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In this paper, we study an excitable, biophysical system that supports wave propagation of nerve impulses. We con-
sider a slow-fast, FitzZHugh-Rinzel neuron model where only the membrane voltage interacts diffusively, giving rise to
the formation of spatiotemporal patterns. We focus on local, nonlinear excitations and diverse neural responses in an
excitable 1- and 2-dimensional configuration of diffusively coupled FitzHugh-Rinzel neurons. The study of the emerg-
ing spatiotemporal patterns is essential in understanding the working mechanism in different brain areas. We derive
analytically the coefficients of the amplitude equations in the vicinity of Hopf bifurcations and characterize various
patterns, including spirals exhibiting complex geometric substructures. Further, we derive analytically the condition
for the development of antispirals in the neighborhood of the bifurcation point. The emergence of broken target waves
can be observed to form spiral-like profiles. The spatial dynamics of the excitable system exhibits 2- and multi-arm
spirals for small diffusive couplings. Our results reveal a multitude of neural excitabilities and possible conditions
for the emergence of spiral-wave formation. Finally, we show that the coupled excitable systems with different firing
characteristics, participate in a collective behavior that may contribute significantly to irregular neural dynamics.

In this paper, we study the slow-fast FitzHugh-Rinzel bio-
physical excitable neuron model. We demonstrate the
appearance of diverse dynamical behavior depending on
spike-bursting, firing responses. We also discuss analyt-
ically and numerically the bifurcation analysis. To un-
derstand the effects of diffusion on spatiotemporal pat-
tern formation in coupled FitzHugh-Rinzel neurons, we
consider a FitzHugh-Rinzel system where only the mem-
brane voltage interacts diffusively. We compute the syn-
chronization index to study the collective behavior of the
coupled systems and describe various patterns, including
target waves, multi-arm spirals and antispirals. Finally,
we derive analytically the amplitude equations to validate
the existence of antispiral patterns in the vicinity of Hopf
bifurcations.

I. INTRODUCTION

The complex dynamics of excitable neurons is related to
ionic concentrations inside and outside neural membranes and
play a major role in generating action potentials. This pro-
vides a better way to understand brain functioning in normal
and pathophysiological states'©. Neurons receive incoming
sensory inputs, encode them into different biophysical vari-
ables and produce relevant outputs>. Biophysical mechanisms
are dynamical in nature and can be studied using concepts
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from dynamical systems theory. In extended biophysical sys-
tems of coupled excitable cells, neural populations produce
a transmembrane potential difference that travels across neu-
rons by means of wave propagation®®. This may cause the
appearance of synchronous activity in groups of neighboring
neurons. Such types of synchronized behavior are playing a

major role in signal processing in neural populations!®.

Here, we consider a slow-fast, FitzZHugh-Rinzel (FHR) neu-
ron model where only the membrane voltage interacts diffu-
sively, giving rise to the formation of spatiotemporal patterns.
The FHR model exhibits diverse bursting activities. In this
context, bursting refers to rapid changes in membrane volt-
age oscillations which involve simultaneous changes between
active phases (high amplitude oscillations or bursts of spikes)
and silent phases (low amplitude/subthreshold oscillations or
amplitude death, i.e., quiescence)?>. We study a dynamical
system of three coupled partial differential equations (PDEs)
for 2-dimensional spatial pattern formation based on the FHR
model, where the recovery and/or slow variables (slow-fast
dynamics) interact with the membrane voltage variable. We
seek to explore spatial instabilities considering 1- and 2-
dimensional diffusion processes and the nature of spatiotem-
poral patterns. It is the symmetry breaking nature of spatial
systems that gives rise to Turing-like structures'!. Only one
spatial variable, i.e., the membrane potential, determines the
scale of the patterns observed. In our system, there exists only
one spatially distributed scale, and thus the spatial instability
occurs due to the dynamics rather than due to differences in
spatial scales!?.

The mathematical analysis for the emergence of spatial
structures is important to understand a wide range of biophys-
ical and pathological phenomena'3~!8. The work here is moti-
vated by our earlier work in!? and other previously studied dif-



fusively coupled biophysical excitable systems, such as those
in'~2%_ To the best of our knowledge, a clear analytical study
describing the dynamics of a diffusively coupled, slow-fast,
neuron model in which only the membrane voltage is spatially
distributed, has not yet been deeply explored with respect to
pattern formation and emergence of spirals. Often biophysi-
cal phenomena observed in experiments can be reproduced by
solving numerically a nonlinear system of coupled PDEs that
describes them. However, the underlying dynamical behavior
of real biophysical systems generally involves a large number
of variables.

The excitable FHR model studied here is an extended ver-
sion of the FitzHugh-Nagumo (FHN) model?’. Excitable,
biophysical media represented by the slow-fast dynamics of
electrically coupled FHR neurons?-3! give rise to wave prop-
agation when the system becomes excited above a threshold,
called a traveling wave, that travels through the nerve cells.
The responses propagate along the axons, allowing the consid-
eration of the system as a spatially distributed neural medium.
The ideal biophysical nerve membrane model that produces
bursting was formulated and studied numerically in**°. The
FHR model offers a wider view of the original FHN model
by taking into consideration a special type of bursting, known
as elliptic bursting. As a consequence, the FHR model with
different neurocomputational properties exhibits various re-
sponses at different levels of biophysical plausibility, similar
to real neurons.

Here, we consider diffusively coupled identical FHR neu-
rons described by a system of three coupled PDEs. The
model of the single deterministic nerve cell is studied theo-
retically and numerically. Different parameter regimes that
correspond to qualitatively different biophysical behaviors are
investigated. The self-sustained and self-organized behavior
are investigated for a localized stimulus current with differ-
ent synaptic couplings. The possible oscillatory behavior is
considered and analytical conditions are derived. We find that
weak stimulus injected to the system when it resides at the sta-
ble steady-state, produces nontrivial firing responses. Conse-
quently, the stimulus perturbations can be applied to the sys-
tem deterministically, leading to the emergence of different
spatiotemporal phenomena.

Particularly, we explore the dynamics in a continuous, 1-
dimensional piece of spatially extended neural cable®32-33
and in a square, considered as a 2-dimensional piece of spa-
tially extended neural tissue. In the 1-dimensional case, neu-
rons are coupled along a chain of excitable cells by means
of a 1-dimensional diffusion term. We find suitable param-
eter regimes for which the system shows different fluctu-
ations and pattern formations in the vicinity of two Hopf
bifurcations for a certain range of coupling strengths. In
the 2-dimensional case, we employ the amplitude equations
and elucidate phenomena of spatiotemporal pattern formation.
Our analysis is based on the complex Ginzburg-Landau equa-
tion (CGLE)#-8 for the derivation of the amplitude equations
using multiple space and time scales. The method provides
a Taylor series expansion of the original nonlinear equations
with many power operators and depends on the expansion of
the linear and nonlinear terms of a small perturbation parame-

ter close to the onset of instability. The coefficients of CGLE
obtained here, may have their own values which might relate
to certain dynamical behavior in the diffusion process under
different experimental conditions. We also derive analytically
the stability of the coupled system.

We report on the presence of various emerging spatiotem-
poral patterns for different electrical impulses in the 2-
dimensional system. The slow-fast dynamics supports the for-
mation of spirals due to excitabilities of the slow time-scale
in the single-neuron model. Various spiral patterns emerge
in the diffusive system when it is not in a stable, stationary
state. Spiral and target waves are known as ordered waves,
which are often observed in the extended excitable system.
Generally, suitable periodic forcing plays a major role in de-
veloping target waves?>3%*!_ Spiral or antispiral waves be-
have asymptotically as plane waves far from their cores*>*3
and a variety of complex patterns can manifest, such as target
waves, spirals-antispirals, hexagons, spot-stripes, mixed pat-
terns, etc.,”***8. Spirals are particular types of patterns that
rotate around a central point, known as the rotor. Rotors show
powerful rhythmic activity by sending rotating-type, robust,
wavy patterns outwards. The head of a stable rotating free spi-
ral wave moves around a circular core. The motion of the spi-
ral’s tip controls the dynamics of spiral waves. Local excita-
tory connections play essential role in the dynamics and emer-
gence of spirals during certain brain functions in the cortex*.
Antispiral waves observed near the Hopf bifurcation and the
direction of wave-propagation are determined by the compe-
tition between waves and their surrounding bulk oscillations.
The direction of the wave-propagation (either outwards or in-
wards) plays a role in characterizing spiral or antispiral waves.
Spiral patterns may pinpoint to a mechanism that changes the
irregular dynamics of cortical neurons to rhythmic behavior™°.
Particularly, the mechanism changes the frequency of oscilla-
tions and amplitudes, as well as the spatial coherence activ-
ity. Our results suggest that spiral waves can emerge in a 2-
dimensional spatially extended system with dynamics around
a Hopf bifurcation. We report on the formation of single-
and multi-arm spiral patterns. Spiral waves emerge when the
target waves break-up and are associated with spatial hetero-
geneity in the system*©.

Spatiotemporal patterns can often be observed in coupled
excitable oscillators, cardiovascular systems and in neural
systems?>3%41:5152 Tt is important to understand the charac-
teristics and formation of these spirals. It has been observed
that stable spiral patterns can emerge in an oscillatory system
around a Hopf bifurcation associated with the spatially uni-
form steady-state solution. The spiral waveforms have been
investigated in bursting media in>3. These results may be re-
lated to the formation and development of spiral patterns in
neural systems, especially in cortical areas in the brain. These
types of spatiotemporal patterns may also be related to the
characteristics of the generation of activity recorded in EEG
signals, to epileptic seizures, to migraine-related issues and
to the transmission of visual images in the cortex*%#1:4953,54,
Our results show that diffusively coupled FHR neurons with
different firing characteristics, depending on control parame-
ters, participate in the collective behavior of the system.



The paper is organized as follows: In Sec. II, we discuss
the single FHR model and perform a bifurcation analysis to
reveal the multitude of dynamical behaviors as a function of
the external current. In Sec. III, we study, analytically and
numerically, the effects of diffusion on coupled FHR neurons
arranged in a 1-dimensional configuration. We also discuss
the synchronization index that we use to quantify the collec-
tive behavior in the spatially extended systems. In Sec. 1V,
we study the diffusive properties of the dynamics of coupled
FHR neurons, arranged in a 2-dimensional spatially extended
mesh. We describe analytically the diffusive properties using
the amplitude equation and present the results that reveal com-
plex structures for positive diffusive couplings, such as target
waves, spiral patterns, and two- and multi-arm spiral waves.
Finally, in Sec. V, we conclude our work and discuss it in the
framework of other studies in the field.

Il. THE EXCITABLE FHR MODEL

The FHR model is the extended version of the original FHN
model?’. Incorporating slow dynamics, it can exhibit a wide
range of different firing patterns in certain parameter regimes.
The FHR model was introduced by FitzHugh and Rinzel*8-3!
and is also known as the elliptic bursting model!. It is de-
scribed by the system of ordinary differential equations

i=f(u)—v+w+l,
v=20(a+u—>bv), (D

WZH(C*M*W),

where u represents the membrane voltage of the nerve cell
and, v and w, the recovery and slow variables, respectively.
Particularly, v provides a slower negative feedback in the sys-
tem. Here,

w3

flu)=u—= @)
is the cubic nonlinearity in the membrane voltage and allows
for regenerative, self-excitation via positive feedback. I indi-
cates a constant external current stimulus and 8, a, b, 1 and ¢
are the parameters of the system. Parameter u is a small time-
scale number that controls the slow variable w and ¢ plays a
role similar to @ in the FHN model?’. The decrease of a and ¢
gives rise to longer intervals between consecutive bursting ac-
tivities, with the system showing relatively fixed times in burst
duration. Additionally, with the increase of a, the interburst
intervals become shorter and the oscillations change to tonic
spiking?®3!. In our work, we have used § = 0.08, a = 0.7,
b=0.8, 4 =0.002, c = —0.775 and we will be varying I.

To understand the dynamics of system (1), we study its
local and global stability properties performing a bifurcation
analysis. To this end, its nontrivial fixed point is denoted by
E = (uo,vo,wo), where vo = (a+up)/b and wop = ¢ —up. In
this framework, uy can be obtained from the real solution to
the cubic equation

uy +Pug+Q =0, (3)

where P =3/b and Q = —3(I —a/b+c). Its discriminant is
given by A = —4P3 —270% < 0, provided that » > 0, which
implies that Eq. (3) has only one real root. Particularly, the
real solution to Eq. (3) is given by

| Ao
S /W 4
ug 3<2+A2>’ €]

1
3

where Ag = —3P, Ay = <<A1 +4/A2 —4A8> /2> and A| =

27Q. This results to system (1) admitting the unique nontrivial
fixed point E = (ug,vo,wo), where ug, vo = (a+ ug)/b and
wo = ¢ — ug are given by Eq. (4).

The Jacobian matrix, J, of system (1), computed at the fixed
point E, is given by

ap app ag
J=1ax ax ax],
az| az ass

where aj = 1 —M%, app = —1, a;y = ], az| = 5, azy = —b6,
a3 =0, a3 = —U, azp = 0 and az3 = —u. The characteristic
equation is given by

M+ a A +ad +az =0, (5)
where aj = —1+b8 + U +uf, a = 8 — b8 + buud + bduj +
pu3 and a3 = 18 + budul. Analyzing the stability of the
system in a neighborhood of the fixed point E using the Routh-
Hurwitz criterion®?, implies that a; > 0, ap > 0, az > 0 and
that the second order minor aja; — a3 > 0. Next, we prove a
theorem that shows for which values of a, b and c, the fixed

point E is globally asymptotically stable when I = 0.

Theorem II.1. The fixed point E = (ug, v, wo) of system (1)
is globally asymptotically stable in the exterior of the ellipsoid

Lo 3 ol @Y oy c) Z3btd+be
3\ 72 Yo Y7o T 4b

for applied current stimulus I = 0.

Proof. We consider the Lyapunov function L : R — R

1 1
L(u,v,w) = u® + gvz + ;wz,

where 8 and u are positive parameters appearing in system
(1). Then,

o L(u,v,w) >0 for all (u,v,w) € R3,
e L(u,v,w) =0 if and only if (u,v,w) = (0,0,0), and

* all sublevel sets of L are bounded, i.e., L(u,v,w) —
oo as (u,v,w) — oo.



This shows that L(u,v,w) is positive definite. Then, the time-
derivative of L is given by

dL(u,v,w) i+ lvv—l— lww
bt St A RPN i+ — -
dt 1) u
1 3\ 2 a\? c\?
=2 (=2 -2 _°
(33 ol 5) o (o5)
_ 3b+a’+bc?
4b '

It follows that ’2—1; is negative outside the ellipsoid

1/, §2+b a 2+ c\*  3b+d’+bc?
3\ 72 YA Y"Ta) T 4b

and that

Thus, the fixed point E is globally asymptotically stable for
I = 0 in the exterior of the specified ellipsoid. O

Following?®3!, we consider the three sets of external cur-
rents I: (a) I =0.2 (set 1), (b) I =0.43 (set2) and (c) I = 0.5
(set 3) around the two Hopf bifurcation points of system (1)
that we discuss next.

A. Bifurcation analysis of the single FHR model

Here, we study the bifurcation properties of the single FHR
model (1) considering the current, /, as the bifurcation param-
eter. We use MatCont, a Matlab package for the numerical
continuation and bifurcation analysis of continuous, parame-
terized dynamical systems>®. We plot the results in Fig. 1.

Particularly, for I < 0.137, system (1) has a stable focus
node (solid cyan line), exhibiting a quiescent state (Fig. 1).
The system changes its stability and a stable limit cycle ap-
pears around / = 0.137, which corresponds to the supercriti-
cal Hopf bifurcation (HB1). As I increases further, the steady
state appears again through a second supercritical Hopf bifur-
cation (HB2) at I = 3.16298. For I > 3.16298, the system
has a stable focus node (solid cyan line), which corresponds
to the quiescent state shown in yellow in the fourth inset. For
0.137 < I < 3.16298, the system exhibits different types of
firing patterns, shown in blue, red and green in the insets in
Fig. 1, such as elliptic-type bursting, mixed-mode oscilla-
tions and tonic spiking. With further increase in /, the sys-
tem shows a quiescent state, shown as the yellow curve in
Fig. 1 for I = 3.8. In the range 0.137 < I < 3.16298, the
limit cycle changes its stability through period-doubling bi-
furcations at I = 0.1925, I = 0.4683 and I = 3.1075. The
system has an unstable focus for 0.137 < I < 0.6 and a sad-
dle node for 0.7 < I < 2.6 (dotted cyan line). Increasing
I even more, the system has an unstable focus node up to
I =~ 3.16298. The existence of period-doubling bifurcations
in the system is one of the routes to chaos. The system is

chaotic where both the fixed point and limit cycle are unsta-
ble. As an example, we calculated the Lyapunov exponents
(LEs) for I = 0.4, where both the fixed point and limit cy-
cle are unstable and found that they converge approximately
to the values (0.000121,—0.004023, —0.522634), ordered in
descending order. As the largest LE is positive, it confirms
the system is chaotic. Further on, in Fig. 1, solid and cyan
dotted lines denote the quiescent and oscillatory regions, re-
spectively. The stable and unstable limit cycles are shown in
solid magenta and dotted black lines, respectively.

In the following, we verify our numerical results with re-
spect to the critical bifurcation points HB1 and HB2 using an
analytical approach®’. The complex eigenvalues of the lin-
earized FHR system of system (1) around the fixed point E
are given by y(I) = o(I) £ i (I), where i is the imaginary
unit of the complex numbers. Suppose for a certain value of /,
say I = Iy, the following conditions are met: (i) (Ip) = 0, (ii)

B(lo) = B* # 0 and (iii) 4% =" 0. Then, system (1)

undergoes a Hopf bifurcation at ; = Iy. Conditions (i) and (ii)
are known as the non-hyperbolicity conditions and condition
(iii), as the transversality condition. To verify analytically the
Hopf bifurcation at Iy, we consider [ as the bifurcation param-
eter, with ¢¢(1) and B(I) given by

a(l) =0.31133 - 0.33333u3
+ (—68.6643 + 172.1666u0 — 83.3333ug) /A3

—0.000333A3
and
118.9304 — 298.2023u2 + 144.338u3
B(I) = s "0 _0.000577A7,
A3
where

A=10° (931 04315 — 3529.5225u3 + 3873.75uf — 1250u

+ 10.392\/—67.14+25.33u3 +21.64u 4 606.6u§ — 375.4ug> :
 4.27494

U —0.292402B,

1

3
B= (99 — 607+ 1.414\/6463 — 59401 + 180012) .

Thus, to find the critical points Iy of system (1) where Hopf
bifurcations occur, we find the values I = I, where conditions
(i)-(iii) hold. To this end, solving the equation a(I) = 0, we
obtain / = 0.137 and / = 3.16298. This implies that

(0.137) = a(3.16298) = 0, §(0.137) = —0.2792,
B(3.16298) = —0.2792,
da(l) —0.443
dl 1=0.137 7
dall) — 0443,
dl 1=3.16298
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FIG. 1. Bifurcation diagram of the FHR system (1), where solid and dotted cyan lines denote the quiescent and oscillatory regions, respectively.
The stable and unstable limit cycles are shown in solid magenta and dotted black lines. Different oscillatory regimes and bifurcations as a
function of the bifurcation parameter / are also shown in the upper insets, where we present plots of the time-series « as a function of time ¢
for the parameter sets 1, 2 and 3, shown in blue (elliptic-type bursting), red (mixed-mode oscillations), green (tonic spiking) and with further
increase of 1, it shows quiescent state. Note that HB1 and HB2 correspond to the two critical points / = 0.137 and / = 3.16298, respectively,

where Hopf bifurcations occur in system (1).

Consequently, system (1) undergoes two Hopf bifurcations at
the critical points 7 = 0.137 (HB1) and I = 3.16298 (HB2),
which are in good agreement with the numerical results shown
in Fig. 1.

In the next section, we study the diffusive properties of cou-
pled FHR neurons arranged in a 1-dimensional configuration
to investigate the collective dynamics and emergence of bio-
logically plausible patterns around the two Hopf bifurcations.

I1l.  DIFFUSIVELY COUPLED FHR NEURONS
ARRANGED IN A 1-DIMENSIONAL CONFIGURATION

Here, we consider a 1-dimensional configuration of ex-
citable, diffusively coupled FHR neurons through the mem-
brane voltage u. The corresponding system is governed by the

system of PDEs

u 2%u
35 :f(u)—v+w+I+Dﬁ,
v

ot

ow
W :.u(cfufw)a

=6(a+u—>bv), (6)

where 7 is the time and u(x,z = 0), v(x,t = 0) and w(x,z = 0)
for x € W, the initial conditions. ¥ is the space of the 1-
dimensional configuration and the function f(u) is given by
Eq. (2). We consider that only the membrane voltage u dif-
fuses to neighboring neurons, modeled by the 1-dimensional

diffusion term Dg—ié‘, where D > 0 is the diffusion coefficient
or diffusion coupling or constant synaptic coupling strength.
By 1-dimensional configuration we mean that the dimension
of W is 1, thus u, v and w are functions of only one spatial

coordinate, i.e., of x. Furthermore, we assume the zero-flux



boundary condition,

du_ov_aw_, o
dn dn dn

for x € JW, where dW is the boundary of ¥. In this frame-
work, % denotes the directional derivative along the out-
ward normal 7 to the boundary d¥. The reason for consid-
ering a zero-flux boundary condition is that it makes the 1-
dimensional membrane impermeable at the two edges, i.e., no
ions flow inside or outside the boundaries, and thus the mem-
brane acts as an isolated cable®!2. Next, we prove an impor-
tant theorem.

Theorem IIL.1. If the fixed point E of the FHR system (1) is
locally asymptotically stable, then the fixed point of the cor-
responding 1-dimensional diffusive model (6) is also locally
asymptotically stable.

Proof. We consider the particular solution of the linearized
model

u uo n A
v =|vo|+e| v | 4ce+o(e?)
w wo Wi

of system (6), where c.c. stands for “complex conjugate”
terms, A is the wave length, k > O the wave number along
the x direction and x the directional vector in . The Jacobian
matrix of system (6) at the fixed point E = (ug, vo, wo) is given
by

2
ayn —Dk” ap apz

J= az ax a3
asy az as3

and its characteristic equation by
)u,?—‘rbl)vkz—f—bzﬂ,k—l—l% =0. ®)

The coefficients of Eq. (8) are given by b; = a; + Dk?,
by = a +bSDk* + uDk?* and b3 = az +buSDk?, where a;, i =
1,2,3 are the coefficients of Eq. (5). We analyze the stability
of the fixed point E = (ug,vp,wp) using the Routh-Hurwitz
criterion, resulting in the fixed point E being stable if by >0,
by > 0, by > 0 and if the second order minor b;by — b3 is
positive. If we consider the stable fixed point of system (1),
thenb; >0,by >0,b3 >0and b1by —b3 >0asa; >0,a >0,
az >0, ajay —az >0, D> 0 and k* > 0. Thus, the fixed
point E of the 1-dimensional diffusive model (6) is locally
asymptotically stable. O

It is worth it to note that if the fixed point E of system
(1) is unstable, then the fixed point of the corresponding 1-
dimensional diffusive model (6) can be made stable by in-
creasing appropriately the value of the diffusion coefficient>®.
For example, if we consider set 1, the fixed point E =
(—0.939127,—0.298909,0.164127) of system (1) is unsta-
ble as a; = —0.0520405 < 0, a, = 0.0743373 > 0, a3 =
0.000272891 >0 and aja; —az; = —0.00414144 < 0. Interest-
ingly, for the diffusive model (6), the same fixed point is stable

6

if by = —0.0520405+ Dk? > 0, by = 0.074337340.066Dk> >
0, b3 = 0.000272891 + 0.000128Dk*> > 0 and biby — by =
—0.00414144 4 0.0707747Dk* + 0.066D*k* > 0, i.e., when
Dk?> > 0.05563, meaning that D > 0.05563/k2, where k2 > 0.
Thus, the fixed point of the corresponding diffusive model (6)
can be made stable by increasing appropriately the diffusive
coupling, D. One can prove analytically similar results for
sets 2 and 3, where the corresponding conditions for the sta-
bility of the diffusive model (6) are given by Dk? > 0.255616
and Dk* > 0.315046, respectively.

In Fig. 4(a), the dashed blue, brown and green curves delin-
eate the boundaries of the stable and unstable regions of sets
1, 2 and 3, and are given by

0.05563

D=7 ©)
0.255616

D=—"7—, (10)
0.315046

D=5 (11)

respectively. The solid blue, brown and green lines for sets 1,
2 and 3, respectively, were derived numerically and separate
the stable from the unstable regions in system (6). Particu-
larly, the critical D values where these lines are located, were
computed using the PDEPE toolbox in Matlab and the bisec-
tion method. The method solves system (6) numerically for
different D values until it converges to the critical D at which
the transition from unstable to quiescent (i.e., stable) dynam-
ics occurs. For each D, we checked visually the dynamics
based on plots such as those in Fig. 2. The method resulted at
D = 6 for set 1 (solid blue line), at D = 0.98 for set 2 (solid
brown line) and at D = 0.9 for set 3 (solid green line).

Next, we investigate numerically the effects of the diffu-
sive coupling, D, on the formation of spatiotemporal patterns
for the three sets of parameters. In the numerical simulations,
we consider system (6), which is a system of coupled FHR
neurons arranged in a 1-dimensional configuration, spaced at
equal distances Ax = 0.1, i.e., we consider N, = 500 spatial
points and also a time-step Ar = 0.01. Moreover, we con-
sider the zero-flux boundary condition in Eq. (7) and initial
conditions in the vicinity of the fixed point E of system (6).
Hence depending on the value of D, E can be either unsta-
ble or stable. We use the PDEPE toolbox in Matlab to solve
numerically system (6) and obtain its spatial behavior. The
individual neurons for sets 1, 2 and 3 exhibit different voltage
responses u over time, i.e., firing patterns, which result in var-
ious collective dynamics that we study in Subsec. III A via the
synchronization index R of Eq. (12).

First, for parameters in set 1, system (6) for D = 0 (which is
essentially system (1)) exhibits mixed-mode type oscillations
(elliptic bursting) as can be observed in blue in the left inset
in Fig. 1. For smaller diffusion coupling, e.g., D = 0.0001,
the system exhibits inhomogeneous irregular firing, shown in
Fig. 2(a). However, as D increases, it exhibits different firing
patterns with bursting characteristics, known as elliptic burst-
ing, a kind of mixed-mode type oscillations. It produces from
typical bursting to rapid changes in membrane voltage oscil-
lations, which involve simultaneous spike changes between



FIG. 2. Spatiotemporal plots of the system of coupled FHR neurons (6) arranged in a 1-dimensional configuration for different values of the
diffusion coefficient, D. Panels (a), (b) and (c) are for set 1 with D =0.0001, D = 1 and D = 8, respectively. Panels (d), (e) and (f) are for set 2
with D = 0.0001, D = 0.1 and D = 1, respectively, and panels (g), (h) and (i) are for set 3 with D = 0.0001, D = 0.01 and D = 1, respectively.
The color bars encode the values of the membrane voltages u(x,) of diffusively coupled, FHR neurons in system (6).

low- and high-amplitude oscillations. This can be appreciated
in Figs. 2(b) and 3(b). The yellow horizontal lines in Fig. 2(b)
indicate the peaks of the generated action potentials, shown in
Fig. 3(b). For higher diffusion coefficient D = 0.6, system (6)
for set 1 becomes completely synchronized, confirmed by the
synchronization index, R = 1 that we discuss in Subsec. IIT A.
At sufficiently higher diffusion coefficient D = 8, all neurons
show oscillation death as shown in Fig. 2(c). In panels (a)-(c)
in Fig. 3, we show the corresponding time-series of arbitrary
neurons for D = 0.0001, particularly of neurons 1 and 8.

Next, for parameters in set 2, system (6) for D =0 (i.e.,
system (1)) shows bursting activity as evidenced in the second
inset from the left in Fig. 1. For weak coupling D = 0.0001,
it gives rise to inhomogeneity, which results in a train of ir-
regular spikes, shown in Figs. 2(d) and 3(d). As the diffu-
sion coefficient is increased to D = 0.1, the system exhibits
mixed-mode oscillations with different spike-numbers in sin-
gle bursts, shown in Figs. 2(e) and 3(e). For even higher
diffusion coefficient, e.g., for D = 1, the system converges to

a quiescent state and the dynamics shows a fixed point (Figs.
2(f) and 3(¥)).

Last, we consider the case of tonic spiking for parameters
in set 3. For D = 0.0001, 0.01 and 1, spatiotemporal patterns
and corresponding time-series of arbitrary neurons are shown
in Figs. 2 (g)-(i) and 3 (g)-(i), respectively. In this case, sys-
tem (6) exhibits elliptic type bursting which comprises com-
plex firing activities, more complex than bursting and spiking
activities as it involves spikes and bunches of small-amplitude
oscillations. This might be the reason set 1 needs higher dif-
fusive coupling for the neurons to synchronize, compared to
sets 2 and 3.

With the systematic change in D, the dynamics of system
(6) transits from the regime of inhomogeneous instability to
a uniform steady-state through the formation of regular struc-
tures of trains of tonic spiking at intermediate D values. For
sets 2 and 3 and intermediate diffusion coefficients, D = 0.1
and D = 0.01, all neurons become synchronized. This syn-
chronization property is verified by the synchronization index
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FIG. 3. Temporal evolution of arbitrarily chosen neurons of the system of coupled FHR neurons (6) arranged in a 1-dimensional configuration
for different values of the diffusion coefficient, D. The values of D and sets of parameters are the same as those in the corresponding panels
in Fig. 2. The yellow, black, green, blue and red curves depict the temporal evolution of the arbitrarily chosen FHR oscillators in the coupled

systems.

R that we discuss in Subsec. IIT A.

The fixed point E of system (1) is unstable for the values
of the diffusion coefficient D in panels (a), (b), (d), (e), (g),
(h) in Figs. 2 and 3. The stabilizing mechanism responsible
for the stable dynamics in panels (c), (f), (i) in Figs. 2 and 3
results from the stability properties of the fixed point E of sys-
tems (1) and (6). As we discussed before, the fixed point E of
system (6) can be made stable by increasing appropriately the
value of the diffusion coefficient. The diffusion coefficient D
in panels (c), (f), (i) in Figs. 2 and 3 is equal to 8, 1, 1, respec-
tively, and for these values, the fixed point E of system (6) is
stable. Hence starting with initial conditions in the vicinity
of the stable fixed point results in the solutions remaining in
its vicinity. This is shown in Fig. 3(c), (f), (i) for the three
sets of parameters. However, that is not the case for smaller
D values where the fixed point E of system (6) is unstable
as can be seen in panels (a), (b), (d), (e), (g), (h) in Figs. 2
and 3. In these cases, solutions that start in the vicinity of the
unstable fixed point E drift away in time (see panels (a), (b),

(d), (e), (g), (h) in Fig. 3). Hence to stabilize system (6) in
the vicinity of the fixed point £, one must find appropriately
big values of the diffusion coefficient, D, for which solutions
that start in the vicinity of E, remain in its vicinity for ¢ > 0.
Consequently, the diffusion coefficient, D, plays a major role
in the stabilization mechanism in system (6) as it determines
the stability properties of the fixed point E.

A. Synchronization index

To quantify the collective behavior in systems of coupled
oscillators (in our case of diffusively coupled FHR neurons),
a synchronization measure based on mean field theory, can
be defined. The synchronization index, R, ranges in [0, 1]4348,
where 0 indicates complete desynchronization (i.e., all oscilla-
tors are completely desynchronized) and 1 complete synchro-
nization (i.e., all oscillators are completely synchronized).



The synchronization index, R, is defined by
_ (F?)—(F)*
3o X () — (ui)?)

; 12)

where

1 Nx
F=—Y) u
le.;’

is the average of the membrane voltages u; over all spatial
points and N, the number of spatial points. The notation (-)
denotes the mean value of the argument over time.

The results for the synchronization index, R, as a function
of the diffusion coefficient, D, are shown in Fig. 4(b) for sets
1, 2 and 3, in blue, brown and green, respectively. For sets
1 and 2, the coupled neurons are desynchronized for weak
diffusive coupling, D, as R is close to 0. This indicates that all
neurons exhibit almost desynchronized oscillations as shown
in the spatial plots in panels (a) and (d) in Fig. 3. However,
as D increases, all neurons of the three sets exhibit complete
synchronization, evidenced in panels (b), (c), (e) and (f) in
Fig. 3. Interestingly, R is almost equal to 1 for weak coupling
D for set 3, which can be appreciated in Fig. 4(b).

IV. DIFFUSIVELY COUPLED FHR NEURONS
ARRANGED IN A 2-DIMENSIONAL CONFIGURATION

In this section, we investigate different types of pattern for-
mations for diffusively coupled FHR neurons in a square do-
main, V. In this case, the mathematical model is given by the
system of coupled PDEs

2 2
ou —f(u)—v+w+I+D<au+ 9 u)

or ox2 " 9y?

ﬂ*5( +u—>bv) (13)
5% = a+u—>bv),

ow

WZ (Cfufw)v

where we use similar initial and boundary conditions as in
Sec. 1III, adapted to the case. Thus, here u = u(x,y,r),
v=v(x,y,¢t) and w = w(x,y,7), where x and y are the spatial
coordinates and ¢ is the time. System (13) can be written in
the compact form

X

> = H(X,I)+DV*X, (14)
where
X1 u u—g—v—i—w—l—l
X=|X2|=|v]|, H= S(a+u—>bv)
X3 w Ulc—u—w)
and

S
|
ooy
eNoNo)
oo o

Equation (14) will prove useful in the next, where we discuss
the amplitude equations that we use to study analytically the
formation of spatiotemporal patterns in the vicinity of the two
Hopf bifurcation points, HB1 and HB2.

A. Amplitude equations

The dynamics of system (13) in the vicinity of a Hopf bi-
furcation can be described by the amplitude equations, also
known as CGLE. It’s general form is given by3>-36-38

a(Tv;/ =W — (1+ia)|[WW + (1+iB)V*W, (15
where i denotes the imaginary unit of the complex numbers,
i.e., > = —1 and V? is the 2-dimensional Laplacian operator.
As the real parameters o and 3 vary, the complex amplitude,
W, exhibits rich dynamics. In the following, we seek to find
the values of @ and f in the vicinity of the two Hopf bifur-
cations, HB1 and HB2 (as discussed in Subsec. ITA), i.e.,
around the bifurcation points / = 0.137 and / = 3.16298.

The Jacobian matrix J in this case has two complex con-
jugate, imaginary eigenvalues A; » = +wi. The right eigen-
vectors that correspond to the eigenvalues +i® are denoted
by Uy, U, = U; and the left by U;", U = U,". For sim-
plicity, we consider U = Uy = U, and Ut = U" = U,.
Furthermore, the right and left eigenvectors can be nor-
malized according to UﬁU i = 0;j, where &; is the Kro-
necker delta, ie., UTU =UVYU =1 and UTU = U1U =
0. In Subsec. IIA, we have shown that the two Hopf
bifurcations, HB1 and HB2, occur at / = 0.137 and [ =
3.16298, respectively. Interestingly, the eigenvalues of J for
both are the same and are given by A4; » = +0.279302i and
A3 = —0.0036 as J contains the term u(z) and its value is
the same for both bifurcation points (i.e., uy = £0.96829).
The right and left eigenvectors that correspond to the
eigenvalue A; = 0.279302i are U = (0.963143,0.0600545 —
0.262111i,—0.00005 + 0.0069/))7 and U* = (0.5198 —
0.1159i,—0.0108 + 1.8586i,—0.4018 — 1.8639i), respec-
tively. These again refer to both bifurcation points as the Ja-
cobian matrix J and its eigenvalues are the same for both.

To compute o and 8 in Eq. (15), we start with the unscaled
Ginzburg-Landau equation’>-30

W =61 IW — g|W|'W +dV*W (16)

and seek to find the values of o, g and d using the values in
Table 1 in®>3¢, Particularly, parameters oy, g and d are given
by

o1 =U" Hx,U +U"'Hxx (U, loo1),
g=- <U+HXX(U,1110) + UV Hxx (U, o)
1 _
+*U+HXXX(UaU7U))7

2
d=UTDU,
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FIG. 4. Boundaries of stable and unstable regions and synchronization index, R, for the sets of parameters 1, 2 and 3. (a) The dashed blue,
brown and green curves (see Egs. (9), (10), (11)) indicate the boundaries of the stable and unstable regions of model (6) for the parameter sets
1, 2 and 3, respectively. The solid blue, brown and green lines are located at D = 6 (set 1), D = 0.98 (set 2) and D = 0.9 (set 3), are derived
numerically with the help of the bisection method and, separate the stable from the unstable regions. Here, “us” stands for unstable region.
(b) The synchronization index, R, as a function of the diffusion coefficient, D, for the sets of parameters 1, 2 and 3, shown in blue, brown and
green, respectively. Note that in panel (b), the line segments connect the numerically computed values of R plotted by small filled circles

respectively, where

we obtain

S J’H ow 5 )

Hoe(&m) = X 53ox,; &mjs 5 = oW —gWW +dviw (18)
ij=1 E=(ug,v0,0)
3 J3H which is known as the scaled complex Ginzburg-Landau
Hyxx (§,1,8) = Z m &in ;. equation. Transformation (17) renders CGLE independent of
=(u0,v0,0) the distance from the bifurcation point. The dynamics of sys-
loor = (0-4571,0.5714, —0.4571)", tem (13) can be described by the solution of Eq. (18), except
l10 = (0.8212,1.0265, —0.8212)7

for a short initial decay of transient eigenmodes. Finally, in-

. troducing the new transformation
oo = (—0.2395 —2.1447i,

—0.3070 — 0.0009i,0.0077 — 0.0008:)" .

W= | 200 s
In our case, R(g)
t/
u—T—v+w+I "= R’
H=| 0080.7+u—08v) |, (o1)
0.002(—0.775 — u— w) Rd)
EREICH
thus
R(d)
2 —2uyg 3 -2 y= y/v
a—}Z = 0 and LIZ =| 0], R(o1)
we obtain the dimensionless CGLE (15), that is the equation
with all other terms in Hxx and Hxxx being equal to zero.
With this in mind, we obtain o7 = 0.4432 — 0.0988i, g = oW _ . 2 . >
0.3642 +2.1015i and d = D(0.5006 — 0.11177). Next, using 5 =W (HiWW 1 +iB)Vw, 19
the transformation
3(g) _ - _ i
W= VIW', where o = 35 = 5.7706 and B= 9{ 0.2230. In this
, framework, R(x) and J(*) denote the real and imaginary
t=1/l, parts of the argument, respectively. Clearly, o+ 8 = 5.5476 >
x=x /ﬁ, (17) 0, which confirms the existence of antispiral patterns in the
y=Y/VI,

vicinity of the two Hopf bifurcations*?, HB1 and HB2, at the
critical points / = 0.137 and I = 3.16298, respectively



B. Results

Here, we focus on the diffusively coupled FHR model (13)
and study numerically the emergence of complex structures
in a square spatial domain ¥ for D > 0, considering [ as the
varying parameter. The method of amplitude equations was
employed in Subsec. IV A to show the existence of antispi-
ral patterns in the vicinity of the two Hopf bifurcations, HB1
and HB2. In the following, we discuss specific patterns that
emerge around HB1.

To do so, we construct a spatially extended medium with
2-dimensional spatial diffusion using an N, x N, = 100 x 100
mesh grid. We solve numerically the resulting system using
the forward Euler method with central differences, a finite-
difference scheme, with spatial step size A = Ax = Ay = 1.25
and integration time-step At = 0.1. The initial conditions are
considered with appropriate periodic perturbations from the
initial conditions of the system in Sec. II, using similar bound-
ary conditions as in the 1-dimensional case, adapted to the
case. We denote by u; j(f) the membrane voltage of a neuron
at the node (i, j) on the grid at time 7. Consequently, the sum

. . o 2 2
of the spatial, second-order partial derivatives 9%u 4 97U cap
ox? dy?

be approximated by
Pu  u 1
2 + Tyz Y (Mifl,j Ui, j Ui -1 Uyl — 4ui,j) .

We note that in the following, we will study the spatiotempo-
ral characteristics in the context of the nonlinear, coupled, dif-
fusive system (13), where the coupling indicates the synaptic,
diffusive coupling among neurons on the nodes of the Ny x Ny
grid. Furthermore, we construct a square N, X Ny domain ¥
(grid) using nearest neighbor connectivities and explore the
evolution of target waves and spirals for fixed values of the
diffusion coefficient, D, using long-time numerical integra-
tion, i.e., up to r = 20000.

We start with set 1, for which the single-neuron model
(1) with no diffusion, exhibits mixed-mode oscillations, often
known as elliptic type bursting?®. For D = 0.25, system (13)
gives rise to the emergence of target waves at r = 3450 shown
in Fig. 5(a). We also find that these target waves are sparse as
shown in the same panel. The reason might be that most of the
neurons cannot activate neighboring neurons in short time in-
tervals. However, as time increases to 20000, small spiral-like
activity can be seen, bounded by target waves*'. The devel-
oped target waves become denser, occupying the whole ex-
tend of the mesh grid, as shown in panels (b) and (c) in Fig. 5.
The coexistence of spirals and target waves can be observed
at t = 40000 in Fig. 5(d), which suggests the patterns in the
spatial domain are stable.

Next, we consider set 2 with D = 0.3, where individual
neurons exhibit mixed-mode oscillations. At the initial stage,
multi-arm spiral waves emerge from broken waves, which can
be observed in Fig. 5(e). As the time increases to ¢ = 3000,
target waves and various wavefronts emerge as can be ob-
served in Fig. 5(f). The spiral-like patterns coexist with tar-
get waves until + = 5000, shown in Fig. 5(g), and the spirals
are not stable. The reason may be the excitability of neurons
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in the arm segments of small spirals being high, attracting
other small segments of spiral arms and forming more stable
wavefronts. Interestingly, at even higher times, for example at
t = 40000, only spirals can be observed, shown in Fig. 5(h),
with the centers of the wavefronts frequently changing over
time. A group of small-size spiral profiles emerge that change
into multi-arm spiral waves. Our numerical results show the
emergence of different wavefronts that develop and break over
time, with spirals emerging thereafter.

Multi-arm spiral waves emerge for set 3 for small diffusion
coefficient values. For example, at D = 0.009, target waves
appear to cover partially the grid. Initially, we observe the
formation of distinct clusters consisting of small curls on the
blue backdrop of the mesh grid, that can be seen in panels (i)
and (j) in Fig. 5. However, as time increases, for example at
t = 20000 and ¢ = 40000, multi-arm spirals emerge, shown in
panels (k) and (1) in Fig. 5. This shows that the small curls
collide with neighboring curls that extend to the whole mesh.
With further increase in time, multi-arm spirals emerge.

Next, we discuss the effect of diffusive coupling on the for-
mation of target waves and spirals for long integration times.
At coupling strength D = 0.05, the formation of two-arm spi-
ral waves*!' can be observed at t = 20000, shown in Fig. 6(a)
for set 1. Only a few spirals are visible. However, as D in-
creases slightly, for D = 0.09 and D = 0.1, antispiral waves
emerge, shown in panels (b) and (c) in Fig. 6. The results are
verified using Eq. (19). It follows from the study of the am-
plitude equations that the antispirals exist in the vicinity of the
two supercritical Hopf points and that they depend on ¢ and
B. Solving the system numerically, we can see the antispirals
for suitable values of the diffusive coupling, D, depending on
o and . These multi-arm antispiral waves with an increas-
ing number of arms extend to the whole spatial grid. For even
higher diffusion values, for example for D = 0.245, double
spirals can be observed, shown in Fig. 6(d). Periodic forcing
and coupling strength play a major role in promoting target
waves by suppressing spiral waves*>*!. Increasing slightly
the diffusive coupling to D = 0.25, we observe the same route
of transition, i.e., two spirals that collide and generate target
wave patterns, shown in the first panel in Fig. 5.

When considering set 2 and for smaller couplings, for ex-
ample for D = 0.1, multi-arm spirals emerge. For even higher
D, for example for D = 0.25 and D = 0.3, the multi-arm spiral
waves dissolve and, target waves and spirals emerge, shown in
panels (e) to (g) in Fig. 6. With the further increase of D to
0.9, only spiral patterns can be observed, shown in Fig. 6(h).

For set 3, with increasing D, multi-arm spirals emerge,
occupying a greater extend on the spatial grid, observed in
panels (i) to (1) in Fig. 6. We cross-checked the appear-
ance of similar spatiotemporal patterns on a bigger, N, X Ny =
500 x 500 mesh grid and we obtained similar results, with no
significant changes. Finally, the same wavy patterns emerged
when running simulations for even longer times, i.e., up to
t = 50000.
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FIG. 5. Formation of target waves and spiral patterns resulting from the system of diffusively coupled FHR neurons (13) arranged in a 2-
dimensional space for set 1 with D = 0.25 at r = 3450, 3500, 20000, 40000 in panels (a) to (d), set 2 with D = 0.3 at r = 2000, 3000, 5000,
40000 in panels (e) to (h) and set 3 with D = 0.009 at r = 3500, 5000, 20000, 40000 in panels (i) to (1). The color bars encode the values of
the membrane voltages u(x,y,t) of the diffusively coupled FHR neurons of system (13).

V. CONCLUSIONS AND DISCUSSION

In this paper, we considered the biophysically motivated,
slow-fast, excitable FitzHugh-Rinzel neuron model, which
provides a variety of neuronal responses. It exhibits a di-
verse repertoire of firing patterns for certain fixed sets of pa-
rameters and different external current stimuli. We studied
the FitzHugh-Rinzel model theoretically and numerically in
different dynamical regimes. Further, we discussed its lo-
cal and global stability. We performed a bifurcation analy-
sis and demonstrated the qualitative changes between stable
steady and oscillatory states. We incorporated 1-dimensional
diffusion to construct a 1-dimensional chain of neurons and
investigated several complex behaviors that pertain to syn-
chronization. The stability analysis was performed for the
diffusively coupled system and we showed how the stability
changes from an unstable regime to a stable with the increase
of the diffusion coefficient. The diffusively coupled system
changes its dynamical characteristics as the coupling strength

changes. Next, we studied the diffusive system on a square
spatial domain. The amplitude equation, describing the onset
of spirals close to the Hopf bifurcations, was derived and nu-
merical simulations were provided. As the parameters change,
we showed the appearance of target and spiral waves for three
sets of parameters that correspond to three distinct oscillatory
regimes.

We explored emerging target waves and spirals as dynam-
ical features and verified them analytically using amplitude
equations. Our investigation shows that the spatial dynam-
ics of the slow-fast model exhibits two- and multi-arm spiral
waves for low diffusion couplings. We found that multi-arm
spiral waves with increasing number of arms occupy the 2-
dimensional mesh grid and that they are unstable. Bursting
in the activity of single neurons is a bio-physiological phe-
nomenon, however, bursting in the activity of neural popula-
tions might be pathological®>3. Interestingly, these emergent
patterns may be relevant to the synchronized activities of neu-

ral populations, particularly related to neurological diseases®.
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FIG. 6. Snapshots of pattern formation of the system of diffusively coupled FHR neurons (13) arranged in a 2-dimensional configuration.
Panel (a) D = 0.05, (b) D =0.09, (c) D =0.1, (d) D = 0.245 for set 1, panel (¢) D = 0.1, (f) D =0.25, (g) D = 0.3, (h) D = 0.9 for set 2,
panel (i) D = 0.005, (j) D = 0.007, (k) D = 0.009 and panel (1) D = 0.01 for set 3. The color bars encode the values of the membrane voltages

u(x,y,t) of the diffusively coupled FHR neurons of system (13).

The propagation of neuronal impulses can be relevant to brain
functioning®!>4%4! " In a weakly coupled system of pancre-
atic fB-cells, bursting varies, where pancreatic -cells secrete
insulin®’. The analysis of the mechanisms underlying spa-
tial profiles of activity in the neural tissue is important in
understanding a wide range of biophysical and pathological
phenomena®**33. Moreover, the form of the nerve impulse
propagation is relevant to certain brain pathologies® 84950,

Finally, we discussed in detail how nonlinearities in the bio-
physical, excitable model change the distribution of single-
cell characteristics into different types of patterns. Spiral
waves emerge frequently in cortical areas with limited lifes-
pan. They can modify cortical activities affecting the oscilla-
tion frequency and spatial coherence-like activity. The emer-
gence of spiral waves during sleep-like states varies greatly
and, can also organize and modulate the pathological pat-
terns during epilepsy. Spiral waves have been observed to
play a major role in organizing irregular dynamics in corti-

cal neurons and rhythmic behavior*’. Our results reveal a

multitude of neural excitabilities and possible conditions for
the emergence of spiral-wave formation in diffusively coupled
FitzHugh-Rinzel systems with different firing characteristics.
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