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Dynamics of Evanescently-Coupled Laser Pairs With
Unequal Pumping: Analysis Using a Three-Variable

Reduction of the Coupled Rate Equations
Mike Adams , Rihab Al Seyab , Ian Henning , Hadi Susanto , and Martin Vaughan

Abstract—The five coupled rate equations used to describe
laterally-coupled pairs of lasers with weak coupling and unequal
pumping are reduced to a new system of three equations. This
enables approximate closed-form steady-state solutions and ex-
plicit expressions for the boundaries between regions of stable
and unstable dynamics to be found. The results of applying these
approximations to specific cases of coupled laser pairs are shown
to be in good agreement with results obtained from numerical
solutions of the original set of five equations as well as earlier
results from the literature. In addition the approximations based on
the reduced set of equations allow a systematic investigation of the
effects of material, device and operating conditions on trends and
novel features in the dynamics of laterally-coupled laser pairs. The
algebraic results give insight into trends with parameters without
the need for extensive numerical computation and should therefore
be of use in modelling two-element VCSEL arrays for numerous
potential applications.

Index Terms—Laser dynamics semiconductor laser arrays,
stability analysis.

I. INTRODUCTION

THE study of small arrays of coupled semiconductor lasers,
especially those with independent control of pumping for

each element [1]–[4], is an area which is receiving increasing
interest and attention. For the case of VCSEL arrays this has
been driven by attractive properties including phase front engi-
neering and beam-steering [5],[6], extended bandwidth [7],[8]
and enhanced digital modulation [9],[4], with one exemplar
application being the prospect of tunable ultrafast photonic oscil-
lators [10],[11]. At the fundamental level, such arrays have been
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shown to exhibit non-Hermiticity [12],[13], exceptional points
[13]–[15] and parity-time symmetry breaking [1]. Theoretical
understanding and modelling of these effects has been largely
based on coupled rate equations [1],[2],[10]–[12],[14]–[16].
These apply in the general case of unequal pumping and have
also been extended to include asymmetry in coupling coefficient
and photon and carrier lifetimes [17]. Since there is a dearth
of analytical solutions, numerical methods have largely been
necessary to explore the importance of key physical design and
material parameters. While numerical methods have proved ef-
fective in many cases, analytic solutions can often provide more
accessible routes and clearer insights towards understanding the
system. For the particular case of weakly-coupled 2-element
arrays with equal pumping, approximate steady-state solutions
as well as analytic expressions for the boundaries of regions
of stability have been presented [16]. Thus the objective of the
present contribution is to extend that work so as to provide ap-
proximations for these quantities in the case of unequal pumping
in weakly-coupled laser pairs with symmetric real coupling.

This paper is organised as follows. Section II presents the
main theoretical results in terms of a reduction of the five
coupled rate equations to a new system of three equations, as
well as the approximate algebraic solutions of these equations
and three stability conditions for their dynamics. Details of
the derivations of these results are given in Appendices A and
B. Section III presents first some tests of these results against
published work and then proceeds to give some examples of the
use of the approximate stability boundaries for a specific exam-
ple. The accuracy of these approximations is demonstrated by
comparison with stability maps calculated using the method of
Langrangian descriptors [18] as well as by numerical integration
of the rate equations combined with a bifurcation method [19].
It is shown that the approximate solutions permit novel features
of the dynamic maps to be identified and their dependence on
coupling coefficient and pumping asymmetry to be explored
in a systematic manner. These features are summarised in the
concluding section IV.

II. THEORY

We begin with the rate equations for a pair of coupled lasers
whose coupling rate η is real [16]:

dYA
dt

=
1

2τp
(MA − 1)YA − ηYB sinφ (1)
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dYB
dt

=
1

2τp
(MB − 1)YB + ηYA sinφ (2)

dφ

dt
=
αH

2τp
(MA −MB)−ΔΩ+ η

(
YA
YB

− YB
YA

)
cosφ

(3)

dMA,B

dt
=

1

τN

[
QA,B −MA,B

(
1 + Y 2

A,B

)]
(4)

where YA, YB are the normalised fields and MA, MB are the
normalised carrier densities in lasers A, B, respectively, φ is
the phase difference between the fields in B and A, ΔΩ is the
detuning between the cavity resonances of lasers B and A, τN is
the carrier lifetime, τp is the photon lifetime,αH is the linewidth
enhancement factor and QA, QB are the normalised pumping
rates. We assume weak coupling, hence ητp << 1.

Now, following earlier approaches for VCSELs [20],[21], ring
lasers [22] and spin-VCSELS [23], assume that τp << τN and
MA,B – 1 << 1. Hence define MA = 1 + mA, MB = 1 + mB

with mA, mB << 1. It follows that (1) – (4) can be reduced to
three rate equations and one conservation relation, as follows:

dm

dt
=

1

τN

[
(QA +QB − 2)

(
q + sinψ − mcos2ψ

2

)
−m

]
(5)

dφ

dt
=
αHm

2τp
−ΔΩ− 2η cosφ tanψ (6)

dψ

dt
= −mcosψ

2τp
+ 2η sinφ (7)

QA +QB − 2 = Y 2
A + Y 2

B (8)

The new variables are defined by q = (QA – QB)/ ( QA +
QB – 2), m = mA – mB and YB/YA = tan(ψ/2+π/4), and the
details of the derivation of these equations are given in Appendix
A. Equation (8) is an energy conservation law that holds on the
timescale of the carrier recombination time, whilst shorter time-
scale dynamics are included in (5)-(7). The steady state solutions
of (5) – (7) can be found explicitly by using the approximation
sinψs

∼= −q which is consistent with ητp << 1, ms << 1,
where the subscript ‘s’ denotes the steady-state value. The results
can then be written as

mAs
∼= 2ητp

√
QB−1
QA − 1

sinφs mBs
∼= −2ητp

√
QA − 1

QB − 1
sinφs

(9)

YAs
∼=
√

(QA − 1) YBs
∼=
√

(QB − 1) (10)

ΔΩ =
2η√
1− q2

(αH sinφs + q cosφs) (11)

In the limit of equal pumping QA = QB, q = 0, (9) and (11)
reduce to the forms in (25), (26) and (29) of [16], whilst (10)
reduces to the forms of (27) and (28) of [16] but without the
terms of order ητp which appear in the latter. Since we assume

ητp << 1, this omission should only result in a very small error
in the accuracy of (10).

We distinguish between the situations of ‘tilted in-phase’
and ‘tilted out-of-phase’ solutions of (5) – (7), following the
nomenclature introduced by Gao et al [12]. It follows from
(11) that the steady-state phase values, denoted φs+ and φs-,
respectively, for these solutions are given by

tilted in-phase:

φs+ = arcsin

(
ΔΩ

2η

√
1− q2

αH
2 + q2

)
− arctan

(
q

αH

)
(12a)

tilted out-of-phase:

φs− = π − arcsin

(
ΔΩ

2η

√
1− q2

αH
2 + q2

)
− arctan

(
q

αH

)
(12b)

For equal pumping these reduce to the forms φs+ =
arcsin(ΔΩ/2αHη) , φs− = π − φs+ given in [12].

By performing a small-signal analysis of (5) – (7) (see Ap-
pendix B), approximate expressions for the stability boundaries
of the system can be found as:

[
(QA+QB)

(
1− q2

)
+ 2q2

]√
(1− q2) + 8ητNq sinφs > 0

(13)

|ΔΩ| < 2η

√
α2
H + q2

1− q2
(14)

[
(QA +QB)

(
1− q2

)
+ 2q2

]
√
1− q2 + 4ητN (αH cosφs + q sinφs) > 0 (15)

Equation (15), in combination with (11), corresponds to the
Hopf bifurcation. Equation (14) describes the saddle-node (SN)
bifurcation. For this upper limit of detuning, (12a) and (12b)
show that the phase values for the in-phase and out-of-phase
solutions are equal:

|ΔΩ| = 2η

√
α2
H + q2

1− q2
φs+ = φs− =

π

2
− arctan

(
q

αH

)
(16)

In the limit of equal pumping the results of (14) and (15) can
be reduced to the forms of (30) and (31) of [16] for real coupling
rate, i.e.,

q = 0 : 2αHη

√
1−

[
Q

2τNαHη

]2
< |ΔΩ| < 2αHη (17)

where Q = QA � QB.
Equations (5) – (15) are the main results of this paper. In the

following we test them against results in the literature and give
some numerical examples of their use. The accuracy of results
for these examples is verified using different numerical methods
of solution.
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III. RESULTS

A. Comparison With Results From the Literature

The accuracy of the approximations used in deriving (9) –
(15) can be tested by comparing some results with those in the
literature. First, for the steady-state solutions we compare with
the results of Erneux and Lenstra [24] in their special case of
zero time delay of mutually delay-coupled quantum cascade
lasers. These authors use similar assumptions of weak coupling
to reduce the six rate equations for that system to two coupled
equations for the phase of the electric fields; for the case of zero
time delay these can be combined into a single equation. It is
straightforward to show that our (10) and (11) can be combined
in the form

ΔΩ = −η
√
1− αH

2

[
YA
YB

sin (θo − φs)− YB
YA

sin (θo + φs)

]
(18)

where θo = tan-1(αH) - π/2. This result matches the steady-
state solution of the corresponding phase equation (12) of [24],
allowing for the differences in notation.

Contours of constant phase φs+, φs- and field ratio YB/YA

in the plane of QB versus ΔΩ for fixed QA, calculated from
a numerical root searching technique, have been presented by
Gao et al in [12]. The steady-state results (10) and (12) can be
used to allow comparison with these; similarly the boundaries
of stable operation can be found from (14) and (15). Using the
parameter values corresponding to the weakly-coupled “array 1”
(ητp = 0.002) of [12] with QA = 3.2, the results of applying our
equations to find tilted in-phase and out-of-phase solutions show
good agreement for contours of constant phase. Encouraging
agreement is also found for the limits of stability using the SN
bifurcation approximation from (14). In addition we calculated
the Hopf bifurcation using (15) and (11). For this we needed the
value of τN which is not given in [12]; since in other publications,
e.g., [8],[17],[25], these authors use τN = 2 ns, that value was
assumed here. Our results indicate that only the out-of-phase
case shows stability and moreover the range of stable solutions,
as bounded these bifurcations, is very limited for this array.
Stability is restricted to two narrow regions: one at negative
detuning for QB > QA with phase close to 3π/2 and the other
at positive detuning for QB < QA with phase close to π/2.

Contours of constant phase as well as boundaries of stable
operation in the plane of normalised detuning versus normalised
pumping difference are presented by Kominis et al in [14] for
very weak coupling (ητp= 0.000315). Hence for a further test of
our approximate results (13) – (15) we used the same parameters
as [14]. The plot that appears as Figure 9(b) of [14], calculated by
utilising a numerical continuation algorithm, applies to the range
(0 ≤ q ≤ 1, 0 ≤ -ΔΩτp/0.05 ≤ 0.15) in the plane of normalised
detuning -ΔΩτp/0.05 (� ‘Δ’ [14]) versus q (� 2 x‘ΔP’ [14]).
For this range our results for the tilted out-of-phase solutions of
this system are in very good agreement with those presented in
[14]. Note that comparison of our (3) with (6) of [14] indicates
that the minus sign in the detuning is needed for comparison of
results.

Fig. 1. Stability boundaries from (13) – (15) in the plane of normalised
detuning versus q for parameters αH = 2, τN = 1 ns, τp = 1.53 ps, η =
1.908 ns-1 and QA + QB = 26.8. ‘S’ denotes the region of stable operation.

Comparison of the results discussed above using parameters
from [12] and [14], leaving aside the difference of axes related to
pumping rate, reveals a significant difference between the topol-
ogy of the regions of stability for each case. As mentioned above,
in the case of parameters from [12] there are separate distinct
regions of stability for positive q (QA >QB) and negative q (QA

< QB), each bounded by a pair of SN and Hopf bifurcations. In
contrast, we find for parameters from [14] there is a single stable
region that includes both negative and positive q and is bounded
by two SN and two Hopf bifurcations. This difference can be
traced to the difference in relative sets of parameters and can
be quantified in terms of a critical value ηc of the coupling rate
given by the condition that the square root in (17) vanishes for
the case of equal pumping, i.e., ηc = Q/(2τNαH)where Q=QA

= QB. For values of coupling rate that are greater than or equal
to ηc the argument of the square root in (17) is greater than zero
and the regions of stability are similar to those for parameters of
[12] where η = 1 and ηc = 0.2 with our assumption of τN = 2
ns. For values of coupling rate that are less than ηc the regions
of stability are similar to those for parameters of [14] where ητp
= 0.000315 and ηcτp = 0.0005.

B. Numerical Results for a Specific Example

Consider the case of real index slab wave-guiding [16] with
αH = 2, τN = 1 ns, τp = 1.53 ps and η= 83.6 exp(-2.52 d/a) ns-1

where 2d is the edge-to-edge separation of the laser waveguides
and 2a is the width of each. The normalised pumping rate QA,B

in each laser is related to the physical pumping rate PA,B by Qj

= 11.4(Pj/Pjth – 1) + Pj/Pjth where the subscript ‘th’ denotes
the value at lasing threshold. We will consider only the tilted
out-of-phase solutions since these are the only ones allowed for
these parameters at q = 0 [16]. First we consider the case of
laser separation given by d = 1.5a, which yields η = 1.908 ns-1

(ητp = 0.00292), with QA + QB = 26.8 which corresponds
to both lasers at twice threshold when q = 0. Fig. 1 shows a
stability map in the plane of linear frequency detuning ΔΩ/2π
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Fig. 2. Stability maps in the plane of normalised detuning versus positive q
for the same parameters as in Fig. 1, calculated using the method of Lagrangian
descriptors: (top) for the 3 reduced equations (5) – (7), and (bottom) for the full
set of equations (1) – (4). Blue colour denotes the region of stable operation.
The stability boundaries from (13) – (15) are also shown.

versus q, where the dotted red, solid black and broken black lines
correspond to the stability boundaries defined by (13), (14) and
(15), respectively. The region of stable operation is bounded
by two SN and two Hopf bifurcations, as defined by (14) and
(15). This is because the critical value of coupling ηc for these
parameters is 3.35 ns-1 which is greater than the value of 1.908
ns-1 used to calculate Fig. 1. There are two points in Fig. 1 where
the 3 boundary lines touch tangentially; these SN-Hopf points
are at (0.7072, -1.822 GHz) and (-0.7072, 1.822 GHz). It is easy
to show that these points are given by tanφs = αH/q.

In order to verify the accuracy of our approximations, stability
maps have been calculated using the method of Lagrangian
descriptors (LDs) [18]. These are shown in Fig. 2 for the reduced
equations (5) – (7), and the full set of equations (1) – (4). Only
the positive q half-plane is shown in each case. The colour
shading indicates the contours of the Lagrangian descriptor for
the system. Bifurcations are indicated by abrupt changes in these
contours. Fig. 2(top) thus tests the accuracy of the approximation
sinψs

∼= −q which is used in deriving the stability boundaries

Fig. 3. Stability map with boundaries from (13) – (15) in the plane of
normalised detuning versus q with η = 3.35 ns-1 and other parameters as for
Fig. 1. Blue colour denotes the regions of stable operation.

(13) – (15) (see Appendix B). These boundaries are seen to be
in good agreement with the LD result in defining the region of
stable operation (denoted by blue colour). Fig. 2(bottom) verifies
the accuracy of the reduced set of equations (5) – (7) since there
is good agreement with Fig. 2(top), the only small difference
occurring in the position of the Hopf bifurcation at its region of
lowest q (around 0.5).

For the next example, we take the coupling rate to be the
critical value of 3.35 ns-1 (ητp = 0.00513), keeping the other
parameter values the same as those for Fig. 1. This value of η
corresponds to a spacing of d= 1.2766a in the model of coupled
slab waveguides [16]. Fig. 3 shows the boundaries defined by
(13) – (15) superimposed on an LD stability map using (4) –
(7). Only the positive q half-plane is shown since the negative
half-plane can be found by simply reversing the signs of the axes.
There are two regions of stable behaviour (in blue) each of which
is enclosed by saddle-node and Hopf bifurcations, and the latter
boundaries intersect at q = 0. In this case the points of contact
of lines defined by (13) – (15) are at (0.5818, -2.7308 GHz)
and (-0.5818, 2.7308 GHz). There is a good level of agreement
between the approximate boundaries and those found from the
LD method with an error increasing at values of q close to 1.

To complete this set of results we consider a higher rate of
coupling given by η= 6.726 ns-1 (ητp = 0.0103), corresponding
to a spacing of d = a, i.e., the edge-to-edge spacing is equal to
the full width of each waveguide. Fig. 4 shows two regions of
stable behaviour each of which is enclosed by SN and Hopf
bifurcations which meet at the points (0.3977, -4.7585 GHz)
and (-0.3977, 4.7585 GHz). Again the agreement between ap-
proximation and LD boundaries is good except at higher values
of q.

Another way to present these results is in terms of detuning
versus normalised laser spacing d/a for various values of the
normalised pumping difference q. Fig. 5 shows plots of this type
for q values of 0.4 and 0.8, using the same parameters as those
used previously. In Fig. 5(top) the condition for equality of the
boundaries occurs for d/a = 1 at q = 0.3977 as mentioned in the
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Fig. 4. Stability map with boundaries from (13) – (15) in the plane of
normalised detuning versus q with η = 6.726 ns-1 and other parameters as
for Fig. 1. Blue colour denotes the regions of stable operation.

Fig. 5. Stability maps and boundaries from equations (13) – (15) in the plane
of normalised detuning versus normalised spacing d/a for q = 0.4 (top) and 0.8
(bottom) and other parameters as for Fig. 1. The scale on the colour bar shows
the numbers of extrema in the time series.

discussion of Fig. 4; hence for the value of q = 0.4 used here the
curve for (13) is barely observable. For q= 0.8 in Fig. 5(bottom)
the change of all boundaries is clearly seen, as expected from
the discussion of Figs. 1 – 4.

In order to test the accuracy of the approximations used to
produce Fig. 5, a numerical (Runge-Kutta) solution of the rate
equations (1) – (4) was used. From the extrema of the time series
ofYA

2 + YB
2 + 2YAYB cosφ at each value of d/a and detuning,

one-parameter bifurcation diagrams are used to construct the
stability maps in Fig. 5. Examples of one-parameter bifurcation
diagrams are given in Figs 5 and 9 of [16] and details of how
these are used to construct stability maps are given in [19]. White
colour is used to denote the regions of stability; other colours
denoting regions of period 1, 2 and 3 oscillation and chaos are
marked in Fig. 5(top). It is clear that there is a very good level of
agreement for the larger values of d/a, whilst at smaller values the
approximate results tend to underestimate the frequency range
of the stable region. The SN bifurcations agree well and the
underestimate is associated with error in the Hopf curves at
higher coupling rates. This is thought to be associated with the
small error (of order ητp) which was noted in the discussion of
(10) in section II and implies an error of the same order in the
approximation sinψs

∼= −q. Thus, based on this evidence and
that from the comparisons of results in Fig. 4, we estimate that the
approximation of (15) for the Hopf bifurcation is very accurate
provided ητp is less than about 0.005. No such limit appears to
apply to the approximation of (14) for the SN bifurcation which
retains its accuracy over the entire range tested here.

IV. CONCLUSION

In this paper we report on how the five coupled rate equations
which describe laterally coupled laser pairs with weak real cou-
pling (ητp << 1) can be reduced to a system of three equations
The variables in these equations are the phase difference between
the fields in the two lasers, the ratio of the field amplitudes
(expressed as an angle) and the difference in normalised excess
carrier densities in the two lasers. The underlying physical
parameters are the coupling rate η, the linewidth enhancement
factor αH, the carrier lifetime τN, the photon lifetime τp, the
detuning ΔΩ between the cavity resonances of the lasers and
the normalised pumping rates expressed in terms of their sum
(QA + QB) and relative difference q = (QA – QB)/ (QA + QB

– 2). The approximate steady-state solutions of this reduced set
of equations have been tested against published results which
were found using numerical methods. Additionally, the use of
a small-signal analysis has revealed closed-form expressions
which predict the boundaries of stable operation. These have
also been compared against published results and our own
numerical solutions for the case of weakly-coupled laser pairs,
and good agreement between the numerical methods and those
from the approximations are found. Finally, in the limit of equal
pumping the algebraic approximations are shown to reduce to
those already known from earlier work [16],[26].

The new closed-form expressions allow a systematic investi-
gation of the dependence of the dynamics on parameters such
as pumping rates, coupling rate and linewidth factor. Results
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have been presented for a specific example showing the effect
of varying η and q whilst keeping (QA+QB) fixed. These results
show novel effects in terms of the asymmetric behaviour of
the stability boundaries and how this develops as the parameter
values are changed. In all cases analysed it is found that pairs of
saddle-node and Hopf bifurcations touch tangentially at points
whose co-ordinates can be found algebraically. In addition the
new expressions offer a route for future exploration of the various
forms of nonlinear dynamics that exist in a system of coupled
laser pairs in terms of physical designs and materials parame-
ters, and via external control using differential pumping. Such
results should be useful in modelling 2-element VCSEL arrays
for applications such as beam steering, enhanced modulation
response, etc., since trends with various parameters can easily
be tracked without the need for extensive numerical simulation.

The approach used here follows a method applied previously
to VCSELs [20],[21],[23] and ring lasers [22] in that a reduction
in the number of rate equations is achieved by assuming a power
conservation law and a new variable that is related to the ratio
of the field amplitudes. This approach would also be applicable
to coupled nanowire lasers which have been predicted to have
potential for ultra-high frequency modulation [27]. Whilst the
present contribution has been limited to the case of real coupling
rates, it is straightforward to extend this to take account also
of the phase of the coupling in order to give a more general
description of the effects of gain-guiding and index antiguiding
[16]. Further generalisation to deal with larger arrays of weakly-
coupled lasers, including two-dimensional arrays of VCSELs,
is also possible but in all cases it is only possible to reduce the
number of rate equations by two.

APPENDIX A
DERIVATION OF THE REDUCED SET OF COUPLED

RATE EQUATIONS

Defining MA = 1 + mA, MB = 1 + mB with mA, mB << 1,
adding and subtracting the two versions of (4) yields

d (mA +mB)

dt
=

1

τN

[
QA +QB − 2− (Y 2

A + Y 2
B

)
− (mAY

2
A +mBY

2
B

)− (mA +mB)
]

(A1)

d (mA −mB)

dt
=

1

τN

[
QA −QB − (Y 2

A − Y 2
B

)
− (mAY

2
A −mBY

2
B

)− (mA −mB)
]

(A2)

For the situation of ητp << 1 we will assume that (A1) can
be replaced by a conservation law that holds for dynamic time
scales longer than the relaxation oscillation period:

QA +QB = 2 + Y 2
A + Y 2

B (A3)

We have thus assumed that the time derivative in (A1) is zero
and that the final two terms on the RHS can be neglected. We
show below in (A5) that the penultimate term is zero.

From (A3) it follows that

d
[
Y 2
A + Y 2

B

]
dt

= 0 (A4)

Using (1) and (2) this result leads to

mAY
2
A +mBY

2
B = 0 (A5)

Following the example of [22], we define a new variable ψ
by using again the conservation law (A3):

YA =
√
Πcos

(
ψ + π/2

2

)
YB =

√
Πsin

(
ψ + π/2

2

)
(A6)

where Π = QA + QB – 2. It follows that (A5) can be written as

mAY
2
A +mBY

2
B = Π

mA (1− sinψ) +mB (1 + sinψ)

2
= 0

(A7)
Hence, neglecting the trivial (threshold) case QA + QB = 2,

it follows that in general

mA +mB = (mA −mB) sinψ (A8)

It follows that

mAY
2
A −mBY

2
B =

Π(mA −mB) cos
2ψ

2
(A9)

Using this result and the definitions (A6), (A2) becomes

d (mA −mB)

dt

=
1

τN

{
QA −QB +Π

[
sinψ − (mA −mB) cos

2ψ

2

]

− (mA −mB)} (A10)

Also, (3) becomes

dφ

dt
=
αH

2τp
(mA −mB)−ΔΩ− 2η cosφ tanψ (A11)

From the definitions (A6), we have

dYA
dt

= −YA
2

tan

(
ψ + π/2

2

)
dψ

dt

dYB
dt

=
YB
2

cot

(
ψ + π/2

2

)
dψ

dt
(A12)

Hence (1) and (2) can be transformed to

dψ

dt
= −mA

τp
cot

(
ψ + π/2

2

)
+ 2η sinφ (A13)

dψ

dt
=
mB

τp
tan

(
ψ + π/2

2

)
+ 2η sinφ (A14)

Multiplying (A13) by tan[(ψ + π/2)/2] and (A14) by cot[(ψ
+ π/2)/2], and adding gives

dψ

dt
= − (mA −mB)

cosψ

2τp
+ 2η sinφ (A15)

Defining new variables m = mA – mB and q = (QA - QB)/ Π,
(A10), (A11) and (A15) can be written as

dm

dt
=

1

τN

[
Π

(
q + sinψ − mcos2ψ

2

)
−m

]
(A16)
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dφ

dt
=
αHm

2τp
−ΔΩ− 2η cosφ tanψ (A17)

dψ

dt
= −mcosψ

2τp
+ 2η sinφ (A18)

These are the reduced set of equations given as (5) – (7) in
the main text. The steady state versions are

2Π (q + sinψs) = Πmscos
2ψs + 2ms (A19)

ΔΩ =
2η

cosψs
(αH sinφs − cosφs sinψs)

(A20)

ms = 4ητp
sinφs
cosψs

(A21)

where the subscript ‘s’ denotes the steady-state value. Since
we assume that ητp << 1, ms << 1, it follows that a good
approximation for the solution of (A19) is

sinψs
∼= −q (A22)

Using this approximation in (A21) and (A8) it follows that

mAs
∼= 2ητp

√
1− q

1 + q
sinφs mBs

∼= −2ητp

√
1 + q

1− q
sinφs

(A23)
In the limit of equal pumping q = 0, these results reduce to

the expressions given in [16] in the case of real coupling. In the
limits of q tending to 1 or -1, which correspond, respectively,
to QB = 1 or QA = 1, i.e., one or other laser at threshold, the
result in (A23) for the laser above threshold suggests that the
quantity mj tends to infinity. However, this is also the case for
the steady-state solutions of (1) and (2) since at threshold the
field amplitude is zero.

APPENDIX B
STABILITY ANALYSIS OF THE REDUCED SET OF EQUATIONS

The perturbed solutions of (A16) – (A18) are m = ms + Δm
eλt, φ = φs + Δφeλt and ψ = ψs + Δψeλt where Δm << ms,
Δφ<<φs and Δψ <<ψs. It follows that, to first order in small
quantities, the resulting equations can be combined into a cubic
equation of the form

λ3 +A1λ
2 +A2λ +A3 = 0 (B1)

where the coefficients Ai are given by

A1 =
Πcos2ψs + 2

2τN
− 4η sinφs tanψs (B2)

A2 = −
(
Πcos2ψs + 2

)
τN

2η sinφs tanψs

+ 4η2

[
(sinφs tanψs)

2 +

(
cosφ

s

cosψs

)2
]

+Π(cosψs + 4ητp sinψs sinφs)
cosψs

2τpτN
(B3)

A3 =

(
Πcos2ψs + 2

)
τN

2η2

[
(sinφs tanψs)

2 +

(
cosφ

s

cosψs

)2
]

− Π

τpτN
η (cosψs + 4ητp sinψs sinφs)

(αH cosφs + sinφs sinψs) (B4)

For the case of equal pumping, q = 0, Π= 2(Q – 1), sinψs =
0, (B2) – (B4) are identical to (B17) – (B19) in [16] (with ηi =
0).

The conditions for stable steady-state solutions of (B7) are

A1 > 0, A3 > 0, A1A2 −A3 > 0 (B5)

Using the approximation for sinψs from (A22), the first con-
dition of (B5) becomes[
(QA +QB)

(
1− q2

)
+ 2q2

]√
(1− q2) + 8ητNq sinφs > 0

(B6)
For non-zero detuning , the value of φs from the solution of

(B6) can be used to find the corresponding condition on detuning
from (A20), again with (A22), as

ΔΩ ∼= 2η√
1− q2

(αH sinφs + q cosφs) (B7)

For zero detuning , tanφs ∼= −q/αH and the tilted in-phase

solution has positive cosφs so sinφs ∼= −q/√α2
H + q2, and

hence (B6) gives[
(QA +QB)

(
1− q2

)
+ 2q2

]√
(1− q2) (α2

H + q2)

− 8ητNq
2 > 0 (B8)

For zero detuning , the tilted antiphase solution gives the
result[

(QA +QB)
(
1− q2

)
+ 2q2

]√
(1− q2) (α2

H + q2)

+ 8ητNq
2 > 0 (B9)

Using the approximation for sinψs from (A23), the second
condition of (B5) becomes

2ητp
{[
Π
(
1− q2

)
+ 2
] (
q2sin2φs + cos2φs

)
+2qΠsinφs

(
1− q2

)
(αH cosφs − q sinφs)

}
> Π

(
1− q2

)3/2
(αH cosφs − q sinφs)

(B10)

For non-zero detuning , the LHS of (B10) is normally much
less than the RHS since ητp << 1. Hence (B10) implies that
the RHS is less than zero, i.e., the SN bifurcation is given
by αH cosφs < q sinφs. Substituting this into (B7) yields the
result for the SN bifurcation

|ΔΩ| < 2η

√
α2
H + q2

1− q2
(B11)

For equal pumping (B11) reduces to (30) of [16] (with ηi =
0).
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For zero detuning , the tilted in-phase solution for the second
condition of (B5) becomes{

(QA +QB − 2)
(
1− q2

) [
α2
H

(
1− 2q2

)− q4
]

+2
(
α2
H + q4

)}
2ητp

− (QA +QB − 2)
(
1− q2

)3/2(
α2
H + q2

)3/2
> 0 (B12)

For equal pumping (B12) reduces to η >
αH(Q− 1)/(2τpQ), a result first derived by Winful and
Wang in 1988 [26].

For zero detuning , the tilted antiphase solution for the
second condition of (B5) becomes{

(QA +QB − 2)
(
1− q2

) [
α2
H

(
1− 2q2

)− q4
]

+2
(
α2
H + q4

)}
2ητp

+ (QA +QB − 2)
(
1− q2

)3/2(
α2
H + q2

)3/2
> 0 (B13)

The third condition of (B5) can be simplified by only retaining
the terms in 1/τp. Using the approximation for sinψs from (A22),
this gives [

(QA +QB)
(
1− q2

)
+ 2q2

]√
1− q2

+ 4ητN (αH cosφs + q sinφs) > 0 (B14)

For the case of equal pumping, (B14) reduces to equation
(B27) of [16] (with ηi = 0).

Equations (B6), (B11) and (B14) correspond, respectively, to
equations (13) – (15) of the main text.

For zero detuning , in the tilted in-phase case the result is[
(QA +QB)

(
1− q2

)
+ 2q2

]√
(1− q2) (α2

H + q2)
+4ητN

(
α2
H − q2

)
> 0

(B15)

For zero detuning , in the tilted antiphase case the result is[
(QA +QB)

(
1− q2

)
+ 2q2

]√
(1− q2) (α2

H + q2)
−4ητN

(
α2
H − q2

)
> 0

(B16)

For equal pumping, (B16) reduces to η < Q/(2αHτN ), also
first derived in [26]. Note that these and other authors use the
notation P = (Q – 1)/2 for the normalised excess currents.
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