
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 1

Performance Optimization of Many-core
Systems by Exploiting Task Migration and

Dark Core Allocation
Shengyan Wen, Xiaohang Wang, Member, IEEE, Amit Kumar Singh, Member, IEEE,

Yingtao Jiang, Mei Yang, Member, IEEE

Abstract—As an effective scheme often adopted for performance tuning in many-core processors, task migration provides an
opportunity for “hot” tasks to be migrated to run on a “cool” core that has a lower temperature. When a task needs to migrate from one
processor core to another, the migration can embark on numerous modes defined by the migration paths undertaken and/or the
destinations of the migration. Selecting the right migration mode that a task shall follow has always been difficult, and it can be more
challenging with the existence of dark cores that can be called back to service (reactivated), which ushers in additional task migration
modes. Previous works have demonstrated that dark cores can be placed near the active cores to reduce power density so that the
active cores can run at higher voltage/frequency levels for higher performance. However, the existing task migration schemes neither
consider the impact of dark cores on each application’s performance, nor exploit performance trade-off under different migration
modes. Unlike the existing task migration schemes, in this paper, a runtime task migration algorithm that simultaneously takes both
migration modes and dark cores into consideration is proposed, and it essentially has two major steps. In the first step, for a specific
migration mode that is tied to an application whose tasks need to be migrated, the number of dark cores is determined so that the
overall performance is maximized. The second step is to find an appropriate core region and its location for each application to
optimize the communication latency and computation performance; during this step, focus is placed on reducing the fragmentation of
the free core regions resulting from the task migration. Experimental results have confirmed that our approach achieves over 50%
reduction in total response time when compared to recently proposed thermal-aware runtime task migration approachess.

Index Terms—Task migration, many-core, dynamic resource allocation, dark cores.

F

1 INTRODUCTION

MANY-CORE chips have been the power engine to drive
up the performance of cloud computing, big data

services, and artificial intelligence. A typical many-core chip
these days contains a few tens or even thousands of proces-
sor cores, and the number of cores is expected to continue to
grow. As more cores are added into a single chip, the chip
power density also climbs at a rapid rate, which imposes
a serious challenge in thermal management [1], [2]. To
mitigate this problem, a portion of the chip (i.e., a few cores)
may have to be powered off to avoid overheating of the chip,
giving rise to the so-called dark silicon phenomenon [3]
that apparently causes under-utilization of precious system
resources [4].

To minimize the system performance penalty otherwise
introduced by the dark cores, they shall be placed near the
active cores where the heat generated by the active cores
can be dissipated due to temperature gradient between the
dark and active cores [5], [6]. Doing so, an active core shall
be allowed to run at a higher voltage/frequency (V/F) level
because an active core tends to dissipate heat better when it

• S. Wen and X. Wang are with the School of Software Engineering, South
China University of Technology, Guangzhou 510006, China. X. Wang is
the corresponding author.
E-mail: sesywen@mail.scut.edu.cn, xiaohangwang@scut.edu.cn.

• A.K. Singh is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom.
E-mail: a.k.singh@essex.ac.uk.

• Y. Jiang and M. Yang are with the Department of Electrical and Computer
Engineering, University of Nevada, Las Vegas, USA.
E-mail: yingtao@egr.unlv.edu, mei.yang@unlv.edu

Manuscript received April 19, 2005; revised August 26, 2015.

High

communication

latency

a) b)

Cores

running the

application

Other cores

Hot

Task

Hot

Task

Hot

HotHot

Hot

Fig. 1. (a) Task migration following the globally coolest mode. (b) Task
migration following the neighbor swapping mode.

is close to dark cores that have lower temperatures.
One big problem in [5], [6] is that since tasks are bounded

to specific cores throughout the duration of task execution,
little can be done to react to the overheating problem when it
emerges. However, this thermal overheating problem can be
mitigated by adopting a task migration strategy that allows
tasks running at a hot core to migrate to a processor core
with lower temperatures (“cooler” cores). The task migra-
tion approaches [7]–[10] migrate a task running on an over-
heated core to another core that has a lower temperature.
The first issue is to determine how many dark cores should
be allocated to the currently running applications, and how
many dark/free cores should be reserved for the incoming
applications. Allocating many dark cores to the running ap-
plications can improve their performance, as the active cores
are able to run at a higher V/F level by placing many dark
cores near them. However, when new application arrives,
there might be insufficient number of free cores available
for them. As a result, newly arrived applications may have
to wait to be serviced until some applications finish their
execution, which incurs performance degradation.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 2

Another issue related to task migration is how to deter-
mine the migration mode for the “hot” tasks. Directly linked
to the system performance, a migration mode stipulates
how the hot tasks migrate and the destinations to which hot
tasks migrate. There are generally two migration modes: 1)
globally coolest, where hot tasks are migrated to the globally
coolest cores, and 2) neighbor swapping, where a hot task
running on a core only migrates to run on one of the core’s
neighboring cores. In the globally coolest mode, two com-
municating tasks might respectively migrate to two cores
that are far apart, incurring high communication latency
between them, as shown in Fig. 1 (a). In addition, it might
also lead to core fragmentation [11] that free cores from
any single contiguous region are just inadequate to accom-
modate the computing needs of an incoming application,
although the total number of free cores on the chip may still
exceed the number of cores required to run the application.
If applications have to be mapped to non-contiguous cores,
there will be obvious performance penalty due to increased
communication distances [11]. In the neighbor swapping, al-
though the communication distance of tasks can be reduced,
the core running the hot task finds no thermal gradient, as
shown in Fig. 1 (b). In this case, the hot tasks may have to
slow down or halt to generate less heat and make room for
heat dissipation.

To address the deficiencies of the above two schemes, in
this paper, we propose a dynamic task migration scheme.
Two control knobs, the number of dark cores for each
application and the migration mode of each application,
are tuned at runtime to optimize the performance of both
the currently running applications and the incoming ones.
Three migration modes are defined based on analyzing the
application and system characteristics. These task migra-
tions are performed in a confined application core region
to avoid long communication distance and fragmentation.
The number of dark cores for each application, which de-
fines each application’s core region size, is selected by a
search tree algorithm. The proposed dynamic task migration
scheme assigns a core region and selects the migration
mode for each application to optimize the overall system
performance, including communication latency and waiting
time. The key contributions of this approach are as follows:

1) Migration modes are defined for different applica-
tions according to their characteristics.

2) A dynamic task migration algorithm is proposed to
optimize both communication latency (by keeping
low distance of communicating tasks) and compu-
tation performance (by setting active cores to run
at a high frequency and migrating them to cold
cores in case of overheating). Each application is
restricted to migrate within a core region, which can
alleviate fragmentation (a situation where free cores
are scattered and not forming a contiguous region).

3) Experimental results have confirmed that the pro-
posed dynamic task migration approach can reduce
the total response time by up to 52% over existing
methods.

This work marks a significant extension of previous
work reported in [12], specifically with the following new
contributions:

1) The waiting time model is replaced by a staircase
function, which is computed by an algorithm that
estimates the waiting time of each application more
precisely.

2) The task migration algorithm is improved by ex-
ploiting the shapes and locations of application core
regions. The algorithm selects the best number of
dark cores, a migration mode, and the best shape
and location of the core region for each application
to improve system performance.

Correspondingly, we update the experimental results with
the new evaluations of the proposed dynamic task migra-
tion algorithm.

The rest of the paper is organized as follows. Section 2
reviews related work, followed by system model definition
in Section 3. Sections 4 details the proposed dynamic task
migration scheme, and performance of this algorithm is
fully evaluated and the results are reported in Section 5.
Finally, Section 6 concludes the paper.

2 RELATED WORK

Allocating the resources of a multi-/many-core system to
the applications must take into account the nature of the
tasks and their communication patterns. This optimization
problem and its variations have been studied extensively
in the literature [13], [14]. In this section, we will survey
runtime resource allocation algorithms with and without
task migration, particularly those that concern the mapping
of dark cores.

2.1 Application Mapping
Several resource allocation approaches that deal with map-
ping the tasks of an application to cores have been pro-
posed to deliver either the highest system throughput or
application performance. Existing runtime application map-
ping algorithms relevant to the performance and thermal
management (that defines the scope of this paper) can
be classified into 1) communication-oriented, or 2) power-
and/or thermal-oriented.

Communication-oriented mapping algorithms map
communicating tasks of each application to the cores close
to each other so that the communication overheads tend
to be reduced [15]–[17]. These approaches, however, do
not consider the thermal issues that may cause physical
damages to the chip itself and reduce the system reliability.

Power- and/or thermal-oriented mapping algorithms,
on the other hand, guarantee the thermal safety by either
taking into account the power budget [18], [19], or directly
dealing with the temperatures of the cores [20]. Since most
of the proposed algorithms use a pessimistic power con-
straint to avoid thermal violations, they might lead to sub-
optimal performance.

Since the proposed scheme migrates tasks when hot
spots occur, the tasks can still run at a high V/F level
to avoid performance degradation caused by a pessimistic
power constraint.

2.2 Dynamic Resource Allocation with Task Migration
Communication-oriented application mapping methods
[15]–[17] might cause the active cores to run at a high
frequency, which contributes to the rise of the chip temper-
ature. To keep the chip at a safe temperature, some dynamic

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 3

resource allocation approaches have been proposed. They
either employ voltage/frequency scaling to some cores to
reduce computation induced power consumption [21], or
shut down a few very “hot” cores and give them time to
cool down [22]. In both cases, there is a performance penalty,
assuming the tasks have to stay running at the same core
from the beginning to the end.

The performance problems of above mentioned resource
allocation algorithms can somehow be addressed with run-
time task migration, that a task running on an overheated
core shall be allowed to migrate to run on another core that
has a lower temperature. With task migration, the resource
allocation is achieved in a dynamic-tuning fashion [8], [23],
[24]. Note that the existing task migration algorithms can
also be classified into 1) communication-oriented, 2) power-
and/or thermal-oriented.

Power- and/or thermal-oriented migration algorithms
focus on reducing peak temperature or maximizing the
power of the chip under a thermal constraint [2], [7]–[11],
[25], [26]. In [2], [14], hot tasks are migrated to the globally
coolest cores or randomly-picked cool cores, which does
not take into account the intra-application task communi-
cation overhead. A different approach is taken in [7], [9],
[26], where hot tasks are migrated to neighbor cores if
the latters are cooler, which might lead to scattered free
cores. These approaches result in increased communica-
tion latency or fragmentation that may have negative im-
pacts on applications to be launched. Compared to existing
power- and/or thermal-oriented migration algorithms, the
proposed scheme allocates a contiguous core region to each
application and only migrates tasks within each applica-
tion’s core region to reduce the communication distance and
fragmentation of free core regions.

Communication-oriented migration algorithms focus on
minimizing the communication latency while migrating
tasks [10], [27]–[29]. However, most of them do not con-
sider thermal constraint, or use a pessimistic power bud-
get when making task migration decisions. Compared to
existing communication-oriented migration algorithms, the
proposed scheme takes thermal issue into account.

2.3 Resource Allocation Exploiting Dark Cores
As more cores are integrated in a single chip, the chips see
a rapid increase in power density, which brings in a great
challenge in thermal management. One way to guarantee
the thermal safety is to power off a portion of the cores,
referred as the dark silicon phenomenon [3], and these
powered-off cores are referred as dark cores.

A few application mapping algorithms use dark cores
to boost performance for multiple applications [5], [6],
[30]. The basic idea of these works is to place the dark
cores around the active cores to boost the frequency and
performance of the active cores. Communication distance
between two tasks increases if they have dark cores inserted
between them for the purpose of heat dissipation. Therefore,
although active cores can possibly run at a higher frequency
level with dark cores being placed around them, the applica-
tions might suffer from increased communication overhead,
resulting in poorer performance, as the cases reported in
[5], [6]. [30] took a different approach to optimize both
the communication distance and computation performance
simultaneously by adjusting the location of the dark cores.

Compared to existing dark-core-aware methods where the
task-to-core mapping is fixed, our proposed scheme can
avoid thermal hotspots by task migration.

Besides application mapping, another important aspect
in resource allocation is task migration, and it happens
when some cores are overheated, as the case in [31]. The
tasks are migrated to the previously power gated cores. In
this manner, the active cores and dark cores “shuffle” their
ON/OFF status. However, it leads to low system utilization
because a single application occupies a large area of the chip,
i.e., many cores are power gated, making it not suitable for
systems with high workload. Compared to the dark-core-
aware task migration methods, our scheme can optimize the
overall system performance by allocating different numbers
of dark cores to applications.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Many-core Platform Model
In this paper, a many-core system is made of a set of cores
connected by an interconnection network, which comes
with a 2D mesh topology with bidirectional links. Each core
has a processing unit, an L1 cache, an L2 cache bank, and a
network interface.

Each core has coordinates of (x, y). Given an N ×
M(M ≤ N) mesh system, the core at the top-left corner
is indexed as (0, 0), which is set to be the global manager,
while the core at the bottom-right corner is indexed as
(N−1,M−1). The temperature of each core needs to be sent
to the global manager. Table 1 lists the notations used in this
paper. The application allocation and resource management
are done in a centralized manner by the resource manager.
The migration algorithm is executed by the global control
algorithm running on the global manager core.

3.2 Application Model
Each application i is modeled as a directed graph Ai =
(Di, Ei), also listed in Table 1. Each task d ∈ Di bears an
execution time (ExecTime) of the task when it is mapped
onto a core. The ExecTime for each task is taken as its worst-
case execution-time (WCET) and remains fixed for a given
operation frequency of the core that runs the application.
For each edge e ∈ Ei in the task graph, it has a weight of
communication volume ei,j from tasks di to dj . A mapping
function M(d) = c, for d ∈ Di, c ∈ C maps task d to core c.

The set of n applications arriving at the system is de-
noted as S = {A1, A2, ..., An}. The dark core numbers
b1, b2, ..., bn are associated with applications A1, A2, ..., An,
respectively, where bk ∈ {1, 2, ..., |Ak|} is the number of
dark cores that is assigned to Ak.

3.3 Thermal Model
We have included the thermal model in [32] to model the
heat flow:

K
dT (τ)

dτ
+ UT (τ) = P (τ) (1)

where τ is the discrete time unit, K is the thermal capaci-
tance matrix of components (routers, processors, etc), U is
the thermal conductance matrix, T (τ) is the temperature
vector with T (τ)[j] representing the temperature of the
j − th component, and P (τ) is the power vector including
both dynamic and leakage power.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 4

TABLE 1
Nomenclature

Notations Definition
c = (x, y) A core in the system with coordinate of (x, y)

Ai = (Di, Ei)
Application Ai with a directed graph , where Di is the set of tasks and Ei is the set of directed
edges representing dependencies among the tasks

M(d) = c A mapping function binding task d to core c
S = {A1, ..., An} The application set arriving at the system
n The number of applications in set S
bi The number of dark cores associated with Ai

ωi, σi The execution time and response time of Ai, respectively
ω̂i, σ̂i The estimated execution time and response time of Ai, respectively
σ The total response time of the arrived applications set S

CCRi = IVi/CVi
Computation to communication ratio of Ai, where IVi is the number of total instructions to be executed, and
CVi is the total communication volume of each task in Ai

CCRth A threshold used to distinguish whether the application is computation-intensive or communication-intensive
N,M The system has N ×M cores
y(t) A function returns the number of free cores at time t

πi,j = {b1, ..., b2, ..., bn}
A search tree node at level i, modeled by a fixed-length vector where bk is the dark core number
of Ak, 1 ≤ k ≤ n (the search tree is defined in Section 4.5)

v(πi,j) The estimated total response time of {A1, A2, ..., Ai} of node πi,j
v(πn,j) The estimated total response time of the set S at the leaf node πn,j

v∗(S) The globally minimal total response time of the arrived application set S
v∗(πi+1) The minimal total response time of all the newly branched nodes at level i+ 1
WQ A working queue that stores the nodes of the search tree
ri,j,k A candidate core region with width j and rotation degree k of application Ai

Ri The candidate list of application Ai

Γ(ri,j,k)
A function (defined in Section 4.6.2) that calculates the NMRD (normalized mapped region
dispersion) value of the core region ri,j,k

F (r0)
A function (defined in Section 4.6.2) that measures the fragmentation of the free core region
(the region consists of all unassigned cores) r0

G((x, y), ri,j,k)
A function (defined in Section 4.6.2) that evaluates the core region allocation when ri,j,k is mapped
starting from core (x, y)

G∗
i The minimal G((x, y), ri,j,k) for Ai

fl, fw The numbers of free cores in the same row and the same column of the start core, respectively

To monitor or estimate temperature at runtime, either
on-chip temperature sensors or online thermal estimation
models can be used. For example, most modern Intel desk-
top and server CPU chips have per-core thermal sensors
[33]. On the other hand, online thermal estimation or pre-
diction methods can also be used [7], [34], [35].

In task migration, when a hot task is migrated from
cores ci to cj , the temperature of ci will gradually decrease,
and that of cj will increase. The communications among
tasks/cores correspond to packet transmissions among
them, whereas the routers/links consume power and af-
fect temperature when forwarding flits/packets. McPAT is
adopted as the power consumption model.

3.4 Problem Statement

When a total of n applications arrive at the system, the
objective is to minimize the lumped response time of all
these applications, which translates to maximization of the
throughput defined as the number of applications executed
over a fixed amount of time. The control knobs are the
number of dark cores for each application and the migration
mode. Here the response time of application Ai, denoted as
, σi , is defined as:

σi = Afinish
i −Aarrive

i (2)

where Aarrive
i and Afinish

i are the arrival and finish times
of application Ai, respectively.

For each application, its response time depends on both
the execution time and the waiting time. An application
arrives at the system and is put to wait when there is no
sufficient number of cores available to run it.

The response time of running n applications within a
given time is determined by:

σ = max
1≤i≤n

Afinish
i (3)

where n is the number of applications arrived at the system
within a given time, and Afinish

i represents the finish time
of the i−th application within this given time. The objective
is to

minσ (4)

subject to

T core
i ≤ Tthreshold for all i = 1, ..., n (5)

where the temperature of each core T core
i should not exceed

the temperature threshold Tthreshold.

4 THE PROPOSED DYNAMIC TASK MIGRATION
ALGORITHM

4.1 Overview
A number of applications arrive at the system, and the pro-
posed algorithm selects a core region and a migration mode
for each application to reach the minimal total response
time. The proposed algorithm has two steps.

1) A search tree based algorithm is used to search for
the best number of dark cores and the migration
mode for each application.

2) Once the dark core number and thus the region size
of each application core region is selected, for each
application, a region allocation algorithm is applied
to allocate a core region to each application.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 5

When an application is executed, its tasks are allowed
to migrate within the allocated core region, following their
designated migration mode. When an application finishes
its execution, all the cores inside its assigned region are
released, and they immediately become available to run
other applications.
4.2 Migration Modes
In our algorithm, each application is mapped to a contigu-
ous core region. During its execution, its tasks are migrated
within the same core region. To classify the applications,
the metric computation to communication rate (CCR) of
application Ai is used, which is defined as:

CCRi = IVi/CVi (6)

where IVi is the number of total instructions to be exe-
cuted, and CVi is the total communication volume of each
task in Ai. An application whose CCR is higher (lower)
than a threshold CCRth is considered as computation-
(communication-) intensive.
|Ai| is the number of tasks of application Ai. Assigning

excessive dark cores to applications leads to low system
utilization, which causes long waiting time for applications
that will arrive at the system in the near future and thus per-
formance degradation. Although application performance
might be further improved slightly with dark core number
larger than |Ai|, the system performance is decreased by
long waiting time. Therefore, |Ai| is used to limit the maxi-
mal number of dark cores for each application.

We define three migration modes that match the charac-
teristics of different applications, as shown in Fig. 2. When
the number of dark cores equals to the number of tasks in
the application’s assigned core region, the region is divided
into two blocks, and only one block is activated at any given
time. If an active core is overheated, the entire active block
is shut down for cooling and the other block is activated to
run the application. In this way, the relative locations of the
tasks are fixed, and therefore, the communication latency
does not increase during the task migration and throughout
the execution of the application.

Mode 1. Square swap migration (denoted as SS): Under
this mode, a near square core region is allocated to the ap-
plication, and all the tasks derived from the application are
initially mapped to half of the core region, following the al-
gorithm in [16]; when these tasks need to migrate, as driven
by the occurrence of hotspots, they shall migrate together
(Fig. 2 (a)). This mode is designed for both computation-
and communication-intensive applications when sufficient
dark cores (no less than its task number) are allocated to the
application.

When the number of dark cores is less than that of tasks
in the application’s assigned core region, the intra-region
migration takes place for dual purposes. In this case, since
a hot task is migrated to the coolest core within the core
region, the task may still be allowed to run at its highest fre-
quency on a “cool” core. Also since the task is migrated to a
core within the same core region, it is considered physically
close to the tasks/cores it needs to communicate with, and
thus short communication distance among communicating
tasks is preserved.

Mode 2. Confined local coolest migration (denoted as
LC): Under this mode, a near square core region is allocated

(a)
t0 t1 t2

(b) (c)

Application core region

Fig. 2. (a) The square swap migration mode. (b) The confined coolest
migration mode. The hot task can be migrated to the coolest core inside
this core region. (c) The confined neighbor migration mode. The hot task
can be swapped with a neighbor cool core.

to the application, and all the tasks are initially mapped
following the algorithm in [16]. Each individual hot task
is able to migrate to the coolest core within the same core
region (Fig. 2 (b)). This mode is designed for computation-
intensive applications when there are not enough dark cores
(the number of dark cores is smaller than the task number
of the application).

To minimize the impact of task migration on the commu-
nication latency, the hot task can be migrated to the nearest
cool core.

Mode 3. Confined neighbor migration (denoted as CN):
Under this mode, a near square core region is allocated
to the application and all the tasks are initially mapped
the same as adopted in the LC mode. Each hot task mi-
grates to its coolest neighbor core that can be either a
dark core or an active core with a much lower temperature
than the threshold (Fig. 2 (c)). This mode is designed for
communication-intensive applications when there are not
enough dark cores.

The initial placement of dark cores in the application
core region has little impact on its execution time as shown
in Section 5.2. Thus the dark cores are placed near the
boundary of the application’s core region initially. Table 2
summarizes the cases suitable for each mode. In the initial
mapping stage, the mapping is as follows [16]:

1) Two task queues, MAP and MET, and a dynamic
array UNM are created to hold the mapped tasks,
tasks connected to the mapped tasks (that is, there
is at least one communication edge between the
current task and a mapped task), and other tasks
that are not in the first two queues, respectively.

2) During initialization, the approximate geometric
center of the application core region is selected as
the first core. The task with the highest communica-
tion traffic volume is selected as the preferred one
and mapped to the first core, and it is moved to
MAP. All tasks connecting to it are moved to MET
in sequence, and the remaining tasks are moved to
UNM.

3) For the first task di in MET, find its parent tasks and
corresponding cores in MAP, and start searching
from the cores with Manhattan distances of 1, 2, 3,
..., until the first available core ci with the shortest
distance to di is found. Map task di to ci, and move
it from MET to MAP. Move all the tasks connecting
to it from UNM to MET.

4) Perform the above step for each node in MET until
the size of MAP is equal to the task number of the
application, and the mapping is done.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 6

TABLE 2
Task Migration Modes

Dark core
number

Application
type Computation

intensive
Communication

intensive

Fewer than the
task number LC CN

Not fewer or larger
than the task number SS SS

4.3 Estimating Each Application’s Execution time

Let S denote the set of applications arriving at the system.
The execution time of an application varies with different
migration modes and number of dark core in the core region
(bi).

It is desirable to maintain the core region to be as close
to a square as possible, as the square shape tends to help
preserve short distances between any communicating pair
of the cores [15]. The execution time of Ai under each mode
(CN, LC, SS) with a near square core region is modeled as a
non-linear regression model:

ω̂i =



h0 + h1 × |Ai|+ h2 × Vi + h3 × Ci × |Ai|
for SS

p0 + p1 × |Ai|+ p2 × Vi + p3 × Ci × |Ai|
+p4 × bi × Ci for LC

q0 + q1 × |Ai|+ q2 × Vi + q3 × Ci × |Ai|
+q4 × bi × Ci for CN

(7)

where |Ai| is the number of tasks in application Ai, Vi is
the average communication volume of Ai’s tasks, Ci is the
average instruction count of Ai’s tasks, and bi is the number
of dark cores in the application core region. Note that in
the SS mode, the dark core number equals to the number of
tasks in the application and thus it is omitted.

When estimating the execution time of the applications,
the remaining cores of the system are randomly assigned
with power traces profiled from running applications in
PARSEC. In this manner, the thermal correlation between
the cores running the application of interest and those
running other applications is considered.

The coefficients h0, ..., h3, p0, ..., p4, q0, ..., q4 can be com-
puted using the maximum likelihood method as described
in [36].

4.4 Estimating the Total Response Time

When an application set S arrives the system, these appli-
cations are firstly sorted in descending order A1, ..., An ac-
cording to the number of tasks of them, and the application
with most tasks is assigned first.

The estimated response time σ̂i of Ai can be computed
as follows:

1) Case 1, if |Ai|+bi ≤ csum, where csum is the number
of current free cores in the system, σ̂i equals to its
estimated execution time ω̂i (found in the regression
model described in Section 4.3).

2) Case 2, if |Ai| + bi > csum, σ̂i equals to the sum
of its start time (when there are sufficient free cores
to run Ai) and ω̂i. In this case, application Ai must
wait until some applications finish their execution
and enough cores are released.

time

App 3 region size 8
App 4 region size 10

System Size: 6x6

App 3 region size 8
App 4 region size 10

App 5
region size 12

Start time
of App 5

time

Free core
count

time

Free core
count

Free core count > The region size of App 5

Before App 5's start time is determined After App 5's start time is determined

time

t1 t2 t3 t4 t1 t2 t3 t4 t5

App 1 region size 6 App 1 region size 6

4
10

18
26

36

y(t)>12 14
64

10

24

36

App 5 region size 12

App 2 region size 8App 2 region size 8

Fig. 3. An example showing how y(t) evolves with time. The length of
each application bar corresponds to its execution time.

Algorithm 1 computes the estimated total response times
for all the applications in set S. Given the estimated exe-
cution time of each application, their core regions are first
virtually allocated from the system to estimate the finish
time of the last finished application. A staircase function y(t)
keeps track of the number of free cores at different times:

y(t) =


z1 t0 ≤ t ≤ t1
z2 t1 < t ≤ t2
...
zn tn−1 < t ≤ tn

(8)

where t1, t2, ..., tn ∈ {σ̂1, σ̂2, ..., σ̂n}, and σ̂1, σ̂2, ..., σ̂n are
the respective estimated response times of A1, A2, ..., An. It
means y(t) changes at the time when an application finishes
execution and quits the system. At time t0 = 0, since no core
region has been virtually allocated yet, y(t0) is set to be N×
M , the number of all cores in the system. The computation
of y(t) = z1, t0 ≤ t ≤ t1 is:

t1 = σ̂n, z1 = |N ×M | − |A1| − b1 (9)

It means a core region with size |A1|+ b1 is allocated to A1

within the interval between t0 and t1, where t1 is the time
when A1 finishes its execution.

For each application whose core region will be allo-
cated virtually, its start time is the moment when the free
core count starts to exceed the size of its core region.
y(t) is computed iteratively for each application. Given
z1, ..., zi−1, the start time ti,0 of the i − th application Ai

can be found from {t0, t1, t2, ..., ti−1} as follows. For all
tk (0 ≤ k ≤ i−1) which satisfies y(t) ≥ |Ai|+bi, where
t ∈ [tk, tk + ω̂i(bi)], ti,0 = min{tk}. That is, the start time of
Ai is the earliest time when there are sufficient free cores in
the system to host it until Ai is finished. The response time
of application Ai is computed as:

σ̂i = ti,0 + ω̂i(bi) (10)

During t ∈ [ti,0, σ̂i], y(t) is updated by letting y(t) =
y(t)− |Ai| − bi, where a core region with a size of |Ai|+ bi
is allocated to Ai.

Fig. 3 shows an example regarding the calculation of
the start time of application 5. Before allocating cores to
application 5, there are four applications in the system and
the current y(t) is:

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 7

ALGORITHM 1: Compute the estimated total re-
sponse time

Input: y(t): The function that returns the free core counts at
different times.

bi: The dark core number allocated to the i− th application Ai.
CCRi: The CCR value of Ai.
Output: y(t): The updated function.
σ̂∗: The estimated total response time.
begin

Calculate the estimated execution time ω̂i(bi) by Eqn. (7);
/* Calculate the start time of Ai */
ti,0 =∞;
for each tk ∈ {t1, t2, ..., tn} do

if y(t) ≥ |Ai|+ bi, ∀t ∈ [tk, tk + ω̂i(bi)] then
if ti,0 > tk then

ti,0 = tk ;
end

end
end
/* Calculate the estimated response time of

Ai */
σ̂i = ti,0 + ω̂i(bi);
/* Update y(t) */
for t ∈ [ti,0, σ̂i] do

y(t) = y(t)− |Ai| − bi;
end
/* Calculate the estimated total response

time */
σ̂∗ = max{σ̂1, σ̂2, ..., σ̂i};

end

y(t) =


4 0 ≤ t ≤ t1

10 t1 < t ≤ t2
18 t2 < t ≤ t3
26 t3 < t ≤ t4
36 t > t4

The start time t5,0 of application 5 can be found from
{t0, t1, t2, t3, t4}. For t ∈ [tk, tk+ω̂i(bi)], (0 ≤ k ≤ 4), y(t) ≥
10, we have t5,0 = min{t1, t3, t4} = t1. Thus application 5
will start running at t1. The response time σ̂5 of application
5 is t1 + ω̂5(b5). After update, y(t) is given as:

y(t) =



4 0 ≤ t ≤ t1
10 t1 < t ≤ t2
6 t2 < t ≤ t3

14 t3 < t ≤ t4
24 t4 < t ≤ t5
36 t > t5

4.5 Finding the Best Number of Dark Cores for Each
Application
A search tree is built to help a branch-and-bound algorithm
to find the best number of dark cores for each application.

Assume a total of n applications arrive at the system.
A tree node at level i is denoted as πi,j = {b1, b2, ..., bn},
indicating that bk dark cores are allocated to application Ak

for 1 ≤ k ≤ n, and bk ∈ {0, 1, 2, ..., |Ak|, UNDEFINED},
where |Ak| is the task number of Ak and UNDEFINED
means no dark core is allocated to Ak yet. At the root node,
the dark cores are not allocated yet. A working queue WQ
is created to store the nodes of the search tree. The queue is
initialized to be empty.

The tree grows by adding new nodes from the root down
to the leaves level by level, corresponding to allocating dark
cores for each application. The allocation order is the same
as the order in the arrived application set S. Each tree
node πi,j is associated with a value v(πi,j) that denotes the
estimated total response time of A1, A2, ..., Ai computed in
Section 4.4, where bk 6= UNDEFINED and k ≤ i.

At each tree level, the node with the minimal value
among all newly generated nodes is selected to be branched
in the next iteration. v∗(S) records the globally minimum
total response time of the application set S, which is the
minimal value over all leaf nodes searched so far. The basic
operations for the search tree are as follows.

(1) Branching
If a tree node is a leaf node, the dark core numbers for

all the applications are set. If the tree node is non-leaf, a
new level of tree nodes is branched. The tree nodes πi+1,j in
the (i+ 1)− th level are created corresponding to assigning
bi+1 dark cores to Ai+1. Thus, for each non-leaf tree node,
a maximum of |Ai+1 + 1| tree nodes in the next level are
created.

(2) Cutting
For each newly created nodes, we check whether it

should be deleted or kept according to the following two
cut rules.

Rule 1: Cut new nodes by node dominance. Once a new
node πi,j is created, its value v(πi,j) is compared against
the globally minimum total response time v∗(S). If v(πi,j)
is larger than v∗(S), that is, the total response time of
applications of πi,j is longer than the best overall response
time seen so far, the new tree node is discarded. Otherwise,
the node is added into the working queue WQ.

Rule 2: Cut inferior nodes. Scan all the nodes in the
working queue WQ. A node πi,j in WQ is discarded if its
value is larger than the globally minimum total response
time v∗(S).

(3) Searching
A dummy root node is pushed to the queue initially.

Algorithm 2 shows the searching of the best dark core
allocation with the minimal total response time.

The value of πi,j is the output of running Algorithm 1
in Section 4.5. The tree node πi,j = b1, b2, ..., bn includes
the dark core count of each application that has dark cores
assigned. The execution time and start time of each applica-
tion can be calculated by Algorithm 1 in Section 4.5, where
πi,j is computed as the total response time of A1, A2, ..., Ai,
and v∗(S) is updated by the minimal total response time of
leaf nodes found in the searching.

In each iteration, the search steps are as follows:
1) The front of queue WQ, denoted as πi,j , is popped.

If πi,j is not a leaf node, a maximum of |Ai+1| + 1
tree nodes in the next level for application Ai+1 are
branched from πi,j following the branching rules.

2) For each newly branched nodes πi+1,j , its value
v(πi+1,j) is calculated by Algorithm 1 and is com-
pared to v∗(S). If the value is larger than v∗(S), the
new node is discarded by Cut Rule 1. Otherwise,
the node is pushed to be the front of WQ. v∗(πi+1)
records the minimal total response time over all the
newly branched nodes in level i+ 1.

3) If i + 1 = n, the newly branched nodes πi+1,j are
leaf nodes. In such cases, if v∗(πi+1) is smaller than
v∗(S), the globally minimum total response time
v∗(S) is updated to be the value of v∗(πi+1), and the
corresponding node πn,j is recorded as the current
best node.

4) Scan each nodes πk,j in queue WQ. If v(πk,j) is
larger than v∗(S), node πk,j is discarded following

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 8

Cut Rule 2. Node πk,j whose value is v(πi+1) is
moved to the front of WQ, which is popped next
to branch a new level of tree nodes πi+2,j for appli-
cation Ai+2 in the next iteration.

ALGORITHM 2: Search the best number of dark
cores for each application

Input: S = {A1, A2, ..., An}: The set of arrived applications.
Output: v∗(S): The globally minimal total response time of n

applications A1, ..., An in set S.
πn,j : The leaf node with value v∗(S).
WQ: A working queue, initialized to be empty.
v∗(πi+1):A global variable recording a node with the minimal

total response time among the new branched nodes in level
i+ 1.

begin
v∗(S) =∞;
push a dummy root node to WQ;
while WQ is not empty do

pop the front node πi,j out of WQ; /* πi,j is a
non-leaf node */

if i < n then
branch |Ai+1 + 1| new nodes for application
Ai+1;
v∗(πi+1) =∞;
for each newly branched nodes πi+1,j do

compute v(πi+1,j) by Algorithm 1;
if v(πi+1,j) ≥ v∗(S) then

discard this node by cut rule 1;
end
else

push the node to the front of WQ;
if v(πi+1,j) < v∗(πi+1) then

v∗(πi+1 = v(πi+1,j)
end

end
end
if i+ 1 = n and v(πi+1,j) < v∗(S) then

v∗(S) = v(πi+1,j)
end
for each node in WQ do

delete this node from WQ if cut rule 2 is
satisfied;

if v(πk,j) = v∗(πi+1) then
move πk,j to the front of WQ

end
end

end
end

end

The search stops when WQ is empty, and returns a tree
node π∗

n,j = {b1, b2, ..., bn} whose value equals to v∗(S).
The vector {b1, b2, ..., bn} of the node π∗

n,j determines the
best dark core allocation for application set S.

Fig. 4 is a snapshot showing how a search tree is evolved
when allocating dark cores for three applications. v∗(S) is
initialized to be +∞. A dummy root node is created with
all elements of the vector filled by “x” indicating nothing is
done yet. Since application 1 has 7 tasks, the root branches
8 nodes for application 1 corresponding to assigning 0, 1, 2,
3, 4, 5, 6, 7 dark cores to it, respectively.

In the first level, node π1,8 has the minimum value (i.e.
90) over all the level 1 nodes, and it is selected to branch
nodes for application 2. In the second level, node π2,6 has
the minimum value (i.e. 90) over all the child nodes of π1,8,
and it is selected to branch nodes for application 3. The leaf
node π3,3 has the minimum value (i.e. 165) over all the child
nodes of π2,6, so v∗(S) is updated to be 165. The level 2
node π2,5 that meets cut rule 2 is discarded.

x x x

b1 b2 b3

0 x x 7 x x

v = 0

v = 90v = 137

6 4 x
v = 176

7 4 x
v = 176

7 5 x
v = 150

...

7 5 3
v = 187

7 5 4
v = 165

...

...

App 1: 7 tasks

App 2: 5 tasks

App 3: 4 tasks

v(S*)

Root

Level 1

Level 2

Level 3

Cut rule 2

6 5 x
v = 150

Cut rule 1

6 x x
v = 115

6 5 3
v = 198

6 5 4
v = 176

Root

π1,1 π1,7 π1,8

π2,11 π2,12

π2,5 π2,6

π3,5π3,4π3,10π3,9

Fig. 4. The structure of a search tree showing how branches are created.

Fig. 5. All possible regions of an application with size 8.

In the iteration that nodes for application 2 are branched
from π1,7, the value of node π2,11 is larger than v∗(S). So
node π2,11 is discarded by cut rule 1. Finally, the leaf node
π3,5 with a value of 165 is the final solution to the problem.

4.6 Finding the Locations for Application Core Regions
A heuristic algorithm is used to find the exact location of
each application’s core region in the system. The goal in this
step is to find an appropriate core region for each applica-
tion so that the actual execution time of the application is
close to its estimated value. The free cores are allocated to
applications following the application order in the set S.
4.6.1 The candidate shapes of application core regions
To select an appropriate core region shape for each appli-
cation, a candidate list is used which stores all the possible
shapes with different aspect ratios for each application.

Let ri,j,k denote a candidate core region of application
Ai, and let |ri| denote the core region size of application Ai,
where j is the region width and k is the rotation degree. Let
Ri be the candidate list of application Ai which consists of
all possible ri,j,k’s. For the application with size |ri|, there
are |ri| different core regions of sizes j×|ri|, j ∈ 1, 2, ..., |ri|.
The length of each core region is d|ri|/je. All possible core
regions for an application with size 8 are shown in Fig. 5
for a 5-task application. When |ri| is not divisible by j, the
remaining nodes out of the rectangle j×b|ri|/jc are grouped
into a rectangle with length 1. The shape is composed by
these two rectangles aligned to the left as shown in Fig. 5
(c), (e), (f), and (g).

The orientations of each core region ri,j,k with sizes
j × d|ri|/je(j ∈ 1, 2, ..., |ri|) are taken into account, indi-
cating the rotation degree of each core region with k ∈
{0◦, 90◦, 180◦, 270◦}. Fig. 6 shows the rotations of the shape
in Fig. 5 (c).

4.6.2 Estimation of the squareness of a core region
The algorithm selects a core region that is contiguous and
close to square for the application. Doing so will keep the

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 9

(a) (b) (c) (d)

Fig. 6. The shape in Fig. 5 (c) is rotated by (a) 0◦, (b) 90◦, (c) 180◦, and
(d) 270◦

application’s actual execution time to be close to the esti-
mated value, and at the same time, it helps avoid free core
region becoming fragmented. To estimate the contiguous-
ness of a core region, the metric Mapped Region Dispersion
(MRD) in [16] is used which is the average pairwise Man-
hattan distance of a core region. The normalized Mapped
Region Dispersion (NMRD) can measure the squareness of
a core region. The core region with the minimal NMRD is
close to a square. The NMRD value of application Ai with
the core region ri,j,k is calculated as:

Γ (ri,j,k) =
MRD(ri,j,k)

MRD(SQ(|ri|))
(11)

where MRD(SQ(|ri|)) is the MRD values for a core region
of |ri| cores with a shape closest to a square. It is shown in
[15] that the MRD value of a square with |ri| cores is:

MRD(SQ(|ri|)) =
2×

√
|ri|

3
(12)

To estimate the fragmentation of free cores, a function
that measures the fragmentation of the free core region is
defined as F (r0), where r0 is the free core region. Let Z(r0)
denote the perimeter of the free core region r0. It has been
shown in [37] that a free core region with a smaller perimeter
is less fragmented. To make F (r0) close to 1, the perimeter
of the free core region is normalized to the perimeter of a
square whose length is d

√
|r0|e. F (r0) is calculated as:

F (r0) =
Z(r0)

4× d
√
|r0|e

(13)

where |r0| is the number of free cores.
4.6.3 Finding the best location for each application core
region
When allocating a core region to an application, the top-left
corner task of the application core region is mapped to a core
that is defined as the start core. Given an N ×M 2D NoC
system, the start core is initialized to be (0, 0). The numbers
of free cores in the same row and the same column of the
start core are denoted as fw and fl, respectively.

Algorithm 3 shows how to find the best location for
each application core region. Applications are allocated
iteratively from A1 to An. As long as the application finds
a contiguous free core region to host it, it starts running.
Otherwise, the application will wait until some applications
finish execution to release cores and a contiguous free region
with sufficient cores is formed.

In each iteration, the best core region ri,j,k of appli-
cation Ai is found. First, the boundary of the free core
region is found. Next, each core of the boundary is checked
whether application Ai can be allocated starting from it
(with different candidate core regions) or not. Let function
G((x, y), ri,j,k) measure both the squareness of the applica-
tion core region ri,j,k and the fragmentation of free cores
after mapping ri,j,k from core (x, y), which is calculated as:

G((x, y), ri,j,k) = Γ(ri,j,k) + F (r0) (14)

ALGORITHM 3: Find applications’ core region
locations

Input: S: The set of arrived applications.
{|r1|, ..., |rn|}: The core region sizes of A1, ..., An.
Output: The best core region location of each application in

set S.
G∗

i : The minimal G((x, y), ri,j,k) for Ai’s core region
allocation
begin

while S is not empty do
pop the front Ai out of S;
generate the candidate list Ri for Ai;
G∗

i =∞;
for each available core (x, y) in the system do

if one or more adjacent cores of (x, y) are occupied
then

set (x, y) as the start core;
calculate fw and fl of (x, y);
for each core region in Ri with width
j ∈ {1, 2, 3, ..., |ri|} do

if j ≤ max{fw, fl} then
for each orientation
k ∈ {0◦, 90◦, 180◦, 270◦} do

if the core region ri,j,k starts from
(x, y) can be hosted then
G((x, y), ri,j,k) =

Γ(ri,j,k) + F (r0);
if G((x, y), ri,j,k) < G∗

i then
G∗

i = G((x, y), ri,j,k);
r∗i = ri,j,k ;

end
end

end
end

end
end

end
if no contiguous region is found to host Ai then

wait until other applications finish execution
end

end
end

(a)

(x,y)

(b)

(x,y)

ri,3,0° ri,3,90°

90°

A boundary core

Boundary of the

free core region

Occupied

region

5

(c)

Occupied

region

Occupied

region

Fig. 7. (a) Boundary of the free core region. The gray core that has
three occupied adjacent cores is a boundary core. (b) The application’s
core region with width 3 and orientation 0◦ starts from (3, 0). (c) The
application’s core region with width 3 and orientation 90◦ starts from (3,
0).

where (x, y) is the start core and j, k are the width and
orientation of the selected core region respectively. The core
region allocation with the minimal G((x, y), ri,j,k) is se-
lected. G∗

i records the minimal G((x, y), ri,j,k) for allocating
core region to Ai.

For each application Ai, the iteration includes the fol-
lowing steps:

1) Find the boundary of the free core region over the
allocated application core region. Scan the free cores
in the system. If one or more adjacent cores of a free
core (x, y) are occupied, (x, y) is on the boundary of
the free region as shown in Fig. 7 (a).

2) Scan the free cores in the boundary. For each core

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 10

(x, y), calculate fw and fl. For each ri,j,k in the
candidate list Ri with width j, if j ≤ max{fw, fl},
check if the core (x, y) can host ri,j,k with k ∈
{0◦, 90◦, 180◦, 270◦}. If all the cores in the target
region are free as in Fig. 7 (b) and (c), which means
ri,j,k starting from the core located at (x, y) can
be hosted, G((x, y), ri,j,k) is computed. G∗

i is the
minimal G((x, y), ri,j,k). After searching all the pos-
sible start cores and candidate shapes with different
orientations, the best region ri,j,k with G∗

i is found
for application Ai. When the set S is empty, the best
regions for all applications are found.

2
1 2

1 2

1

2

2

5 6 6

5 5 6 6

6

6

1 2
1 2
1 2

1

Righ

t-top

2
2

Occupied

2

1 2

1 21
2

(b) (c) (d)(a)

Occupied

(x,y)

Occupied
App 2

(x,y) (3,0)

(x,y)

App 3

G((4,3),r3,3,180°)=1.81

App 2

Occupied

G((0,4),r2,5,0°)=2.18

(0,4)

(x,y)

App 1

(0,0)

G((3,0),r2,3,0°)=2.07G((0,0),r1,3,0°)=2.15

(4,3)

j =3 k =0°j =3 k =0° j =3

k =180°

j =5

k =0°

Fig. 8. (a) Allocate a core region (width 3, orientation 0◦) at (0,0) to
application 1. (b) Allocate a core region (width 3, orientation 0◦) at (3,0)
to application 2. (c) Allocate a core region (width 5, orientation 0◦) at
(0,4) to application 2 (d) Allocate a core region (width 3, orientation 180◦)
at (4,3) to application 3.

Fig. 8 shows an example with an application set consists
of three applications, i.e., applications 1, 2, and 3 whose core
region sizes are 12, 10, and 8 respectively. For application
1, the core region r1,3,0◦ allocated from start core (0, 0)
as shown in Fig. 8 (a) is selected, as it has the minimal
G((0, 0), r1,3,0◦) (i.e. 2.15) among all the allocations.

For application 2, scan the system to find the bound-
ary cores of the free region. At the boundary core (3, 0),
fw = 3, fl = 6. For the core regions r2,j,k in candidate list
R2, where j ≤ 6 and k ∈ {0◦, 90◦, 180◦, 270◦}, r2,j,k start
from (3, 0). G((3, 0), r2,3,0◦) is minimal (i.e. 2.07) among all
the core region allocations from (3, 0) as shown in Fig. 8 (b).
At boundary core (0, 4), fw = 6, fl = 2. For the core regions
r2,j,k in R2 where j ≤ 6 and k ∈ {0◦, 90◦, 180◦, 270◦}, r2,j,k
start from (0, 4). G((0, 4), r2,5,0◦) is minimal (i.e. 2.18)
among all the core region allocations starting from (0, 4)
as shown in Fig. 8 (c). Finally, comparing with all possible
situations, the core region r2,3,0◦ allocated from the start
core (3, 0) is selected, as G((3, 0), r2,3,0◦) is minimal among
all the allocations.

For application 3, the core region r3,3,180◦ allocated from
the start core (4, 3) as shown in Fig. 8 (d) is selected, as
G((4, 3), r3,3,180◦) is minimal (i.e. 1.81). This core region is
allocated to application 3. All applications in the application
set are settled.

4.7 Complexity Analysis

The complexity of the search tree algorithm is computed
as follows. Assume that the average task number of each
application is |Ai| and a maximum of |Ai| dark cores will
be allocated for each application. Each tree node will create
O(|Ai|) nodes on average according to the branching rule.
The height of the search tree equals to n, where n is the
size of arrived application set S. The worst case complexity
of calculating the value of each node is O(n), where the
staircase function y(t) needs to be updated n − 1 times. As
the search tree is bound by the working queue WQ, the

worst case complexity of dark cores allocation isO(n×|Ai|×
|WQ|).

The complexity of the core region location finding algo-
rithm can be determined as follows. Given an N ×M mesh
system, the core count of the free core region’s boundary
is no more than half of the perimeter of the system, which
equals to N + M . Assume that the average task number of
each application is |Ai|, and the maximum core region size is
2× |Ai|. In the worst case, there are 2× |Ai| candidate core
regions for each application. The orientations of each core
region can be chosen from {0◦, 90◦, 180◦, 270◦}, and thus,
the worst complexity to find the best location of applica-
tion’s core region at a free core (x, y) will beO(2×|Ai|×4) =
O(|Ai|). Since there are n applications in the application set
S, the worst case complexity of finding the location of each
application region is O(n× |Ai| × (N +M)).

Overall, the worst case complexity of the whole algo-
rithm is O(n× |Ai| ×max{|WQ|, (N +M)}).

5 EXPERIMENT EVALUATION

5.1 Experimental Setup

TABLE 3
Configurations of the Simulation

Network Parameters
Flit size 128 bits
Latency Router 2 cycles, link 1 cycle
Buffer depth 4 flits
Routing algorithm XY routing
Baseline topology 8× 8

Random Benchmark Parameters
Number of tasks [15, 45]
Communication volume [50, 500](Kbits)
Degree of tasks [1, 15]
Task number distribution Bimodal, uniform

Configuration of the Many-core Simulator
for Task Graph Extraction

Core Architecture 64 bit Alpha 21264
Baseline Frequency 3GHz
Fetch/Decode/Commit size 4/4/4
ROB size 64

L1 D cache (private) 16KB, 2-way, 32B line, 2
cycles, 2 ports, dual tags

L1 I cache (private) 32KB, 2-way 64B line, 2 cycles
L2 cache (shared)
MESI protocol

64KB slice/core, 64B line
6 cycles, 2 ports

Main memory size 2GB
Task Graphs of Real Applications

Blackscholes, Canneal, Raytrace, Dedup, Ferret, Freqmine,
Streamcluster, Fluidanimate, Swaptions, Vips

Real Application Mixtures
Mix1 Blackscholes, Freqmine, Dedup
Mix2 Fluidanimate, Swaptions, Canneal
Mix3 Raytrace, Ferret, Vips

Experiments are performed on an event-driven C++
simulator, with McPAT integrated as the power model
and Hotspot as the temperature simulator. Task graphs are
modeled in this simulator, which can dynamically arrive at
the system. In the simulator, abstract models are used for
processors, where the exact execution time of each task is
extracted from the trace files of running the benchmarks
in the full-system many-core simulator. The inter-processor
communication is modeled by a cycle-accurate network-
on-chip simulator, Popnet, which can accurately model the
NoC architecture and timing of the routers and links. The

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 11

many-core system floorplanning can be found in [32]. The
configuration of the network-on-chip is listed in Table 3.

Both random and real applications are used in the
experiments as tabulated in Table 3 in order to evaluate
the performance of the proposed and relevant algorithms
considered for comparison. The task graphs of the random
applications are randomly generated. The task graphs of the
real applications are generated from the traces of SPLASH-
2 and PARSEC, which are collected by executing these
applications in an 8 × 8 NoC-based cycle accurate many-
core simulator [38]. The configuration of this simulator is
also shown in Table 3. In particular, we compare the total
response time of the application set. The runtime execution
costs of the algorithms are also evaluated. We compare
the proposed dynamic task migration scheme with the
approach in GCR [2] that migrates hot tasks to globally
coolest cores, HR-TM in [26] that migrates hot tasks to
neighbor coolest cores, and BB in [30] which allocates dark
cores and core regions to the arrived applications without
task migration. The temperature threshold is set to be 80◦C
which is a usual threshold chosen in all the competitors.
5.2 Evaluating the Impact of Different Initial Place-
ments of Dark Cores
Fig. 9 shows the performance comparison with different
average communication volumes, while applying two dark
core initial placements in the confined local coolest and
the confined neighbor migrating modes.The applications are
randomly selected from the random benchmarks following
the configurations in Table 3, and the communication vol-
ume range is 50 to 500 Kbits. The dark cores are placed
near the boundary of the application core region initially, or
near the center of the application core region. The results
are normalized with respect to the execution time with an
average communication volume of 50Kbits. One can see
from Fig. 9, the differences of application execution times
under these two dark core initial placements are negligible.
The initial placement of dark cores thus has an ignorable im-
pact on application execution performance in our proposed
algorithm.

1

1.5

2

Average Communication Volume (KBits)

Normalized Execution time

50 100 150 200 250
1

1.5

2

Average Communication Volume (KBits)

Normalized Execution time

Dark cores placed near the region boundary initially
Dark cores place near the region center initially

(a)

50 100 150 200 250

(b)

Fig. 9. Comparison of two different initial placements of dark cores in the
confined local coolest and confined neighbor migration modes.

5.3 Validating the Execution Time Model
The error of the application execution time estimation model
is defined as follows,

ε =
ω̂ − ω
ω

(15)

where ω and ω̂ are the execution times obtained from the
simulator and the execution time estimation model for each
application, respectively. The proposed execution time esti-
mation model uses near square core region shapes, whose
aspect ratios are close to 1. The experiment results show
that the average aspect ratios of application core regions

determined by the proposed algorithm is 1.24, which is also
close to 1, indicating that the shapes of the core regions
in the offline execution time estimation model are close to
those found at runtime.

For errors in the execution time estimation, Fig. 10
compares the proposed models in Eqn. (7) with linear and
polynomial regression models which are defined as:

ω̂i =



α0 +

p∑
j=1

α1
j × |Ai|j +

p∑
j=1

α2
j × V j

i +

p∑
j=1

α3
j × Cj

i

for SS

β0 +

p∑
j=1

β1
j × |Ai|j +

p∑
j=1

β2
j × V j

i +

p∑
j=1

β3
j × Cj

i

+

p∑
j=1

β4
j × bji for LC

γ0 +

p∑
j=1

γ1
j × |Ai|j +

p∑
j=1

γ2
j × V j

i +

p∑
j=1

γ3
j × Cj

i

+

p∑
j=1

γ4
j × bji for CN

(16)

when p = 1, it is a linear regression model.
From this figure, one can see that the proposed models

have the lowest errors, that is, the mean errors of the
proposed models for SS, LC, CN modes are 6.5%, 8.6%, and
8.0%, respectively.

proposed linear quadratic cubic0

4

8

Errors of the execution time estimation model (%)
SS mode

LC mode

CN mode

Fig. 10. Errors of different regression models.

5.4 Finding the CCR Threshold
The experimental results in Fig. 11 (a) show the fitness of the
two modes with respect to different types of applications.
The applications are randomly selected from the random
benchmarks following the configurations in Table 3. The
results are normalized to those that apply the confined
local coolest migration (LC) mode. From Fig. 11 (a), one
can see that the LC mode leads to low execution time
for computation-intensive applications, while the confined
neighbor migration (CN) mode benefits communication-
intensive applications more.

Normalized execution time

CCR
LC mode CN mode

0

0.5

1

0.5 1 1.5 2
CCR Threshold

0.5 1 1.5 20
1

1.5

2

2.5
Normalized execution time

(a) (b)
Fig. 11. (a) The execution time comparison of the two modes when
running different types of applications. (b) CCR threshold selection.

Fig. 11 (b) evaluates the CCR threshold which is used to
classify an application as computation- or communication-
intensive. The applications are randomly selected from the
random benchmarks following the configurations in Table 3,
and the communication volume range is 50 to 500 Kbits.
For each experiment, a mix of 50 applications were used

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 12

as input. The results are normalized with respect to the
minimal execution time. From this figure, one can see that,
a CCR threshold of 1.2 generates the best performance.
Therefore, in the following experiments, we set the CCR
threshold to be 1.2.

5.5 Evaluating the Proposed Dynamic Task Migration
Algorithm
Fig. 12 (a) shows the performance benefit of our proposed
dynamic task migration with different communication vol-
umes. The results are normalized with respect to the total
response time of GCR. One can see from Fig. 12 (a), when
the communication volume is 200KBits, our approach can
reduce response time by 52%, 31%, and 37% over GCR,
HR-TM, and BB, respectively. The proposed approach can
keep an application running at a high V/F level while
still maintain short communication distances between tasks,
such that the communication cost is reduced and the com-
putation performance is improved. Both GCR and HR-TM
lead to increased communication latency and fragmenta-
tion of the free core region during task migration, which
ultimately leads to performance degradation. BB decreases
the V/F level of the hot tasks/cores, and thus has lower
performance. Therefore, our approach can achieve a better
performance.

8 10 12 14
0

0.5

1

Normalized response time

Average task number

GCR
HR−TM
Proposed
BB

50 100 150 200 250 300

Normalized response time

Average commucation volume
(a) (b)

Fig. 12. (a) The response time comparison with different communication
volumes when running random benchmarks. (b) The response time
comparison with different average task numbers when running random
benchmarks.

Fig. 12 (b) shows the total response time comparison
of our proposed dynamic task migration with different
average task numbers of the applications. The results are
normalized with respect to the total response time of GCR.
One can see from Fig. 12 (b), when the average task number
is 14, our approach can reduce response time by 48%, 31%,
and 30% over GCR, HR-TM, and BB, respectively. Our
approach can reduce response time by 37%, 18%, and 22%
over GCR, HR-TM, and BB on average, because it can reduce
communication cost and keep applications running at a high
V/F level.

Fig. 13 (a) shows the performance comparison of our
proposed dynamic task migration with different network
sizes. The results are normalized with respect to the total
response time of GCR. One can see that, when the network
size is large, e.g., 12 × 12, our approach can reduce total
response time by 50%, 28%, and 34% over GCR, HR-TM,
and BB, respectively. When the network size is large, GCR
and HR-TM might move the hot tasks to the cores far away
from their original locations which leads to higher commu-
nication latency and thus performance degradation. Fig. 13
(b) compares the peak temperature of different algorithms,
showing that the proposed dynamic task migration scheme
can reduce the peak temperature of HR-TM by 4◦C, while
GCR with globally coolest migration mode leads to the
lowest peak temperature. The temperatures of BB and the
proposed algorithm are under the threshold 80◦C.

TABLE 4
The real response time comparison when running different real

benchmark application mixtures.

Methods GCR HR-TM Proposed BB
Mixtures

of real
benchmarks

Mix1 4.075s 3.496s 2.962s 3.708s
Mix2 5.874s 4.236s 3.564s 4.876s
Mix3 6.946s 5.606s 4.269s 5.835s

Fig. 14 (a) shows the performance comparison of our
proposed dynamic task migration with different network
sizes when running real benchmarks. These real bench-
marks are randomly chosen from the mixtures. The results
are normalized with respect to the total response time of
GCR. One can see that, when the network size is large, e.g.,
14×14, our approach can reduce response time by 48%, 35%,
and 38% over GCR, HR-TM, and BB, respectively. The larger
the system is, the more benefit our approach can bring.
GCR and HR-TM move the hot tasks further away from
their communicating tasks, which increases communication
latency. BB decreases the V/F level of hot tasks/cores, and
thus has the poorest performance.

Fig. 14 (b) shows the performance benefit of our pro-
posed dynamic task migration with different workloads
when the network size is 14×14. The results are normalized
to the total response time of GCR. Our approach reduces the
response time by 35%, 18%, and 21% over GCR, HR-TM, and
BB on average, respectively.

Table 4 shows the response time comparison of our
proposed dynamic task migration and other competitors
by running different workloads when the network size is
14 × 14. The workloads consist of benchmark application
mixtures as in Table 3, where each mixture includes speci-
fied real applications and the sim-large input data sets are
used for running applications.

Fig. 15 shows the performance benefit of our proposed
dynamic task migration with different average task num-
bers of the applications, compared with our previously
developed algorithm in [12]. The results are normalized
with respect to the total response time of the proposed
algorithm. The total response time estimation algorithm
calculates the waiting time more precisely compared to the
previous waiting time model, and the new region alloca-
tion algorithm reduces the free core fragmentation which
improves performance. Our approach achieves up to 7%
reduction in total response time compared to our previous
work published in [12].

8x8 10x10 12x12 14x14

0

0.5

1

Normalized response time

Network Size

0

30

60

90
Peak Temperature (°C)

Network Size
8x8 10x10 12x12 14x14

(a) (b)

0

GCR
HR−TM
Proposed
BB

Fig. 13. The response time comparison with different network sizes
when running random benchmarks. (b) The peak temperature compari-
son with different network sizes when running random benchmarks.

5.6 Cost Analysis
The runtime cost of the dynamic task migration algorithm
is composed of the algorithm running time and migration
overhead. The algorithm running time is the time for search-
ing the best dark core allocation and best region location.
The migration overhead is the actual migration time of the

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 13

10x10 12x12 14x14

Normalized response time

Network Size

GCR HR−TM Proposed BB

Mix1 Mix2 Mix3

Normalized response time

Diffferent mixtures of real benchmearks
Mix1 Mix2 Mix3

0

30

60

90

Peak Temperature

0

0.5

1

Peak Temperature (°C)

(a) (b)

0

0.5

1

Fig. 14. (a) The response time comparison with different network sizes
when running real benchmarks. (b) The response time and peak tem-
perature comparison when running different real benchmark application
mixtures.

Normalized response time

8 10 12 14
Average task number

0

0.5

1
Previous
Proposed

Fig. 15. The response time comparison of our previous work in [12] and
the proposed algorithm with different average task numbers.

tasks. The average algorithm running time is 4M cycles,
which is averaged by running the algorithms fifty times
with different system parameters. Experiment results have
shown that the total response time of the application sets
is about 9 × 109 − 2 × 1010 cycles. Since the searching
process is invoked only when the application set arrives, the
algorithm running time only accounts for 0.02%-0.04% of the
overall response time, which is acceptable when compared
to performance benefits.

It has been observed that the average migration over-
head is about 0.9M cycles. In the experiments, the frequency
of triggering task migration is about each 30M cycles. Com-
paring with the total response time of the application sets,
the migration overhead of the proposed algorithm is trivial.

The status info of all cores (active or dark) is sent to the
global manager located in the top-left corner of the chip
as described in Section 3.1. The data packet size is only
1 flit, and the total transmission time is within 20 cycles.
Compared to the application execution time, the overhead
is negligible. Therefore, the runtime cost of dynamic task
migration algorithm is acceptable.

6 CONCLUSION

In this paper, a dynamic task migration algorithm was pro-
posed to budget dark cores to each application to optimize
the total response time. The response time is related to
each application’s communication and computation perfor-
mances, as well as the waiting time incurred when there
are enough cores at the moment to run its tasks. Offline
performance estimation is first set up for the applications.
In the proposed dynamic task migration algorithm, the task
migration mode and the dark core number are selected for
each application to optimize its computation and commu-
nication performances. Then, a region allocation algorithm
assigns an appropriate core region to each application.
Our experiments confirmed that, compared with the two
existing dynamic task migration approaches, our approach
can improve the total response time by as much as 52%.
The runtime overhead of our approach was found mod-
erate, making it a suitable runtime resource management
approach to achieve high system throughput for many-core
systems.

ACKNOWLEDGMENTS

This research program is supported by the National
Natural Science Foundation of China No. 61971200, the
Natural Science Foundation of Guangdong Province No.
2018A030313166, Pearl River S&T Nova Program of
Guangzhou No. 201806010038, Open Research Grant of
State Key Laboratory of Computer Architecture Institute
of Computing Technology Chinese Academy of Sciences
No. CARCH201916, and the Fundamental Research Funds
for the Central Universities No. 2019MS087, and the Key
Laboratory of Big Data and Intelligent Robot (South China
University of Technology), Ministry of Education.

REFERENCES

[1] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA
challenges in the dark silicon era: temperature, reliability, and
variability rerspectives,” in the Proceedings of the Design Automation
Conference, 2014, pp. 1–6.

[2] M. Prakash Gupta, M. Cho, S. Mukhopadhyay, and S. Kumar,
“Thermal investigation into power multiplexing for homogeneous
many-core processors,” Journal of Heat Transfer, vol. 134, no. 6, pp.
1–8, 2012.

[3] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in
dark silicon,” in the Proceedings of Design Automation Conference,
2015, pp. 119:1–119:6.

[4] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload
analysis and demand prediction of enterprise data center appli-
cations,” in the Proceedings of International Symposium on Workload
Characterization, 2007, pp. 171–180.

[5] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Thermal con-
strained resource management for mixed ILP-TLP workloads in
dark silicon chips,” in the Proceedings of Design Automation Confer-
ence, 2015, pp. 179:1–179:6.

[6] A. Kanduri, M. Haghbayan, A. Rahmani, P. Liljeberg, A. Jantsch,
and H. Tenhunen, “Dark silicon aware runtime mapping for
many-core systems: a patterning approach,” in the Proceedings of
IEEE International Conference on Computer Design, 2015, pp. 573–
580.

[7] H. Mizunuma, Y. Lu, and C. Yang, “Thermal coupling aware task
migration using neighboring core search for many-core systems,”
in the Proceedings of International Symposium on VLSI Design, Au-
tomation and Test, 2013, pp. 1–4.

[8] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-run:
leveraging SMT and CMP to manage power density through the
operating system,” in the Proceedings of International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2004, pp. 260–270.

[9] Z. Liu, X. D. Tan, X. Huang, and H. Wang, “Task migrations for
distributed thermal management considering transient effects,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 23,
no. 2, pp. 397–401, 2015.

[10] M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Prediction-based
task migration on S-NUCA many-cores,” in the Proceedings of
Design, Automation Test in Europe Conference Exhibition, 2019, pp.
1579–1582.

[11] J. Ng, X. Wang, A. K. Singh, and T. Mak, “Defragmentation for
efficient runtime resource management in NoC-based many-core
systems,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 24, no. 11, pp. 3359–3372, 2016.

[12] X. Wang, A. K. Singh, and S. Wen, “Exploiting dark cores for
performance optimization via patterning for many-core chips in
the dark silicon era,” in the Proceedings of International Symposium
on Networks-on-Chip, 2018, pp. 17:1–17:8.

[13] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping
on multi/many-core systems: survey of current and emerging
trends,” in the Proceedings of Design Automation Conference, 2013,
pp. 1–10.

[14] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha,
C. Lee, Q. Xu, and L. Huang, “Mapping of applications to
MPSoCs,” in the Proceedings of IEEE International Conference on
Hardware/software Codesign and System Synthesis, 2011, pp. 109–118.

[15] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in the
Proceedings of Design Automation Conference, 2013, pp. 39:1–39:6.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3042663, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2020 14

[16] M. Fattah, P. Liljeberg, J. Plosila, and H. Tenhunen, “Adjustable
contiguity of run-time task allocation in networked many-core sys-
tems,” in the Proceedings of Asia and South Pacific Design Automation
Conference, 2014, pp. 349–354.

[17] S. Kaushik, A. K. Singh, W. Jigang, and T. Srikanthan, “Run-time
computation and communication aware mapping heuristic for
NoC-based heterogeneous MPSoC platforms,” in the Proceedings
of International Symposium on Parallel Architectures, Algorithms and
Programming, 2011, pp. 203–207.

[18] D.-C. Juan, S. Garg, J. Park, and D. Marculescu, “Learning the
optimal operating point for many-core systems with extended
range voltage/frequency scaling,” in the Proceedings of International
Conference on Hardware/Software Codesign and System Synthesis,
2013, pp. 8:1–8:10.

[19] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-
core in dark silicon era,” in the Proceedings of Design Automation
Conference, 2013, pp. 174:1–174:9.

[20] A. K. Coskun, T. S. Rosing, K. A. Whisnant, and K. C. Gross,
“Temperature-aware MPSoC scheduling for reducing hot spots
and gradients,” in the Proceedings of Asia and South Pacific Design
Automation Conference, 2008, pp. 49–54.

[21] C.-L. Chou, m. Y. Ogras, and R. Marculescu, “Energy- and
performance-aware incremental mapping for networks on chip
with multiple voltage levels,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 10, pp. 1866–
1879, 2008.

[22] P. Kumar and L. Thiele, “Thermally optimal stop-go scheduling of
task graphs with real-time constraints,” in the Proceedings of Asia
and South Pacific Design Automation Conference, 2011, pp. 123–128.

[23] M. Al Faruque, J. Jahn, and J. Henkel, “Runtime thermal man-
agement using software agents for multi-and many-core architec-
tures,” IEEE Design & Test of Computers, vol. 27, no. 6, pp. 58–68,
2010.

[24] N. Hassanpour, P. Khadem, and S. Hessabi, “A task migration
technique for temperature control in 3D NoCs,” in the Proceedings
of IEEE International Conference Advanced Information Networking
and Applications, 2013, pp. 1–8.

[25] A. A. Khan, A. Ali, M. Zakarya, R. Khan, M. Khan, I. U. Rahman,
and M. A. A. Rahman, “A migration aware scheduling technique
for real-time aperiodic tasks over multiprocessor systems,” IEEE
Access, vol. 7, pp. 27 859–27 873, 2019.

[26] S. A. A. Bukhari, F. K. Lodhi, O. Hasan, M. Shafique, and J. Henkel,
“FAMe-TM: formal analysis methodology for task migration algo-
rithms in many-core systems,” Science of Computer Programming,
vol. 133, pp. 154–174, 2017.

[27] M. Modarressi, M. Asadinia, and H. Sarbazi-Azad, “Using task mi-
gration to improve non-contiguous processor allocation in NoC-
based CMPs,” Journal of Systems Architecture, vol. 59, no. 7, pp. 468
– 481, 2013.

[28] A. Das, A. Kumar, and B. Veeravalli, “Energy-aware communica-
tion and remapping of tasks for reliable multimedia multiproces-
sor systems,” in the Proceedings of IEEE International Conference on
Parallel and Distributed Systems, 2012, pp. 564–571.

[29] F. G. Moraes, G. A. Madalozzo, G. M. Castilhos, and E. A. Carara,
“Proposal and evaluation of a task migration protocol for NoC-
based MPSoCs,” in the Proceedings of IEEE International Symposium
on Circuits and Systems, 2012, pp. 644–647.

[30] X. Wang, A. K. Singh, B. Li, Y. Yang, H. Li, and T. Mak, “Bubble
budgeting: throughput optimization for dynamic workloads by
exploiting dark cores in many core systems,” IEEE Transactions on
Computers, vol. 67, no. 2, pp. 178–192, 2018.

[31] A. Rezaei, D. Zhao, M. Daneshtalab, and H. Wu, “Shift sprinting:
fine-grained temperature-aware NoC-based MCSoC architecture
in dark silicon age,” in the Proceedings of Design Automation Confer-
ence, 2016, pp. 1–6.

[32] X. Wang, P. Liu, M. Yang, M. Palesi, Y. Jiang, and M. C. Huang,
“Energy efficient run-time incremental mapping for 3D networks-
on-chip,” Journal of Computer Science and Technology, vol. 28, no. 1,
pp. 54–71, 2013.

[33] S. Paek and W. Shin and J. Lee and H. Kim and J. Park and L.
Kim, “All-digital hybrid temperature sensor network for dense
thermal monitoring,” in the Proceedings of IEEE International Solid-
State Circuits Conference, 2013, pp. 260–261.

[34] Chen, Kun-Chih Jimmy and Liao, Yuan-Hou, “Online machine
learning-based temperature prediction for thermal-aware NoC
system,” in the Proceedings of SoC Design Conference, 2019, pp. 65–
66.

[35] Chen, Kun-Chih and Chang, En-Jui and Li, Huai-Ting and Wu,
An-Yeu Andy, “RC-based temperature prediction scheme for
proactive dynamic thermal management in throttle-based 3D
NoCs,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 1, pp. 206–218, 2015.

[36] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer,
2009.

[37] X. Wang, T. Fei, B. Zhang, and T. Mak, “On runtime adaptive
tile defragmentation for resource management in many-core sys-
tems,” Microprocessors and Microsystems, vol. 46, pp. 161–174, 2016.

[38] X. Wang, M. Yang, Y. Jiang, P. Liu, M. Daneshtalab, M. Palesi, and
T. Mak, “On self-tuning networks-on-chip for dynamic network-
flow dominance adaptation,” ACM Transactions on Embedded Com-
puting Systems, vol. 13, no. 2s, pp. 73:1–73:21, 2014.

Shengyan Wen received the bachelor’s degree
in software engineering from the South China
University of Technology (SCUT), Guangzhou,
China. She is working toward the master’s de-
gree in the School of Software Engineering,
SCUT. Her research interest is application map-
ping and task migration for NoC-based systems.

Xiaohang Wang received the B.Eng. and Ph.D
degree in communication and electronic engi-
neering from Zhejiang University, in 2006 and
2011. He is currently an associate professor at
South China University of Technology. He was
the receipt of PDP 2015 and VLSI-SoC 2014
Best Paper Awards. His research interests in-
clude many-core architecture, power efficient ar-
chitectures, optimal control, and NoC-based sys-
tems.

Amit Kumar Singh is a Lecturer (Assistant Pro-
fessor) at University of Essex, UK. He received
the B.Tech. degree from IIT, Dhanbad, India, in
2006, and the Ph.D. degree from Nanyang Tech-
nological University (NTU), Singapore, in 2013.
His current research interests are design and
optimisation of multi-core based computing sys-
tems with focus on performance, energy, temper-
ature, reliability and security. He has published
over 90 papers in reputed journals/conferences,
and received several best paper awards, e.g.

IEEE TC February 2018 Featured Paper, ICCES 2017, ISORC 2016,
PDP 2015, HiPEAC 2013 and GLSVLSI 2014 runner up. He has served
on the TPC of IEEE/ACM conferences like DAC, DATE, CASES and
CODES+ISSS.

Yingtao Jiang joined the Department of Elec-
trical and Computer Engineering, University of
Nevada, Las Vegas in Aug. 2001, upon obtaining
his Ph.D degree in Computer Science from the
University of Texas at Dallas. He has been a full
professor since July 2013 at the same university,
and served as the Department Chair between
2015 & 2018. Since July 2018, he has began
serving as an associate dean of the College
of Engineering. His research interests include
algorithms, computer architectures, VLSI, net-

working, nano-technologies, etc.

Mei Yang received her Ph.D in Computer Sci-
ence from the University of Texas at Dallas in
Aug. 2003. She has been a full professor in the
Department of Electrical and Computer Engi-
neering, University of Nevada, Las Vegas since
2016. Her research interests include computer
architectures, networking, and embedded sys-
tems.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on September 21,2021 at 09:17:23 UTC from IEEE Xplore. Restrictions apply.

Free Hand

