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We study the Smith forms of matrices of the form f(Cg) where 
f(t), g(t) ∈ R[t], where R is an elementary divisor domain and 
Cg is the companion matrix of the (monic) polynomial g(t). 
Prominent examples of such matrices are circulant matrices, 
skew-circulant matrices, and triangular Toeplitz matrices. In 
particular, we reduce the calculation of the Smith form of 
the matrix f(Cg) to that of the matrix F (CG), where F, G
are quotients of f(t), g(t) by some common divisor. This 
allows us to express the last non-zero determinantal divisor 
of f(Cg) as a resultant. A key tool is the observation that a 
matrix ring generated by Cg – the companion ring of g(t) – 
is isomorphic to the polynomial ring Qg = R[t]/ < g(t) >. 
We relate several features of the Smith form of f(Cg) to the 
properties of the polynomial g(t) and the equivalence classes 
[f(t)] ∈ Qg. As an application we let f(t) be the Alexander 
polynomial of a torus knot and g(t) = tn − 1, and calculate 
the Smith form of the circulant matrix f(Cg). By appealing 
to results concerning cyclic branched covers of knots and 
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Brieskorn manifold
Homology

cyclically presented groups, this provides the homology of all 
Brieskorn manifolds M(r, s, n) where r, s are coprime.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let R be a commutative ring (with unity) other than the trivial ring, fix a monic 
polynomial g(t) = tn +

∑n−1
k=0 gkt

k ∈ R[t], and let Cg be the companion matrix of g(t). 
For n ≥ 2, the subset of Rn×n consisting of matrices f(Cg) that are polynomials in Cg

with coefficients in R forms a commutative ring, which we call the companion ring of g(t)
and denote by Rg. Important and well studied rings of matrices arise as special cases: if 
g(t) = tn, then Rg is the commutative ring of lower triangular n × n Toeplitz matrices 
[2] with entries in R; if g(t) = tn − 1, then Rg is the commutative ring of n ×n circulant 
matrices [10] with entries in R; if g(t) = tn +1, then Rg is the commutative ring of n ×n

skew-circulant matrices [10] with entries in R.
When R is an integral domain, g(t) has n roots (counted with multiplicities) in some 

appropriate extension of R and, for f(t) ∈ R[t], the determinant of f(Cg) can be ex-
pressed as the resultant

det f(Cg) =
∏

θ:g(θ)=0

f(θ) =: Res(f, g). (1.1)

Note that in the last equality we are implicitly fixing the normalization in the definition 
of the resultant; we will follow this choice throughout. (See Section 2 for definitions of 
undefined terms and notation used in this Introduction, together with relevant back-
ground.) Restricting to the case that R is an elementary divisor domain, such as the ring 
of integers, one may seek to study the Smith forms of matrices f(Cg). Our first main 
result shows that f(Cg) is equivalent to the direct sum of a matrix F (CG) and a zero 
matrix, where F, G are quotients of f, g by any of their (monic) common divisors, and 
so relates the Smith forms of f(Cg) and F (CG).

Theorem A. Let g(t) ∈ R[t] be monic of degree n, and let f(t) ∈ R[t] where R is an 
elementary divisor domain. Suppose that g(t) = G(t)z(t), f(t) = F (t)z(t) where z(t)
is a monic common divisor of f(t) and g(t). Then f(Cg) ∼ F (CG) ⊕ 0m×m, where 
m = deg z(t). In particular, F (CG) has invariant factors s1, . . . , sr if and only if f(Cg)
has invariant factors s1, . . . , sr, 0 (repeated m times).

An immediate corollary (Corollary B) expresses the last non-zero determinantal divi-
sor as the resultant of F (t) and G(t). This therefore generalizes the expression (1.1) to 
the case of singular matrices f(Cg).

http://creativecommons.org/licenses/by/4.0/
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Corollary B. In the notation of Theorem A, suppose that z(t) is the monic greatest com-
mon divisor of f(t) = z(t)F (t) and g(t) = z(t)G(t). Then the last non-zero determinantal 
divisor of f(Cg) is (up to units of R)

γr =
∏

θ:G(θ)=0

F (θ) = Res(F,G).

As an application, in Theorem C, we calculate the Smith form of the integer matrix 
f(Cg) where f(t) is the Alexander polynomial of the torus knot K(r, s), i.e.

f(t) = (trs − 1)(t− 1)
(ts − 1)(tr − 1) (1.2)

and g(t) = tn−1. As we explain in Section 2.2 this allows us, in Corollary D, to calculate 
the homology of all 3-dimensional Brieskorn manifolds M(r, s, n) where r, s are coprime. 
This generalizes (part of) [6, Proposition 5], which deals with the case r = 2.

Theorem C. Let r, s be coprime positive integers, n ≥ 2, such that x := (r, n) ≤ y :=
(s, n) and let f(t) ∈ Z[t] be the Alexander polynomial of the torus knot K(r, s) as in (1.2), 
g(t) = tn − 1 ∈ Z[t]. Then the Smith form of f(Cg) has non-unit invariant factors: r

x

(repeated y − x times); rs
xy (repeated x − 1 times); 0 (repeated (x − 1)(y − 1) times).

We note that there is no loss of generality in assuming, as in the statement of Theo-
rem C, that (r, n) ≤ (s, n) for if not we may simply swap the roles of r and s.

Corollary D. Let r, s, n ≥ 2 where r and s are coprime. Then setting x := (r, n) and 
y := (s, n), the homology of the 3-dimensional Brieskorn manifold M = M(r, s, n) is

H1(M) ∼=
{
Zy−x

r/x ⊕ Zx−1
rs/(xy) ⊕ Z(x−1)(y−1) if x ≤ y,

Zx−y
s/y ⊕ Zy−1

rs/(xy) ⊕ Z(x−1)(y−1) if y ≤ x.

2. Preliminaries

2.1. Smith forms and elementary divisor domains

Given a GCD domain R, we denote the greatest common divisor1 of the n-tuple 
a1, . . . , an ∈ R by (a1, . . . , an). An elementary divisor domain (EDD) [12, p. 16] is an 
integral domain R such that, for any triple of elements a, b, c ∈ R, there exist x, y, z, w ∈
R satisfying (a, b, c) = zxa + zyb + wyc.

1 Although, strictly speaking, the greatest common divisor is only defined up to multiplication by units 
of R, we assume here and throughout that a choice is made by some arbitrary, but fixed, choice of normal-
ization. To give a concrete example, for R = Z one may choose gcds to be always non-negative integers.
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By choosing c = 0 in this definition, it follows that every EDD is a Bézout domain; 
it is conjectured, but to our knowledge still an open problem, that the converse is false 
[20,21]. Every principal ideal domain (PID) is an EDD see, for example, [12, Theorem 
1.5.3]; a classical example of an EDD that is not a PID is the ring of functions that are 
holomorphic on a simply connected domain [16,32].

The following classical theorem is named after H. J. S. Smith, who studied the case 
R = Z [34]. Frobenius proved the Smith Theorem in [13] assuming that R is a ring of 
univariate polynomials with coefficients in a field. For a proof of the theorem when R is 
an EDD (the weakest permissible assumption under which it can hold) see, for example, 
[12, Theorem 1.14.1].

To state the Smith Theorem, recall [29, p. 12] that a square matrix U ∈ Rn×n is called 
unimodular if detU is a unit of the base commutative ring R. Equivalently, unimodular 
matrices are precisely those matrices that are invertible over R, i.e., whose inverse exists 
and also belongs to Rn×n.

Theorem 2.1 (Smith Theorem). Let R be an EDD and M ∈ Rm×n. Then there exist 
unimodular matrices U ∈ Rn×n, V ∈ Rm×m such that UMV = S where S is diagonal 
and satisfies Si,i | Si+1,i+1 for all i = 1, . . . , min(m, n) − 1. Further, let γ0 = 1 ∈ R, 
and for i = 1, . . . , min(m, n) define the i-th determinantal divisor γi to be the greatest 
common divisor (gcd) of all minors of M of order i. Then

Si,i = γi
γi−1

=: si(M),

where the diagonal elements si(M), i = 1, . . . , min(m, n), are called the invariant factors 
of M . The matrix S is called the Smith form of M , and it is uniquely determined by M
up to multiplication of the invariant factors by units of R.

To make the Smith form S uniquely determined by M , one might consider an ap-
propriate normalization of the determinantal divisors, or equivalently of the invariant 
factors. This “appropriate normalization” is a conventional, albeit arbitrary, choice that 
depends on the base ring R. For instance, typical requirements are that the invariant 
factors are non-negative integers when R = Z; or that the invariant factors are monic 
polynomials when R = F [x] (univariate polynomials with coefficients in a field F). To 
avoid pedantic repetitions of sentences like “up to multiplication by units of R”, we 
assume that one such normalization is tacitly agreed on.

Generally, if there are two unimodular U ∈ Rm×m, V ∈ Rn×n such that UMV = N , 
we say that M and N are equivalent (over R) and write M ∼ N . If furthermore V = U−1

then M and N are said to be similar over R. The Smith Theorem can therefore be stated 
as follows: every matrix with entries in an EDD is equivalent to a diagonal matrix whose 
diagonal elements form a divisor chain. This is, in fact, a characterization of an EDD, 
usually taken as a definition [20,21,32]: an EDD is an integral domain R over which the 
Smith Theorem holds. We mention two immediate consequences of the Smith Theorem 
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that will be useful to us: firstly, any pair of m ×n matrices with entries in R are equivalent 
if and only if they have the same invariant factors; secondly, since rank is preserved by 
multiplication by invertible matrices, M has rank r if and only if its invariant factors 
satisfy si(M) = 0 precisely when i > r.

2.2. Cyclically presented groups and Brieskorn manifolds

Any finitely generated abelian group A is isomorphic to a group of the form A0 ⊕Zβ

where A0 is a finite abelian group and β ≥ 0. The number β = β(A) is called the Betti 
number (or torsion-free rank) of A. Clearly A is infinite if and only if β(A) ≥ 1 and A is 
a free abelian group if and only if A0 = 1.

Given a group presentation P = 〈x0, . . . , xn−1 | R0, . . . , Rm−1〉 (n, m ≥ 1) the relation 
matrix of P is the n × m integer matrix M whose (i, j) entry is the exponent sum 
of generator xi in relator Rj . If the rank of M is r and the invariant factors of the 
Smith Form of M are s1, . . . , sn−r then the abelianization of the group G defined by the 
presentation P is

Gab ∼= Zs1 ⊕ . . .⊕ Zsr ⊕ Zn−r.

(See, for example, [23, pp. 146–149, Theorem 3.6] or [19, pp. 54–57, Theorem 5].) Thus 
β(Gab) = n − r and if Gab = A0 ⊕ Zβ then |A0| = | 

∏r
i=1 si|, i.e. the last non-zero 

determinantal divisor γr of M .
A cyclic presentation is a group presentation of the form

Pn(w) = 〈x0, . . . , xn−1 | w(xi, xi+1, . . . , xi+n−1) (0 ≤ i < n)〉

where w = w(x0, x1, . . . , xn−1) is some fixed element of the free group F (x0, . . . , xn−1)
and the subscripts are taken mod n, and the group Gn(w) it defines is called a cyclically 
presented group. If, for each 0 ≤ i < n, the exponent sum of xi in w(x0, . . . , xn−1)
is ai then the relation matrix of Pn(w) is the circulant matrix C whose first row is 
(a0, a1, . . . , an−1). The representer polynomial of C is the polynomial

f(t) = fw(t) =
n−1∑
i=0

ait
i ∈ Z[t]

and setting g(t) = tn − 1 ∈ Z[t], R = Z, the relation matrix of Pn(w) is the circulant 
matrix fw(Cg). Thus, results concerning the Smith forms of such matrices f(Cg) provide 
information about the abelianization of the cyclically presented group Gn(w).

This, in turn, allows us to calculate the homology of certain 3-dimensional manifolds, 
as we now describe. For a 3-manifold M , the first homology H1(M) is isomorphic to the 
abelianization of its fundamental group (see, for example, [15, Theorem 2A.1]). Thus, 
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given a 3-manifold whose fundamental group has a cyclic presentation Pn(w) with rep-
resenter polynomial fw(t), the Smith form of the integer circulant fw(Cg) provides the 
homology of M . Suitable manifolds include, for example, all Dunwoody manifolds [11].

Brieskorn manifolds were introduced in [3] and the 3-dimensional Brieskorn manifolds 
M(r, s, n) (r, s, n ≥ 2) were studied by Milnor in [24]. As noted in [24, p. 176], the order 
of the homology of M(r, s, n) was computed by Brieskorn [3], who showed that the 
homology is trivial if and only if r, s, n are pairwise relatively prime. An algorithm for 
computing the homology itself, conjectured in [31], was proved in [33]. Further, the 
homology was calculated for the case r = 2 in [6]. The manifolds M(r, s, n) can be 
described as n-fold cyclic branched covers of the 3-sphere S3 branched over the torus 
link K(r, s), or torus knot K(r, s) when (r, s) = 1 [24, Lemma 1.1]. Torus knots lie in a 
very general class of knots called (1, 1)-knots. A special case of [25, Theorem 3.1] is that 
if a manifold M is an n-fold cyclic branched cover of S3 branched over a (1, 1)-knot then 
its fundamental group π1(M) has a cyclic presentation Pn(w) for some w. Moreover, 
by [5, Proposition 7] (see also [4, Theorem 4]) w can be chosen so that the representer 
polynomial fw(t) of Pn(w) is equal to the projection of the Alexander polynomial ΔK(t)
of K to Z[t]/ < tn − 1 >. Thus, in particular, if (r, s) = 1 then the 3-dimensional 
Brieskorn manifold M(r, s, n) has a cyclic presentation Pn(w) where fw(t) is equal to 
the projection of the Alexander polynomial f(t) given at (1.2) to Z[t]/ < g(t) > where 
g(t) = tn − 1. Hence, for coprime r, s, the calculation of the Smith form of f(Cg) given 
in Theorem C provides the homology of M(r, s, n), as in Corollary D.

3. Quotient polynomial rings as a ring of matrices

As in the Introduction, let R be a commutative ring (with unity) other than the 
trivial ring and fix a monic polynomial g(t) = tn +

∑n−1
k=0 gkt

k ∈ R[t]. The quotient ring
Qg = R[t]/〈g(t)〉 is the ring of the equivalence classes of polynomials in R[t] modulo the 
ideal generated by g(t). Specifically, given any f(t) ∈ R[t], one defines the equivalence 
class [f(t)] ∈ Qg as

[f(t)] := {h(t) ∈ R[t] : h(t) ≡ f(t) mod g(t)};

here and below, h(t) ≡ f(t) mod g(t) is a compact notation to mean that there exists 
q(t) ∈ R[t] such that f(t) = h(t) + q(t)g(t). On the other hand, associated with g(t) is 
its companion matrix

Cg =

⎡⎢⎢⎣
−gn−1 . . . −g1 −g0

1
. . .

⎤⎥⎥⎦ ∈ Rn×n,
1
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(where, as throughout this paper, entries not explicitly displayed are assumed to be 0); 
observe that the matrix Cg is a representation of the multiplication-by-[t] operator in 
the quotient ring Qg, in that

Cg

[
tn−1 · · · t 1

]T ≡ t
[
tn−1 · · · t 1

]T mod g(t). (3.1)

For more details on this viewpoint on companion matrices, as well as some generaliza-
tions, see, for example, [27, Section 2], [30, Section 9], and the references therein. It is 
well known in matrix theory that the characteristic polynomial of Cg is precisely g(t): 
see, for example, the proof of [14, Theorem 1.1]; although there it is assumed that R = C, 
the proof is purely algebraic and only requires that R is a commutative ring.

Theorem 3.1 below is a special case of the First Isomorphism Theorem for rings, but 
we will give an elementary matrix theoretical proof. It illustrates how to expand the 
idea of mapping [t] to Cg, and why it generates a matrix algebra. Given an equivalence 
class [f(t)] ∈ Qg, it is natural to consider the coefficients fk ∈ R of its expansion in the 
monomial basis of Qg, i.e.,

[f(t)] =
n−1∑
k=0

fk[tk].

Note that the above notation is generally equivalent to f(t) ≡
∑n−1

k=0 fkt
k mod g(t); 

the actual equality f(t) =
∑n−1

k=0 fkt
k holds if and only if deg f(t) < n. Before stating 

Theorem 3.1 we recall that the Cayley-Hamilton theorem holds for matrices over any 
commutative ring [18, Problem 2.4.P3]. Thus, if f(t) ≡ h(t) mod g(t) then for some q(t) ∈
R[t] we have f(Cg) = h(Cg) + g(Cg)q(Cg) = h(Cg). Hence, writing 

∑n−1
k=0 fkC

k
g = f(Cg)

is consistent even if, in general, one may be taking deg f(t) ≥ n so that the coefficients 
of f(t) differ from the coefficients of [f(t)].

It is easy to show that, under the usual matrix addition and multiplication, the subset 
of Rn×n consisting of matrices that are polynomials in Cg with coefficients in R forms a 
commutative ring, which we will denote by Rg. Theorem 3.1 shows that this is isomorphic 
to the quotient ring Qg, and is fundamental to our methods.

Theorem 3.1. The map M : Qg → Rg given by

[f(t)] =
n−1∑
k=0

fk[tk] �→ M([f(t)]) =
n−1∑
k=0

fkC
k
g = f(Cg)

is a ring isomorphism.

Proof. The map M is clearly bijective, maps [0] to 0 and [1] to I, and satisfies M([f1(t)] +
[f2(t)]) = M([f1(t)]) + M([f2(t)]). If f1(t)f2(t) = f3(t) + q(t)g(t), deg f3(t) < n, then 
using the Cayley-Hamilton theorem
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M([f1(t)])M([f2(t)]) = f1(Cg)f2(Cg) = f3(Cg) + q(Cg)g(Cg)

= f3(Cg) = M([f3(t)]) = M([f1(t)f2(t)]). �
Theorem 3.1 shows that, for every monic polynomial g(t) ∈ R[t], we can define a ma-

trix algebra Rg that satisfies the important property of being isomorphic to the quotient 
ring Qg. It is also useful to observe that, by (3.1), for all j = 0, . . . , n − 1 the (n − j)-th 
row of f(Cg) contains the coefficients of [tjf(t)] in the monomial basis [1], . . . , [tn−1]. In 
particular, the last row of f(Cg) is precisely

[fn−1 . . . f1 f0 ] .

As mentioned in the Introduction, the commutative rings of lower triangular n × n

Toeplitz matrices, of circulant matrices, and of skew-circulant matrices all arise as special 
cases of Rg.

If we now specialize to the case where R is an EDD then, given g(t) ∈ R[t] (monic) and 
[f(t)] ∈ Qg, it makes sense to study the Smith canonical form of f(Cg). An important 
example of an EDD is the ring of the integers Z and in this setting, g(t) is a monic 
integer polynomial, [f(t)] is an equivalence class of integer polynomials modulo g(t), and 
f(Cg) is an integer matrix whose Smith form is sought. In the next sections, we derive 
results describing some features of the Smith canonical forms of f(Cg) in terms of [f(t)]
and g(t).

4. On the Smith form of f(Cg)

If the base ring R is an integral domain, it can be embedded in a closed field F , namely, 
the algebraic closure of the field of fractions of R. Hence, the matrix Cg has n eigenvalues 
(counted with multiplicities) in F . In particular, these eigenvalues are the roots of g(t). 
Moreover, it is well known [2,14,27,28,30] that the eigenvectors of the companion matrix 
Cg associated with an eigenvalue θ have the form, up to a nonzero constant,

vθ =
[
θn−1 · · · θ 1

]T ∈ Fn, θ : g(θ) = 0.

If we assume that g(t) has n distinct roots, then this implies that Cg is sent to its 
Jordan canonical form (over F) via similarity by a Vandermonde matrix. If g(t) has 
multiple roots, the similarity matrix is a confluent Vandermonde. For more details on 
these classical facts see, for example, [2,14,27,28] and the references therein. The matrix 
f(Cg) = M([f(t)]) therefore has eigenpairs of the form (f(θ), vθ), and in particular, 
its rank r is equal to the number of the roots of g(t) which are not also roots of f(t), 
counted with multiplicity. Furthermore, this simple argument shows the determinant 
formula (1.1) of the Introduction. Although typically not stated in this generality, this 
result is well known at least for some popular choices of R and g(t), for example, when 
R is any subring of C and g(t) = tn − 1 (so Rg is the ring of circulant matrices) [2,10].
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We now focus on the case where R is an EDD (note that this implies that R is an 
integral domain, as in the discussion above), with the goal of studying the Smith form 
of f(Cg). Recall that every EDD is a Bézout domain, and therefore a GCD domain. 
This implies that R[t] is also a GCD domain; that is, given any pair of polynomials 
f(t), g(t) ∈ R[t] their gcd exists in R[t]. In the following, we will use this fact without 
further justification.

5. Proving Theorem A

In this section we prove Theorem A. The first step is the technical Lemma 5.1, which 
shows that if a(t), b(t) ∈ R[t] are two monic polynomials yielding the factorization g(t) =
a(t)b(t) then Cg is similar over R to another matrix Xa,b ∈ Rn×n which somehow 
explicitly displays the factorization of g(t); furthermore, the similarity can be expressed 
via a special matrix Ua: a unit of Rn×n that is completely determined by a(t).

Lemma 5.1. Suppose that g(t) = a(t)b(t) is a polynomial of degree n where a(t), b(t) are 
two monic polynomials in R[t]. Assume that the degree of a(t) is m, define r := n −m, 
and write

a(t) = tm +
m−1∑
i=0

ait
i, b(t) = tr +

r−1∑
i=0

bit
i.

Denote by Cg, Ca, Cb the companion matrices of the polynomials g(t), a(t), b(t) respec-
tively, and let Ua be the n × n unimodular upper triangular Toeplitz matrix

Ua =

⎡⎢⎢⎢⎢⎢⎢⎣

1 am−1 . . . a0
1 am−1 . . . a0

. . . . . .
...

1 am−1 am−2
1 am−1

1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n.

Then

UaCgU
−1
a = Xa,b :=

[
Cb 0
e1e

T
r LmCT

a Lm

]
where ei denotes a vector of size coherent with the matrix partition whose i-th entry is 1
and all of its other entries are 0, and Lm is the m ×m flip matrix (i.e. the matrix with 
1’s on the antidiagonal and zeroes elsewhere).

Before proving Lemma 5.1, we observe that (Cb, eTr , e1) and, respectively, (LmCT
a Lm,

eTm, e1) are standard triples [14] for, respectively, b(t) and a(t). It is therefore a conse-
quence of (a minor modification of) [14, Theorem 3.1] that for all t, for some matrix S
invertible over the field of fractions of R



10 V. Noferini, G. Williams / Journal of Algebra 587 (2021) 1–19
g(t)−1 = eTn (Cg − tI)−1e1 = eTn (SXa,bS
−1 − tI)−1e1;

see also [7, Theorem 2] for a related result, also stated for R = C but discussing more 
general pencils. It follows in particular that Cg and Xa,b are similar over the field of 
fractions of R. Lemma 5.1 goes a step further by showing that one can take S = Ua, i.e., 
UaCg = Xa,bUa; this is crucial in our context, as it implies that Cg and Xa,b are actually 
similar over R, and hence, equivalent.

Proof of Lemma 5.1. Introduce the vectors

α = [am−1 · · · a0 0 · · · 0]T ∈ Rn−1,

β = [br−1 · · · b0 0 · · · 0]T ∈ Rn−1,

γ = [gn−1 · · · g1 ]T ∈ Rn−1.

Partition first

UaCg =
[
1 αT

0 Ûa

] [
−γT −g0
I 0

]
=

[
αT − γT −g0

Ûa 0

]
.

On the other hand, partition

Xa,bUa =
[
−βT 0
I −Ln−1α

] [
Ûa Ln−1α
0T 1

]
=

[
−βT Ûa −βTLn−1α

Ûa 0

]
.

Expanding g(t) = a(t)b(t) in the monomial basis gives[
1 βT

]
Ua =

[
1 γT

]
,

and hence,

βT Ûa = γT − αT .

Moreover, since by construction the last m − 1 entries of the vector β and the last r− 1
entries of the vector α are zero, if i �= r then βi(Ln−1α)i = 0. Hence, βTLn−1α =
βr(Ln−1α)r = b0a0 = g0. �
Remark 5.2. Combining Lemma 5.1 with Lemma 5.4 below and known divisibility re-
lations between invariant factors of a submatrix and a matrix (see e.g. [32]) yields a 
potentially interesting consequence. Namely, if b(t) is any monic polynomial that divides 
g(t), one can write down divisibility relations between the invariant factors of f(Cg) and 
those of f(Cb). This is a useful property when deg b(t) 
 deg g(t), as in this situation 
the size of f(Cb) is much smaller than the size of f(Cg) and so it is easier to compute 
the invariant factors of f(Cb) than those of f(Cg). A full discussion is beyond the scope 
of the present paper.
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We now exhibit explicitly the Smith form of a(Cg), where a(t) is any monic divisor 
(in R[t]) of g(t) having degree m.

Lemma 5.3. If a(t) is a monic divisor (in R[t]) of g(t) having degree m = n − r, then 
there exists a unimodular U ∈ Rn×n such that

Ua(Cg)U−1
a =

[
Ir 0
0 0

]
is in Smith form, where Ua ∈ Rn×n is the unimodular matrix defined in Lemma 5.1.

Proof. We can partition

Ua =
[
U11 U12
0 U22

]
, a(Cg) =

[
A B
U11 U12

]
where U11 ∈ Rr×r, U12 ∈ Rr×m, A ∈ Rm×r, U22, B ∈ Rm×m. Construct the unimodular 
matrix

U =
[

0 Ir
Im 0

] [
Im −AU−1

11
0 Ir

]
=

[
0 Ir
Im −AU−1

11

]
so that

Ua(Cg)U−1
a =

[
U11 U12
0 B −AU−1

11 U12

] [
U−1

11 −U−1
11 U12U

−1
22

0 U−1
22

]
=

[
Ir 0
0 K

]
,

where K = (B − AU−1
11 U12)U−1

22 . However, the invertibility of U and Ua implies that 
r + rankK = rank a(Cg) = r, and hence, K = 0. �

The next technical lemma is useful to reduce the amount of explicit matrix calculations 
in other proofs; it is well known in matrix theory at least for the case where R is a field 
[17, Theorem 1.13(f)], and it can be proved similarly for a general R.

Lemma 5.4. Suppose that f(t) ∈ R[t] and A, B are square matrices. Then

T =
[
A 0
X B

]
∈ Rn×n ⇒ f(T ) =

[
f(A) 0
� f(B)

]
∈ Rn×n.

Here � denotes a, possibly nonzero, block of the same size as X.

We now have all the ingredients to prove Theorem A.

Proof of Theorem A. In this proof, we specialize the notation of Lemmata 5.1 and 5.3
to the choice a(t) = z(t), b(t) = G(t). Then Uz(Cg)U−1

z = Ir⊕0. By Lemma 5.1, writing 
F (t) =

∑r−1
i=0 Fit

i, we have
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UzF (Cg)U−1
z =

r−1∑
i=0

FiUzC
i
gU

−1
z =

r−1∑
i=0

FiX
i
z,G

= F (Xz,G) =
[
F (CG) 0

� F (LmCT
z Lm)

]
where we used Lemma 5.4 and � denotes a block element whose precise nature is unim-
portant. Hence, using Lemma 5.3,

Uf(Cg)U−1
z = Uz(Cg)U−1

z UzF (Cg)U−1
z = F (CG) ⊕ 0. �

6. Factorizing f(t), g(t)

In this section we consider factors of f(t) and of g(t). Our first result considers a 
factorization f(t) = f1(t)f2(t) of f and relates the Smith form of f(Cg) to the Smith 
forms of f1(Cg), f2(Cg). It is known [29, Theorem II.15] that if A and B have coprime 
determinants then the Smith form of AB is the product of the Smith forms of A and B. 
This immediately proves the following theorem as a special case.

Theorem 6.1. Let f(t) = f1(t)f2(t) and suppose that Res(f1, g) and Res(f2, g) are co-
prime. Denote by S, S1, S2 the Smith forms of, respectively, f(Cg), f1(Cg), f2(Cg). Then 
S = S1S2.

The following result is a corollary of Theorem 6.1; however, we provide a more ele-
mentary proof that does not rely on this theorem.

Corollary 6.2. Let f(t) = f1(t)f2(t) and Res(f2, g) is a unit of R. Then f1(Cg) ∼ f(Cg).

Proof. By (1.1) the determinant det(f2(Cg)) is a unit so f2(Cg) is unimodular. Hence 
f(Cg) ∼ f(Cg)f2(Cg)−1 = f1(Cg). �

Our next result considers a factorization g(t) = g1(t)g2(t) of g(t) and relates the 
matrix f(Cg) to the matrices f(Cg1), f(Cg2).

Theorem 6.3. Let g(t) = g1(t)g2(t) and suppose that Res(f, g1) and Res(f, g2) are co-
prime. Then f(Cg) ∼ f(Cg1) ⊕ f(Cg2).

Proof. It follows from Lemma 5.1 and Lemma 5.4 that

f(Cg) ∼
[
f(Cg2) 0

X Lmf(Cg1)TLm

]
.

By [22, Lemma 6.11] (which is stated for R = F [x], but in fact only relies on the 
existence of the Smith form and on Bezout’s identity, both valid over every EDD), if the 
determinants of A and B are coprime then
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[
A 0
C B

]
∼

[
A 0
0 B

]
.

To conclude the proof note that Lmf(Cg1)TLm ∼ f(Cg1)T ∼ f(Cg1). �
Corollary 6.4. Let g(t) = g1(t)g2(t) and Res(f, g2) is a unit of R. Then f(Cg) ∼
Ideg(g2(t)) ⊕ f(Cg1).

Proof. Since Res(f, g2) is a unit, (1.1) implies that f(Cg1) is unimodular and hence is 
equivalent to the identity matrix. The result then follows from Theorem 6.3. �
7. Application to cyclically presented groups and Brieskorn manifolds

The polynomial g(t) = tn−1 and Alexander polynomial f(t) of the torus knot K(r, s)
– see (1.2) – can each be written as a product of cyclotomic polynomials. Before we 
calculate the Smith form of f(Cg) in Theorem C, we first calculate the Smith form of 
Φm(CΦn

) in Theorem 7.4: this simpler case is potentially useful per se, and it serves the 
purpose of illustrating some of the basic ideas that we will also use later. Theorem 7.4
can be viewed as a considerable generalization of [1, Theorems 2 and 3] which assert that 
if m ≥ n ≥ 1 then the resultant Res(Φm, Φn) is zero if m = n, is pφ(n) if m = npk where 
k ≥ 1 and p is prime, and is 1 otherwise. In [9, Theorem 3] one step further is taken to 
derive an expression for Res(Φm, tn − 1). We make repeated use of both these resultant 
formulae in the proofs of Theorem 7.4 and Theorem C.

The first step is to characterize the first determinantal divisor which we do in 
Lemma 7.1. Recall that the content of a polynomial f(t) =

∑m
i=0 fit

i ∈ R[t], where 
R is a GCD domain, is cont(f) = (f0, f1, . . . , fm).

Lemma 7.1. Let g(t) ∈ R[t] be monic of degree n, and let f(t) ∈ R[t] where R is a 
GCD domain; moreover let h(t) be the unique polynomial of degree less than n such that 
f(t) ≡ h(t) mod g(t). Then the first determinantal divisor of f(Cg) is (up to units of R) 
γ1 = cont(h).

Proof. Write h(t) =
∑n−1

k=0 hkt
k. Recalling Theorem 3.1 and the remarks before it, we 

have f(Cg) = h(Cg). It is readily verified, by finite induction, that the bottom row of 
Ck

g is equal to eTn−k for all k = 0, . . . , n − 1 (see also the remarks after Theorem 3.1). 
It follows that the bottom row of h(Cg) contains as entries precisely the hk, and hence, 
γ1 | cont(h). On the other hand,

(h(Cg))ij =
n−1∑
k=0

hk(Ck
g )ij ,

and therefore all the entries of h(Cg) are R-linear combinations of the coefficients of 
h(t). This implies cont(h) | γ1, and concludes the proof. �
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The next steps are Lemmata 7.2 and 7.3: two simple properties of polynomials that 
will also be handy in proving Theorem C. Lemma 7.2 is a simple consequence of the fact 
that the p-th power map is a ring homomorphism on integers modulo p.

Lemma 7.2. Let p ∈ Z be a prime and f(t) ∈ Z[t] a polynomial. Then for all k ≥ 1, p
divides [f(t)]pk − f(tpk).

Proof. The proof is by induction on k.
When k = 1, write f(t) =

∑F
i=0 fit

i, where F = deg f(t). Applying the multinomial 
theorem and then Fermat’s little theorem in turn, working mod p, we have

f(t)p ≡
F∑
i=0

(fiti)p =
F∑
i=0

fp
i t

ip ≡
F∑
i=0

fit
ip = f(tp).

Now assume that, for � ∈ {1, k−1} and for any f(t) ∈ Z[t], [f(t)]pl ≡ f(tpl) mod p. Set 
q = pk−1 so that pk = pq. Applying the inductive assumption twice, first (for � = k− 1) 
to g(t) = [f(t)]p and then (for � = 1) to h(t) = f(tq), we see that [f(t)]pq ≡ [f(tq)]p ≡
f(tpq) mod p. �
Lemma 7.3. Let R be a GCD domain, g(t) ∈ R[t] be monic, and f(t) ≡ h(t) mod g(t)
with deg h(t) < deg g(t). Then cont(f) | cont(h).

Proof. Let m, r, n be the degrees of f(t) =
∑m

i=0 fit
i, h(t) =

∑r
i=0 hit

i, g(t) =
∑n

i=0 git
i

(with gn = 1) respectively. Without loss of generality we can suppose that (1) cont(f)
is not a unit of R, (2) r > 0 and (3) r < m, else, respectively, (1) cont(h) =
cont(f)[cont(f)−1cont(h)], (2) h(t) = 0 and (3) h(t) = f(t), and in all cases the statement 
becomes obvious. By assumption there exists q(t) ∈ R[t] such that f(t) = h(t) +g(t)q(t). 
Equivalently, there is Θ ∈ Rm−r+1 such that Φ = Γ + EΘ where

Φ = [fm · · · f0 ]T , Γ = [0 · · · 0 hr · · · h0 ]T ∈ Rm+1,

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gn
...

. . .

g1
. . .

g0
. . . gn
. . . . . .

...
. . . g1

g0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(m+1)×(m−r+1).

Let T be the square submatrix of E obtained by keeping the top m −r+1 rows. Manifestly, 
detT = (gn)m−r+1 = 1 so T is unimodular. Hence, noting that the top m − r+1 entries 
of Γ are all zero and that cont(f) divides (fn, fn+1, . . . , fm),
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Θ = T−1 [fm · · · fn ]T ⇒ q(t) ≡ 0 mod cont(f).

It follows that h(t) = f(t) − g(t)q(t) ≡ 0 mod cont(f), as required. �
Theorem 7.4. Let m ≥ n ≥ 1 and let Φm(t), Φn(t) ∈ Z[t] be cyclotomic polynomials. 
Then the Smith form of Φm(CΦn

) is

S =

⎧⎪⎪⎨⎪⎪⎩
0 if m = n;
pI if m = npk, where p is prime and k ≥ 1;
I otherwise.

Proof. Throughout this proof we use Theorem 3.1 extensively without further reference. 
The first line follows by the Cayley-Hamilton Theorem; in the third line by (1.1) the 
determinant |detΦm(CΦn

)| = | Res(Φm, Φn)| = 1 so S = I; and when n = 1 or 2 we have 
CΦn

= (−1)n+1, giving the result. Thus we assume that m = npk, n ≥ 3, p prime. We 
split the proof according to three cases: either (1) n = ph for some h > 0 or (2) (n, p) = 1
or (3) n = ph� where h > 0, � > 1, and (�, p) = 1.
Case 1: n = ph. Denote q = ph−1 and r = pk. It follows from [8, Exercise 12, p. 237] that 
Φph(t) = Φp(tp

h−1) and so Φn(t) = [tpq − 1][tq − 1]−1. Therefore 1 ≡ tpq mod Φn(t); for 
all j ∈ N, since tpq − 1 divides tjqr − 1, this implies tjqr ≡ 1 mod Φn(t). We conclude 
that Φm(t) =

∑p−1
j=0 t

jqr ≡ p mod Φn(t) and hence Φm(CΦn
) = pI.

Case 2: (n, p) = 1. Denote q = pk−1. Then Φm(t) = [Φn(tpq)][Φn(tq)]−1 [26, p. 160]. Spe-
cializing Lemma 7.2 to the polynomial Φn(tq), we see that p divides [Φn(tq)]p −Φn(tpq). 
Dividing by Φn(tq) and taking into account that Φn(t) divides Φn(tq), this implies the 
existence of Ψ(t) ∈ Z[t] such that Φm(t) ≡ pΨ(t) mod Φn(t). By Lemma 7.1, the 
first determinantal divisor of Φm(CΦn

), say γ1, is the content of the unique polyno-
mial, η(t) (say), of degree less than φ(n) and equivalent to Φm(t) mod Φn(t). Since 
η(t) ≡ pΨ(t) mod Φn(t) Lemma 7.3 implies that p | cont(pΨ) | γ1. This fact, together 
with γn = |detΦm(CΦn

)| = |Res(Φm, Φn)| = pφ(n), yields the statement.
Case 3: n = ph� where h > 0, � > 1, and (�, p) = 1. Denote r = pk. Then Φm(t) = Φn(tr)
[26, p. 160]. By Lemma 7.2, p divides [Φn(t)]r − Φm(t). The same argument as Case 2 
can then be used. �

Now we can prove Theorem C.

Proof of Theorem C. It is convenient to split the proof in two cases: (1) x = 1, (2) x > 1.
Case 1: x = 1. We have

g(t) =
∏
δ∈G

Φδ(t), f(t) =
∏
d∈F

Φd(t)

with
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G = {δ | n}, F = {d | rs, d � r, d � s}.

Note that G ∩F = ∅ so (f(t), g(t)) = 1 and hence the Smith form for f(Cg) has no zero 
invariant factors. Let r = pα1

1 · · · pα�

� be the prime factorization of r and d ∈ F . Then 
| Res(g, Φd)| = 1 unless D = d/(d, n) is a positive prime power. This can only happen if 
D is a positive power of a prime factor pi of r, for if D divides s then, since (r, n) = 1, 
d = D(d, n) is coprime with r so d|rs implies d|s, a contradiction. In turn, this implies 
that d = pβi k with 1 ≤ β ≤ αi and 1 �= k | y. Indeed, it cannot be k = 1, otherwise d
divides r. Hence, in view of Theorem 6.1, the sought Smith form is the product of the 
Smith forms of fi(Cg), i = 1, . . . , �, with

fi(t) =
∏
d∈Fi

Φd(t), Fi = {pβi k : 1 ≤ β ≤ α, �= k|y} ⊆ F .

Moreover, by Corollary 6.4, fi(Cg) ∼ I⊕fi(Ch) where h(t) is the product of cyclotomics 
over

G′ = {1 �= δ | y}.

Hence, fi(Ch) has size precisely 
∑

1�=k|y φ(k) = y− 1. Furthermore, its determinant is in 
absolute value

|det fi(Ch)| =
∏
d∈Fi

|Res(Φd, h)| =
αi∏
β=1

∏
1�=k|y

p
φ(k)
i =

αi∏
β=1

py−1
i = (pαi

i )y−1
.

We now claim that fi(t) ≡ Ψi(t) mod h(t), with pαi
i | Ψi(t). This implies, following an 

argument analogous to that of Case 2 in the proof of Theorem 7.4, that pαi
i divides the 

first invariant factor of fi(Ch), and hence, fi(Ch) ∼ pαi
i Iy−1. Since we can repeat this 

argument for all i = 1, . . . , �, we conclude by Theorem 6.1 that

f(Cg) ∼ In+1−y ⊕ rIy−1.

We now prove the claim. Observe that if d = pβi k then letting qiβ = pβ−1
i we have

Φd(t) = Φk(tpiqiβ )
Φk(tqiβ ) ⇒ fi(t) =

αi∏
β=1

fiβ(t), fiβ(t) := h(tp
β
i )

h(tqiβ ) .

By Lemma 7.2, pi divides [h(u)]pi−h(upi) for any variable u: dividing by h(u), this in turn 
implies that pi also divides the polynomial [h(u)]pi−1 − h(upi)/h(u). This in particular 
holds when u = tqiβ , for all 1 ≤ β ≤ αi. In this case qiβ is a prime power and coprime 
with y. Hence, for all δ | y, Φδ(t) divides Φδ(u), and thus h(t) divides h(u). Therefore, for 
all β = 1, . . . , αi, there exists a polynomial Ψiβ(t) such that fiβ(t) ≡ piΨiβ(t) mod h(t). 
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Now let Ψi(t) := pαi
i

∏αi

β=1 Ψiβ(t). Manifestly pαi
i divides Ψi(t), and by the above remarks 

it follows that

fi(t) ≡
αi∏
β=1

pΨiβ(t) ≡ Ψi(t) mod h(t);

this proves the claim.
Case 2: x > 1. Here z(t) = (f(t), g(t)) =

∏
d∈Σ Φd(t) where Σ consists of all divisors of 

(n, rs) that are neither divisors of (n, r) nor (n, s). It follows that deg(z) =
∑

d∈Σ φ(d) =
(x − 1)(y − 1) and so by Lemma 5.3 the Smith form has (x − 1)(y − 1) zero invariant 
factors. Since (r, s) = 1 we have (n, rs) = xy so after having removed common factors, 
as well as the trivial factor t − 1 in g(t), we are left with the index sets

G = {1 �= δ | x} ∪ {1 �= δ | y} ∪ {δ | n, δ � xy},

F = {d | sr, d � r, d � s, d � xy}.

Let d ∈ F and suppose δ | n but δ � xy. Then δ/d cannot be a positive or negative 
prime power, as otherwise d | xy or δ | xy, respectively; thus | Res(Φd, Φδ)| = 1 and by 
Theorem 6.4 we can effectively (up to neglecting some trivial invariant factors) replace 
g(t) with h(t), the product of cyclotomics over the set

{1 �= δ | x} ∪ {1 �= δ | y} =: G1 ∪ G2.

Suppose δ ∈ G1 and d ∈ F . If δ | x then, since d � r and d � xy, the only possibility for 
Φδ(t) and Φd(t) to have a nontrivial resultant is for d to be of the form δŝ where ŝ is 
the power of a prime factor of s and ŝ|s, ŝ � y. A similar argument holds if δ ∈ G2, so 
we can replace F with F1 ∪ F2 with F1 := {δŝ : 1 �= δ | x, ̂s prime power, ŝ | s, ŝ � y}
and F2 := {δr̂ : 1 �= δ | y, ̂r prime power, r̂ | r, r̂ � x}. Moreover, observing that s and 
r are coprime, if d ∈ Fi, δ ∈ Gj ({i, j} = {1, 2}) then | Res(Φd, Φδ)| = 1. Thus invoking 
Theorems 6.1 and 6.3, we also see that the Smith form of f(Ch) is the product of the 
Smith forms of I ⊕ f1(Ch1) and I ⊕ f2(Ch2), where the sizes of the identity matrices are 
clear from the context and, for i = 1, 2, fi(t) and hi(t) are products of cyclotomics whose 
indices vary in Fi and Gi, respectively. We now can, in essence, follow the first part of 
this proof to show that the Smith form of f1(Ch1) has non-unit invariant factors s/y
(x − 1 times), and the Smith form of f2(Ch2) has non-unit invariant factors r/x (y − 1
times). More precisely, a slight modification is needed to take into account that, when 
writing (for example) fi(t) =

∏
β fiβ(t), the exponents β no longer vary between 1 and 

αi but between γi + 1 and αi, where γi is the power of pi in the prime factorization of 
x. This is a consequence of the fact that, as in the definition of F1, we must select ŝ as 
a prime power dividing s, but not y. However, as apart from this subtlety the argument 
is completely analogous, we omit the details.

Finally, the statement follows by multiplying two diagonal matrices. �
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