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continuous, and whether players can specify explicit mixtures or only pure strategy
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1 Introduction

Asymmetric matching pennies games capture the essence of strategic situations (e.g., in

hunting, warfare and sports) where success comes from outguessing opponents. To game

theorists, such games are notable because they have no pure strategy equilibrium. In a typical

asymmetric matching pennies game, there is one specific profile of mixed strategies that

constitutes a Nash equilibrium (NE), and a different mixed strategy profile that constitutes

a maximin (MM).

Does either equilibrium notion have predictive value? The literature reviewed below will

note that different theoretical models offer sharply different answers to that question, and

that the empirical evidence is also quite mixed.

The present paper pursues two more specific research questions. First, under what

conditions (if any) does either equilibrium do a good job of predicting behavior in asym-

metric matching pennies games? Second, are there alternative point predictions or dynamic

predictions that can do better?

Those questions are important to applied social scientists and biologists as well as to

theorists. Cyber-attacks and -defenses are naturally modeled as asymmetric matching pen-

nies games, as are military conflicts and penalty kicks in soccer games. Standard biological

models of predator-prey interactions can be regarded as dynamic versions of those games.

Answers to our research questions should help guide work in such applications.

We address the questions by means of a laboratory experiment that deploys a variety

of treatment combinations intended to reveal favorable circumstances for each competing

prediction. The treatment variables include two different simple matching pennies games as

well as a control game that has only a pure Nash equilibrium; two matching protocols that

contrast population games (as in biology and some economic applications such as national

cybersecurity policy) to standard pairwise matching; allowing players to specify explicit

mixtures versus only pure strategy realizations; and simultaneous moves in discrete time

versus asynchronous moves in continuous time.

The results are instructive. We find some circumstances under which Nash equilibrium

predicts human subject behavior fairly well, but find no circumstance under which maximin
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does better. There is a surprisingly wide range of circumstances under which uniform random

mixing predicts better than Nash equilibrium. For the asymmetric matching pennies games

we consider, logit quantal response equilibrium typically offers slight or no improvement over

its edge cases, Nash equilibrium and uniform mixing. The upshot is that mixed equilibria are

empirically relevant over a narrower range of circumstances than one might have supposed.

On the other hand, we find that simple dynamic models, with qualitative directional ad-

justments or quantitative regret-based adjustments in players’ strategies, capture important

regularities in the short run as well as in the long run.

After reviewing some previous literature in Section 2 and some established theory in

Section 3, we present our experimental design in Section 4. We implement our 2x2 bimatrix

games using a new graphical screen display for players. Section 4 concludes with lists of

testable hypotheses about the competing point predictions, about treatment effects on mean

choices and on dispersion, and about adaptive dynamics. Section 5 presents the results, and

a concluding discussion in Section 6 summarizes our findings and suggests implications for

game theorists and applied researchers. Online appendices include supplementary analysis,

and instructions to subjects.

2 Previous literature

“There he goes,” said Holmes, as we watched the [special train] carriage swing

and rock over the point. “There are limits, you see, to our friend’s intelligence.

It would have been a coup-de-mâıtre had he deduced what I would deduce and

acted accordingly.”

— Arthur Conan Doyle (1893)

In the epigraph above, Sherlock Holmes gloats that his own level-3 strategy of exiting at

Canterbury bested his archenemy Moriarty’s level-2 strategy of engaging a special train to

Dover,1 but Holmes recognizes that higher levels are possible. Since level-(k+1) beats level-k

for every positive k in asymmetric matching pennies, these games suffer from infinite regress.

1Aficionados of A.C. Doyle’s story and of level k reasoning might regard random attacks by Moriarty as

level 0, and regard Holmes taking the train to Dover as level 1.
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That is not a problem in short stories such as Doyle (1893) or Poe (1844), whose hero is

always exactly one level above the villain, but for proto-game theorists, infinite regress is a

Gordian knot that blocked progress for centuries. Von Neumann (1928) finally cut that knot

with the idea of mixed strategies, and introduced maximin (or minimax for loss functions)

as an equilibrium concept.

Early game theory emphasized two-player zero-sum bimatrix games where Nash equi-

librium (NE) and maximin (MM) mixtures coincide, but it recognized that NE and MM

mixtures differ in asymmetric matching pennies games (e.g., Solan et al., 2013). Nash

(1951) and his contemporaries also recognized that payoffs are flat in the neighborhood of

completely mixed NE and worried about whether actual play might approach it. Fictitious

play dynamics (Julia Robinson, 1951; George Brown, 1951) guarantee that time-average play

converges to equilibrium in the zero-sum case, but Shapley (1964) devised a non-zero-sum

game with a unique NE in mixed strategies for which fictitious play dynamics converge to a

limit cycle and not to the NE.

Subsequent theory does not yield clear predictions on dynamic stability. Stahl (1988),

Crawford (1985) and others showed that convergence to equilibrium in asymmetric matching

pennies games generally fails for their favored dynamics. On the other hand, for such games

Fudenberg and Kreps (1993) showed that stochastic fictitious play converges, and the noise

inherent in the Erev and Roth (1998) reinforcement learning model produces a similar result.

Hopkins (2002) showed that for both of those stochastic models, convergence is to QRE

and thus to NE in the limit as noise amplitude vanishes. Convergence fails for replicator

dynamics (Taylor and Jonker, 1978): the matching pennies NE is neutrally stable. Hofbauer

and Hopkins (2005) found that for a broad class of dynamics, stable mixed equilibria are

vanishingly rare in games with more than 2 pure strategies.

These heterogeneous theoretical results on point predictions and dynamics underline

the need for empirical work, but so far the empirical results are also quite heterogeneous.

Rapoport and Orwant (1962) surveyed early laboratory experiments, and found that average

play typically was closer to a uniform mix (e.g., .50-.50) than to a NE or MM mix. O’Neill

(1987) found that overall time-average play is surprisingly close to the NE mix in a par-

ticular zero-sum 4x4 game, but (James) Brown and Rosenthal (1990) noted that this does

not imply that individual players employ NE strategies, and they indeed found substantial
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departures from the specified iid mixes. Subsequent empirical contributions such as Walker

and Wooders (2001), Chiappori et al (2002) and Palacios-Huerta (2003) left many readers

with the impression that professionals closely approximate equilibrium mixed strategies but

the usual undergrad lab subjects cannot. A closer reading suggests that, outside their fa-

miliar environments, professionals are no more successful than the usual subjects (Wooders,

2010; Levitt et al, 2010), but that populations of the usual subjects can collectively, if not

individually, implement equilibrium mixtures (e.g., Friedman, 1996; Binmore et al, 2001).

To our knowledge, only one previous empirical paper compared maximin mixtures to

NE mixtures. Ochs (1995) considered several treatments (including one that uses a set

of 9 explicit mixtures) in asymmetric matching pennies games, but finds that neither Nash

equilibrium nor maximin tracks the observed changes in average play when game parameters

change. Goeree, Holt and Palfrey (2003) found that quantal response equilibrium with one

free parameter (for logit precision) also fails to track such changes, but adding a second

parameter (for risk aversion) improves performance.

There is also empirical literature on adaptive dynamics in matching pennies games.

Mookherjee and Sopher (1994) found that belief learning (responsive to payoffs that would

have been earned by strategies not employed) beats reinforcement learning. On the other

hand, Erev and Roth (1998) found that their three parameter reinforcement learning model

compares favorably to other learning models in predicting behavior in 12 laboratory studies

of games with unique interior mixed NE. Camerer and Ho (1999)’s EWA model includes an

extra parameter to hybridize belief learning (a la Friedman and Cheung, 1996) with rein-

forcement learning; the authors showed that it is able to fit a variety of games, including

some matching pennies games. Tang (1999) presented two 3x3 bimatrix games with different

predicted dynamic stability properties; the data favor the Selten (1991) anticipatory dynam-

ics model over the Crawford (1985) model. Stephenson (2019) reported an experimental test

of evolutionary models in coordinated attacker-defender games that include own-population

effects (Friedman, 1991) not considered in our asymmetric matching pennies games. His

results are consistent with a class of adaptive dynamic models. Taken together, these papers

suggest that there may be a useful empirical role for dynamic models of some sort, but it is

not yet clear which sorts are best nor when they will predict convergence or non-convergence

to a point prediction. In sum, despite important prior work by leading game theorists and

experimentalists, our motivating research questions remain open.
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3 Theoretical Considerations

Name AMPa AMPb IDDS

Bimatrix

 800, 0 0, 200

0, 200 200, 0

  300, 100 100, 300

100, 200 700, 100

  200, 500 0, 600

400, 300 200, 100


NE (0.5, 0.2) (0.33, 0.75) (0, 1)

MM (0.2, 0.5) (0.75, 0.67) (0, 1)

Table 1: Payoff bimatrices and equilibrium mixtures. The notation (a, b) refers to row

mixture aTop⊕(1− a)Bottom and column mixture bLeft⊕(1− b)Right.

Point predictions. Table 1 shows the specific bimatrix games that we will study. The

first two are asymmetric matching pennies (AMP) games. The Online Appendix includes

the straightforward computation of the unique Nash equilibrium (NE) and maximin (MM)

strategies; these games were chosen in part to create separation between those mixtures.

The third game, IDDS, is dominance solvable. Its unique NE coincides with its MM and is

in pure strategies, and therefore provides a useful contrast to the AMP games.

Figure 1 graphically displays the mixed extension of the AMPa game from the Row

player’s perspective: at mixed strategy profile (a, b) ∈ [0, 1]2 her payoff is

fR(a, b) = (a, 1− a)

800 0

0 200

 b

1− b

 = 800ab+ 200(1− a)(1− b)

= 1000ab− 200a− 200b+ 200. (1)

These payoffs are displayed as colors in a “heat map;” the thermometer bar on the right

side shows the corresponding numerical values. These range bi-linearly from 0 at the corners

(a, b) = (0, 1), (1, 0) to 200 at (0,0) and to 800 at (1,1). Superimposed on the heatmap are

alternative point predictions of empirical average mixtures: Nash equilibrium (NE), maximin

(MM), and Center (uniform mixture).

At least since Nash (1951), game theorists have recognized two different interpretations

of equilibrium in 2-player games. In the first interpretation, two highly rational individuals,

fully aware of each other’s circumstances, make choices (possibly mixtures) that they have

no incentive to change. In the second, members of a large row player population match
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Figure 1: Heatmap for AMPa row player. The color at coordinates (x, y) = (a, b) indicates,

via scaled thermometer at right, the row player’s expected payoff at mixed strategy profile (a, b).

NE, MM, Center respectively mark the coordinates of Nash equilibrium, maximin and the Center

profiles. The arc connecting Center (x, y) = (0.5, 0.5) to NE includes all symmetric logit quantal

response equilibrium (QRE) profiles.

anonymously with members of a large column player population, and an equilibrium dis-

tribution of action profiles remains unchanged as individual players adapt. Binmore et al.

(2001), among others, claimed that the appropriate dynamic model of how players adapt

their choices, and thus the stability of an equilibrium profile, may depend on whether the

game is played by pairs of individuals or by populations. That claim motivates the mean-

matching vs random-pairwise protocols presented in Section 4.

Of course, the adaptation process, and hence the stability of mixed equilibrium, may also

depend on whether individual players can choose mixture weights explicitly (as for example,

a political strategist deciding the fraction of positive vs negative ads to run) or can choose

only the frequency of pure actions. The adaptation process also depends on whether players’

choices are made simultaneously in discrete time (as in most laboratory experiments) or

6



asynchronously in continuous time (as in Cyber-attacks and -defenses, for example). Such

considerations motivate the action set and time treatment variables presented in Section 4.

Sign preserving dynamics. In games where each player has only two pure strategies,

there is a broad class of adaptive dynamics that applies to both the individualistic and the

population interpretations (Friedman, 1991; Friedman and Fung, 1996; Weibull, 1997). The

idea is simply that players (individually or collectively) should increase the weight on the

pure strategy with the currently higher payoff.

To formalize such qualitative “directional” dynamics, let the time t mixed strategy

profile be (a(t), b(t)) for a bimatrix game M = (MR;MC). For example, in the AMPa game,

MR =

800 0

0 200

. For smooth play in continuous time, (ȧ(t), ḃ(t)) denotes time rate of

change. The payoff difference between pure strategies is DR(t) = (1,−1)MR · (b(t), 1− b(t))
for row player(s) and is DC(t) = (1,−1)MC · (a(t), 1− a(t)) for column player(s).

A dynamic process is sign preserving if, at all interior profiles (a(t), b(t)) ∈ (0, 1)2, we

have ȧ(t)DR(t) > 0 unless DR(t) = 0, and ḃ(t)DC(t) > 0 unless DC(t) = 0. That is,

for both row and column players, the weight a(t) or b(t) on the first pure strategy strictly

increases (resp. decreases) whenever it has a strictly higher (resp. lower) payoff than the

alternative strategy. Such directional change is a fundamental property of learning and

evolution, satisfied (at least approximately)2 by all standard versions of adaptive dynamics.

To see the implications, suppose that dynamics are continuous and sign preserving. Draw

the isoclines DR = 0 and DC = 0, i.e., the lines for which, respectively, row players and

column players are indifferent between their pure strategies. These isoclines divide the state

space in (a(t), b(t)) ∈ [0, 1]2 into four regions, each with its own implied direction of change.

Figure 2 illustrates for the AMPa game. From equation (1), DR = f(1, b) − f(0, b) =

800b − (200 − 200b) = 1000b − 200, so the isocline DR = 0 is the horizontal line b = 0.2.

Similar calculations show that DC = 200 − 400a so the isocline DC = 0 is the vertical line

a = 0.5. These isoclines necessarily intersect at the NE point, and they chop the state

space into four rectangles. For example, in the Southeast rectangle a > 0.5, b < 0.2, we

have DR < 0, DC < 0, so sign preserving dynamics imply a trajectory with ȧ < 0, ḃ < 0.

2The reason for this qualification is that a lower payoff strategy’s share when sufficiently small may be

increased by a noise term (e.g., in stochastic best response dynamics), as noted e.g. by Stephenson (2019).
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Figure 2: Classifying directional changes in AMPa games. The horizontal (column player’s)

axis is reversed to be consistent with the payoff matrices in Table 1. Arcs and arrows in each

rectangle indicate the four possible directions defined in the text.

Since the trajectory can not exit the square, this implies that (a(t), b(t)) moves clockwise

towards the Southwest rectangle a < 0.5, b < 0.2. Similarly, in that Southwest rectangle,

sign preserving dynamics imply ȧ < 0, ḃ > 0, i.e., moving clockwise towards the Northwest

rectangle. Indeed, straightforward calculations show that sign preserving dynamics imply

clockwise moves from each rectangle to the next for both AMP games.

Of course, human subject behavior is noisy, so the prediction from this theory is only

that clockwise (CW) will be the most common direction of change. Figure 2 depicts the

other three possible directions: counterclockwise (CCW), diagonal (DD) towards the Nash

equilibrium mix, and counterdiagonal (CD) towards the corner (pure strategy profile) con-

tained in that rectangle. These directions are all defined by the signs of ȧ and ḃ or, in

empirical practice, by the signs of first differences in successive observations of a(t) and b(t).
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In do-it-yourself randomization treatments, pairs of individual subjects must satisfy

a(t), b(t) ∈ {0, 1}, so sign preserving dynamics will jump clockwise from one corner of the

square to the next. If jumps are always clockwise and the time between jumps is roughly

constant, the average strategy profile will approximate the Center, (0.5, 0.5). On the other

hand, for protocols that either allow explicit mixing or that involve population matching,

the trajectory typically lies in the interior of the state space. Clockwise trajectories may

converge to NE via damped cycles, or may cycle endlessly with constant average amplitude,

or may spiral away from the intersection (at NE) of the zero isoclines. These possibilities

are all consistent with sign preserving dynamics.

Regret-based dynamics. To obtain sharper predictions, we now construct a quantita-

tive model of directional dynamics based on a notion of regret. Let sit ∈ [0, 1] denote player

(or player population) i’s mixture at time t, and let fi(sit, s−it) be the corresponding payoff.

For example, for a row player i in the AMPa game, fi(sit, s−it) = fR(a(t), b(t)). Regret is

defined as the normalized shortfall from maximal payoff,3 Rit = fi(ŝit,s−it)−fi(sit,s−it)
max0≤x,y≤1 fi(x,y)

≥ 0 for

ŝit ∈ argmaxxfi(x, s−it). The model predicts the change in mixture 4sit = si,t+1 − sit as a

sign-preserving linear function of regret,

4 sit = β1Rit sgn(ŝit − sit) + εit. (2)

The signum (sign) function is sgn(y) = +1 if y > 0; = 0 if y = 0; and = −1 if y < 0.

As long as β1 > 0, equation (2) implies sign preserving dynamics in which the adaptation

speed is proportional to regret, that is, to the potential advantage. Cruder variants (whose

estimation is reported in the Appendix) include best response learning

4 sit = β1(ŝit − sit) + εit (3)

and pure directional learning

4 sit = β1sgn(ŝit − sit) + εit . (4)

Sets of static predictions. In this paper we focus on static point predictions and on

adaptive dynamics, but in passing we will also refer to two leading static predictions that

3The normalization assumes that maximal payoff is positive, as is the case in the bimatrix games used in

the present paper. Otherwise the denominator could be replaced by max0≤x,y≤1 fi(x, y)−min0≤x,y≤1 fi(x, y).
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involve sets of points. The first is symmetric logit quantal response equilibrium (QRE), due

to McKelvey and Palfrey (1995) and Chen et al. (1997). QRE is defined by a parametrized

implicit equation reproduced in the Online Appendix; for each value of the parameter λ > 0

we obtain a unique point prediction. As the parameter λ ranges from 0 to ∞, we get a one-

dimensional arc from the state space Center to the NE. Rank-dependent choice equilibrium

(RDCE), due to Goeree et al (2019) is the set of quantal response equilibria for all admissible

functional forms, not just logit. RDCE uses the DR = 0 and DC = 0 loci as in Figure 2,

together with the a = 0.5 and b = 0.5 loci, to define regions where the best response in

each population is the more prevalent strategy. Thus RDCE non-parametrically defines a

two-dimensional subset of the state space which contains all quantal response equilibria;

see Online Appendix for calculations. The RDCE prediction is that time-average play will

converge asymptotically to some particular point in that subset.

4 Laboratory Implementation

4.1 Treatment variables

Our experiment has four treatment variables. The first is the payoff bimatrix: as noted

earlier, we consider two asymmetric matching pennies games, denoted AMPa and AMPb, as

well as a dominance solvable game denoted IDDS.

The second treatment variable is the action set. In condition P (pure action set), subjects

use radio buttons to select one of two bimatrix rows. The display highlights the cell with

payoffs for that choice, given the column chosen by the matched player.4 In condition M

(mixed action set), subjects use a vertical slider to adjust an explicit mixture of the two

strategies, as illustrated in Figure 3. The heatmap display indicates the payoff resulting

from the player’s chosen mix and the matched players’ mix.

The third treatment variable concerns time. In our standard discrete time (D) condition,

subjects’ choices are updated simultaneously at regular time intervals, here 6000 ms (6

seconds). In the continuous time (C) condition, subjects update choices asynchronously in

4To maintain consistency from subjects’ perspective, every player’s screen shows her own choice as between

rows, even for subjects labelled in this paper as column players.
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real time, with an imperceptible latency of around 50 ms, and data are recorded every 500 ms

(twice every second). Previous literature (e.g., Oprea et al., 2011 and Friedman et al., 2015)

argues that continuous time is more realistic in many applications in sports, e-commerce and

elsewhere, and that it can facilitate cooperation and speed convergence. To our knowledge,

there is no previous report of the impact of continuous time treatments on games such as

asymmetric matching pennies where cooperation is infeasible.

Payoffs are flows accumulated over time in condition C, as illustrated in the lower right

graph in Figure 3. In condition D, the blue area representing payoffs is of adjoining rectangles

of width 6 seconds and of height given by the payoff at the chosen profile.

The remaining treatment variable is the matching protocol. As noted earlier, the dy-

namic adjustment process and the stability of an equilibrium profile may depend on whether

the game is played by pairs of individuals or played at the population level, and each in-

terpretation has real-world applications. In our experiment, there are always two distinct

populations: row players match only with column players and vice-versa. In the standard

random pairwise (rp) protocol, each subject interacts directly with only one matched oppo-

nent, and subjects are randomly rematched at the beginning of each new period. In the mean

matching (mm) protocol, each subject plays against the average choice of all subjects in the

other population or, equivalently for bimatrix games, gets the mean payoff over matches

with all subjects in the other population. In terms of notation introduced earlier, s−it is the

time-t action of a particular randomly assigned opponent in rp, while in mm it is the time-t

mean action of all possible opponents.

4.2 Design

The experiment used oTRw software, a hybrid of oTree (Chen et al, 2016) and LEEPS lab’s

Redwood suite, illustrated for the most distinctive treatments in Figure 3. Inexperienced

subjects were recruited from the LEEPS lab subject pool using a local implementation

of ORSEE (Greiner, 2015). Each session took around 90 minutes, with a 20-minute in-

struction/practice stage, 60-minute game play stage and 10-minute payment/closing stage.

Payments ranged from US $14 to $24, and averaged about $17 per subject.

The data analyzed below come from the 8 sessions specified in Table 2. Each session is
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Figure 3: Main features of oTRw screen for MCrp AMPa game. The subject uses vertical

slider at left to adjust her mixture (horizontal line); vertical line shows matched player’s current

mix. Heatmap color at intersection of these lines codes her current flow payoff; thermometer sets

scale. Graph at lower right shows how her flow payoffs accumulate (blue area); black line is matched

player’s (average) flow payoff. Graph in upper right shows evolution of own and matched player’s

mixtures. Small red heatmap in upper left shows matched player’s payoff function.

equally divided into 5 blocks, each with a given payoff bimatrix; the sequence across blocks

is AMPa, AMPb, IDDS, AMPa, and AMPb. The other three treatment variables — action

set, matching and time — are constant within each session but vary across sessions according

to the classic full factorial design.

In each block, subjects play several periods as detailed in Table 2: in rp sessions the

periods last 90 seconds, with random rematching to start each new period, while they last

150 seconds in mm sessions. In D sessions, each period is divided into numerous 6-second

subperiods and subjects update choices simultaneously, while in C sessions the subjects

update freely in real time.

The 2x2x2 factorial design is very efficient for our purposes. For each of our three binary
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Action Set Time Matching Protocol Block Size # Subjects

P C rp 6 × 90s periods 8

M D rp 6 × 90s periods 10

P D rp 6 × 90s periods 12

M C rp 6 × 90s periods 8

P D mm 4 × 150s periods 8

M C mm 4 × 150s periods 10

P C mm 4 × 150s periods 8

M D mm 4 × 150s periods 12

Game Sequence of 5 Blocks in Each Session

Block 1 Block 2 Block 3 Block 4 Block 5

AMPa AMPb IDDS AMPa AMPb

Table 2: Experiment Design. P=pure, M=mixed action set; C=continuous, D=discrete time;

rp=random pairwise, mm=mean matching protocol. The “Block Size” column reports the number

× the length of periods in each block.

treatment variables, half the data (4 sessions, each with two 2 blocks of 4 or 6 periods) come

from one level, e.g, C(ontinuous) time, and the other half of the data (the other 4 sessions)

come from the other level, e.g., D(iscrete) time; likewise for P vs M action sets and for rp

vs mm matching protocols. The design therefore enables broad-based tests (using the entire

data set and thus a variety of environments) of the direct effect of each treatment variable. It

should be acknowledged, however, that our design is underpowered for some other purposes,

e.g., for estimating higher-order effect sizes such as how much the NE forecast deteriorates

or improves when we move from M to P action sets in a D × rp environment. Due to

the relatively small number of sessions, we apply the subcluster wild bootstrap method

(MacKinnon and Webb, 2018; Roodman et al., 2019) when reporting statistical significance;

this method is far more conservative than simply clustering errors at the session level.

4.3 Testable Hypotheses

Our design transforms the original research questions into a series of testable hypotheses.

Hypotheses H1 - H3 concern the competing point predictions (NE, MM, Center), while H4
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and H5 concern dynamic predictions. The first research question comes down to comparing

average observed profiles to predicted profiles.

H1-NE. The time-average observed profile (a) will not differ significantly from Nash equi-

librium, and (b) will be better approximated by NE than by alternative point predictions.

H1-MM. The time-average observed profile (a) will not differ significantly from maximin,

and (b) will be better approximated by maximin than by alternative point predictions.

H1-Center. The time-average observed profile (a) will not differ significantly from Center,

and (b) will be better approximated by Center than by alternative point predictions.

The first research question also asks about the impact of environmental conditions, which

for us are the matching protocol, the action set treatment variable and the time treatment

variable. H2 makes directional conjectures on conditions more conducive to convergence.

The conjectured directions are based only on folk wisdom and fragmentary existing evidence;

indeed, a major goal of our experiment is to help fill gaps in existing knowledge of how such

environmental conditions affect the outcome of games with only mixed equilibria.

H2-NE. The time-average observed profile will be closer to Nash equilibrium (NE) (a) under

mean matching (mm) than under random pairwise (rp) matching protocol; (b) with explicit

mixes (M) than with only pure actions (P); and (c) in continuous time interaction (C) than

in discrete time (D).

H2-MM and H2-Center replace NE by the alternative point predictions MM and Center.

Again for the sake of specificity in the absence of clear theory or empirical evidence,

H3 makes directional conjectures regarding convergence to any particular point, predicted

or otherwise. We measure (lack of) convergence empirically in terms of dispersion, opera-

tionalized as the geometric mean of row and column standard deviations. That is, for dR =

standard deviation of Row mixes a(t) in the observed sample and dC similarly defined for

Column mixes b(t), dispersion is defined as dG =
√
dRdC .

H3: There will be less dispersion around the observed time average profile (a) under mean

matching (mm) than under random pairwise (rp) matching protocol; (b) with explicit mixes

(M) than with only pure actions (P); and (c) in continuous time interaction (C) than in

discrete time (D).

Hypothesis H4 comes directly from the discussion of sign-preserving dynamics in Section
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3, while H5 is the hypothesis of regret-based adjustment together with our conjectures on

conducive treatments.

H4: In all treatments in asymmetric matching pennies games, the most frequently observed

direction of change will be clockwise (CW).

H5: Estimates of the rate coefficient β1 in learning model (2) (a) will be significantly positive

in all treatments. Estimates will be more positive (b) for mm than for rp matching, (c) for

D than for C time interaction, and (d) for P than for M action sets.

5 Results

To gain perspective before reporting the hypothesis test results, we examine some exemplary

raw data. Each panel in Figure 4 displays the time path of action profiles for one instance

of each treatment in the AMPa bimatrix game. An instance is defined as a matched pair

of players in one period for any rp treatment, or as a single period of play in any mm

(population) treatment.

Panel a shows the pure action choices of a pair of players in discrete time, the treatment

combination most common in previous lab studies. In this instance, the players always best

respond to the previous period profile, resulting in a clockwise tour of the four corners of

state space. Thus average play is close to the Center, and dispersion is maximal. In Panel

b, time is continuous and the action profile is recorded twice per second. The short vertical

segments of the time path indicate episodes where both players stay with their previous

strategies, but again the most common change is a clockwise move to the next corner of the

state space. In a handful of episodes, both players switch strategies in the same half-second

interval and so make a diagonal (DD) move. In panel c, the players can choose explicit

mixtures in discrete time, and there is far less dispersion, but it is unclear whether average

play is closer to the Center or to NE in this instance. The player pair in Panel d usually

moves clockwise, sometimes wandering around NE and sometimes wandering away. The

next four panels of Figure 4 come from mean-matching (population game) sessions. They

all have less dispersion than their random-pairwise counterparts. In particular, the mixed

strategy discrete time profile path shown in Panel g is usually in the vicinity of NE.
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Figure 4: Sample time paths of strategy profiles. The horizontal plane is the state space, the

(a, b) square. The vertical axis is time remaining, so the time paths begin at the top and spiral

downward, and reach the bottom plane at the end of the period. Point predictions are time-

invariant and therefore appear as vertical lines.
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5.1 Point Predictions

To test point predictions, we focus on behavior after players have had some exposure to the

current payoff matrix and after the transient effects of the random initialization wear off.

Therefore subsequent analysis drops the first period in each block and the first 18 seconds

(or 3 subperiods) of each period; with untrimmed data, results are similar but a bit noisier.

Figure 5: Scatter plots for all three games. Each colored symbol shows the average mixture

for a treatment, e.g., the blue open triangle indicates observed play averaged over all instances

of Discrete time × Mixed action × random pairwise matching (DMrp). Shaded rectangles

represent the rank-dependent choice equilibrium (RDCE) sets. The dotted arc represents

the set of symmetric logit QRE.
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Panel A of Figure 5 shows that time average action vectors for most treatments in AMPa

lie inside the RDCE region but near the left edge. The main exception is Pure Continuous

mean matching, for which a point near the middle of the (symmetric logit) QRE arc is the

best prediction. For the other seven treatments, QRE offers only slight improvement or no

improvement over its extreme points, Center and NE. Panel B shows that only one of the

eight treatments for AMPb lies in the RDCE region, and for only one other treatment does

a non-trivial QRE offer a better prediction than Center or NE. Panel C shows that in IDDS,

the average action vector in every treatment lies closer to NE than to Center. Here the QRE

locus is a straight line, a diagonal of the square RDCE region. Interestingly, all the data lie

below that line; perhaps in this dominance solvable game, the the first iteration from Row

players is stronger than the second iteration from Column players. In any case, the Figure

shows that, overall, QRE and RDCE have very limited predictive power for our data.

Figure 5 also offers evidence for testable hypotheses H1 and H2. In Panel A most of the

circles (mean matching treatments) lie closer to NE than to Center, while the opposite is

true for triangles (random pairwise treatments). In Panel B, only the two open circles (for

CMmm and PMmm) are noticeably closer to NE; average actions for all random pairwise

treatments are again closer to Center. In neither panel does any treatment have average

behavior closer to MM than to an alternative point prediction. See Appendix Tables 6 and

7 for test statistics supporting these apparent regularities. To summarize,

Result 1. In our asymmetric matching pennies games, maximin is not an accurate prediction

of average play under any conditions we examine. Nash equilibrium is the more accurate

prediction in some population game mean matching treatments, especially those allowing

explicit mixed actions. Center is consistently the best of our point predictions in our random

pairwise treatments.

Table 3 tests hypothesis H2 and H3; see Appendix Table 8 for an extended version. Here

and for the rest of this section we drop the IDDS data to focus on AMP games. In the first

column of Table 3, the significantly negative entry for mm confirms hypothesis H2-NE(a)

that NE is more accurate under mean matching than under random pairwise matching.

The (barely significant at 5% level) positive entry for continuous contradicts H2-NE(c) — it

seems that NE predicts time average behavior better in discrete than in continuous time. In

the second column of the table, the large constant coefficient, together with the small other
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Distance to NE Distance to MM Distance to Center Dispersion

continuous 0.12 (0.044)** 0.03 (0.210) 0.03 (0.079)* -0.09 (0.056)*

pure -0.00 (0.951) -0.01 (0.730) 0.02 (0.206) 0.22 (0.001)***

mm -0.17 (0.014)** 0.06 (0.109) 0.03 (0.159) 0.04 (0.150)

AMPa -0.05 (0.156) 0.01 (0.555) -0.01 (0.792) 0.03 (0.112)

Constant 0.29 (0.000)*** 0.35 (0.000)*** 0.20 (0.000)*** 0.25 (0.000)***

#Instances 428 428 428 428

R-squared 0.185 0.034 0.015 0.591

Table 3: Coefficient estimates (and p values) for OLS regressions with subcluster wild bootstrap

(MacKinnon and Webb, 2018). The bootstrap applies 999 replications with wild weights drawn

from the Webb six-point distribution and clustering at the session level. Dependent variable in

last column is geometric mean dispersion, and in other columns is Euclidean distance from mean

observed profile to predicted profile. Independent variables are treatment indicators. #Instances

is the number of pairs in rp and periods in mm in all sessions. Significance levels 1, 5, and 10%

respectively denoted ∗∗∗,∗∗ ,∗.

coefficients, confirms that maximin prediction errors are large in all treatments. Entries

in the third column indicate few consistent treatment effects for Center predictions. To

summarize the main conclusions regarding H2, we have

Result 2. Time average-observed profiles are closer to NE under mean matching than under

random pairwise matching, and in discrete than in continuous time. We find no consistent

evidence to support maximin or Center treatment effects.

Hypothesis H3 concerns dispersion, defined in the previous section as the geometric mean

of row and column standard deviations. The last column of Table 3 reports a regression with

dispersion as the dependent variable. The negative coefficient in first line of that column

(almost significant at the 5% level) supports H3(c), that dispersion is less, i.e., convergence

is better, in continuous time than in discrete time. The significantly positive coefficient in

second line supports H3(b), that dispersion is less with mixed action sets. To summarize,

Result 3. In our asymmetric matching pennies games, the data support hypotheses H3(b)

and H3(c), but neither support nor reject H3(a). That is, convergence to a point (a “behav-

ioral equilibrium”) is stronger with explicit mixed action sets and in continuous time than

with the more usual conditions of only pure action choices in discrete time.
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5.2 Qualitative Dynamics

The large constant terms in Table 3 suggest that behavior typically does not settle down to

a behavioral equilibrium. Does that mean that players wander aimlessly, or is there some

regularity such as clockwise cycles?

CW CCW DD CD Stay #Instances

Panel A: AMPa games

mm 0.443 0.133 0.224 0.062 0.139 24

rp 0.415 0.118 0.142 0.033 0.292 190

Mixed 0.411 0.152 0.166 0.061 0.210 122

Pure 0.428 0.077 0.132 0.003 0.361 92

Continuous 0.375 0.116 0.062 0.033 0.413 112

Discrete 0.466 0.123 0.249 0.039 0.124 102

Panel B: AMPb games

mm 0.483 0.131 0.188 0.080 0.117 24

rp 0.369 0.118 0.139 0.025 0.349 190

Mixed 0.390 0.157 0.160 0.052 0.242 122

Pure 0.371 0.071 0.124 0.003 0.431 92

Continuous 0.303 0.109 0.057 0.025 0.506 112

Discrete 0.469 0.132 0.240 0.037 0.122 102

Table 4: Average fraction of directional changes by game and treatment.

To investigate, recall how Figure 2 classifies the direction of profile changes

∆st = (sRt+1 − sRt, sCt+1 − sCt) 6= 0 as clockwise (CW), diagonal (DD), counterclockwise

(CCW), or counter diagonal (CD). Table 4 begins with the fractions of directional changes

(or Stay, i.e., no change) in each instance τ , and reports their averages across all instances

of each treatment. To avoid repetitive asterisks, the Table entries do not indicate statistical

significance, but in every case, we strongly reject the null hypothesis of no difference across

row entries in favor of research hypothesis H4, that the CW fraction is greater.5 Not surpris-

5More specifically, in each row a conservative test rejects the null hypothesis at the 1% level or better

that the first column entry, for CW, is equal to each subsequent entry for an alternative direction. The test

statistic, subcluster wild bootstrap (MacKinnon and Webb, 2018), uses 999 bootstrap replications, with wild

weights drawn from the Webb six-point distribution and clustering at the session level.
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ingly and not inconsistent with H4, Stay is relatively common in continuous time, and also

with Pure action sets and with random pairwise matching. Diagonal moves (DD) are more

common in the Discrete treatment than elsewhere, but even there are very significantly less

common than clockwise moves (CW).

Result 4. Consistent with hypothesis H4, by far the most prevalent directional change in

both asymmetric matching pennies games is clockwise (CW), where both player populations

increase use of the higher payoff action. Diagonal (DD) moves are usually the next most

common, especially in discrete time and with population mean matching.

The Online Appendix reports supplementary analysis supporting Result 4, including

linear regressions (Table 9) and two bar plots (Figures 7 and 8) that show how the direction

fractions change (slightly) over time.

5.3 Fitted Dynamic Model

To test the more quantitative dynamic hypothesis H5, we fit the regret-based learning model

(2), allowing for fixed effects and using indicator variables Dk to capture treatment-specific

response to regret,

4 sit = (β1 +
∑
k

βkDk)Ritsgn{ŝit − sit}+ bi + ct + εit. (5)

Table 5 collects the results. The positive entries in the first row offer some support for

H5(a); the estimated baseline (mixed action, random pairwise matching, AMPb bimatrix)

response to regret β1 is significantly positive for Row in discrete time setting and (for the

one-sided test)6 for Column in continuous time, but slightly misses one-sided 10% significance

in the other baseline cases. Wald-tests on sums of coefficients reported in the Table confirm

that, for Row in discrete time, response to regret is significantly positive at the two-sided

5% level for all treatments except AMPa-Mmm where it is still significant at the 10% level.

The same is true for one-sided significance for Column players in continuous time. For the

other two cases, Row-Continuous and Column-Discrete, the point estimates are all positive

and one-sided significance is mostly in the vicinity of 10%; see Online Appendix Table 10.

6Reported p-values and significance our tables are all two-sided, but Hypothesis 5 is naturally one-sided

— regret theory requires positive β, in contrast to some of our more conjectural hypotheses.

21



Row-Continuous Row-Discrete Col-Continuous Col-Discrete

β1 0.10 (0.254) 1.17 (0.041)** 0.24 (0.072)* 0.96 (0.224)

pure 0.49 (0.173) -0.16 (0.157) 0.58 (0.056)* 0.15 (0.685)

mm 0.40 (0.167) -0.27 (0.154) 0.03 (0.864) 0.70 (0.339)

AMPa -0.00 (0.986) -0.29 (0.109) -0.14 (0.128) -0.50 (0.317)

pure mm -0.22 (0.415) 0.86 (0.053)** -0.26 (0.090)* -0.21 (0.631)

pure AMPa 0.06 (0.743) 0.31 (0.127) -0.17 (0.159) -0.02 (0.950)

mm AMPa -0.32 (0.335) 0.22 (0.174) -0.03 (0.883) -0.36 (0.568)

Observations 63,648 4,272 63,648 4,272

R-squared 0.214 0.337 0.269 0.259

#Instances 332 276 332 276

Table 5: Directional Learning Model (5) coefficient estimates (and p values) for Row and

Col(umn) player actions in Continuous and Discrete time. Observations show number of time

ticks in each regression. Estimation is OLS with pair fixed effects and subcluster wild bootstrap

(MacKinnon and Webb, 2018). The bootstrap uses 999 replications, with wild weights drawn from

the Webb six-point distribution and clustering at the session level. Significance levels 1, 5, and 10%

denoted ∗∗∗,∗∗ ,∗ .

The entries in the Table mostly seem reasonable upon reflection. Since continuous time

data are sampled twelve times as frequently as discrete time data, it is natural for the

continuous time coefficients to be much smaller in absolute value. Column players may

adjust more slowly in AMPa because of the greater asymmetry in that game than in the

AMPb baseline. Pure action sets seem to speed adjustment in continuous time where changes

are asynchronous but may slow it in discrete time where changes are synchronized. Online

Appendix Tables 11 and 12 report regressions for simplified regret models (3) and (4); results

are generally consistent with those of Table 5.

Result 5. Consistent with hypothesis H5 and equation (5), both row and column players

appear to respond positively to regret in all treatments.
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5.4 Simulations and Long-run Dynamics

Following up on hypothesis tests, we ran simulations of equation (5) with AMPa games

using the coefficient estimates reported in Table 5 with error terms set to zero. In every

case, players’ (or populations’) strategy profile moves in clockwise cycles that converge to a

limit cycle surrounding the Nash equilibrium. Figure 6 shows two examples using baseline

parameter fits.

Figure 6: Simulations of (5) using baseline estimates from Table 5. Left panel uses small β1’s (0.1

for Row, 0.24 for column) from continuous time regressions and right panel uses large β1s (1.17/0.96)

from discrete time regressions. Simulations track the trajectory of mixed strategy profiles and are

each run 500 periods from 20 different initial profiles.

Running simulations with a range of β1 values (see Figures 9-13 in the Online Appendix)

demonstrates that weaker response to regret (lower β1 > 0) produces limit cycles that are,

of course, slower but also that more tightly circle around the NE. That is, NE is a better

prediction of simulated behavior when β1 is small, in that the time average is closer to NE

and also there is less dispersion around the time average.

This regularity is in some ways surprising. Circumstances that favor stronger response

to regret (larger β1) degrade the predictive power of NE — abstracting from behavioral noise,

they lead to limit cycles that are closer to the edges of the square, and time average behavior

closer to the center but with larger dispersion around that time average. Conversely, with

weaker response to regret, the simulated state stays closer to NE, so the time average is even
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closer and dispersion around that time average is small. We conjecture that the same may

be true of actual human behavior.

Conjecture 1. Much of the impact of environmental treatments on the predictive power of

Nash equilibrium is captured in the responsiveness β1 to regret; weaker positive response is

associated with greater predictive power.

We have only 16 estimates of row and column β1’s (for 2 payoff matrices ×23 environ-

ments), and the conjecture arose only after looking at those estimates. Therefore we can not

yet properly test the Conjecture, and can only say that it is not inconsistent with our data.

6 Discussion

Our results speak to the broad questions behind the testable hypotheses, and suggest prac-

tical advice for applied researchers.

First, we find that mixed Nash equilibrium is a reasonably good predictor of behavior in

population games. For example, consider an application to the market for an intermediate

good where upstream firms deal with many downstream firms, and conversely. When the

market model has no pure NE, our results suggest that mixed Nash equilibrium may be a

good candidate for describing time-average behavior.

Second, for most other circumstances in asymmetric matching pennies games, we find

that uniform random behavior outpredicts mixed Nash equilibrium. In an otherwise similar

application where a given upstream firm deals mainly with a single downstream firm and

conversely, the mixed NE may not be the best predictor of time average behavior.

Third, for our asymmetric matching pennies games, we find no circumstance in which

maximin predicted behavior better than either Nash equilibrium or uniform mixes. This

may simplify work for applied economists.

Applied economists interested in short run dynamics should find our experiment par-

ticularly instructive. We find persistent dispersion and systematic directional change in our

data. A regret-based directional learning model has significant explanatory power, and its

coefficients were fairly consistent across treatments. Applied economists may be able to de-
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ploy models that similarly aim to capture directional adaptations that are sensitive to regret

(i.e., to the magnitude of potential gains).

Our results also suggest the sort of long run behavior one might expect in games with

no pure Nash equilibrium. Simulations of regret-based dynamics suggest that behavior

never settles down to any sort of mixed equilibrium profile. Instead, abstracting from noise,

simulated action profiles converge to a limit cycle around Nash equilibrium. When the cycle

amplitude is small, Nash equilibrium is not a bad predictor, but when the amplitude is

large, the Center of the state space is a better predictor of the time average, albeit with

large dispersion. The cycle amplitude is systematically related to sensitivity to regret, which

in turn is related to the environment. We conjecture that environmental circumstances

influence convergence to Nash equilibrium via their impact on responsiveness to regret:

perhaps surprisingly, weaker positive responsiveness is associated with better convergence!

Our main message for theorists is that mixed equilibrium (Nash or otherwise) is relevant

over a narrower range of circumstances than might have been supposed. We find rapid

approximate convergence to pure Nash equilibrium in a (control) dominance solvable game,

and to a lesser extent we find convergence to mixed NE in matching pennies population

games. However, in traditional pairwise matching (especially with traditional pure strategy

choice) for matching pennies, we find persistent dispersion that centers more on the uniform

random mix than on an equilibrium mix.

We see dynamic regularities that need better theoretical explanation. In our asymmetric

matching pennies games, typically one player (or player population) has a stronger incentive

to switch strategies, and doing so strengthens that incentive in the other player or population,

creating (with our sign conventions) clockwise (CW) cycles.7

Our experiment also suggests possible followup work in the laboratory. Our subjects

explicitly choose their mixes in M treatments and receive the expected payoff, and so do

not need to randomize actions dynamically. In contrast, Romero and Rosokha (2018) elicit

subjects’ history-dependent pure actions in a repeated prisoners’ dilemma. It might be

7One might regard the next most common move, diagonal (DD), as indicating attempts to exploit those

cycles, i.e., to outguess opponents. Our data, however, seem more consistent with the less interesting

interpretation that DD moves are mainly due to relatively infrequent sampling that combines two successive

adaptations to regret.
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interesting to try similar elicitation procedures in repeated matching pennies games. It may

also be worthwhile to seek new treatments that facilitate convergence to Nash equilibrium or

other point predictions. In some pilot sessions, we tried displays of best and worst possible

payoffs (the latter intended to help maximin predictions), and tried slowing adjustment

speed in continuous time, but found little impact. Finally, it seems worthwhile to design

experiments that can better distinguish among different models of adaptive learning.

We hope especially that our results encourage applied researchers to work in a more

nuanced fashion with mixed strategy equilibrium and adjustment dynamics. Biologists since

Lotka and Volterra (Lotka, 1925) have recognized that dynamics are crucial to understanding

asymmetric matching pennies interactions such as between predators and prey. Social scien-

tists may benefit from similar thinking. For example, ‘hot spot’ dispatch of law enforcement

resources (e.g., Lazzati and Menichini, 2016) is a asymmetric matching pennies population

game, and our work suggests how adaptive dynamics could supplement equilibrium analysis.
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7 Online Appendix: Supplementary Analysis

Computation of NE, MM and Set-valued Predictions for AMPa.

Here we use the AMPa game to illustrate the computation of NE, and maximin. We also

show how to compute the QRE arc (shown in Figure 1) and the RDCE region.

To calculate Nash equilibrium, recall from Section 3 the notation (a, b) for mixed strategy

profiles and the payoff difference functions DR and DC between pure strategies for row and

column players, respectively. By definition, the unique mixed Nash equilibrium for AMPa is

the solution to the system

0 = DR = 1000b− 200 (6)

0 = DC = 200− 400a.

Hence (aNE, bNE) = (0.5, 0.2).

The maximin problem for row players is:

max
a

min{fR(a, 1), fR(a, 0)}, (7)

where fR(a, b) = 1000ab−200a−200b+200 from equation (1). Since fR(a, 1) (resp. fR(a, 0))

increases (resp. decreases) linearly in a, the max must occur where fR(a, 1) = fR(a, 0),

yielding aMM = 0.2. The analogous problem for column players yields bMM = 0.5.

To calculate the symmetric QRE(λ) curve for both players, recall that the logit payoff

function in AMPa games is implicitly defined by the fixed point equations

a =
exp(λfR(1, b))

exp(λfR(1, b)) + exp(λfR(0, b))
(8)

b =
exp(λfC(a, 1))

exp(λfC(a, 1)) + exp(λfC(a, 0))
. (9)

When λ→ 0, we have (a, b) = (.5, .5). When λ→∞, we have (a, b) = (aNE, bNE) = (.5, .2).

The arc curve between two extreme cases is shown in Figure 1 as well as in Panel A of Figure

5.

For 2x2 bimatrix games, RDCE is defined by the following system of inequalities:

sgnDR = sgn[a− 1

2
], and sgnDC = sgn[b− 1

2
]. (10)
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From equation (6) we see that sgnDR = sgn[b − 1
5
] and sgnDC = −sgn[a − 1

2
] for the game

AMPa. Plugging this into (10), we obtain the rectangular shaded region in Panel A of Figure

5. Similarly we obtain the non-convex shaded region in Panel B of Figure 5 as the RDCE

for AMPb, where sgnDR = sgn[b− 3
4
] and sgnDC = −sgn[a− 1

3
].

Point Prediction Details

row to NE col to NE row to MM col to MM row to Center col to Center

Panel A: AMPa games

mm 0.105* 0.089** 0.405*** -0.211*** 0.105* -0.211***

rp -0.001 0.250** 0.299*** -0.050 -0.001 -0.050

Mixed -0.006 0.262 0.294*** -0.038 -0.006 -0.038

Pure 0.033 0.191* 0.333*** -0.109 0.033 -0.109

Continuous 0.010 0.290** 0.310*** -0.010 0.010 -0.010

Discrete 0.012 0.168** 0.312*** -0.132** 0.012 -0.132**

Panel B: AMPb games

mm 0.041 -0.118** -0.379*** -0.038 -0.129*** 0.132**

rp 0.190** -0.240*** -0.230*** -0.160** 0.020 0.010

Mixed 0.157** -0.257* -0.263*** -0.177 -0.013 -0.007

Pure 0.195 -0.186** -0.225* -0.106* 0.025 0.064

Continuous 0.216* -0.267** -0.204** -0.187* 0.046 -0.017

Discrete 0.126*** -0.182** -0.294*** -0.102 -0.044** 0.068

Panel C: IDDS games

mm 0.083** -0.196** 0.083** -0.196** -0.417*** 0.304***

rp 0.103** -0.240*** 0.103** -0.240** -0.397*** 0.260**

Mixed 0.079* -0.215* 0.079* -0.215* -0.421*** 0.285*

Pure 0.129* -0.261*** 0.129* -0.261*** -0.371*** 0.239***

Continuous 0.130** -0.197* 0.130** -0.197* -0.370*** 0.303**

Discrete 0.068* -0.276*** 0.068* -0.276*** -0.432*** 0.224***

Table 6: Mean signed deviation of row and column players’ time average profiles from predic-

tions, by treatment. Asterisks indicate p-values of .10(*), .05(**) and .01(***) for subcluster

wild bootstrap from MacKinnon and Webb (2018) (999 replications, wild weight drawn from

the Webb six-point distribution, clustered at the session level).

Table 6 reports direct tests of the part (a) of hypotheses H1. It begins with the time
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average profiles (aτ , bτ ) of each instance τ of a given treatment, computes their mean (ā, b̄)

and subtracts the given point prediction (ap, bp). The mean matching (mm) population

treatment of the AMPb game comes the closest to the NE prediction — as shown in the

first line of Panel B, its mean row player action ā is an insignificant 0.041 above the NE

prediction aNE = 0.5, while the column player mean action is 0.118 below bNE = 0.75 and

differs at the 5% significance level. Similarly, the mm treatment of the AMPa game is also

the closest to the NE prediction. In every other game and treatment, we clearly reject H1-

NE(a) and H1-MM(a) for row players or column players or both. On the other hand, we

reject H1-Center(a) in only a few cases for either AMP game.

Less importantly, Panel C shows that for the dominance solvable game, all point pre-

dictions are rejected. Of course, for this game NE/MM is a corner of the state space, so

deviations from that point all have the same sign and cannot cancel out. Despite not suffering

that disadvantage, the Center prediction is even worse.

In order to test part (b) of hypotheses H1, Table 7 begins with the Euclidean distance√
(aτ − ap)2 + (bτ − bp)2 between a point prediction and an instance of time average behav-

ior, and reports the mean distances by treatment and point prediction. For example, the first

line of the Table 7 shows that for mean matching instances in the AMPa game (24 periods,

pooling over Continuous and Discrete time, and over Pure and Mixed action sets), the mean

Euclidean distance between the time-average profile and the NE prediction is just 0.150.

This is significantly (p < 0.05) less than 0.255, the mean distance between those same time

average profiles and the Center point. The rest of that line shows that the mean distance to

the maximin prediction, 0.463, is significantly larger. The next line of the Table shows that

the time average distance to the Center is, among the 190 player pairs in rp treatments, on

average 0.206, significantly less than the distance to either equilibrium point.

Thus the first lines of Panels A and B in Table 7 support hypothesis H1-NE(b), that NE

is the best point prediction, for mean-matching treatments in our matching pennies games.

However, consistent with hypothesis H1-Center(b), the non-equilibrium point prediction

Center is best in all other treatments in these games, and significantly in random pairwise

matching treatments and in continuous time treatments. In Panels A and B, there is no

support for the maximin hypothesis H1-MM(b). Panel C confirms that for the dominance

solvable game, the pure strategy NE/MM is a better point prediction than Center in all
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Distance to NE Distance to Center Distance to MM #Instances

Panel A: AMPa games

mm 0.150 <∗∗ 0.255 <∗∗∗ 0.463 24

rp 0.305 >∗ 0.206 <∗∗∗ 0.372 190

Mixed 0.307 > 0.216 <∗∗∗ 0.375 122

Pure 0.261 > 0.205 <∗∗∗ 0.391 92

Continuous 0.339 >∗ 0.204 <∗∗∗ 0.382 112

Discrete 0.231 > 0.220 <∗∗∗ 0.382 102

Panel B: AMPb games

mm 0.157 <∗ 0.224 <∗∗∗ 0.398 24

rp 0.356 >∗∗ 0.220 <∗∗∗ 0.365 190

Mixed 0.325 > 0.202 <∗∗∗ 0.380 122

Pure 0.345 > 0.244 <∗∗ 0.354 92

Continuous 0.394 >∗∗ 0.253 <∗ 0.393 112

Discrete 0.268 > 0.183 <∗∗ 0.343 102

Panel C: IDDS games

mm 0.219 <∗∗ 0.521 >∗∗ 0.219 12

rp 0.300 <∗∗ 0.548 >∗∗ 0.300 95

Mixed 0.257 <∗∗ 0.561 >∗∗ 0.257 61

Pure 0.335 <∗ 0.524 >∗∗ 0.335 46

Continuous 0.283 <∗ 0.559 > 0.283 56

Discrete 0.299 <∗∗∗ 0.529 >∗∗∗ 0.299 51

Table 7: Mean distance of time average profiles to predictions by treatments. Subscripted

asterisks indicate p-values of .10(*), .05(**) and .01(***) for subcluster wild bootstrap from

MacKinnon and Webb (2018) (999 replications, wild weight drawn from the Webb six-point

distribution, clustered at the session level).

treatments.

Table 8 tests hypothesis H2 and H3 with the interaction terms of the treatment indi-

cators. In the first column of Table 8, the significantly negative entry for the mm dummy

variable supports hypotheses H2-NE(a), that NE is more accurate under mean matching

than under random pairwise matching. In the second column of the table, the large constant

coefficient, together with mostly small other coefficients (often with offsetting interactions)

confirm that maximin prediction errors are large in all treatments. Entries in the third col-

umn indicate no consistent treatment effect for Center predictions, which is similar to Result

2 of the main text. The last column also confirms Result 3 that the dispersion is larger in
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discrete time than in continuous time, and in pure actions sets than in mixed action sets.

To summarize, the three tables statistically support Results 1-3 in Section 5.1.

Distance to NE Distance to MM Distance to Center Dispersion

continuous 0.11 0.04 0.06 -0.13**

(0.157) (0.163) (0.179) (0.031)

pure -0.01 -0.04* 0.03 0.20***

(0.788) (0.083) (0.361) (0.010)

mm -0.21** -0.02 0.01 0.05

(0.023) (0.587) (0.814) (0.107)

AMPa -0.01 0.01 0.06 0.01

(0.778) (0.209) (0.135) (0.817)

continuous pure 0.06 0.01 0.02 0.04

(0.231) (0.928) (0.691) (0.185)

continuous mm -0.10 0.01 -0.01 0.06

(0.132) (0.874) (0.818) (0.115)

continuous AMPa -0.02 -0.05* -0.09 0.04

(0.746) (0.073) (0.156) (0.380)

pure mm 0.12 0.10 -0.01 -0.05

(0.109) (0.336) (0.871) (0.143)

pure AMPa -0.07 0.04 -0.06 0.01

(0.415) (0.119) (0.284) (0.901)

mm AMPa 0.05 0.06 0.05 -0.03

(0.340) (0.177) (0.219) (0.250)

Constant 0.29** 0.36*** 0.17*** 0.28***

(0.015) (0.000) (0.002) (0.009)

#Instances 428 428 428 428

R-squared 0.216 0.067 0.047 0.607

Table 8: Coefficient (p values) for Table 3 with intersections terms of treatment indicators and

subcluster wild bootstrap (MacKinnon and Webb, 2018). The bootstrap applies 999 replications

with wild weights drawn from the Webb six-point distribution and clustering at the session level.

Dependent variable in last column is geometric mean dispersion, and in other columns is Euclidean

distance from mean observed profile to predicted profile. #Instances is the number of pairs in rp

and periods in mm in all sessions. Significance levels 1, 5, and 10% respectively denoted ∗∗∗,∗∗ ,∗.
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Qualitative Dynamics Details

Table 9 reinforces Table 4 with regressions and show potential treatment effects. The de-

pendent variables in both tables refer to the fraction of time players play each type of cycles

at the instance level. The results are essentially similar to what we have found in the main

text. Figures 7 and 8 display how the fraction of time moves over time within the periods

and show that the fractions are quite stable over time.

CW CCW Diagonal Stay

continuous -0.17* -0.01 -0.20*** 0.40**

(0.078) (0.354) (0.001) (0.026)

pure -0.03 -0.06* -0.04 0.19*

(0.735) (0.071) (0.123) (0.067)

mm 0.08 -0.07 0.10* -0.18

(0.657) (0.343) (0.081) (0.168)

AMPa -0.01 -0.01 0.00 0.01

(0.612) (0.272) (0.893) (0.718)

continuous pure -0.01 -0.06 0.02 0.03

(0.973) (0.414) (0.191) (0.891)

continuous mm 0.03 0.11 0.02 -0.18

(0.889) (0.290) (0.232) (0.495)

continuous AMPa 0.08** 0.02 -0.00 -0.10*

(0.026) (0.301) (0.917) (0.100)

pure mm 0.04 0.07 -0.12** 0.06

(0.883) (0.414) (0.028) (0.801)

pure AMPa 0.04 0.01 0.00 -0.04

(0.161) (0.479) (0.960) (0.233)

mm AMPa -0.09* 0.00 0.03 0.08

(0.100) (0.967) (0.493) (0.246)

Constant 0.47** 0.17*** 0.25*** 0.05

(0.019) (0.000) (0.004) (0.153)

#Instances 428 428 428 428

R-squared 0.127 0.198 0.383 0.459

Table 9: Regressions of directional changes on treatment dummies. Dependent variable

observations are instance level averages. Baseline (omitted) indicators are for AMPb, mixed

strategy, discrete time, and random pairwise matching. Significance level: *** 0.01, ** 0.05,

* 0.1 for subcluster wild bootstrap from MacKinnon and Webb (2018) (999 replications, wild

weight drawn from the Webb six-point distribution, clustered at the session level).
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Figure 7: Classification over time in random pairwise matching sessions: clockwise (red), diagonal

(yellow), counter-diagonal (grey), stay (green) and counter-clockwise (blue). AMPa on left, and

AMPb on right, by subperiod or tick within period and averaged across periods.
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Figure 8: Classification over time in mean matching sessions: clockwise (red), diagonal (yellow),

counter-diagonal (grey), stay (green) and counter-clockwise (blue). AMPa on left, and AMPb on

right, by subperiod or tick within period and averaged across periods.
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Fitted Dynamic Model Details

To close a minor gap in specifying equation (2), consider states where argmaxxfi(x, s−it)

includes some values larger than sit and other values smaller than sit, e.g., at NE, the

indifference condition tells us that both pure strategies are included in argmax. In such

cases, the sign of directional change is ambiguous so we adopt the natural convention that

sgn{ŝit − sit} = 0.

Row-Continuous Row-Discrete Col-Continuous Col-Discrete

AMPb-Mrp .301 .042** .091* .251

AMPb-Prp .157 .035** .035** .188

AMPb-Mmm .145 .050** .073* .140

AMPb-Pmm .155 .028** .062* .144

AMPa-Mrp .173 .039** .071* .216

AMPa-Prp .158 .030** .054* .210

AMPa-Mmm .422 .060* .141 .287

AMPa-Pmm .158 .022** .096* .219

Table 10: Wald tests on sums of coefficients reported in Table 5. The table reports the

p values of the tests. e.g., AMPa-Prp is related to the sum of the coefficients including

the baseline β1 and the treatment regressors related to AMPa game, Pure action sets, and

random pairwise matching. The sum of the coefficients can be calculated from Table 5.
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Row-Continuous Row-Discrete Col-Continuous Col-Discrete

β1 0.02 0.43* 0.05* 0.40**

(0.743) (0.060) (0.073) (0.034)

pure 0.41 0.18 0.40** 0.21*

(0.136) (0.128) (0.016) (0.076)

mm 0.04 -0.19 -0.02 -0.15

(0.744) (0.143) (0.214) (0.102)

AMPa 0.05 0.01 0.00 -0.02

(0.678) (0.802) (0.893) (0.523)

pure mm -0.23 0.28* -0.29** 0.07

(0.223) (0.094) (0.028) (0.231)

pure AMPa -0.02 0.06 0.05 -0.00

(0.833) (0.446) (0.169) (0.940)

mm AMPa -0.10 -0.10 -0.01 0.05

(0.587) (0.294) (0.748) (0.337)

Observations 63,648 4,272 63,648 4,272

R-squared 0.267 0.375 0.281 0.289

#Instances 332 276 332 276

Table 11: BR Learning Model (eq (3)) coefficient estimates for Row and Col(umn) player

actions in Continuous and Discrete time. Observations show number of time ticks in each regression.

Least squares with pair fixed effects and subcluster wild bootstrap (MacKinnon and Webb, 2018).

The bootstrap applies 999 replications, wild weight drawn from the Webb six-point distribution,

and is clustered at the session level. Omitted baseline indicators are for AMPb, mixed strategy,

discrete time, and random pairwise matching. Nominal significance levels 1, 5, and 10% denoted

∗∗∗,∗∗ ,∗ .
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Row-Continuous Row-Discrete Col-Continuous Col-Discrete

β1 0.01 0.19* 0.03* 0.15***

(0.827) (0.086) (0.061) (0.002)

pure 0.44 0.42* 0.42** 0.45***

(0.115) (0.054) (0.019) (0.001)

mm 0.02 -0.10 -0.01 -0.05***

(0.728) (0.171) (0.176) (0.001)

AMPa 0.03 0.04 0.00 0.00

(0.647) (0.427) (0.956) (0.110)

pure mm -0.23 0.17 -0.30** -0.02***

(0.204) (0.125) (0.021) (0.007)

pure AMPa -0.02 0.03 0.05** -0.01**

(0.841) (0.532) (0.177) (0.020)

mm AMPa -0.06 -0.09 -0.00 0.03***

(0.602) (0.227) (0.854) (0.008)

Observations 63,648 4,272 63,648 4,272

R-squared 0.266 0.341 0.281 0.252

#Instances 332 276 332 276

Table 12: Pure Directional Learning Model (eq (4)) coefficient estimates for Row and Col(umn)

player actions in Continuous and Discrete time. Observations show number of time ticks in each

regression. Least squares with pair fixed effects and subcluster wild bootstrap (MacKinnon and

Webb, 2018). The bootstrap applies 999 replications, wild weight drawn from the Webb six-point

distribution, and is clustered at the session level. Omitted baseline indicators are for AMPb, mixed

strategy, discrete time, and random pairwise matching. Nominal significance levels 1, 5, and 10%

denoted ∗∗∗,∗∗ ,∗ .
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Limit Cycle Details

Here we analyze limit cycles numerically with AMPa games by collecting distance between

observation and Nash equilibrium over time when the trajectory crosses the Poincaré section

from the simulation data. We also show how the limit cycle varies with the change of β1 in

eq (5).

Given strategy profile (at, bt), the Poincaré section we select is the isocline (a = 0.5, b >

0.2). The trajectory (at, bt) at time t is considered to cross the isocline when bt > 0.2 and

(at − 0.5)(at+1 − 0.5) ≤ 0 are satisfied. Whenever the trajectory crosses the isocline, the

distance between the observation and Nash Equilibrium (d =
√

(at − 0.5)2 + (bt − 0.2)2) is

recorded and graphed. Figure 9 (β1 = 0.1 for row players and = 0.24 for column players)

and 10 (β1 = 1 for both players) overlaps such distance over time with 20 simulations and

1500 iterations in each simulation. The blue (red) lines shows the distance over time when

trajectory crosses the isocline and the initial position is outside (inside) the limit cycle. As

shown in the figures, both blue and red lines converge to a limit cycle, which proves that

instead of converging to the Nash equilibrium, the dynamics converge to a limit cycle that

is affected by the payoff matrices and the speed of adjustment β1. The result is robust for

other 3 isoclines between Nash Equilibrium and the boundary of the action space.

Figure 11 shows how the time average (the center of the limit cycle) changes with β1

and Figure 12 shows approximately how the radius of the limit cycle changes with β1 using

both NE and Center as reference points. Although there exists non-monotonicity when β1

is large enough so that trajectories start to hit the edges of the square, we can find that the

center of the limit cycle moves from NE to Center when β1 increases, and the radius of the

limit cycle increases with β1. The figures confirm the results in Section 5.4.

When β1 increases, the boundary of the limit cycle will eventually hit the boundary

of the state space, which reshape the limit cycle. The reshaping process causes the non-

monotonicity in Figures 11 and 12 (when β1 is between 2 and 3), as the cycle is not

monotonously expanding when its boundary hits a subset of the boundary of the state

space. Figure 13 shows three typical limit cycles. Readers can get a sense of how the cycle

looks like from the figure.
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Figure 9: The figure shows the distance between observations and Nash equilibrium over

time with 20 simulations and 1500 iterations in each simulation. The blue (red) lines shows

the distance over time when trajectory crosses the isocline and the initial position is outside

(inside) the limit cycle.

Figure 10: The figure shows the distance between observations and Nash equilibrium over

time with 20 simulations and 1500 iterations in each simulation. The blue (red) lines shows

the distance over time when trajectory crosses the isocline and the initial position is outside

(inside) the limit cycle.
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Figure 11: Time average over β1 with 20 simulations (1500 iterations in each simulation,

data is averaged by the last 500 iterations) for each β1.

Figure 12: Radius of the limit cycle over β1 with 20 simulations (1500 iterations in each

simulation, data is averaged by the last 500 iterations) for each β1.
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Figure 13: Sample dotted limit cycles with three values of β1.
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