before a fatal error when a 

Table 6 
Single block and VP computation times for TCLS design.  

Matrix Size Block Time (ms) VP Time (ms) VP Ratio 

60×60  2.87  0.35  12.1% 
40×40  1.34  0.21  15.6% 
20×20  0.48  0.19  39.3% 
10×10  0.19  0.12  62.6%  

Table 7 
Timing Performance comparison of the TCLS design with respect to Unhardened 
design.  

Application 
Size (# Blocks) 

Matrix 
Size 

Unhardened 
Design Execution 
Time (ms) 

TCLS Design 
Execution 
Time (ms) 

TCLS 
Design 
Overhead  

12 

60×60  32.62  41.01  25.7% 
50×50  22.64  30.21  33.4% 
40×40  14.54  19.70  35.5% 
30×30  8.20  12.91  57.5% 
20×20  3.70  7.27  96.4%  

6 

60×60  18.54  23.81  28.4% 
50×50  12.83  17.59  37.1% 
40×40  8.27  11.57  39.8% 
30×30  4.66  7.75  66.3% 
20×20  2.10  4.69  122.9%  

3 

60×60  11.32  15.30  35.2% 
50×50  7.85  11.28  43.7% 
40×40  5.05  7.65  51.4% 
30×30  2.85  5.17  81.4% 
20×20  1.27  3.25  155.9%  

Table 8 
Fault injection results for 50×50 matrix multiplication with no protection 
enabled (Unprotected design).   

Count Rate EM 95% CI 

UNACE  2183  58.8%  1.58% 57.2% - 60.4% 
SDC  384  10.3%  0.98% 9.4% - 11.3% 
Hang  1145  30.9%  1.49% 29.4% - 32.3% 
Total  3712     

Table 9 
Fault injection results for 50×50 matrix multiplication with no roll-forward 
correction enabled (DCLS design).   

Count Rate EM 95% CI 

UNACE  816  26.1%  1.54% 24.5% - 27.6% 
SDC  3  0.1%  0.10% 0.0% - 0.2% 
Hang  27  0.9%  0.32% 0.5% - 1.2% 

Roll-Back  1613  51.5%  1.75% 49.8% - 53.3% 
Roll-Back First  16  0.5%  0.25% 0.3% - 0.8% 

Soft System Reset  657  21.0%  1.43% 19.6% - 22.4% 
Total  3132     

Table 10 
Fault injection results for 50×50 matrix multiplication with full protection 
enabled (TCLS design).   

Count Rate EM 95% CI 

UNACE  811  26.7%  1.57% 25.2% - 28.3% 
SDC  3  0.1%  0.10% 0.0% - 0.2% 
Hang  28  0.9%  0.34% 0.6% - 1.3% 

Roll-Forward  194  6.4%  0.87% 5.5% - 7.3% 
Roll-Back  1303  43.0%  1.76% 41.2% - 44.7% 

Roll-Back First  50  1.7%  0.45% 1.2% - 2.1% 
Soft System Reset  645  21.3%  1.46% 20.0% - 22.7% 

Total  3034     
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recoverable error is treated faster with the roll-forward operation rather 
than an operation based on roll-back recovery. 

The TCLS design version exhibits almost the same fault injection 
performance when executing matrix multiplication applications for 
different matrix sizes as proven by stacked bar charts in Fig. 10. Notice 
from the given tables and charts that SDCs occur very seldom, i.e. 0.1% 
of the time, for TCLS design, but they do still happen because faults 
injected into the special-purpose registers falsely directs the application 
execution to the end. In such a misdirection case, since all protection 
mechanisms are bypassed, and output results are not entirely computed, 
SDCs are most possibly detected when comparisons with the golden 
output data are performed at the end. Furthermore, some hangs and 
crashes cannot be recovered by TCLS design, albeit infrequently. Such 
Hangs occur when a bit-flip injected into critical bits of the special- 
purpose registers cause severe data or prefetch aborts which cannot be 
recovered even when a soft system reset is applied. 

The effect of bit-flips on individual registers has also been analyzed 
in this work, and reported in the form of stacked bar charts shown in 
Figs. 11 and 12 for Unprotected design and TCLS design, respectively, 
where same benchmark application as in Fig. 9 was harnessed for the 
sake of consistency. All general-purpose and special-purpose registers (i. 
e. SP, LR and PC) have been included in the analysis where it has been 
considered that R11 is used as Frame Pointer (FP) during execution to 
control stack access mechanism along with SP; thus, R11 is treated 
separately from other general-purpose registers which are encoded as 

Fig. 9. Comparison of fault injection experiment results for designs with different protection schemes – 50×50 matrix multiplication application.  

Fig. 10. Comparison of fault injection experiment results for different size 
matrix multiplication applications – fully protected design (TCLS design). 

Fig. 11. Fault injection experiment results for different registers – design with 
no protection (Unprotected design), 50×50 matrix multiplication. 

Fig. 12. Fault injection experiment results for different registers – fully pro-
tected design (TCLS design), 50×50 matrix multiplication. 
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R0-R10+R12 in the figures. As observed, 9.2% and 0.3% of bit-flips 
result in SDCs and Hangs, respectively, for general-purpose registers in 
Unprotected design, whereas both of these rates are effectively annulled 
in the TCLS design primarily via roll-back and roll-forward operations. 
Furthermore, fault injections into SP do not cause errors for both designs 
because SP is updated by FP on return from a subroutine. Therefore, bit- 
flips in FP have serious effects in Unprotected design, that is to say, Hangs 
occur over 91% of the time when FP is affected by fault injections. 
However, these hangs or crashes are significantly reduced in TCLS design 
with the application of soft system resets and roll-back operations. 
Finally, bit-flips in LR and PC cause high rates of SDC (up to 26.3%) and 
Hang (up to 88.2%) in Unprotected design as anticipated. The total rate of 
these errors are lowered to as small as 1.4% in TCLS design, which is 
achieved overwhelmingly by soft system resets, i.e. over 60% of the 
time. 

If we compare the proposed approach with a similar work in [24], 
where two hard-core ARM Cortex-A9 processors are used without a 
TMRed MicroBlaze processor to support the roll-forward recovery 
operation, a decrease in the process disruptions are observed; for a 
similar matrix-multiplication application, hangs or SDCs occur at the 
rate of 2.59% in [24] whereas these incidents are observed at a fraction 
of that rate, i.e. at 1% of time (0.9% due to hangs and 0.1% due to SDCs), 
within our protection scheme. Furthermore, we provide a premise for a 
roll-forward recovery at the rate of 6.4% for the same matrix- 
multiplication experiments, which reduces the overall execution time 
compared to an approach based merely on roll-back recovery as in [24] 
for the reasons explained above. 

5.4. Fault-injection performance analysis for 256-bit AES encryption 
benchmarks 

Another intensive fault injection run was carried out in Xilinx Zynq- 
7000 APSoC for two design setups in order to evaluate and validate the 
soft error resiliency of the proposed TCLS approach, this time, via a 
memory-bounded application, i.e. the aforementioned 256-bit AES 
encryption benchmark. Tables 11 and 12 present the fault injection re-
sults for Unprotected design and TCLS design, respectively, with error 
margins (EM) and confidence intervals (CI) for the 95th percentile, 
where over 3000 runs of 256-bit AES encryption of plain data were 
performed for each design with the application size of 10 blocks. Again, 
one bit-flip was injected per application run. 

A bar chart is also provided in Fig. 13 based on the given tables which 
proves that TCLS design has been successful in reducing the rates of SDCs 
and Hangs down to 0.7% and 1.2%, respectively, for a memory-bounded 
application, from the corresponding rates of 20.4% and 31.1% for Un-
protected design. However, compared to the fault-injection experiments 
conducted for the compute-intensive application in Section 5.3, the rate 
at which a roll-forward recovery operation are called to mitigate soft 
errors detected in the system has risen from 6.4% to 18.9% for TCLS 
design. This increase in the roll-forward recovery rate directly translates 
into a system performance increase at a similar rate for the given 
application in terms of MWBF, compared to the case where no roll- 
forward recovery is supported. 

Actually, all memory-bounded applications will enjoy a better 
MWBF thanks to the proposed approach because as data memories are 
frequently accessed by the application under faulty conditions, the 

Checker-Injector module would more often detect mismatches across the 
intermediate output data of ARM cores, i.e. CPU0 and CPU1, stored 
within BRAM Memory0 and BRAM Memory1 memories (see Fig. 1). 
Consequently, more roll-forward recovery operations are triggered than 
roll-back recovery operations when faults are occurring due to radiation, 
which significantly improves the system MWBF for the reasons 
explained in Section 5.3. 

As a last note, an alternative approach to employing ARM Cortex 
cores in radiation environments is to utilize TMR-based protection 
schemes in the FPGA fabric which seems to present better reliability 
than our approach to a certain extent. The work in [37] presents good 
estimations of functional failures when different versions of TMR are 
used to implement Cortex-M0 soft-core processors on Xilinx 7-series 
FPGA; it is shown that TMR can mask upsets on the FPGA configura-
tion memory while incurring a hardware footprint 6.7 times larger than 
the unhardened version. However, the accumulation of bit-flips in the 
configuration memory can still lead to faults on multiple modules and 
overcome the TMR masking capability over the time. Even a distributed 
fine-grain TMR implementation reinforced with configuration memory 
scrubbing provides 100% of reliability till the accumulation of merely 
five faults; further accumulation of bit-flips in the configuration memory 
will overcome the TMR masking capability, thus the reliability will drop 
considerably. These results indicate that TMRed versions of ARM Cortex 
soft-cores in the FPGA fabric cannot sustain 100% reliability too long 
while incurring an area overhead of 6.7× even for the simplest and 
tiniest ARM Cortex core. Clearly, application-grade ARM Cortex pro-
cessors which are widely used in radiation environments would not even 
fit into the FPGA fabric when its hardware is triplicated in a course-grain 
fashion under a TMR-based protection scheme. 

Thus, we can assert that our approach which combines hard-core 
ARM Cortex-A9 processor with TMRed MicroBlaze processor in the 
FPGA fabric presents an optimal solution against radiation-induced soft 
errors where hard-core ARM processor is not affected by the bit-flips 
occurring in the FPGA configuration memory, while TMRed Micro-
Blaze processor enables the roll-forward based recovery which improves 
the mean workload between two failures. Note that even when the 
TMRed MicroBlaze processor fails due to the excessive bit-flips in the 
configuration memory, our approach can still protect the process on the 
ARM cores by degrading itself to the dual-core lockstep (DCLS) tech-
nique and merely supporting roll-back based recovery schemes. 

6. Conclusion 

All-Programmable System-on-Chips (APSoCs) are a desirable 
implementation choice for systems utilised in nuclear environments due 
to their high-performance computing and power efficiency merits. 
Despite the advantages APSoCs possess, they are sensitive to radiation 
like any other electronic device. Processors incorporated in APSoCs, 
therefore, should be well hardened against radiation to become a viable 
option for unfavourable environments. This paper introduces a novel 
triple-core lockstep (TCLS) approach to accomplish fault tolerance for 
the dual-core ARM Cortex-A9 processor in the Xilinx Zynq-7000 APSoC 
against soft errors; this is achieved by coupling the ARM processor with a 

Table 11 
Fault injection results for 256-bit AES encryption with no protection enabled 
(Unprotected design).   

Count Rate EM 95% CI 

UNACE  1660  48.5%  1.68% 46.9% - 50.2% 
SDC  697  20.4%  1.35% 19.0% - 21.7% 
Hang  1063  31.1%  1.55% 29.5% - 32.6% 
Total  3420     

Table 12 
Fault injection results for 256-bit AES encryption with full protection enabled 
(TCLS design).   

Count Rate EM 95% CI 

UNACE  650  21.3%  1.45% 19.8% - 22.7% 
SDC  20  0.7%  0.29% 0.4% - 1.0% 
Hang  35  1.2%  0.38% 0.8% - 1.5% 

Roll-Forward  578  18.9%  1.39% 17.5% - 20.3% 
Roll-Back  1412  46.3%  1.77% 44.5% - 48.0% 

Roll-Back First  15  0.5%  0.25% 0.2% - 0.7% 
Soft System Reset  343  11.2%  1.12% 10.1% - 12.4% 

Total  3053     
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MicroBlaze TMR subsystem implemented in the FPGA logic. The pro-
posed technique uses the concepts of checkpointing along with roll-back 
and roll-forward mechanisms at the software level (i.e. software 
redundancy), and the processor replication and checker circuits at the 
hardware level (i.e. hardware redundancy). 

Fault injection experiments have been performed to evaluate the 
proposed TCLS approach. The results confirm that the given approach 
has enhanced the reliability and availability of the hard-core ARM 
processor with a high rate (i.e. around 98%) of corrected and recovered 
faults. Furthermore, timing performance overhead is as low as 25% 
under fault-free conditions when block and application sizes are 
adjusted appropriately. Moreover, integrating the roll-forward process 
into the system results in up to ≈19% higher MWBF which is because, 
when handled with the roll-forward operation rather than the roll-back 
operation, the programme will progress quicker in the cases of fault 
occurrence. Thus, more data can be computed before the next error 
occurs. Note that memory-bounded applications tend to benefit more 
from this approach in terms of better MWBF because, in this case, the 
Checker-Injector module would more often detect mismatches across the 
intermediate output data of ARM cores stored within their allocated 
BRAM memories, thus triggering a roll-forward recovery operation 
rather than a roll-back operation when a soft error occurs. 

As future works, we plan to submit our system to neutron radiation 
experiments in order to validate the approach in real harsh environ-
ments. Furthermore, operating benchmark applications on a chosen 
embedded Linux OS or RTOS distribution is envisaged to evaluate shifts 
in the timing and soft-error correction performances of the proposed 
TCLS approach under operating system environments as compared to 
bare-metal. Finally, we are working upon adapting our approach for 
Zynq UltraScale+ MPSoCs where we can take advantage of the available 
heterogeneous processing subsystem incorporating both a quad-core 
ARM Cortex-A53 processor and a dual-core ARM Cortex-R5 processor. 
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[18] F. Restrepo-Calle, A. Martínez-Álvarez, S. Cuenca-Asensi, A. Jimeno-Morenilla, 
Selective SWIFT-R, J. Electron. Test. 29 (2013) 825–838. 

[19] G.C. Clark, J.B. Cain, Error-correction Coding for Digital Communications, 1st ed., 
Springer Publishing Company Inc., New York, NY, USA, 1981. 

[20] H.H. Ng, PPC405 Lockstep System on ML310, Xilinx Inc., San Jose, CA, USA, 2007. 
XAPP564 Application Note. 

[21] F. Abate, L. Sterpone, C.A. Lisboa, L. Carro, M. Violante, New techniques for 
improving the performance of the lockstep architecture for SEEs mitigation in 
FPGA embedded processors, IEEE Trans. Nucl. Sci. 56 (4) (Aug 2009) 1992–2000. 

[22] M. Violante, C. Meinhardt, R. Reis, M.Sonza Reorda, A low-cost solution for 
deploying processor cores in harsh environments, IEEE Trans. Ind. Electron. 58 (7) 
(July 2011) 2617–2626. 

Fig. 13. Comparison of fault injection experiment results for unprotected and fully protected designs – 256-bit AES encryption application.  

S. Kasap et al.                                                                                                                                                                                                                                   

https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
https://www.gov.uk/government/publications/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy/nuclear-provision-explaining-the-cost-of-cleaning-up-britains-nuclear-legacy
https://www.scmp.com/news/asia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-falters-six-years
https://www.scmp.com/news/asia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-falters-six-years
https://www.scmp.com/news/asia/east-asia/article/2077394/dying-robots-and-failing-hope-fukushima-clean-falters-six-years
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938405457
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938405457
https://doi.org/10.1145/2996357
https://doi.org/10.1145/2996357
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924162270
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924162270
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924162270
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938431543
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938431543
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937403201
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937403201
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290924467665
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937584532
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290937584532
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926041837
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926041837
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926041837
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919364995
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919364995
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938010250
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938010250
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938010250
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938048246
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938048246
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938048246
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926564406
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290926564406
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919385737
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919385737
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919385737
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938049799
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938049799
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938049799
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938065287
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938065287
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938089418
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938089418
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919534980
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290919534980
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920366690
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920366690
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938097215
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938097215
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938097215
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290930386437
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290930386437
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290930386437


Microelectronics Reliability 124 (2021) 114297

14

[23] H. Pham, S. Pillement, S.J. Piestrak, Low-overhead fault-tolerance technique for a 
dynamically reconfigurable softcore processor, IEEE Trans. Comput. 62 (6) (June 
2013) 1179–1192. 

[24] A.B. de Oliveira, G.S. Rodrigues, F.L. Kastensmidt, N. Added, E.L.A. Macchione, V. 
A.P. Aguiar, N.H. Medina, M.A.G. Silveira, Lockstep dual-Core ARM A9: 
implementation and resilience analysis under heavy ion-induced soft errors, IEEE 
Trans. Nucl. Sci. 65 (8) (Aug 2018) 1783–1790. 

[25] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas, L. Entrena, 
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[31] Á.B. de Oliveira, L.A. Tambara, F.L. Kastensmidt, Exploring performance overhead 

versus soft error detection in lockstep dual-Core ARM cortex-A9 processor 

embedded into xilinx zynq APSoC, in: International Symposium on Applied 
Reconfigurable Computing (ARC 2017), April 2017, pp. 189–201. 

[32] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, J.R. Mingo, Estimating error rates in 
processor-based architectures, IEEE Trans. Nucl. Sci. 48 (5) (2001) 1680–1687. 

[33] R. Velazco, S. Rezgui, R. Ecoffet, Predicting error rate for microprocessor-based 
digital architectures through C.E.U. (Code emulating Upsets) injection, IEEE Trans. 
Nucl. Sci. 47 (6) (2000) 2405–2411. 

[34] H. Quinn, W.H. Robinson, P. Rech, M. Aguirre, A. Barnard, M. Desogus, L. Entrena, 
M. Garcia-Valderas, S.M. Guertin, D. Kaeli, F.L. Kastensmidt, B.T. Kiddie, 
A. Sanchez-Clemente, M.S. Reorda, L. Sterpone, M. Wirthlin, Using benchmarks for 
radiation testing of microprocessors and FPGAs, IEEE Trans. Nucl. Sci. 62 (6) 
(2015) 2547–2554. 

[35] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, J. Dray, 
Advanced Encryption Standard (AES), 2001, 2001-11-26. 

[36] J. Lienig, H. Bruemmer, in: Fundamentals of Electronic Systems Design, Springer 
International Publishing, Cham, 2017, pp. 45–73, ch. Reliability Analysis. 

[37] L.A.C. Benites, F. Benevenuti, A.B. De Oliveira, F.L. Kastensmidt, N. Added, V.A. 
P. Aguiar, N.H. Medina, M.A. Guazzelli, Reliability calculation with respect to 
functional failures induced by radiation in TMR arm cortex-M0 soft-Core 
embedded into SRAM-based FPGA, IEEE Trans. Nucl. Sci. 66 (7) (2019) 
1433–1440. 

S. Kasap et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920395931
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920395931
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920395931
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938138525
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290920459109
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921077586
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921077586
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921077586
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921395627
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290921395627
http://www.tul.com.tw/ProductsPYNQ-Z2.html
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938137070
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938137070
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938137070
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290931127970
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922105409
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290936146126
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290936146126
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938251868
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938251868
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938251868
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938262491
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922396112
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290922396112
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290923269825
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290923269825
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880
http://refhub.elsevier.com/S0026-2714(21)00263-8/rf202107290938257880

	Novel lockstep-based fault mitigation approach for SoCs with roll-back and roll-forward recovery
	1 Introduction
	2 Background
	2.1 Radiation effects on electronics
	2.2 Effects of soft errors in processors
	2.3 Fault-tolerance techniques
	2.4 Lockstep technique

	3 Proposed triple-core lockstep technique
	3.1 Architecture
	3.2 Methodology
	3.3 Interrupt implementation
	3.4 Consistency check and checkpoint implementations
	3.4.1 Consistency check operation
	3.4.2 Checkpoint operation

	3.5 Roll-back, roll-forward and soft reset implementations
	3.5.1 Roll-forward operation
	3.5.2 Roll-back operation
	3.5.3 Soft system reset operation


	4 Fault injection technique
	4.1 Architecture
	4.2 Methodology

	5 Implementation and experimental results
	5.1 Resource consumption analysis
	5.2 Timing performance analysis for matrix multiplication benchmarks
	5.3 Fault-injection performance analysis for matrix-multiplication benchmarks
	5.4 Fault-injection performance analysis for 256-bit AES encryption benchmarks

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


