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Abstract

In financial markets one is sometimes confronted with a complicated system
of partial differential equations arising from some physical important prob-
lem, and the discovery of the explicit solution of the problem can result with
very useful information. That is, the explicit solutions of the financial market
models can be used as benchmarks for testing numerical methods of physi-
cal experiments. This fact is evidenced by the work of economists Black and
Scholes, the Black-Scholes model, whereby they deduced the financial models
from solving a linear parabolic partial differential equation that were then used
in the finance literature as the main vehicle for pricing contingent claims such
as call and put options, together with all other financial derivatives. Due to
their work a rich arsenal of methods of theory of partial differential equations
were suddenly available for mathematicians working in the area of mathemat-
ical finance. Adopting their approach of deducing prices of contingent claim
via solving the associated PDE models, we apply the algorithmic quantitative
theory of Lie, the Lie symmetry analysis, to derive and solve the models asso-
ciated with interest rate derivatives whose price dynamics comprise of partial
differential equations in their set up.

The interest rate derivative model that we consider is of great importance
because it deviates from the usual models that are depended on the usual Va-
sicek model which has a disadvantage of producing negative interest rates. Our
interest rate derivative PDE model is depended on the functional interest rate
model that satisfies all properties of an interest rate model and produces pos-
itive interest rates upon certain restriction put on the co-domain. We obtain
their Lie point symmetries and transformations that we then use to deduce
their exact group-invariant solutions. In particular, we analyse a zero-coupon
bond pricing PDE model and obtain its various reductions that we then use to
solve and produce the pricing models for the aforementioned contingent claim.
A systematic reductions on optimal Lie algebra is further performed to ob-
tain optimal invariant solutions of the model as well. The resulting analytical
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expressions in both cases can then be used to add to the minute number of
pricing models for the interest rate derivatives instruments in the literature;
also play a vital role as benchmarks to verify real world data that is analysed
numerically by numerical methods in financial markets.
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Chapter 1

General Introduction

1.1 Introduction

The movement in the world markets normally leave financial institutions ex-

posed to different sources of financial risks. Financial institutions as a way

of protecting their businesses against these risks devote part of their time de-

veloping financial instruments known as derivatives to manage these risks. A

financial derivative is defined as a financial contract whose value at maturity T

is determined by the price of the underlying financial asset at time T . That is,

it is a financial instrument whose value depends on, or derives from, the values

of other; more basic underlying variables [12]. Financial derivatives are also

used by some institutions to develop financial products to meet the demand

of their customers in order to remain competitive in the market. Pricing of

financial derivatives have been one of a major concern to financial markets

practitioners as discrepancies in financial products prices can lead to great

profits to market participants. As Hull [12] points out, we have now reached

a stage where those who work in finance, and many outside finance, need to
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understand how derivatives work, how they are used, and how they are priced.

One of the pioneering breakthrough in the pricing of financial derivatives was

the work by economists Black and Scholes [13]. In their framework, with the

variable σ as the volatility of the stock price, µ as its expected rate of return

and r as the risk-free interest rate; the price u(S, t) of a derivative contingent

on stock price S following the process

dS = µSdt+ σSdZ; (1.1)

the authors have shown that this price can be obtained from solving the fol-

lowing linear parabolic differential equation

∂u

∂t
+

1

2
S2σ2 ∂

2u

∂S2
+ r

(
S
∂u

∂S
− u
)

= 0. (1.2)

The Black Scholes Merton model which was later called due to the contribu-

tion made by Merton [29], have been used as the main vehicle for pricing many

financial products whose price dynamics comprise of partial differential equa-

tions in their formation. Black-Scholes pricing models have been extended in

many ways to price several financial products such as interest rate derivatives,

bond options to be precise. Pricing derivatives is one of the central concern in

derivatives markets. Pricing securities involves setting up a riskless portfolio

and then arguing that the return on the portfolio earns the risk-free rate of

interest. This then suggests that the risk-free rate plays an important role in

the pricing of derivatives. Black-Scholes model being one of the main vehi-

cle to price contingent claims, it has been extended in many ways to deduce
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pricing models of many instruments. In the extension to bond options, a chal-

lenge that was met was the issue of convergence of the bond price to par at

maturity. Therefore, correct modelling procedures of stochastic behaviours of

interest rate especially the term structure of the interest rate through time

should carefully be implemented in order to construct realistic and reliable

valuation models of interest rate derivatives. Analytic approaches and nu-

merical methods have been mostly favoured in solving differential equations

eventhough analytic approaches seems to be more preferred as they provide

much information on the pricing models. This is evidenced by the increasing

number of research articles published in recent years using this approach, see

[13]-[20]. Among analytical approaches our focus is on those that apply Lie

symmetry analysis to solve PDE models arising in the field of mathematical

finance. We recognise among others the work by Ibragimov and Gazizov [15]

who introduced the idea of Lie symmetry analysis in finance problems when

analysing the Black-Scholes pricing equation. Goard [18] also contributed by

proposing new and simple solutions to the bond pricing equation (1.4) via sym-

metry analysis. Pooe et al. [19] using transformations to reduce bond-pricing

equation to heat equation, obtained the solution to the zero-coupon bond via

usage of those transformations. Sinkala and colleagues in [20] computed new

prices for bond PDE model with special consideration given to Vasicek and

CIR models. In recent years, Khalique et al. [21] proposed new invariant solu-

tions and conservation laws for Vasicek pricing equation model. Lie symmetry

analysis as originated in studies by mathematician Sophus Lie, have proved in

studies to be one of the prominent tool for obtaining analytical solutions for

3



differential equations.

Kaibe et al. [22] deduced the pricing models for the zero-coupon bond PDE

model that is depended on the functional interest rate model. This part of

research is the original contribution by the author of the thesis in this field.

Application of Lie symmetries analysis to interest rate derivatives under func-

tional interest rate models was for the first time introduced in the finance

literature.

1.2 Research objective

Majority of the interest rate models most of them do not satisfy the following

properties: mean-reversion and positivity of interest rate almost surely. A well

known interest rate model which does not satisfy the second property is the

Vasicek interest rate model as its interest rate can be negative. Luo et al. [27]

using the combination of Ornstein-Unlenbeck process [39] (satisfying mean-

reversion property) and Bessel process [40] (satisfying positivity property),

derived and proposed the following functional interest rate model

dXt =

(
−η(t)Xt +

ε(t)

Xt

)
dt+ σ(t)dZt, (1.3)
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where {Zt}t≥0 is a Brownian motion, and ε, η, σ are given functions of t. In

this setup rt = f(Xt, t) is modelled as a function of Markov state variable Xt

and time t. If the range of f is confined to only positive real values, then

this enables avoidance of negative interest rate which are usually occuring in

Vasicek models. This interest rate model embeds most known interest rate

models which can be deduced for different choices of f , η, ε and σ. Using this

functional interest rate model it can be shown that the price dynamics of a

zero-coupon bond are described in terms of the following partial differential

equation

vt(x, t) +
σ2

2
vxx(x, t) +

(
−ηx+

ε

x

)
vx(x, t)− rv(x, t) = 0. (1.4)

Numerical methods such as binomial trees, Monte-Carlo simulation, and finite-

difference methods are normally tools used to value financial products such as

interest rate derivatives. In this work we use analytical approach of Lie sym-

metry analysis to derive four Lie point symmetries plus an additional infinite

subalgebra; and we make use of these symmetries to deduce three types of

closed-form solutions for this interest rate derivative pricing equation associ-

ated with the functional interest rate model. We further analyse the obtained

solutions by investigating their application to the Vasicek interest rate model

numerically. The last part of this work will focus on obtaining the correspond-

ing group of adjoint representations and this will be used to obtain an optimal

system of one-dimensional subalgebras which is used to construct a family of

closed-form solutions of the zero-coupon bond pricing equation.
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1.3 Structure of the thesis

The thesis is organised as follows: In chapter 2 we give a review of Lie symme-

try analysis of differential equations. The next chapter, presents a brief review

of the fundamentals of mathematics of finance. In chapter 4 application of Lie

symmetry analysis is performed to an interest rate derivative PDE model in

order to deduce its pricing models. In chapter 5 we obtain an optimal system

and group-invariant solutions of an interest rate derivatives PDE model. In

the final chapter, we present the conclusion and suggest some further venues

of research in this area.
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Chapter 2

Lie symmetry analysis of

differential equations

Lie symmetry analysis is one of the powerful methods for computing analytical

solutions of differential equations. Central to this algorithmic procedure, as

originated in studies by Lie, is the idea of invariance of differential equation

which leads to the solution of differential equation by means of Lie groups.

There are many good books in the literature which give excellent introduction

to the subject [1]-[6]. The terminologies and definitions which will be used

in this thesis are mostly from these books. In this chapter basic concepts of

Lie groups of transformations crucial in the study of invariance properties of

differential equations are introduced and defined in preparation to apply them

in later chapters to analyse and solve real-world problems in mathematical

finance whose price dynamics comprise of partial differential equations in their

setup.
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2.1 Lie group properties and Definitions

In order to begin a construction process of Lie point symmetries we do so by

giving few description of few concepts. We start first by introducing the idea

of a group.

Definition 2.1.1: Suppose a set of elements, S, has a law of composition

φ(ε, δ) between the elements ε and δ in S; then set S is a group, G, if the

following properties are satisfied:

1. Closure: For any elements ε and δ in S their composition φ(ε, δ) is also

in S.

2. Identity: For any element ε ∈ S, there exists an identity element ε0 ∈ S

such that φ(ε, ε0) = ε = φ(ε0, ε).

3. Inverse: In S, for any element ε there exists a unique element ε−1 also in

S such that φ(ε, ε−1) = ε0 = φ(ε−1, ε), where ε0 is the identity in S.

4. Associative: For any elements ε, δ and ω in S, the relation φ(ε, φ(δ, ω)) =

φ(φ(ε, δ), ω) holds.

Definition 2.1.2: If it happens that φ(ε, δ) = φ(δ, ε) for all ε and δ in Group

G, then the group is said to be Abelian.
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Definition 2.1.3: A subset of elements of G that abide by the same law

of composition φ, and forms a group, is a subgroup of G.

Definition 2.1.4: Let x = (x1, ..., xn) lie in region D ⊂ <n. The set of

transformation

x̃ = X(x; ε),

(2.1)

defined for each x in D depending on parameter ε lying in the set S ⊂ < and

obeying the law of composition φ(ε, δ), δ also in S; forms a group of transfor-

mations on D if:

(i) For each ε in S the transformations are one-to-one and onto D and x̃ lies

in D.

(ii) The set S abiding by the law of composition φ forms a group G.

(iii) For any identity element ε0 ∈ S, X(x; ε0)=x.

(iv) If x̃=X(x, ε) and ˜̃x=X(x̃; δ), then ˜̃x=X(x, φ(ε, δ)).

Definition 2.1.5: A group of transformations defines a one-parameter Lie

group of transformations if together with satisfying properties in Definition

2.1.4,

(i) The parameter ε in S, where S is an interval subset of <, is a continuous

parameter and without no loss of generality ε = 0 is the identity element, ε0.

(ii) The function X is an analytic function of ε in S that is also infinitely
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differentiable with respect to x in D.

(iii) The law of composition φ(ε, δ) is an analytic function of ε and δ, where ε

and δ ∈ S.

In what follows, we focus on one-parameter Lie group of transformations

x̃ = X(x; ε); (2.2)

which from it important concepts such as infinitesimal transformation, Lie

algebra and invariant solutions of models of interest will be deduced. In

definition 2.1.4 if properties (i) to (iv) are the only one satisfied for the trans-

formations in equation (2.1) then we refer to the transformations as group of

transformations, whereas if all properties hold we refer to them as Lie group

of transformations.

Suppose we expand the one-parameter Lie group of transformation x̃ in equa-

tion (2.2) about the identity, ε = 0, then we get (for some neighborhood of

ε = 0)

x̃ = x+ ε

(
∂X

∂ε
(x; ε)|ε=0

)
+
ε2

2

(
∂2X

∂ε2
(x; ε)|ε=0

)
+ ...

= x+ ε

(
∂X

∂ε
(x; ε)|ε=0

)
+O(ε2). (2.3)
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Since the expansion is done in the neighborhood of ε = 0, higher terms of ε

are replaced by O(ε2) as they are very close to zero. Setting,

ξ(x) =
∂X

∂ε
(x; ε)|ε=0, (2.4)

this reduces to,

x̃ = x+ εξ(x) +O(ε2). (2.5)

The transformation x+ εξ(x) is then called the infinitesimal transformation of

the Lie group of transformations x̃ in equation (2.2) and the components of

ξ(x) are called the infinitesimals.

First Fundamental theorem of Lie (Bluman et al. [2]): There exists a parametriza-

tion τ(ε) such that the Lie group of transformations (2.2) is equivalent to the

solution of the initial value problem for the system of first order differential

equations

dx̃

dτ
= ξ(x̃), (2.6)

with x̃ = x when τ = 0.

In view of Lie’s first fundamental theorem, without loss of generality, it is as-

sumed that the one-parameter (ε) Lie group of transformations is parametrized

such that its law of composition is φ(ε, δ) = ε+δ so that ε−1 = −ε andX(ε) ≡ 1.

Due to this, the terms of the infinitesimals ξ(x) are now deducible from the

differential equation whose dependent variable x̃ depends on the independent

11



variable ε. That is,

dx̃

dε
= ξ(x̃), (2.7)

with x̃ = x when ε = 0.

Lie in his work, has shown that an alternative way to solving associated dif-

ferential equations to get infinitesimals is to introduce an operator known as

the infinitesimal generator. We deduce the infinitesimals from solving the re-

sulting system of determining equations.

Definition 2.1.6: An operator such that

X =
n∑
i=1

ξi(x)
∂

∂xi
, (2.8)

where the ξi(x) are the components of ξ(x) for each i = 1, ..., n, is called an

infinitesimal generator of the one-parameter Lie group of transformations in

equation (2.2). Important relation between one-parameter Lie group of trans-

formations and its infinitesimal transformations is that they are equivalent

[2]. Due to Lie’s First Fundamental theorem, this also suggests that the one-

parameter Lie group of transformations is also equivalent to its infinitesimal

generator.

The infinitesimal generator is algorithmically obtained. But before detailing

how is computed, we need to learn about surfaces and action of the symmetry

operator on the surface.
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Definition 2.1.7: Given a one-parameter Lie group of transformations in

equation (2.2), a function F (x) which is such that F (x) = 0 is referred to as

an invariant surface for a one-parameter Lie group of transformations (2.2)

provided F (x̃) = 0 when F (x) = 0.

Definition 2.1.8: Suppose a function can be written in a solved form F (x) =

xn − f(x1, x2, ..., xn−1) = 0, then taking into consideration one-parameter Lie

group of transformations (2.2), the surface is referred to as the invariant surface

of (2.2) if and only if

XF (x) = 0 when F (x) = 0. (2.9)

Important point from definition 2.1.8 is that the infinitesimals ξi(x) may now

be computed from the invariant surface as a result deduce the “equivalent”

group of transformations admitted by the differential equation in consideration.

The obtained group due to the invariance principle maps any solution curve

of the differential equation into another of the same equation. We now detail

an algorithm behind obtaining the transformation groups given an invariant

surface.
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2.2 Lie Point Symmetries

A set of Lie symmetries (infinitesimal generators) admitted by an equation

defines a (Lie) group of transformations under which the equation is invariant.

Let us consider the differential equation with one dependent, given by u, and

n independent variables, x = (x1, x2, ..., xn),

F (x, u,
1
u,

2
u, ...,

k
u) = 0, (2.10)

where
k
u represents all the partial differential coordinates of the kth order of u

with respect to each xi . The one-parameter Lie group of transformations

x̃ = X(x, u; ε) = x+ εξ(x, u) +O(ε2)

ũ = U(x, u; ε) = x+ εη(x, u) +O(ε2) (2.11)

acting on (x , u)-space and depending on a continuous parameter, ε are said

to be Lie point symmetry group of equation (2.10) if the equation has the

same form in the new variables x̃, ũ as in the original variables and has as its

infinitesimal

χ(x, u) = (ξ(x, u), η(x, u)) (2.12)

with corresponding infinitesimal generator

X =
∑
i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
, (2.13)
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where u = u(x) = u(x1, ..., xn). We note from text such as Bluman and Kumei

[2] that the kth prolongation of the symmetry is given by

X [k] = X + η
(1)
i

∂

∂ui
+ ...+ η(k)

ui1,i2,...,ik

∂

∂ui1,i2,...,ik
(2.14)

where k = 1, 2, ... and the extended infinitesimals η(k) are given by

η
(1)
i = Diη − (Diξj)uj, (2.15)

η
(k)
i1,i2...ik

= Dikη
(k−1)
i1i2...ik−1

− (Dikξj)ui1,i2...ik−1j

where i = 1, 2, ..., n and il = 1, 2, 3, ..., n for l = 1, ..., k with k = 2, 3, ..., and

Di is the total derivative operator given explicitly by

Di =
d

dxi
=

∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ ...+ ui1i2...in

∂

∂ui1,i2...in
+ ... (2.16)

We aim to obtain X which is obtained from the following invariance principle

of a PDE. Suppose the operator X in equation (2.13) is the infinitesimal

generator of the transformations in equation (2.11). Then the infinitesimal

transformations in (2.11) are said to be admitted by the PDE of the form of

equation (2.10)

F (x, u,
1
u,

2
u, ...,

k
u) = 0, (2.17)

provided

X [k](F (x, u,
1
u,

2
u, ...,

k
u))|F=0= 0 (2.18)
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where X [k] is the k-prolongation of X and |F=0 means evaluated at the solved

form of equation (2.17). Solving the invariance condition in equation (2.18)

using the fact that it is independent of the derivatives of u, one can deduce

the system of undetermined partial differential equations in ξ and η, which

when solved we result with Lie symmetries admitted by the given surface. We

illustrate this concept with a way of example.

Let us consider a nonlinear potential Burgers′ equation

ut = uxx + u2
x. (2.19)

In this case the symmetry generator in equation (2.13) will have the form

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (2.20)

Extending this symmetry generator to second prolongation results with,

X [2] = X + ηx
∂

∂ux
+ ηt

∂

∂ut
+ ηxx

∂

∂uxx
+ ηxt

∂

∂uxt
+ ηtt

∂

∂utt
(2.21)
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where ηt, ηx, ηtt, ηxt and ηxx are respectively deduced from equation 2.15 as

ηt = ηt + utηu − utτt − u2
t τu − uxξt − utuxξu, (2.22)

ηx = ηx + uxηu − utτx − utuxτu − uxξx − u2
xξu, (2.23)

ηtt = ηtt + 2utηtu + uttηu + u2
tηuu − 2uttτt − utτtt − 2u2

t τtu − 3ututtτu (2.24)

− u3
t τuu − 2utxξt − uxξtt − 2utuxξtu − u2

tuxξuu − (uxutt + 2ututx)ξu,

ηtx = ηtx + uxηtu + utηxu + uxtηu + utuxηuu − utx(τt + ξx)− utτtx − uttτx

− utux(τtu + ξxu)− u2
t τxt − (2ututx + uxutt)τu − u2

tuxτuu − uxξtx

− uxxξt − u2
xξtu − (2uxutx + utuxx)ξu − utu2

xξuu, (2.25)

ηxx = ηxx + 2uxηxu + uxxηu + u2
xηuu − 2uxxξx − uxξxx − 2u2

xξxu − 3uxuxxξu

− u3
xξuu − 2utxτx − utτxx − 2utuxτxu − (utuxx + 2uxutx)τu − utu2

xτuu.

(2.26)

Applying the second prolongation in equation (2.21) on a potential Burgers′

equation (2.19) this results with ξ, τ and η satisfying the following symmetry

conditions

ηt = ηxx + 2uxη
x (2.27)

If we respectively substitute ηt, ηxx and ηx from equations (2.22), (2.26) and

(2.23) in equation (2.27) ( and also substituting uxx+u2
x for ut and simplifying),
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results with the following infinitesimals

ξ = c1 + c4x+ 2c5t+ 4c6xt,

τ = c2 + 2c4t+ 4c6t
2, (2.28)

η = ρ(x, t)e−u + c3 − c5x− 2c6t− c6x
2,

where c1, ..., c6 are any arbitrary constants and ρ(x, t) is an arbitrary solution

to the heat equation: ρt = ρxx. The symmetry algebra is thus generated by

X1 = ∂x, (2.29)

X2 = ∂t, (2.30)

X3 = ∂u, (2.31)

X4 = x∂x + 2t∂t, (2.32)

X5 = 2t∂x − x∂u, (2.33)

X6 = 4tx∂x + 4t2∂t − (x2 + 2t)∂u, (2.34)

which are deduced from the following symmetry generator

X = (c1 + c4x+ 2c5t+ 4c6xt)∂x + (c2 + 2c4t+ 4c6t
2)∂t + ρ(x, t)e−u∂u

+ (c3 − c5x− 2c6t− c6x
2)∂u. (2.35)

That is, choosing c1 = 1 and all other c′s as zero, we result with

X1 = ∂x, (2.36)
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If we choose c2 = 1 and all other c′s as zero, we result with

X2 = ∂t. (2.37)

Continuing in this manner choosing c3 = 1 and all other c′s as zeros, c4 = 1

and all other c′s as zeros, c5 = 1 and all other c′s as zeros, c6 = 1 and all other

c′s as zeros, and all c′s zeros; we respectively obtain the remaining generators

as

X3 = ∂u, (2.38)

X4 = x∂x + 2t∂t, (2.39)

X5 = 2t∂x − x∂u, (2.40)

X6 = 4tx∂x + 4t2∂t − (x2 + 2t)∂u, (2.41)

and

Xρ = ρ(x, t)e−u∂u (2.42)

where ρ is any solution to the heat equation. Nowadays there are many compu-

tational computer packages the algorithm is build in to compute the Lie point

symmetries. In this thesis the computer packages Sym [24] run in conjunction

with Mathematica have been used to compute the Lie point symmetries. The

symmetries in equation (2.29) to (2.34) constitute the Lie algebra of the po-

tential Burgers′ equation and they are very useful for computing the invariant

solutions for the model.
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2.3 Lie Algebras

Suppose infinitesimal generator Xa, corresponding to the parameter εa of the

r−parameter Lie group of transformations (2.2), is

Xa =
n∑
j=1

ξaj(x)
∂

∂xi
, a = 1, 2, ..., r (2.43)

then the commutator of Xa and Xb, also known as the Lie bracket [Xa, Xb]; is

another first order operator

[Xa, Xb] = Xa(Xb)−Xb(Xa)

=
n∑

i,j=1

[(
ξai(x)

∂

∂xi

)(
ξbj(x)

∂

∂xj

)
−
(
ξbi(x)

∂

∂xi

)(
ξaj(x)

∂

∂xj

)]

=
n∑
j=1

ηj(x)
∂

∂xj
, (2.44)

where

ηj(x) =
n∑
i=1

[
ξai(x)

∂ξbj(x)

∂xi
− ξbi(x)

∂ξaj(x)

∂xi
(x)

]
(2.45)

and

ξaj(x) =
∂x̃j
∂εa
|ε=0=

∂Xj(x; ε)

∂εa
|ε=0 (2.46)

a = 1 , 2 , ..., r ; j = 1 , 2 , ..., n.

Definition 2.3.1 The operator above together with a vector space L is said

to be a Lie algebra if a Lie bracket [Xa, Xb] of the infinitesimal generator Xa

and Xb satisfies the following properties:
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1. It is antisymmetric [Xa, Xb] = -[Xb, Xa],

2. It is bilinear: [c1Xa + c2Xb, Xc]=c1[Xa, Xc] + c2[Xb, Xc],

3. It satisfies the Jacobi identity: [Xa, [Xb, Xc]]+[Xb, [Xc, Xa]]+[Xc, [Xa, Xb]] =

0.

Definition 2.3.2

If for all vectors Xa and Xb in L the commutator [Xa, Xb] = 0, then a Lie

algebra L is called Abelian.
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[Xi, Xj] X1 X2 X3 X4 X5 X6

X1 0 0 0 X1 −X3 2X5

X2 0 0 0 2X2 2X1 4X4 − 2X3

X3 0 0 0 0 0 0
X4 −X1 −2X2 0 0 X5 2X6

X5 X3 −2X1 0 −X5 0 0
X6 −2X5 2X3 − 4X4 0 −2X6 0 0

Table 2.1: Lie bracket of a potential Burgers’ Equation
.

Using the generators in equations (2.29) to (2.34), the commutators are com-

puted and presented in Table 2.1 above and we illustrate how the Lie Bracket

or the commutator [X1, X6] is computed:

[X1, X6] = X1X6 −X6X1

= ∂x(4tx∂x + 4t2∂t − (x2 + 2t)∂u)

− (4tx∂x + 4t2∂t − (x2 + 2t)∂u)∂x

= (4t∂x − 2x∂u)− 0

= 2(2t∂x − x∂u)

= 2X5.

2.4 Group-Invariant Solutions

In the situation when one is confronted with a complicated system of partial

differential equations arising from some physically important problem, the dis-

covery of any explicit solution whatsoever is always of great interest. Explicit

solutions can more often than not be used as models for physical experiments,
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as benchmarks for testing numerical methods. The method used to find group-

invariant solutions, generalizing the well-known techniques for finding similar-

ity solutions, provide a systematic computational method for determining a

large class of special solutions. The group-invariant solutions are character-

ized by their invariance under some symmetry group of the system of partial

differential equations. The fundamental concept on group-invariant solutions

is that the solutions which are invariant under a given r-parameter symme-

try group of the system can all be found by solving a system of differential

equations involving r fewer independent variables than the original system.

2.4.1 Reduction using Lie Point Symmetries

Once the Lie point symmetries have been obtained an important step is to

reduce the number of independent variables of a given PDE using Lie meth-

ods. The resulting solution deduced from the reduction is the resulting group

invariant solution. Suppose u = θ(x) is an invariant solution of equation (2.10)

resulting from its invariance under symmetry (2.13) then u = θ(x) satisfies [2]

X(u− θ(x)) = 0 when u = θ(x). (2.47)

Equation (2.47) is referred to as the invariance surface condition for invari-

ant solution corresponding to the symmetry in equation (2.13). A procedure

to solve this is to solve the invariance condition. That is, the following cor-

responding Lagrange equations associated with u = θ(x) are obtained and
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solved,

dx1

ξ1(x, u)
=

dx2

ξ2(x, u)
= .... =

dxn
ξn(x, u)

=
du

η(x, u)
. (2.48)

If (X1(x, u), X2(x, u), ..., Xn−1(x, u)), v(x, u) are the obtained n independent

invariants of equation (2.48) with ∂v
∂u
6= 0, then resulting solution is given

implicitly by the invariant form

v(x, u) = φ(X1(x, u), X2(x, u), ..., Xn−1(x, u)). (2.49)

2.5 Optimal Systems of Lie Symmetries

Given a group that leaves a PDE invariant, it is always desirable to minimize

the search for group-invariant solutions to that of finding inequivalent branches

of solutions, which leads to the concept of the optimal systems. Consequently,

the problem of determining the optimal system of subgroups is reduced to the

corresponding problems for subalgebras. In application, one often constructs

the optimal system of subalgebras, from which the optimal systems of subgroup

and group invariant solutions are reconstructed.

2.5.1 Adjoint representation

An optimal system of a Lie algebra is a set of l-dimensional subalgebras such

that every l-dimensional subalgebra is equivalent to a unique element of the set

under some element of the adjoint representation. To construct the conjugacy

classes we utilise the adjoint action. In particular, for Lie algebras this adjoint
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action may be described by the Baker-Campbell-Hausdorf formula [38],

Ad(exp(εXa))Xb = Xb+ε[Xa, Xb]+
ε2

2!
[Xa, [Xa, Xb]]+

ε3

3!
[Xa, [Xa, [Xa, Xb]]]+ ...

(2.50)

where [Xa, Xb] denotes the commutator of generators Xa and Xb. Utilising

this formula, it is possible to construct a table to summarise the adjoint rep-

resentation of adjoint operators of each of the symmetries admitted by any

model under consideration.

Let us consider the Achdou et al. [28] knowledge diffusion model in macroe-

conomics below

ft(x, t)−
σ2

2
fxx(x, t) + αf(x, t)(1− f(x, t)) = 0, (2.51)

where f(x, t) is the distribution of productivity and f(x, 0) = f0(x) being the

initial productivity distribution. In this problem setup, the economy com-

prise of population of continuum of individuals indexed by their production or

knowledge z ∈ <+. The economy is described by its distribution of production

with cdf G(z, t). The evolution of G is modelled as a process of individuals

meeting others from the same economy, comparing ideas, and improving their

own productivity. Meetings between individuals are set to happen at Poisson

intensity α, and from the view point of an individual, the meeting is a random

draw from the distribution G. When a meeting does occur, person z compares

his or her productivity with person he or she meets and leaves the meeting

with the best of the two productivities max
{
z, z

′}
. Individual productivities
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fluctuate also in the absence of a meeting. In particular individuals “experi-

ment” and their productivity increase or decrease according to the process dlog

zt = σdWt, σ > 0. When log productivity x=log z, then the distribution of

productivity f(x, t) satisfies the partial differential equation in equation (2.51).

This model as pointed out by [37] is known as Fisher-KPP-type equation and

it has been applied in many subjects such as Biology [35] and Mathematics

[36]. In this present case we consider its application in Macroeconomics.

2.5.2 Lie point symmetries admitted by the Fisher pro-

duction model

In this section we compute the Lie point symmetries associated with the Fisher

production model. Suppose equation (2.20) is an infinitesimal generator of a

symmetry group of equation (2.51) expressed in solved form and F is replaced

by variable u in (2.51) to have

ut −
σ2

2
uxx + αu(1− u) = 0, (2.52)

then the invariance condition dictated by the production model is as follows:

X [2]

{
ut −

σ2

2
uxx + αu(1− u)

} ∣∣∣∣
(2.52)

= 0. (2.53)
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Using the computer package Sym run in conjunction with Mathematica we

solve equation (2.53) to result with the following infinitesimals

τ = c1,

ξ = c2, (2.54)

η = 0,

where c1, c2 are arbitrary constants.

From equation (2.54), the two infinitesimal generators of equation (2.52) are

deduced as

X1 =
∂

∂t
, X2 =

∂

∂x
. (2.55)

Using the Lie’s equations in equation (2.7) and the infinitesimal generators in

equation (2.55) the one-parameter groups of symmetries are obtained as:

X1 : x̃ = x, t̃ = t+ ε1, ũ = u

X2 : x̃ = x+ ε2, t̃ = t, ũ = u (2.56)

2.5.3 Exact Solutions of Eq. (2.52)

After one has determined the infinitesimal generators as done in equation

(2.55), the similarity variables and newly explicit solutions for the model,

equation (2.52), can be found by solving the associated characteristic equa-

tions as stated earlier in this chapter. The solutions obtained in this section
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are trivial solutions we therefore report solutions for X2 and considers optimal

system of equation (2.52) in the next section.

Example. We consider the infinitesimal generator X2. Solving the charac-

teristic equations

dx

1
=
dt

0
=
du

0
(2.57)

associated with this generator yields the invariants

ζ = t and u(x, t) = ω(ζ) (2.58)

where ζ = t is the similarity variable and ω(ζ) satisfy the following similarity

reduction equation

ω
′
+ αω(1− ω) = 0, (2.59)

which solves to

ω(t) =
1

1 + Ceαt
, (2.60)

where C is an arbitrary constant. Therefore the invariant solutions resulting

from X2 are reported as

u(x, t) =
1

1 + Ceαt
. (2.61)
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2.5.4 One-Dimensional Optimal System of Subalgebras

and Exact Solutions of Eq. (2.52)

The reduction of the independent variables by one is possible under the con-

struction of any linear combination of our generators of symmetry Xi, i = 1,

2. We therefore construct a set of minimal known as optimal systems. From

the generators in equation (2.55), we obtain the commutators as

[X1, X1] = [X1, X2] = [X2, X1] = [X2, X2] = 0. (2.62)

Using equation (2.50) formula and these obtained commutators, we result we

result with the following adjoint representations

Ad(exp(εX1))X2 = Ad(exp(εX2))X2 = X2

Ad(exp(εX1))X1 = Ad(exp(εX2))X1 = X1. (2.63)

Following the method in [3] to compute an optimal system of subalgebras, let

us consider a linear combination of the symmetry generators

X = a1X1 + a2X2. (2.64)

The aim is to simplify as many coefficients ai as possible through application

of adjoints maps to X. Now let a2 6= 0 in equation (2.64) and rescale a2 such
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that a2=1. Acting on X by Ad(exp(εX1)) we obtain

Ad(exp(εX1))X = Ad(exp(εX1))(a1X1 +X2)

= a1Ad(exp(εX1))X1 + Ad(exp(εX1))X2 (2.65)

= a1X1 +X2.

If now a2 = 0, then there is no more simplification since we have X1 when

rescaling a1 = 1. Therefore, an optimal system of subalgebras is given by the

following set {X1, a1X1 +X2}.

From this optimal system of one-dimensional subalgebras we compute invariant

solutions of equation (2.52). X1 does not provide any solution. In subalgebra

a1X1 +X2 if we replace a1 by constant γ then the corresponding characteristic

equation

dt

0
=
dx

γ
=
du

0
(2.66)

yields the invariants

ζ = x− γt, u(x, t) = ω(ζ). (2.67)

Substituting in equation (2.52) results with ω(ζ) satisfying the following sim-

ilarity reduction equation

−γω′(ζ)− βω′′(ζ) + αω(ζ)(1− ω(ζ)) = 0, (2.68)
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where β = σ2

2
. Using the hyperbolic tangent method, and setting σ =

√
2,

equation (2.68) solves to the exact solution

ω(ζ) =
1

4

{
1− tanh

[
−c1 +

1

12

√
6αζ

]}2

, (2.69)

where γ = −5
√
α√
6

and c1 is a constant. Therefore the exact invariant solutions

are given by

u(x, t) =
1

4

{
1− tanh

[
−c1 +

1

12

√
6α(x− γt)

]}2

. (2.70)

We notice from equation (2.70) that the Fisher production model in equation

(2.52) admits the “travelling wave” solution. That is, a solution of the form

u(x, t) = φ(x− γt). (2.71)
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Chapter 3

Mathematics of Finance

Preliminaries

In financial markets financial products known as derivatives have become in-

creasingly important. This is due to the fact that derivatives serve several

purposes, namely, they are normally added to bond issues and also used by

some companies in compensation plans of their executives. More importantly,

they can be used to transfer risk in mortgages from one original lender to

another investor. It has reached a point that those who work in finance, and

many those who work outside finance, need to understand how derivatives

work, how they are used, and how they are priced. In order to shed more light

into these issues, especially the pricing of derivatives that is fundamental in

this thesis; we start first by giving some definitions of mathematical tools that

have been used throughout the thesis. We define concepts such as Brownian

motion, stochastic process, filtration, random variables, stochastic differential
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equation, etc., and give some basic results. Our main references on such ba-

sics are Etheridge [9], Wilmott et al. [7], Oksendal [26] and Grimmett and

Stirzaker [8].

3.1 Random Variables and Stochastic Processes

The triple (Ω,F ,P), comprising of a set Ω, a σ− field F of subsets of Ω, and a

probability P on (Ω,F), is called a probability space. The collection F is a σ-

field, that is, Ω ∈ F and F are closed under the operations of countable union

and taking complements. A probability measure P on (Ω,F) is a function

P : F → [0, 1] satisfying

1. P(∅) = 0,

2. P(Ω) = 1,

3. if A1, A2, ... is a collection of disjoint members of F, in that Ai ∩ Aj = ∅

for all pairs i , j satisfying i 6= j, then

P (∪∞i=1Ai) =
∞∑
i=1

P(Ai).

Definition 3.1.1

Let Ω be a nonempty set. A random variable is a function X : Ω −→ < with

the property that {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ <. Such a function is

said to be F− measurable.
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Definition 3.1.2

The cumulative distribution function of a random variable X is the function

F : < −→ [0, 1] given by F (x) = P(X ≤ x).

Definition 3.1.3

Let T be a fixed positive number, and assume that for each t ∈ [0, T ] there

is a σ-algebra Ft. Assume further that Fs ⊂ Ft for all 0 ≤ s < t < ∞ and

F =
⋃
t≥0Ft.

Then we call the collection Ft of σ-algebras a filtration and (Ω,F ,P,Ft) is

called a filtered probability space.

Ft is taken to be the set of information available to the observer (e.g. the

investor or the bank manager) up to time t. More specifically, {Ft}t>0 is con-

sidered to be the flow of information over certain time and it is assumed that

the bank does not lose information as time passes (hence why we say Fs ⊂ Ft

for s < t).

Definition 3.1.4

A real-valued stochastic process is an indexed family of real-valued functions,

{Xt}t≥0 on Ω. {Xt}t≥0 is said to be adapted to the filtration {Ft}t≥0 if Xs is

Ft-measurable for each t ≥ s.
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3.2 Brownian Motion

This is the process W = {W (t) : t ≥ 0}, indexed by continuous time and

taking values in the real line <, which is time-homogeneous with independent

increments, and with the vital extra property that W (t) has the normal distri-

bution with mean 0 and variance σ2t for some constant σ2. Brownian motion

is regarded as the cornerstone of the modern theory of random processes [8].

Historically in the year 1827, Robert Brown observed the complex and erratic

motion of grains of pollen suspended in a liquid. It was later discovered that

such irregular motion comes from extremely large number of collisions of the

suspended pollen grains with the molecules of the liquid. Norbert Wiener pre-

sented a mathematical model for this motion based on the theory of stochastic

processes. The position of a particle at each time t ≥ 0 is a three dimensional

random vector Wt.

Definition 3.2.1

A real-valued stochastic process {Wt}t≥0 is a P-Brownian motion (or a P-

Wiener process) if for some real constant σ, under P,

1. for each s ≥ 0 and t > 0 the random variable Wt+s −Ws has the normal

distribution with mean zero and variance σ2t,

2. for each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ t2 ≤ ... ≤ tn, the random

variables
{
Wtr −Wtr−1

}
are independent,

3. W0 = 0,

4. Wt is continuous in t ≥ 0.
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3.3 Stochastic Integration

Brownian motion [23], has played a vital role in stochastic integration of risky

asset prices and their modelling. Wiener and other researcher expanded the

discovery by Brown by deriving and proving many of the properties associated

with the paths of Brownian motion. The following two key properties relates

the stochastic integration: (1) the paths of Brownian motion have a non-

zero finite quadratic variation, such that on an interval (s, t), the quadratic

variation is (t−s), and (2) the paths of Brownian motion have infinite variation

on compact time intervals, almost surely. Processes used to model stock price

are usually functions of one or more Brownian motions. In this regard, suppose

that the stock price is of the form St = f(t, Zt). Using Taylor’s theorem, we

can write

f(t+ δt, Zt+δt)− f(t, Zt) = δt
.

f (t, Zt) +O(δt2) + (Zt+δt − Zt)f
′
(t, Zt)

+
1

2!
(Zt+δt − Zt)2f

′′
(t, Zt) + ... (3.1)

where the notation
.

f , f
′

and f
′′

must be interpreted as
.

f (t, x) = ∂f
∂t

(t, x),

f
′
(t, x) = ∂f

∂x
(t, x) and f

′′
(t, x) = ∂2f

∂x2
(t, x). The dynamics of a stock price is

commonly modelled by way of a stochastic differential equation as follows (see

for example Etheridge [9, p 75]):

dSt =
.

f (t, Zt)dt+ f
′
(Zt)dZt +

1

2
f
′′
(Zt)dt. (3.2)
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The differential equation above is also resembled in integrated form as follows,

St = S0 +

∫ t

0

.

f (s, Zs)ds+

∫ t

0

f
′
(Zs)dZs +

∫ t

0

1

2
f
′′
(Zs)ds. (3.3)

3.3.1 Itô Process

Itô process (or stochastic integral) is a stochastic process Xt on (Ω,F ,P) of

the form [26]

Xt = X0 +

∫ t

0

a(Xt, t)ds+

∫ t

0

b(Xt, t)dZs. (3.4)

If Xt is an Itô process of the form (3.4) the equation is sometimes written in

the shorter differential form

dXt = a(Xt, t)dt+ b(Xt, t)dZt, (3.5)

where a(Xt, t) is the drift rate, b(Xt, t) is the variance rate or diffusion and Zt

is a standard Wiener process.

3.3.2 Itô Formula

Let Xt be an Itô process given by

dXt = adt+ bdZt, (3.6)

and g(t, x) ∈ C2([0,∞) × R) (i.e., g is twice continuously differentiable on

[0,∞)× R),
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then

Yt = g(t,Xt)

is again an Itô process, and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt).(dXt)

2, (3.7)

where differentials are multiplied according to the rules

dt.dt = dt.dZt = dZt.dt = 0, dZt.dZt = dt. (3.8)

3.4 Standard Vanilla Option

A standard option is a financial contract that gives its holder the right to

buy or sell the underlying asset at a certain specified price at a specified fu-

ture date. Finding the appropriate price of this financial contract is crucial

in options trading as any discrepancies in the pricing could lead to profitable

opportunities for other parties. That is, if the market price of a financial con-

tract is smaller than the true value of the contract, it is said that the contract

is undervalued, and it is profitable to buy the contract; and if its market price

is greater than the true value of the contract, it is said that the contract is

overvalued, and it is profitable to write or sell the contract. Therefore to de-

termine the fair price of all kinds of financial derivatives securities is important

in financial markets.
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Several approaches can be used to price financial contracts such as, the Black-

Scholes pricing model, the arbitrage arguments, the Monte-Carlo simulations

and solving the partial differential equation associated with the price of the fi-

nancial contract. The Black-Scholes pricing model was the one more preferred

to be used as benchmark for pricing many financial securities.

The Black-Scholes model concerns an economy which comprises of two assets,

a “bond” (or money market account) whose value grows at a continuously

compounded constant interest rate r, and a stock price per unit is a stochastic

process S = St : t ≥ 0 indexed by time t. Upon using arbitrage arguments and

Ito’s lemma one is able to deduce Black-Scholes PDE model in equation (1.1).

In this work though still abiding by Black-Scholes model analysis we focus on

interest rate derivatives.

3.4.1 Bond Options

Interest rate derivatives are instruments whose payoffs are dependent in some

way on the level of interest rates. Valuation of interest rate derivatives is

more complex as compared to equity and foreign exchange derivatives due to

complicated behaviour of an individual interest rate as compared to that of

stock price or an exchange rate. The interest rate derivative we consider in

this case is the bond option. A bond is a contract, paid for up front, which

yields a known amount on a known date in the future, the maturity date,

t = T . A bond may also pay a known cash dividend known as coupon at
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fixed times during the contract life. If there are no coupon payment then we

result with a zero-coupon bond. The bond’s main use is to raise capital by

governments and companies where the up-front premium is regarded as a loan

to the government or company.

3.4.1.1 Deterministic bond model

Suppose F represents the price of our contract, the bond in this context. If

the interest rate r(t) and coupon λ(t) are known functions of time, the bond

value is therefore a function of time as well. That is, F = F (t). Now let us

consider a portfolio that comprise of one bond. The value of the bond at time

intervals dt changes as follows,

dF

dt
dt. (3.9)

Suppose during this time changes, the coupon payments λ(t) are received, then

our portfolio holdings will then change as follows:

(
dF

dt
+ λ(t)

)
dt. (3.10)

The portfolio should earn risk-free rate r(t) due to arbitrage considerations,

so that (
dF

dt
+ λ(t)

)
dt = r(t)Fdt. (3.11)

Thus,

dF

dt
+ λ(t) = r(t)F. (3.12)
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Equation (3.12) is a linear first order differential equation with its right hand

side reflecting the cash that one would receive if the bond was to be converted

to cash at time t. Solving it, with the integrating factor as

I.F. = e−
∫
r(τ)dτ (3.13)

results with the following deterministic bond model,

F (t) = e−
∫ T
t r(τ)dτ

(
Z +

∫ T

t

λ(τ)e
∫ T
t r(s)dsdτ

)
(3.14)

with F (T ) = Z as the constant of integration. We notice therefore that the

bond value is the sum of the present face value and the coupon stream. If there

exists the zero-coupon bonds with all possible maturity dates and interest still

deterministic then, λ = 0, so that

F (t, T ) = Ze−
∫ T
t r(τ)dτ . (3.15)

If the bond prices were to be quoted today, at time t, for all values dated T

then

ln

(
F (t, T )

Z

)
= −

∫ T

t

r(τ)dτ. (3.16)

One important point that can be deduced from equation (3.16) is that, if

the market prices of the zero-coupon bonds genuinely reflect the deterministic

interest rate, which is known, then the interest rate at future dates is deduced

from equation (3.16) as,

r(T ) =
−1

F (t, T )

∂F

∂T
, (3.17)

41



taking into consideration that ∂F
∂T

< 0 since the interest rate r is positive.

3.4.1.2 Bond Equation under Stochastic Model

In this previous section the interest rate has been taken to be deterministic. If

there is uncertainty about the future course of interest rate, then the interest

rate is normally modelled as a random variable, such as shown in equation

(1.3).

In order to derive stochastic bond model, suppose that the interest rate sat-

isfies the same SDE in equation (1.3) and our portfolio contains bonds with

different maturity dates. That is,

Π = F (t, r, T1)−∆F (t, r, T2) ≡ F1 −∆F2. (3.18)

The value of the portfolio dΠ will change as follows under the time step dt,

dΠ = dF1 −∆dF2 (3.19)

with

dFi
Fi

= aidt+ bidZ, (3.20)

ai =
1

Fi

(
Fi,t + aFi,r +

1

2
b2Fi,rr

)
, (3.21)

bi =
1

Fi
bFi,r. (3.22)
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Fi denotes the price associated with maturity Ti for i = 1, 2; while the sub-

scripts t, r and rr in Fi represents the derivatives of Fi with respect to t and

r.

If in dΠ we choose ∆ = F1,r

F2,r
, then this cancel the random term. Due to ar-

bitrage argument the portfolio must earn risk-free rate of interest. That is,

dΠ = rΠdt so that

a1F1dt−∆a2F2dt = r(F1 −∆F2)dt. (3.23)

Rearranging we have,

(a1 − r)
F1

F1,r

= (a2 − r)
F2

F2,r

. (3.24)

This is equivalent to,

a1 − r
b1

=
a2 − r
b2

. (3.25)

The left hand side of equation (3.25) is a function of T1 whereas its right hand

side is a function of T2. Therefore the equation is independent of T . If we

express it as known function of γ(r, t) we have

a− r
b

= γ(r, t). (3.26)

Lastly, plugging ai and bi back in the equation and dropping the index i, result

with the following bond equation

Ft +
b2

2
Frr + (a− γb)Fr − rF = 0 (3.27)
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The function γ(r, t) = a−r
b

is called the market price of risk. Solving this model

result with the price of the bond model under stochastic interest rate dependent

on the three parameter functions, namely, drift a(r, t), volatility b(r, t) and

market price of risk γ(r, t). In the next chapter we focus our attention on

the functional interest rate model which has great advantages of satisfying

all properties of interest rate and produce positive interest rate upon certain

restriction applied to the range of the aforementioned model.
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Chapter 4

Symmetry Analysis of an

Interest Rate Derivatives PDE

Model in Financial Mathematics

Symmetry analysis by Lie have played vital role in deducing explicit solutions

of complex models whose formation comprise of partial differential equations.

This chapter is largely based on [22]. Contributing to the literature in this

field we apply Lie symmetry analysis to solve the zero-coupon bond pricing

equation whose price dynamics are described in terms of a partial differential

equation (PDE). We use computer software package SYM run in conjunc-

tion with Mathematica to compute new complete Lie symmetry group and

infinitesimal generators of a one-dimensional zero-coupon bond. We further-

more exercise our skills to solve to obtain a family of exact invariant solutions

that constitute the pricing models of the aforementioned contingent claim. The
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solutions are computed through solving the corresponding similarity reduction

equations associated with the derived infinitesimal generators. We conclude

this chapter by further applying Lie’s theory to generate more solutions via

group point transformations. Our findings are presented by way of graphs,

with application made to Vasicek interest rate model.

4.1 Introduction

Companies and governments raise capital by issuing financial instruments

known as bonds. A bond is a financial contract under which the issuer promises

to pay the other party certain amount of money in intervals together with a

lump sum of money at the end of agreed time. The money paid in intervals

is called coupons while the lump sum paid at the end of the contract is called

the principal. If there are no interim payments, the contract is called a zero-

coupon bond and the lump sum paid is the face value of the contract. Bond

price depends on interest rate which is used in most cases in financial mar-

kets for discounting as well as for defining payoff of the interest rate derivative

such as bond option. The valuation of this contract over a specific term de-

pends crucially on the random fluctuations of the interest rate market. The

construction of the valuation models for this type of financial security should

therefore incorporate the stochastic movement of interest rates into considera-

tion. In the case the contract has a short life span, deterministic interest rates

are considered whereas for long life span stochastic interest rates should be

considered. Several model structures have been considered in the past years
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to denote interest rate models. As point out by Goard [18], many of these

stochastic interest rate models can be embedded in the form

dr = (α + βr)dt+ σrγdZ, (4.1)

where α, β, γ, σ are constants and dZ is a standard Brownian motion. Of these

models, the Vasicek model [30] and Cox-Ingersoll-Ross (CIR) model [31] have

both proved to be tractable and empirically relevant in capturing properties

of interest rates, namely, mean- reversion and positivity of interest rate. That

is, as shown by Wilmott et al. [10] when the spot rate follows the SDE

dr = a(r, t)dt+ b(r, t)dZ, (4.2)

the price of the zero-coupon bond is obtained from solving the following PDE

Vt +
b2

2
Vrr + (a− κb)Vr − rV = 0, (4.3)

with terminal condition V (r, T ) = 1. A family of interest rate derivatives com-

prise of minute number of well-known tractable numerical methods to calibrate

its model parameters. This include binomial trees, Monte-Carlo simulation,

and finite-difference approximation of PDE. Using Lie’s classical method of

group invariants as defined in chapter 2, Goard [18] have derived new and sim-

ple solutions to the bond-pricing partial differential equation (4.3). She has

significantly expanded the class of analytical solvable models for bond options.

Sinkala et al. [20] have also computed new prices for bond PDE model with
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special consideration given to Vasicek and CIR models. They have determined

the symmetries of the valuation partial differential equation that are compat-

ible with terminal condition and then seeked the desired solution among the

invariant solutions arising from the obtained symmetries. Analytic approaches

and numerical methods have therefore seemed to be most favoured in solving

differential equations. This fact is supported by research work such as that of

Ibragimov and Gazizov [15], who introduced the idea of Lie symmetry anal-

ysis in finance problems when analysing the Black-Scholes pricing equation.

Pooe et al. [19] using transformations to reduce bond-pricing equation to heat

equation, obtained the solution to the zero-coupon bond via usage of obtained

transformations. Khalique et al. [21] proposed new invariant solutions and

conservation laws for Vasicek pricing equation model. Lie’s work have proved

in studies therefore to be one of the prominent analytical solver for obtaining

analytical solutions for differential equations.

Majority of the PDE models associated with pricing bond options incorpo-

rate either the Vasicek interest rate model [30] or Cox-Ingersoll-Ross (CIR)

model [31] due to them proving to be tractable and empirically relevant to

pricing interest rate derivatives. But it is a known fact that Vasicek model has

a drawback of admitting negative interest rate and does violating the positiv-

ity property of interest rate. In this work a functional interest rate model by

Luo et al. [27] satisfying the following SDE

dXt =

(
−η(t)Xt +

ε(t)

Xt

)
dt+ σ(t)dZt, (4.4)
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with {Zt}t≥0 being a Brownian motion, and ε, η, σ being functions of t; is

explored and used to derive the PDE model of the zero-coupon bond. In this

framework rt = f(Xt, t) is modelled as a function of Markov state variable

Xt and time t so that when f(Xt, t) is twice continuously differentiable in x

and continuously differentiable in t, when applying Itô formula, the following

stochastic differential equation associated with rt is deduced:

drt = df(t,Xt)

= ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)(dXt)

2 (4.5)

=

{
ft(t,Xt) +

σ(t)2

2
fxx(t,Xt) +

(
ε(t)

Xt

− η(t)Xt

)
fx(t,Xt)

}
dt

+ σ(t)fx(t,Xt)dZt.

If we confine f ’s co-domain to only positive real values, this enables one to

avoid the drawback of negative interest rate that make Vasicek interest rate

model less attractive. This interest rate model embeds most known inter-

est rate models which can be deduced for different choices of f , η, ε and σ.

Numerical methods such as binomial trees, Monte-Carlo simulation, and finite-

difference methods are the normal tools used to value financial products such

as interest rate derivatives. In this work we deviate from these approaches and

we use analytical approach of Lie symmetry analysis to derive four Lie point

symmetries plus an additional infinite sub-algebra; and these symmetries are

then used to obtain three types of closed-form solutions for the aforemen-

tioned pricing equation associated with the functional interest rate model. We

illustrate with an example by making application to the Vasicek interest rate
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model.

4.2 Bond pricing equation derivation and Sym-

metry Analysis

Let us consider a zero-coupon bond that pays h(r
T
) at maturity time T and

the functional interest rate model in equation (4.4). The payoff of this zero-

coupon bond associated with the functional interest rate model is expressed

as h(f(X
T
, t)) and its price is given by v(Xt, t), where

v(x, t) = E
(
e
∫ T
t f(Xs,s)dsh(f(XT , T ))|Xt = x

)
, t < T. (4.6)

Applying Feynman-Kac formula on equation (4.6), this results with v(x, t)

satisfying the following PDE

vt(x, t) +
σ2

2
vxx(x, t) +

(
−ηx+

ε

x

)
vx(x, t)− rv(x, t) = 0. (4.7)

4.3 Bond pricing equation symmetry analysis

The process of computing Lie symmetries of a PDE model is algorithmic in

nature. But due to tedious computations which are sometime very time con-

suming there are computer software packages readily available to assist in the

calculations. In this present chapter computer package SYM [24] run in con-

junction with Mathematica, and Maple 2020 [25] have been our main tools

50



for computations. As we have noted in chapter 2 that after one has obtained

the invariance condition of the associated model it is important to solve to

deduce the resulting infinitesimals. That is, constructing the symmetry group

as pointed out by Lie, is equivalent to the determination of the infinitesimal

generator

Γ = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u, (4.8)

where the infinitesimals ξ, τ and φ are functions of variables (x, t, u). These

infinitesimals are obtained from solving Lie’s invariance condition. That is, if

Γ[2] is the second extension or prolongation of Γ given by

Γ[2] = Γ + φx∂ux + φt∂ut + φxx∂uxx + φxt∂uxt + φtt∂utt , (4.9)

where

φt = Dt(φ− ξux − τut) + ξuxt + τutt,

φx = Dx(φ− ξux − τut) + ξuxx + τuxt,

φxx = D2
x(φ− ξux − τut) + ξuxxx + τuxxt,

...

and “D” represents the total derivative, i.e.

DxR =
∂

∂x
R + ux

∂

∂u
R + uxx

∂

∂ux
R + uxt

∂

∂ut
R + ...,
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then the invariance condition constituted by the zero-coupon bond pricing

model in equation (4.7) is

Γ[2]

{
ut(x, t) +

σ2

2
uxx(x, t) +

(
−ηx+

ε

x

)
ux(x, t)− ru(x, t)

} ∣∣∣∣
(4.7)

= 0.

(4.10)

Making use of SYM to solve equation (4.10), β = σ2

2
, the infinitesimals are

obtained as

τ =
e2ηtc1

η
− e−2ηtc2

η
+ c3

ξ = xe2ηtc1 + xe−2ηtc2 (4.11)

φ =

(
−1− ε

β
+
r

η
+
x2η

β

)
e2ηtuc1 −

r

η
e−2ηtuc2 + uc4 +B(x, t),

where c1, c2, c3, c4 are any constants and B(x, t) is a solution of equation (4.7).

The arbitrary constants in equation (4.11) constitute an infinite dimensional

Lie algebra of symmetries and they are given as

Γ1 =
∂

∂t
,

Γ2 = −e
−2ηt

η

∂

∂t
+ xe−2ηt ∂

∂x
− re−2ηt

η
u
∂

∂u
,

Γ3 =
e2ηt

η

∂

∂t
+ xe2ηt ∂

∂x
+

(
−1− ε

β
+
r

η
+
x2η

β

)
ue2ηt ∂

∂u
,

Γ4 = u
∂

∂u
, and (4.12)

ΓB = B(x, t)
∂

∂u
,

where B(x, t) is an arbitrary solution of our model in equation (4.7). Using

the Lie point symmetries in equation (4.12), we deduce the Lie point trans-
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formations or one-parameter groups of symmetries ψ : (x, t, u) → (x̃, t̃, ũ) of

the zero-coupon bond model in equation (4.7) with ũ(x̃, t̃) as its solution. Us-

ing the five obtained infinitesimal generators in equation (4.12) and solving the

following associated ordinary differential equations (with κ as one-parameter):

dx̃

dκ
= ξ(x̃, t̃, ũ),

dt̃

dκ
= τ(x̃, t̃, ũ),

dũ

dκ
= φ(x̃, t̃, ũ) (4.13)

subject to the initial conditions

x̃|κ=0= x, t̃|κ=0= t, ũ|κ=0= u, (4.14)

we result with the corresponding five one-parameter groups of symmetry for

the zero-coupon bond pricing equation (4.7)

ψ1 : (x, t, u) → (x, t+ κ1, u)

ψ2 : (x, t, u) →
[
xe(e−2ηtκ2),

1

2η
ln

{
−2η

(
κ2

η
− e2ηt

2η

)}
, e
−rκ2
ηe2ηt u

]
ψ3 : (x, t, u) →

[
xe(e

2ηtκ3),
−1

2η
ln

{
−2η

(
κ3

η
− e2ηt

2η

)}
, ue

(
1+ ε

β
− r
η
−x

2η
β

)
e2ηtκ3

]
ψ4 : (x, t, u) → (x, t, ueκ4) (4.15)

ψ5 : (x, t, u) → (x, t, u+B(x, t)eκ5)

where κi, i=1, 2, ...,5 are arbitrary constants.
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4.4 Exact Invariant Solutions of Eq. (4.7)

Once the infinitesimal generators have been obtained, we then use them to

compute the similarity variables from the corresponding Lagrange equations.

Solving the Lagrange equations results with a family of new invariant solutions

for the zero-coupon bond pricing model associated with the functional interest

rate model. It has been shown in chapter 2 that given any partial differential

equation of the form

∆(x, t, u, ux, ut, uxx, uxt, utt...) = 0, (4.16)

a function u = θ(x, t) that results from its invariance under the corresponding

infinitesimal generator Γ constitute an invariant solution of the PDE provided:

Γ(u− θ(x, t)) = 0 when u = θ(x, t). (4.17)

Therefore applying this important concept we solve the associated Lagrange

equations deduced from the associated infinitesimal generators in equation

(4.12). This results with the following three types of close-form invariant so-

lutions of the zero-coupon bond pricing equation (4.7) and they are presented

in Examples 1, 2 and 3 below.

Example 1: Let us consider the infinitesimal generator Γ1. Solving its as-

sociated Lagrange equations
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dt

1
=
dx

0
=
du

0
, (4.18)

we result with the following two invariants J1 = x, and J2 = u. Therefore the

invariant solution is given by J2 = ω(J1). That is, u = ω(x).

Substituting u = ω(x) in equation (4.7) and simplifying, this results with

the model satisfying the following ODE:

rxω(x) + (ε− x2η)ω′(x) + βxω′′(x) = 0, (4.19)

which then solves to

ω(x) =

(
c1M

(
m,n,

ηx2

2β

)
+ c2U

(
m,n,

ηx2

2β

))
xρ, (4.20)

where

m =
1

2

(η + r)β − ηε
ηβ

, n =
1

2

3β − ε
β

, ρ =
β − ε
β

(4.21)

and c1, c2 are any chosen constants. M(a, b, .) and U(a, b, .) are special types

of the Kummer M and U described in more depth in reference [33]. Therefore

the derived explicit exact invariant solutions for the zero-coupon bond pricing

equation (4.7) associated with Γ1 are reported as

u(x, t) =

(
c1M

(
m,n,

ηx2

2β

)
+ c2U

(
m,n,

ηx2

2β

))
xρ (4.22)
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where m, n, ρ are as above.

Example 2: Let us consider the infinitesimal generator Γ2. Solving its as-

sociated Lagrange equations

−ηe2ηtdt

1
= e2ηtdx

x
= −ηe2ηtdu

ru
, (4.23)

we obtain the following invariants

ζ = t+
lnx

η
, u(x, t) = x−

r
ηω

(
t+

lnx

η

)
= x−

r
ηω (ζ) . (4.24)

The similarity function ω = ω(ζ) satisfies the following similarity reduction

equation:

r(rβ + (β − ε)η)ω(ζ) + (−2rβ − βη + εη)ω′(ζ) + βω′′(ζ) = 0, (4.25)

that solves to

ω(ζ) = eζ(rβ+βη−εη)c1 + erζc2. (4.26)

Therefore the derived explicit exact invariant solutions of the zero-coupon bond

equation (4.7) associated with Γ2 are reported as

u(x, t) = x−
r
η
(
eζ(rβ+βη−εη)c1 + erζc2

)
(4.27)

where c1, c2 are arbitrary constants and ζ is as define in equation (4.24).

Example 3: Lastly let us consider the infinitesimal generator Γ3. The in-
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variants are computed from the associated Lagrange equations and they are

obtained as

ζ = t− lnx

η
, u(x, t) = e

x2η
2β x(−1− ε

β
+ r
η )ω

(
t− lnx

η

)
, (4.28)

with the similarity function ω = ω(ζ) satisfying the following similarity reduc-

tion equation:

(r − 2η)(rβ − (β + ε)η)ω(ζ) + (−2rβ + 3βη + εη)ω′(ζ) + βω′′(ζ) = 0. (4.29)

When solving this reduction equation, we result with the following solution

ω(ζ) = e
ζ(rβ−βη−εη)

β c1 + eζ(r−2η)c2. (4.30)

Therefore the derived explicit exact invariant solutions of the zero-coupon bond

equation (4.7) associated with Γ3 are reported as

u(x, t) = e
x2η
2β x(−1− ε

β
+ r
η )
(
e
ζ(rβ−βη−εη)

β c1 + eζ(r−2η)c2

)
(4.31)

where c1, c2 are arbitrary constants and ζ is as defined in equation (4.28).

Note that Γ4 does not provide any invariants. This then concludes the compu-

tations of the invariant solutions associated with the zero-coupon bond pricing

equation (4.7).
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4.4.1 New solutions via group point transformations

One of the important concept about Lie’s group theory is the ability to trans-

form known solutions of a differential equation into other new solutions of the

same equation using Lie point transformations. In this section we generate

more solutions using obtained solutions in equations (4.27) and (4.31) to com-

pute new solutions from them using group point transformations in equation

(4.15). If Γ in equation (4.8) is the group generator admitted by equation (4.7)

and u = w(x, t) is any of the zero-coupon bond pricing equation solutions, then

ũ = w̃(x̃, t̃) will still form part other solution of equation (4.7) obtained from

group point transformations. That is, if the following substitutions x̃, t̃, and ũ

are made in the transformations in equation (4.15) and then solving to make

u subject this then results with the new solutions for equation (4.7). We give

an illustration of this point by making use of ψ1 in equation (4.15). With this

transformation since x̃ = x and ũ = u, then both solutions in equations (4.27)

and (4.31) are transformed to new solutions whereby t in both equations is

replaced by (t− κ1). That is, equations (4.27) and (4.31) will only be affected

on ζ as it now changes to (t − κ1) + lnx
η

and (t − κ1) − lnx
η

, respectively for

equations (4.27) and (4.31).

4.5 Results Discussion

In order to emphasise the novelty of Lie’s group theory, numerical solutions

are deduced and we make application to the Vasicek interest rate model. We
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make use of the newly obtained explicit solutions in equations (4.27) and (4.31).

Chern [11] have shown that with parameters: x = r + α, ε = 0 and η = κ

functional interest rate model can be transformed to Vasicek model. Using the

parameters: β = 2η, α = (σ2 + 2ε)/(8η), r = 1
4
x2 a functional interest rate

model can be transformed to CIR model; and so on. The parameters chosen

for illustration are as follows

� interest rate (risk-free) r= 0.90,

� volatility σ = 0.80,

� parameter α = 0.01,

� parameter η = 0.5,

� constant 1 c1 = 1,

� constant 2 c2 = 0.5,

� time to expiration T= 14 years.

We illustrate the solutions in Figure 4.1 and 4.2 for the newly explicit solutions

associated with Γ2 and Γ3.
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Figure 4.1: Explicit exact invariant solutions associated with Γ2
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Figure 4.2: Explicit exact invariant solutions associated with Γ3

An important question that one may ask is what happens to the prices of the

bond (zero-coupon bond in our case) as time passes? Bodie et al. [34] on

page 433 has given an illustration by a form of an example, to show that it is

expected for a zero-coupon bond to sell for par value at maturity eventhough

before then it should sell at a discount from par value due to the time value

of money. In fact when the interest rate is constant, a zero-coupon bond price

should increase at exactly the rate of interest. We observe that the curves of

the explicit exact invariant solutions obtained in section 4.5, analysis made
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with Vasicek model, are smooth and monotonically increasing with respect

to time towards the maturity of the bond. Section 4.4.1 using group ψ1 to

illustrate the novelty of the method, we see that the graphs in Figures 4.1 and

4.2 will still remain the same shape under point transformation ψ1 but they

will be horizontally shifted to the right (or translated) by κi units (κi > 0).

These results shows some resemblance to the graphs by Bodie et al. [34],

and Goard [18]; and thus emphasise the important point that as time passes

the price of the zero-coupon bond indeed increase at the rate of interest. We

further observe that solutions of the zero-coupon bond pricing equation have

a direct mapping with one another through point transformations and this

then emphasise an important concept of Lie symmetry analysis as mentioned

in section 4.4.1.

4.6 Conclusion

In this chapter an application of Lie symmetry analysis have been performed

to the bond option model, the zero-coupon bond pricing equation in mathe-

matical finance. Our findings have gathered that the zero-coupon bond pricing

equation under consideration admits four point symmetries plus an additional

infinite dimensional subalgebra ΓB. With application made to the obtained

infinitesimal generators, explicit exact invariant solutions of the zero-coupon

bond pricing model have been computed and verified in section 4.4.1, they

are indeed invariant. The novelty of the solutions have been presented in the

form of graphs where an exponential growth by prices of the zero-coupon bond
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equation was observed. With graphs proving invariant under point transfor-

mations, this then suggests that there is a direct relationship between solutions

of bond options under functional interest rate modelling and solutions under

usual interest rate models which one believes direct mappings via Lie sym-

metry analysis could link them. Therefore a good model depends entirely on

one’s choices made from parameters r, ε, σ and η.

Interest rate derivatives are much more complex to price than equity and

foreign exchange derivatives because of their behaviour of an interest rate be-

ing more complicated as compared to that of stock price or an exchange rate.

Therefore, numerical computations have seems to be more appreciated in the

valuation of interest rate derivatives as there are not many analytical expres-

sions for interest rate derivatives. The zero-coupon bond model in equation

(4.7) can therefore be classified as a functional PDE model due to the interest

rate associated with it modelled as a certain functional transformation of the

underlying state variable. The aforementioned functional interest rate model

as we have noted does not only embeds the known single factor interest rate

models, but also provides a flexible approach and analytical scheme for con-

structing many more new models to expand the existing family of interest rate

financial models. Again as pointed out in [27], this model can provide great

benefits in numerical computations as well.

Using the solutions in equations (4.27) and (4.31), the important concept of

Lie symmetry analysis have been verified in section 4.4.1. That is, through
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group point transformations it has been possible to use known solutions to

generate more solutions which were unknown. From this fact, it is then safe to

conclude that there is existence of a mapping between functional interest rate

derivative PDE models into well known ordinary models like Vasicek pricing

equation and other model equations. Furthermore, also a mapping of solutions

of functional interest derivative PDE models to solutions of known interest rate

models PDE equations. Thus with these facts, we want to believe that the con-

tribution made by Kaibe et al. [22] to the pricing of interest rate derivatives

models can be explored further to increase the minute number of analytical

expressions that are currently available for pricing interest rate derivatives.

Again with the co-domain of f(Xt, t) = rt restricted to positive real values,

this then helps to avoid the drawback of negative interest rate that is normally

found in Vasicek interest rate model.

The combination of the Ornstein-Unlenbeck process and the Bessel process

in the model in equation (4.4) enables both two important properties of the

interest rate models as mentioned in the introduction to be satisfied, and this

then can as a result enable one to construct new models with ease due to

its flexibility. The CIR models which was designed as an effort to correct the

drawback of negative interest rate by Vasicek interest rate model, satisfies both

properties of the interest rate model. Since it is also embedded in the func-

tional interest rate model, it can be shown that a mapping connecting it and

the functional interest rate exist as it has been shown in Chern [11]. Chern [11]

states that literature regarding this approach is still minute, but we will like
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to believe that this model due to its functional approach to modelling interest

rates and its ability to provide a unified framework for representing existing

single factor interest rate models, it can play a vital role in finance literature

for pricing interest rate derivatives to expand existing analytical expressions

for debt securities.
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Chapter 5

The Optimal System of

Reductions for the Interest Rate

Derivatives Pricing Model

In this chapter a zero-coupon bond pricing model described in terms of a partial

differential equation (PDE) is analysed by means of Lie symmetry analysis. We

extend further the work of the previous chapter and from the obtained one-

parameter Lie point symmetries we deduce the corresponding group of adjoint

representations of the model. Furthermore the optimal system of the one-

dimensional subalgebras is computed and used to construct a family of closed-

form invariant solutions of the aforementioned bond option pricing model via

solving the associated reduced ordinary differential equations (ODEs).
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5.1 Introduction

Interest rates play a vital role in the valuation of interest rate derivatives, such

as caps, bond options and swap options. It is always assumed that the short-

term interest rates behaves more or less like a stock price. This assumption is

not ideal due to the fact that interest rates appear to be pulled back to some

long-run average level over time [12]. A phenomenon known in the finance

literature as mean reversion. When the interest rate r is high, the mean

reversion tends to cause it to have a negative drift. But when r is low, the

mean reversion tends to cause it to have a positive drift. If we consider the

Vasicek’s model with the risk-neutral process for r

dr = a(b− r)dt+ σdz (5.1)

where a, b, and σ are constants; the short rate is pulled to a level b at a

rate a. Thus, as explained above, if r is high then drift a(b − r) tends to be

negative, whereas if low it tends to be positive. Also imposed upon this “pull”

is normally a distributed stochastic term σdz. The Vasicek’s model therefore

incorporates mean reversion. The only drawback of Vasicek’s model is that its

short-term interest rate, r, can be negative. Cox, Ingersoll, and Ross in a way

to cater for this drawback, proposed an alternative model where the rates are

always non-negative [31]. The risk-neutral process for r in their model is

dr = a(b− r)dt+ σ
√
rdz. (5.2)
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The mean-reverting drift of this model is the same as that of Vasicek model,

but the standard deviation of the change in the short rate in a short period of

time is proportional to
√
r. This then means that as the short-term interest

rate increase, so does its standard deviation. It is therefore important for

interest rate model to satisfy the two properties of interest rate, namely, mean-

reversion and positivity of interest rate. Luo et al. [27] using the combination

of Ornstein-Unlenbeck process and Bessel process, derived and proposed the

following functional interest rate model that embeds most known interest rate

models for different choices of η, ε and σ:

dXt =

(
−η(t)Xt +

ε(t)

Xt

)
dt+ σ(t)dZt, (5.3)

where {Zt}t≥0 is a Brownian motion. The parameters ε, η, σ are given functions

of t. In this setup rt = f(Xt, t) is modeled as a function of Markov state

variable Xt and time t. The range of f confined to only positive real values,

then this enables one to avoid the drawback of negative interest rate that are

normally found in Vasicek model. Using this functional interest rate model, as

shown in Kaibe et al. [22] the price dynamics for the zero-coupon bond under

functional interest rate models are described in terms of the following partial

differential equation

vt(x, t) +
σ2

2
vxx(x, t) +

(
−ηx+

ε

x

)
vx(x, t)− rv(x, t) = 0. (5.4)

Due to lack of analytical expressions for interest rate derivative models, nu-

merical methods such as binomial trees, Monte-Carlo simulation, and finite-
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difference methods are normally the tools commonly used to value these finan-

cial products. Kaibe et al. [22] have computed and proposed that the pricing

model in equation (5.4) admits four Lie symmetries and an additional infinite

dimensional subalgebra. In this chapter, we expand their work further by using

the obtained one-parameter Lie point symmetries to deduce the corresponding

group of adjoint representations for the zero-coupon bond pricing equation in

order to derive an optimal system of the one-dimensional subalgebras. The

optimal system is then used to construct a family of closed-form solutions for

the aforementioned pricing equation.

It is well known that a one-dimensional list such as {Γρ}ρ∈A is called an optimal

system provided the following two conditions are satisfied: (1) completeness,

meaning that any one dimensional subalgebra is equivalent for some Γρ; (2)

in-equivalence, meaning that Γρ and Γπ are in-equivalent for distinct ρ and π.

In computing an optimal system one normally determines an invariant which

normally gives sort of a restriction on how far one can simplify the Lie algebra.

We see the application of this in the work of Sinkala et al. [20] and Khalique et

al. [21] who obtain the associated invariants to the models they were working

on in order to deduce the invariant solutions of their models of choice. Hu et al.

[32] use an algorithmic approach to compute one-dimensional optimal system

which still involves computing the invariants together with adjoint transfor-

mation matrix before classification of Lie algebras. In this chapter augmenting

the work of Kaibe et al. [22], we follow Olver’approach [3] to deduce an op-

timal system of the aforementioned model in order to compute its associated
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explicit invariant solutions.

5.2 Classification of group-invariant solutions

of the zero-coupon bond pricing model

In order to compute group-invariant solutions in which all solutions can be

deduced, a set of equivalent classes is always vital. This is because the combi-

nations of symmetries to construct group-invariant solutions are too many. It

is therefore, usually not feasible to list the entire family of all possible group-

invariant solutions of certain differential equation. A systematic approach of

classifying the solutions that leads to an optimal system of group-invariant

solutions is always required. In what follows we start first by computing the

commutator of the Lie-Bracket and then adjoint representation associated with

the zero-coupon bond pricing equation.
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5.2.1 Computation of Lie-Brackets

In chapter 2, it has been defined that the Lie-Bracket or Commutator of any

two symmetries or generators ΓA and ΓB, is computed from the following

relation

[ΓA,ΓB] = ΓAΓB − ΓBΓA. (5.5)

The relation is termed skew-symmetric if [ΓA,ΓB] = −[ΓB,ΓA]. Using the Lie

symmetries

Γ1 =
∂

∂t
,

Γ2 = −e
−2ηt

η

∂

∂t
+ xe−2ηt ∂

∂x
− re−2ηt

η
u
∂

∂u
, (5.6)

Γ3 =
e2ηt

η

∂

∂t
+ xe2ηt ∂

∂x
+

(
−1− λ

β
+
r

η
+
x2η

β

)
ue2ηt ∂

∂u
,

Γ4 = u
∂

∂u
,

in equation (4.12) of the zero-coupon bond model we compute the associated

commutators with ε replaced by λ. The commutators associated with the

zero-coupon bond model are computed and presented in Table 5.1.
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[Γi,Γj] Γ1 Γ2 Γ3 Γ4

Γ1 0 −2ηΓ2 2ηΓ3 0

Γ2 2ηΓ2 0 − 4
η
Γ1 + 2

(
2λ
σ2 − 2r

η
+ 1
)

Γ4 0

Γ3 −2ηΓ3
4
η
Γ1 − 2

(
2λ
σ2 − 2r

η
+ 1
)

Γ4 0 0

Γ4 0 0 0 0

Table 5.1: Lie Brackets of the zero-coupon bond pricing model
.

As an example, we illustrate how the commutator [Γ1,Γ2] have been computed

[Γ1,Γ2] = Γ1(Γ2)− Γ2(Γ1)

=
∂

∂t

(
−e
−2ηt

η

∂

∂t
+ xe−2ηt ∂

∂x
− re−2ηt

η
u
∂

∂u

)
−

(
−e
−2ηt

η

∂

∂t
+ xe−2ηt ∂

∂x
− re−2ηt

η
u
∂

∂u

)
∂

∂t

= 2e−2ηt ∂

∂t
− 2ηxe−2ηt ∂

∂x
+ 2re−2ηtu

∂

∂u
(5.7)

= −2η

(
−e
−2ηt

η

∂

∂t
+ xe−2ηt ∂

∂x
− re−2ηt

η
u
∂

∂u

)
= −2ηΓ2.

5.2.2 Adjoint representation

An optimal system of a Lie algebra is a set of l-dimensional subalgebras such

that every l-dimensional subalgebra is equivalent to a unique element of the
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set under some element of the adjoint representation [3],

Ad(exp(εΓA))ΓB =
∞∑
n=0

εn

n!
(adΓA)nΓB = ΓB − ε[ΓA,ΓB]

+
ε2

2!
[ΓA, [ΓA,ΓB]]− ... (5.8)

where [ΓA,ΓB] denotes the commutator of generators ΓA and ΓB. Using the

formula in equation (5.7) and the commutators in Table 5.1, the adjoint rep-

resentations are computed and presented in tabular form in Table 5.2.

72



Ad Γ1 Γ2 Γ3 Γ4

Γ1 Γ1 e2εηΓ2 e−2εηΓ3 Γ4

Γ2 Γ1 − 2εηΓ2 Γ2 M Γ4

Γ3 Γ1 + 2εηΓ3 N Γ3 Γ4

Γ4 Γ1 Γ2 Γ3 Γ4

Table 5.2: Adjoint representation of subalgebras of the zero-coupon bond
model

M =
4εΓ1

η
− 4ε2Γ2 + Γ3 + 2ε

(
2r

η
− 2λ

σ2
− 1

)
Γ4,

and

N = −4εΓ1

η
+ Γ2 − 4ε2Γ3 + 2ε

(
2λ

σ2
− 2r

η
+ 1

)
Γ4.

5.2.3 Optimal system of the zero-coupon bond pricing

model

Suppose the n-dimensional symmetry algebra ζ of a differential system is gen-

erated by the vector fields {Γ1, ...,Γn} and the symmetry group of ζ is de-

noted by G. A real function Φ on the Lie algebra ζ is called an invariant if

Φ(Adg(Γ)) = Φ(Γ) for all vector fields Γ ∈ ζ and all g ∈ G. Here Adg is the

adjoint representation g and Adg(Γ) = g−1Γg. The determination of the in-

variant of the full adjoint action is vital as it places restriction on how far one

can simplify Γ [3]. Important fact about Lie algebra Ln spanned by symmetries

of the model under consideration except the infinite dimensional subalgebra

is that it provides the possibility of determining the invariant solutions of the

model. In light of this fact we formulate an arbitrary operator that comprise
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of a linear combinations of our subalgebras. That is,

Γ = a1Γ1 + a2Γ2 + a3Γ3 + a4Γ4 (5.9)

which depends on the four arbitrary constants a1,...,a4. Now to deduce the

optimal system of one-dimensional subalgebra adopting Olver’approach [3],

we start first by computing the invariant of the full adjoint map to have a

restriction on how far we are to simplify the operator Γ. Composing the adjoint

Γ2 and Γ3 against Γ produce the desired invariant through few manipulations.

That is,

Γ̃ =
4∑
i=1

ãiΓi = Ad(eαΓ2) ◦ Ad(eβΓ3)Γ. (5.10)

Computing first the Ad(eβΓ3)Γ by making use of the adjoints in Table 5.2, we

result with

Γ = Ad(eβΓ3)Γ

= a1(Γ1 + 2βηΓ3) + a3Γ3 + a4Γ4

+ a2

[
−4β

η
Γ1 + Γ2 − 4β2Γ3 + 2β(

2λ

σ2
− 2r

η
+ 1)Γ4

]
(5.11)

=

(
a1 −

4

η
βa2

)
Γ1 + a2Γ2 + [a3 + 2a1βη − 4a2β

2]Γ3

+

[
a4 + 2β

(
2λ

σ2
− 2r

η
+ 1

)]
Γ4.

Secondly, if we act by Ad(eαΓ2) on Γ we obtain

Ad(eαΓ2)Γ = ã1Γ1 + ã2Γ2 + ã3Γ3 + ã4Γ4, (5.12)
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which reduces to

Γ̃ =

[
a1 −

4

η
βa2 +

4α

η
(a3 + 2a1βη − 4a2β

2)

]
Γ1

+

[
a2 − 2αη(a1 −

4

η
βa2)− 4α2(a3 + 2a1βη − 4a2β

2)

]
Γ2 (5.13)

+
[
a3 + 2a1βη − 4a2β

2
]

Γ3

+

[
a4 + (2λη − 2rσ2 + ησ2)

(
2β

ησ2
− 2α

ησ2
(2βηa1 − 4a2β

2 + a3)

)]
Γ4.

Now to obtain α and β we notice that solving the quadratic equation a3 +

2a1βη − 4a2β
2 = 0 in equation (5.13) produces β, which from it we are able

to obtain the invariant (the radicand in β) of the full adjoint action, namely,

κ = a2
1η

2 +4a2a3. The coefficients ã1, ã2, ã3 and ã4 in (5.13) of the subalgebras

Γ1, Γ2, Γ3 and Γ4 are respectively,

ã1 = a1 −
4

η
βa2 +

4α

η
(a3 + 2a1βη − 4a2β

2), (5.14)

ã2 = a2 − 2αη(a1 −
4

η
βa2)− 4α2(a3 + 2a1βη − 4a2β

2), (5.15)

ã3 = a3 + 2a1βη − 4a2β
2, (5.16)

ã4 = a4 + (2λη − 2rσ2 + ησ2)

(
2β

ησ2
− 2α

ησ2
(2βηa1 − 4a2β

2 + a3)

)
(5.17)

To this end, in order to compute the optimal system of our bond model in

equation (5.4) we need to consider the following three cases of the value of the

invariant: κ > 0, κ < 0 and κ = 0.

Case 1. κ > 0
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Suppose β is the real root of a3 + 2a1βη − 4a2β
2 = 0, then this implies ã3 = 0

in equation (5.16) and ã2 = 0 in equation (5.15) when

α =
a2

2η(a1 − 4
η
βa2)

. (5.18)

For invariant κ = a2
1η

2 + 4a2a3 > 0 to be satisfied since ã3 = 0 and ã2 = 0,

ã1 =
√
κ 6= 0. Rescaling ã1 = 1 results with,

Γ = Γ1 + ã4Γ4, (5.19)

where

ã4 = a4 + (2βη − 2rβ2 + ησ2)
2β

ησ2
. (5.20)

Thus every one-dimensional subalgebra generated by Γ with κ > 0 is equivalent

to the subalgebra spanned by

Γ = Γ1 + bΓ4, b ∈ <. (5.21)

Case 2. κ < 0

We set β = 0 and α = −a1η
4a3

to make ã1 = 0. Then,

ã2 = a2 − 2ηa1

(
−a1η

4a3

)
− 4a3

(
−a1η

4a3

)2

(5.22)

ã3 = a3 6= 0 (5.23)

ã4 = a4 +
a1

2σ2
(2λη − 2rσ2 + ησ2) (5.24)
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This then implies

Γ
′
= Γ3 + ã2Γ2 + ã4Γ4 (5.25)

ã3 = 1 rescaling. Acting on Γ
′

by the group generated by Γ1, this leads to

Γ
′′

= e−2εηΓ3 + ã2e
2εηΓ2 + ã4Γ4 (5.26)

which is a scalar multiple of

Γ
′′′

= Γ3 + ã2e
4εηΓ2 + ã4e

2εηΓ4. (5.27)

Depending on the sign of ã2 and ã4 we can make the coefficient of Γ2 and Γ4

either +1, -1 or 0. Therefore, any one-dimensional subalgebra spanned by Γ

with a1 = 0, a3 6= 0 is equivalent to the one spanned by either Γ3± Γ2± Γ4 or

Γ3 ± Γ2 or Γ3 ± Γ4 or Γ3.

Case 3. κ = 0

If not all are zero, we can choose α and β in equation (5.14)-(5.17) such that

ã3 6= 0 but ã1 = ã2 = 0. That is,

ã1 =
4α

η
a3, (5.28)

imply ã1 = 0 choosing α = 0. Also

ã2 = −4α2a3 (5.29)
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imply ã2 = 0. Furthermore

ã3 = a3, (5.30)

and

ã4 = a4 + (2λη − 2rσ2 + ησ2)

(
2β

ησ2
− 2α

ησ2
a3

)
(5.31)

so that ã4 = 0 when

β =
−a4ησ

2

2(2λη − 2rσ2 + ησ2)
. (5.32)

Then the one-dimensional subalgebra generated by Γ with κ = 0 is equivalent

to the subalgebra spanned by Γ3. If we consider also a case where ã3 = 0 but

ã4 6= 0. This then results with Γ = Γ4 when scaling ã4 = 1. This subalgebra

does not produce any invariant solutions, we therefore discard it.

Put together, we therefore result with an optimal system of one-dimensional

subalgebras of the zero-coupon bond pricing equation (5.4) given as,

1. Γ1 + bΓ4, b ∈ <

2. Γ3 + Γ2 + Γ4

3. Γ3 − Γ2 − Γ4

4. Γ3 + Γ2

5. Γ3 − Γ2

6. Γ3 + Γ4

7. Γ3 − Γ4
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8. Γ3

5.2.4 Solutions of the zero-coupon bond model deduced

from one-dimensional subgroups

Using the members of the constructed optimal system of the one-dimensional

subalgebras we perform some reductions to deduce the group-invariant solu-

tions of equation (5.4). The procedure for performing symmetry reduction is

well known in the literature [1], [2], [3], [4]. The subalgebras Γ3 ± Γ2 and

Γ3 ± Γ2 ± Γ4 generates much more complicated invariant solutions which we

are still working on and their results will be reported later somewhere. We also

believe that discrete symmetries can reduce this list of subalgebras of optimal

system and this will also be taken into consideration in our report.

Case 1. We consider the subalgebra Γ3 and solve its associated Lagrange

equations

ηdt

e2ηt
=

dx

xe2ηt
=

du

u
((

r
η
− 1− 2ε

σ2 + 2ηx2

σ2

)
e2ηt
) (5.33)

to result with the following invariants

ζ = t− lnx

η
, u(x, t) = e

x2η
2β x(−1− ε

β
+ r
η )ω

(
t− lnx

η

)
, (5.34)
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where the similarity function ω = ω(ζ) satisfies the following similarity reduc-

tion equation:

(r − 2η)(rβ − (β + ε)η)ω(ζ) + (−2rβ + 3βη + εη)ω′(ζ) + βω′′(ζ) = 0. (5.35)

Solving this reduction equation, we obtain the solution as

ω(ζ) = e
ζ(rβ−βη−εη)

β c1 + eζ(r−2η)c2. (5.36)

Therefore the derived explicit exact invariant solutions of the zero-coupon bond

equation (5.4) associated with Γ3 are reported as

u(x, t) = e
x2η
2β x(−1− ε

β
+ r
η )
(
e
ζ(rβ−βη−εη)

β c1 + eζ(r−2η)c2

)
(5.37)

where c1, c2 are arbitrary constants and ζ is as defined in equation (5.34).

Case 2. We consider the subalgebra Γ1 + bΓ4 and solve its associated La-

grange equations

dt

1
=
dx

0
=
du

bu
, (5.38)

to result with the invariants J1 = x, and J2 = ue−bt. The invariant solution is

given by J2 = ebtω(J1), i.e. u = ebtω(x).

Substituting u = ebtω(x) in equation (5.4), this reduces the bond model to

the following ODE:
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ebt
(
2(b− r)xω(x) + (−2ηx2 + 2ε)ω′(x) + xσ2ω′′(x)

)
= 0. (5.39)

Solving this similarity reduction equation we result with the following solution

ω(x) = c1M

(
m,n,

ηx2

σ2

)
+ c2U

(
m,n,

ηx2

σ2

)
(5.40)

where

m =
r − b

2η
, n =

σ2 + 2ε

2σ2
(5.41)

and c1, c2 are arbitrary constants. M(a, b, .) and U(a, b, .) are the Kummer M

and U special functions [33]. Therefore, the derived explicit exact invariant

solutions for the aforementioned zero-coupon bond model in equation (5.4)

associated with the subalgebra Γ1 + bΓ4 we report them as

u(x, t) = ebt
(
c1M

(
m,n,

ηx2

σ2

)
+ c2U

(
m,n,

ηx2

σ2

))
, (5.42)

where m and n are as defined above.

Case 3. We consider the subalgebra Γ3 + Γ4 and solve its associated La-

grange equations

ηdt

e2ηt
=

dx

xe2ηt
=

du

u
((

r
η
− 1− 2ε

σ2 + 2ηx2

σ2

)
e2ηt + 1

) (5.43)
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to result with the invariants

ζ = t− lnx

η
, u(x, t) = e

ηx2

σ2
− e
−2ηt

2 x−1+ r
η
− 2ε
σ2 ω(ζ) (5.44)

where ω(ζ) satisfies the following similarity reduction equation:

(
2n3 + e2ηζ(2η − r)(2εη + (−r + η)σ2)

)
ω(ζ) +

eηζ
(
(2ηε+ (3η − 2r)σ2)ω′(ζ) + σ2ω′′(ζ)

)
= 0. (5.45)

Solving this differential equation, we result with the following solution

ω(ζ) = c1e

((
r − 3η

2

)
σ2 − εη

)
ζ

σ2
×BesselJ(N,M)

+ c2e

((
r − 3η

2

)
σ2 − εη

)
ζ

σ2
×BesselY (N,M) (5.46)

where

N =
−|σ2 − 2ε|

2σ2
and M =

e−ζη
√

2η

σ
.

The Bessel functions are special functions as defined in [33]. Therefore, the

derived explicit exact invariant solutions for the aforementioned zero-coupon

bond model in equation (5.4) associated with the subalgebra Γ3 +Γ4 we report

them as

u(x, t) = e
ηx2

σ2
− e
−2ηt

2 x−1+ r
η
− 2ε
σ2 ω(ζ) (5.47)

where ω(ζ) is as obtained in equation (5.46).

Case 4. We consider the subalgebra Γ3−Γ4 and solve its associated Lagrange
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equations

ηdt

e2ηt
=

dx

xe2ηt
=

du

u
((

r
η
− 1− 2ε

σ2 + 2ηx2

σ2

)
e2ηt − 1

) (5.48)

to result with the invariants

ζ = t− lnx

η
, u(x, t) = e

ηx2

σ2
− e
−2ηt

2 x−1+ r
η
− 2ε
σ2 ω(ζ) (5.49)

where ω(ζ) satisfies the following similarity reduction equation:

(
−2n3 + e2ηζ(2η − r)(2εη + (−r + η)σ2)

)
ω(ζ) +

eηζ
(
(2ηε+ (3η − 2r)σ2)ω′(ζ) + σ2ω′′(ζ)

)
= 0. (5.50)

Solving this differential equation, we result with the following solution

ω(ζ) = c1e

((
r − 3η

2

)
σ2 − εη

)
ζ

σ2
×BesselJ(R, S)

+ c2e

((
r − 3η

2

)
σ2 − εη

)
ζ

σ2
×BesselY (R, S) (5.51)

where

R =
−|σ2 − 2ε|

2σ2
and S =

I
√

2ηe−ζη

σ
.

Therefore, the derived explicit exact invariant solutions for the aforementioned

zero-coupon bond model in equation (5.4) associated with the subalgebra Γ3−

Γ4 we report them as

u(x, t) = e
ηx2

σ2
− e
−2ηt

2 x−1+ r
η
− 2ε
σ2 ω(ζ) (5.52)
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where ω(ζ) is as obtained in equation (5.51).

5.3 Conclusion

In this chapter Lie symmetry analysis has been carried out to the PDE model

describing a zero-coupon bond pricing equation associated with the functional

interest rate model. This model admits four Lie point symmetries plus an ad-

ditional infinite-dimensional subalgebra. The four one-dimensional Lie algebra

were then used to compute the optimal system of one-dimensional subalgebras.

Using the obtained optimal system we performed symmetry reduction in or-

der to deduce new group-invariant solutions for the zero-coupon bond model

in equation (5.4). In as much as the PDE models associated with finance are

rarely solvable and Monte Carlo methods are usually applied to solve them, we

have managed to deduce nontrivial closed-form solutions for the zero-coupon

bond model.
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Chapter 6

Conclusion

Financial market models in their setup some comprise of a complicated system

of partial differential equations arising from physical important problems. The

discovery of any explicit solutions whatsoever of these models can always be

of great interest. Our studies have focused mostly on obtaining non-trivial

results in the finance literature through the application of Lie procedures. We

have demonstrated the applications of Lie analysis which includes the compu-

tation of Lie point symmetries, Lie point transformations, reduction, optimal

systems, and explicit computation of group invariant solutions.

In chapter 4, Lie symmetry analysis have been performed on a zero-coupon

bond pricing equation in mathematical finance. It has been shown that the

zero-coupon bond pricing equation admits four point symmetries plus an addi-

tional infinite dimensional subalgebra. The obtained infinitesimal generators

have been used to obtain the associated explicit exact invariant solutions of the
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zero-coupon bond model and they have also been verified indeed as invariant

solutions. The novelty of Lie symmetry analysis was explored further in the

case where the solutions were resembled as graphs and an exponential growth

by prices of the zero-coupon bond equation was discovered. The graphs also

verified an important concept of invariant solutions of the zero coupon bond

model in the sense that under the application of the point transformations

the graphs seemed to experience a translation shift by certain units without

changing the shape of the graphs. Therefore, there exists a relationship be-

tween solutions of bond options under functional interest rate modelling and

solutions under ordinary interest rate models and this research have shown

that a direct mappings via Lie symmetry analysis could link them.

The finance literature comprise of minute number of numerical schemes for

valuing interest rate derivatives models. In chapter 5, using the deduced Lie

point symmetries derived in chapter 4 we computed the adjoint representation

of the zero coupon bond pricing equation. The adjoint representation were then

used to compute an optimal system associated with the zero-coupon bond pric-

ing equations under the functional interest rate model. Interest rate derivatives

due to the behaviour of an interest rate being more complicated as compared

to that of stock price or an exchange rate, have proved to be more complex to

value than ordinary equity and foreign exchange derivatives. In this chapter

with the help of derived optimal systems we further computed more explicit in-

variant solutions associated with the above-mentioned contingent claim to add

more analytical pricing models for valuing bond options models concentration

86



given to those dependent on functional interest rate models. The pricing model

in equation (5.4), one can therefore refer to it as a functional PDE model due

to functional interest rate model associated with it. This functional interest

rate model as noted in chapters 4 and 5 embeds all known single factor interest

rate models and this then suggests a flexibility in constructing many more new

models to add to the existing family of analytical pricing models for interest

rate derivatives, especially bond options. Also as [27] indicates, the functional

interest rate model can provide great benefits in numerical computations as

well.

Chern [11] states that literature regarding this approach is still minute. Based

on the findings of this research, the author believe that the functional interest

rate model due to its functionality approach to modelling interest rates and

its ability to provide a unified framework for representing existing single fac-

tor interest rate models, can play a vital role in finance to produce valuable

pricing models for more complex derived interest rate derivatives in order to

add more analytical expressions for the contingent claims. Through the ap-

plication of group point transformations the known solutions have been used

to obtain unknown solutions and this indeed verified the important concept of

Lie symmetry analysis. Again with the restriction of positive real values on

the co-domain of f(Xt, t) = rt, this enables one to avoid the normal drawback

of negative interest rate that is normally found in the Vasicek model.

Future work plans to extend this research further to apply Lie symmetry anal-
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ysis to the pricing equations associated with swaps, caps and floors whose

price evolution are described in terms of a functional interest rate PDE model.

The Heath-Jarrow-Morton (HJM) models are also used to model interest rate

derivatives models. Future extension of this work also plans to find a relation-

ship mapping between the HJM models and the functional interest rate PDE

models.
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