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Abstract—The 5th generation (5G) mobile networks and be-
yond need to support massive machine-type communications
(MTC) devices with limited available radio resources. In this pa-
per, we study the power-domain non-orthogonal multiple access
(NOMA) technology to support energy-efficient massive MTC
networks, where MTC devices exchange information using spo-
radic and low-rate short packets. We investigate the subchannel
allocation and power control policy to maximize the achievable
effective energy efficiency (EE) for uplink NOMA-based massive
MTC networks, taking into account of short-packet commu-
nication characteristics. We model the subchannel allocation
problem as a multi-agent Markov decision process and propose
an efficient Q-learning algorithm to solve it. Furthermore, we
obtain the optimal transmission power policy by approximating
the achievable effective rate of uplink NOMA-based short packet
communications. Compared with the existing OFDMA scheme,
simulations validate that the proposed scheme can improve the
achievable effective EE of massive MTC networks with 5.93%.

Index Terms—massive MTC, NOMA, short packet communi-
cation, energy efficiency, joint subchannel and power allocation

I. INTRODUCTION

Towards the 5th generation (5G) mobile networks and
beyond, massive machine-type communications (MTC), aim-
ing to provide seamless and ubiquitous wireless connections
anywhere and anytime, have received tremendous research
attention in recent years. According to the forecast of Cisco,
by 2022, there will be 3.9 billion of MTC devices connected
in a variety of vertical industries such as industrial automation,
intelligent transportation, smart environment, smart city, smart
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health, smart home, security and public safety [1]. Although
cellular networks provide several advantages for human-type
communications (HTC), it is becoming increasingly challeng-
ing for them to support massive MTC devices with limited
radio resources.

Sporadic and low-rate short packet communication is a
major feature of massive MTC networks. Typical applications
of short packet communication in massive MTC networks are
data sensing and collection, remote control and maintenance.
Basically, the data size sent by each MTC device may be small,
ranging from a few to several hundreds of bytes [2], [3]. One
short data packet of MTC devices is made up of information
data and metadata, where the latter may be from media-access-
control layer and higher layers. Compared to the information
data size, the size of metadata, containing various information
such as logical addresses, packet initiation and termination,
synchronization and security, may not be negligible for MTC
devices [4].

MTC devices usually have to meet stringent power con-
sumption requirements. Their battery lifetime is expected to
be 10 years or more, especially for MTC devices deployed
in extreme conditions or unreachable places [5], [6]. Limited
by the cost, chip space and battery capacity of massive
MTC devices, the design of energy-efficient MTC networks
is an urgent research problem to be addressed. The focus of
this paper is power-domain non-orthogonal multiple access
(NOMA) [7], in which multiple MTC devices with different
power allocations conduct the transmission over the same
time-slot and the same frequency channel.

A. State of the Art

Short packets are the most common data traffic generated
by MTC devices. Shannon capacity assumes infinite coding
blocklength and sufficiently small decoding error probability,
which may not be a suitable tool for analysis the MTC
networks [8]. The maximal coding rate of finite blocklength
was obtained in [9], which takes the communication channel as
a bit pipe of randomly varying size. Based on the rate of finite
blocklength, the blocklength-limited performances of different
Automatic Repeat-reQuest (ARQ) protocols [10], [11], relay
systems [12], [13] and delay sensitive networks [14], [15] have
been investigated.

On the one hand, small cell network is a promising technol-
ogy for 5G mobile communication systems for a substantial
increase of the network capacity and density [16]. However,
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more than 50% of the energy is consumed by various compu-
tation tasks at small cell BSs [17]. Therefore, improving the
energy efficiency (EE) of massive MTC networks is becoming
an ever-increasingly urgent task to tackle. Joint optimization of
computation and communication radio have been investigated
to reduce the computation energy consumption in both up-
link and downlink systems [18]–[20]. Exploiting the energy
harvesting technology or wireless energy and information
transmission technology, the MTC devices obtaining energy
from other devices to make itself EE transmission in short
packet communication was first analyzed in [21], followed
by the studies of resource allocation for wireless powered
Internet of Things (IoT) with finite blocklength consideration
[22], [23]. However, due to the limitation of cost and chip
space, many MTC devices may not be able to support wireless
powered communication or energy harvesting at this stage.
From the perspective of power control, [24]–[26] optimized the
transmission power of MTC devices to minimize the energy
consumption.

On the other hand, the dilemma between the limited radio
resources and the demand for massive connectivity has driven
the research of NOMA for massive MTC networks. Compared
with orthogonal multiple access (OMA), NOMA and coop-
erative NOMA enjoy improved network capacity [27], [28].
A new multiple-input multiple-output non-orthogonal multiple
access (MIMO-NOMA) scheme has been designed for IoT
with small packet transmission in [29], where one user is
served with its Quality of service (QoS) requirement strictly
being met, and the other user is served opportunistically.
Moreover, the trade-off among the transmission rate, energy
consumption, decoding error probability and the transmission
latency have been investigated for downlink NOMA systems
in [30], [31]. To efficiently support massive MTC devices, a
multi-layer grant-free NOMA scheme for short packet trans-
mission was proposed in [32].

B. Motivation and Contributions
Massive MTC networks need to meet diverse QoS require-

ments in terms of massive connectivity, reliability, EE, latency,
throughput, short packets and uplink dominated transmissions.
The works of [10]–[15] [22]–[26] are mainly focused on
OMA, which may not support massive MTC devices in 5G and
beyond for lower spectrum efficiency. Although the authors
of [29]–[31] investigated the NOMA performances in short
packet communication, they are inapplicable to massive MTC
devices in uplink transmissions. The system reliability subject
to power and decoding complexity constraints has been studied
in [32], however, the resource allocation in uplink NOMA-
based short packet communications remains an open issue.
To the best of our knowledge, the energy efficient massive
MTC networks communicating using short packets is not well
investigated.

Against this background, this paper aims to maximize the
achievable effective EE in short packet communication for all
MTC devices subject to minimum data rate requirements, by
taking into account of transmission scheduling technique in
uplink NOMA and power control policy. The main contribu-
tions of this paper are summarized as follows:

TABLE I
NOTATIONS USED IN THIS PAPER

Notions Meanings
M, N Set of MTC devices and subchannels
M ,N Number of MTC devices and subchannels
Lm Short packet blocklength
Nn Maximum number of MTC devices in subchannel n
Mn Number of MTC devices in subchannel n
hm,n Channel gain of mth MTC device in nth subchannel
pm,n Transmission power of mth MTC device in nth subchannel
εm,n Effective decoding error probability
Pmax Maximum transmission power of each MTC device
xm,n Subchannel allocation index
Un Set of MTC devices sharing the same subchannel
Mn Number of MTC devices sharing the same subcahnnel
p∗,x∗ Optimal power/subchannel allocation matrix
η Energy efficiency
ω, ϕ, ε Learning rate, discount factor and exploration probability
λ, µ Lagrange multipliers
ρ, τ SINR and power amplifier
θi, i = 1, 2, 3 Convergence error in Algorithm 1
Q−1 (�) Inverse of Gaussian Q-function
MTC Machine-type Communications
HTC Human-type Communication
OMA Orthogonal Multiple Access
NOMA Non-Orthogonal Multiple Access
EE Energy Efficiency
BPCU Bit Per Channel Use
QoS Quality of Service
IoT Internet of Things

1) Focusing on uplink NOMA-based massive MTC net-
works, we define the achievable effective EE for all the
MTC devices by considering short packet communication
characteristics and the decoding error probability at the
receiver. Constrained by minimum data rate requirements
of MTC devices, maximum number of MTC devices in
each subchannel and the maximum transmission power
of MTC devices, we maximize the achievable effective
EE via subchannel allocation and power allocation two
decoupled subproblems.

2) We model the formulated subchannel allocation problem
as a multi-agent Markov decision process. The central
controller is employed to manage the subchannel allo-
cations, and each selfish and rational MTC device acts
as a learning agent to submit its requests to the center
controller. We then propose an efficient Q-learning based
subchannel allocation for maximizing the achievable ef-
fective EE.

3) Given the subchannel allocation, we transform the frac-
tional programming problem on the achievable effective
EE into a series of subproblems based on the Dinckel
Algorithm [33]. By exploiting the first order Taylor
approximation, we approximate the achievable effective
rate of MTC devices in uplink NOMA-based short packet
communications and obtain its lower bound. Moreover,
we obtain the optimal transmission power of each MTC
device with the Lagrangian-dual algorithm.

4) Compared with existing schemes, the results indicate
that the proposed algorithm can significantly improve
the achievable effective EE of MTC devices in short
packet communications while guaranteeing their QoS
requirements.
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The rest of this paper is organized as follows. In Section
II, we introduce the short packet communication in uplink
NOMA-based massive MTC networks. Section III formulates
the optimization problem of achievable effective EE. Section
IV presents the reinforcement learning based subchannel al-
location and solution of power allocation scheme is given
Section V. Simulation results and conclusions are presented
in Section VI and VII, respectively. Notations used in this
paper are listed in Table I.

II. SYSTEM MODEL

A. Uplink NOMA-based Massive MTC Networks

We consider an uplink NOMA-based massive MTC net-
works scenario as shown in Fig. 1(a), where M =
{1, 2, ...,M} MTC devices in the active mode transmit data
to BS. The available bandwidth W is divided into N or-
thogonal subchannels. The set of subchannel is denoted by
N = {1, 2, ..., N}, and they are employed to serve the
active MTC devices. Furthermore, we assume that each MTC
device is allowed to use at most one subchannel. The set
of MTC devices sharing the nth subchannel is denoted as
Un and the number of MTC devices is Mn = |Un| ,
M = M1 + M2 + ... + MN . If Mn > 1, the nth subchannel
is a NOMA link, where Mn MTC devices simultaneously
transmit data to BS over this link, and the receiver needs
to employ multi-user decoding technology to separate the
overlap signals. Otherwise, it belongs to an OMA link and the
assigned MTC device will use the subchannel without multi-
user interference. The scheme that different number of MTC
devices accommodated on different subchannels is a special
case of hybrid NOMA [7]. To balance the performance and
complexity in multiple subchannel NOMA, we assume that the
maximum number of MTC devices sharing the nth subchannel
is limited to Nn.

Each MTC device transmits with a short packet of Lm
payload bits including lm bits information data and l0 bits
additional metadata (such as preamble and header), the struc-
ture of which is shown in Fig. 1(b). The block fading channel
model is adopted, in which the fading gain keeps constant in
each time slot. The channel gain from the mth MTC device to
the BS in the nth subchannel is hm,n, which is characterized
by large scale pathloss of distance and small scale Rayleigh
fading. Furthermore, we assume that MTC devices can obtain
their own channel gains with feedback. The received signals
at the BS on the nth subchannel can be written as

yn =
∑Mn

m=1

√
pm,nhm,nsm,n +No, (1)

where sm,n denotes the transmitted signal of the mth MTC
device over the nth subchannel, and its power denoted as
E
(
|sm,n|2

)
= 1. pm,n is the transmission power of the mth

MTC device over the nth subchannel, which is constrained by
pm,n ≤ Pmax. No represents the noise power per sub-channel.

In the uplink, all the received signals at BS are desired
signals, which can be decoded by successive interference
cancellation (SIC). However, because of the limited detection
ability and the impact of modulation and decoding schemes,
the fact that decoding error probability cannot be neglected in

l m
l

M

m
L

Fig. 1. (a) Uplink NOMA-based massive MTC Networks System Model; (b)
Short Packet Blocklength Structure

short packet communications. The perfect SIC assumption can
not be valid as that in Shannon Capacity, due to its assumption
of infinite blocklength and free of decoding error. If two
or more MTC devices select the same subchannel, the SIC
decoding error in the first user will surely cause an error in
the second. Therefore, taking both decoding error probability
and the SIC decoding error probability in previous step into
consideration of εm,n , the effective decoding error probability
εm,n can be expressed as

εm,n=
m−1
Π
i=1

(1− εi,n) ε̄m,n+
[
1−

m−1
Π
i=1

(1− εi,n)

]
ε̃m,n, (2)

which means that the decoding error probability of the mth
user in the nth subchannel is ε̄m,n if the former (m − 1)
stronger MTC devices all decoding successful, otherwise the
decoding error probability is ε̃m,n .

B. Achievable Effective Rate with Short Packet Communica-
tion

Different from downlink NOMA that the decoding order
is always fixed, the decoding order is arbitrary in BS be-
cause the received signals are all desired. Many factors may
influence the decoding order in the BS. For example, the
network, channel gain, available resource conditions and QoS
constraints [34]–[36]. However, the decoding order in short
packet communications is still an open issue and little works
have been paid on attention to it. In this work, we assume
that |h1,n|2 ≥ · · · ≥ |hm,n|2 · · · ≥ |hMn,n|

2, and the MTC
device with higher channel gains will be decoded earlier
at BS, although they may suffer from interference of other
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undecoded MTC devices [7], [20], [37]. Moreover, since the
linear function can effectively model the relationship between
the residual interference and the power of the received signal
[38], [39], we model the residual interference from the first
decoded m− 1 MTC devices in the nth subchannel as follows

ISICm,n =

m−1∑
j=1

|hj,n|2pj,n|xj,n − x̃j,n|2

=

m−1∑
j=1

%j,npj,n|hj,n|2,
(3)

where xj,n − x̃j,n means the difference between the ac-
tual signal xj,n and the estimated signal x̃j,n, and %j,n =
E
[
|xj,n − x̃j,n|2

]
. Specifically, %j,n = 0 means perfect SIC,

0 < %j,n < 1 denotes imperfect SIC and %j,n = 1 indicates
no SIC.

Then, the channel gain-to-interference-plus-noise ratio
(CINR) for the mth user in the nth subchannel can be
expressed as

γm,n =
|hm,n|2

ISICm,n +
∑Mn

i=m+1 pi,n|hi,n|
2

+ σ2
, (4)

where
∑Mn

i=m+1 pi,n|hi,n|
2 is the interference of the mth MTC

device suffering from the nth subchannel.
According to [9], the achievable channel coding rate of short

packet communications depends on the channel condition,
finite blocklength and decoding error probability. Therefore,
given the finite blocklength Lm and effective decoding error
probability εm,n of the mth MTC device in the nth channel,
the achievable instantaneous rate in bits per channel use
(BPCU) can be approximated as

rm,n = Cm,n −
√
Vm,n
Lm

Q−1 (εm,n)

ln 2
, (5a)

where
Cm,n = log2 (1 + pm,nγm,n) ,

Vm,n = 1− 1

(1 + pm,nγm,n )
2 .

(5b)

Vm,n is the channel dispersion measuring the stochastic vari-
ability of the channel relative to a deterministic channel with
the same capacity [9]. Q−1 (�) is the inverse of Gaussian
Q-function Q (x) =

∫∞
x

1√
2π
e−

t2

2 dt. For simplicity, we let

κm,n =
Q−1(εm,n)

ln 2
√
Lm

. The expression in (5a) means that com-
pared with Shannon Capacity, achieving the targeted decoding
error probability εm,n incurs a penalty term on the achievable
rate for MTC devices in the short packet communications.

Considering the trade-off between error probability and
transmission rate, we adopt the effective rate [30] as the metric
to for performance evaluation of massive MTC networks. The
effective rate measured in bits per Lm channel use is given by

Rm,n =

{
0, εm,n,

Lmrm,n, 1− εm,n.
(6)

where the effective rate Rm,n in bits per Lm channel use is
zero when the information fails to be decoded, or the effective
rate Rm,n in bits per Lm channel use equals to Lmrm,n.

Taking the expectation of the effective rate Rm,n divided
by Lm with respect to the decoding error probability, the
achievable effective rate in BPCU can be expressed as

R̄m,n = Eεm,n

[
Rm,n
Lm

]
= (1− εm,n) rm,n. (7)

III. MAXIMIZATION OF ACHIEVABLE EFFECTIVE ENERGY
EFFICIENCY

Due to the limited power and the requirement of long battery
lifetime, MTC devices are required to transmit information
data in an energy efficient manner. In contrast to existing
studies, we aim to maximize the achievable effective EE,
which is defined as the total achievable effective rate with unit
power consumption per channel use. Thus, we formulate the
system achievable effective EE as a ratio of the total achievable
effective rate per channel use to the total power consumption
(BPCU/Joule), which is expressed as

ηEE =

∑N
n=1

∑Mn

m=1 R̄m,n
Ptotal

, (8)

where Ptotal is the total power consumption of all MTC
devices and expressed as

∑N
n=1

(∑Mn

m=1

(
1
τ pm,n + Pm,C

))
.

Pm,C is the static circut power consumption, which also plays
a significant role in EE [20]. τ ∈ [0, 1] is a constant value
which accounts for the power amplifier efficiency.

The achievable effective EE maximization problem is for-
mulated as follows

(P1) max
p,x

ηEE (9a)

s.t. rm,n ≥ Rm,min,∀m,n, (9b)∑N

n=1
xm,npm,n ≤ Pmax,∀m, (9c)∑M

m=1
xm,n ≤ Nn,∀m, (9d)

xm,n (xm,n − 1) = 0,∀m,n. (9e)

where (9b) represents the minimal transmission rate require-
ment of each MTC device, xm,n denotes whether the nth
subchannel is assigned to the mth MTC device, i.e., xm,n = 1
if the mth MTC device selects the nth subchannel to transmit,
or xm,n = 0. (9d) means that the number of MTC devices
sharing the same subchannel is limited by an upper bound,
i.e. Mn ≤ Nn, (9e) guarantees the xm,n is a binary number,

However, the introduced multiuser interference couples all
the MTC devices sharing same subchannels, which makes the
objective function in P1 a ratio between a nonconvex function
and an affine function. In addition, the subchannel indicator is
binary variable. P1 is classified into a nonconvex mixed integer
nonlinear problem (MINLP) with fractional programming,
which is a nonpolynomial problem and difficult to solve.
Hence, with the given subchannel and power allocation, we
reformulate the short packet communication rate in (5) as

f (ρ) = log2 (1 + ρ)− κ
√
ρ (ρ+ 2)

1 + ρ
, (10)

where ρ = pγ is the SINR. Due to the convexity of the
second term in (10) is not known, the convexity of f (ρ) cannot



HAN et al.: ENERGY-EFFICIENT SHORT PACKET COMMUNICATIONS FOR UPLINK NOMA BASED MASSIVE MTC NETWORKS 5

directly obtain. In the following, we first give the convexity
analysis of f (ρ), then exploit it to design subchannel and
power allocation algorithms.

Lemma 1. The convexity of the short packet communication
rate f (ρ) is analyzed as follows:
• f (ρ) is a concave function under 1) ρ ≥ g−1 (κ) if κ ≥ ϑ

and 2) ρ ≥ g−12 (κ) if κ ≤ ϑ;
• f (ρ) is a convex function under g−1 (κ) ≤ ρ ≤ g−12 (κ)

if κ ≤ ϑ.

where g (ρ) = log2(1+ρ)(1+ρ)√
ρ(ρ+2)

, g2 (ρ) = (1+ρ)[ρ(ρ+2)]
3
2

ln 2(3ρ2+6ρ+1) , ϑ =

g2 (ρ0) = g (ρ0) and ρ0 = 0.6904.

Proof: Refer to Appendix A.
Based on Lemma 1, the short packet communication rate

is a concave function if SINR is sufficiently large, i.e. ρ >
g−12 (κ) and ρ > g−1 (κ), and the achievable rate increases
with the SINR. To maximize the achievable rate under QoS
requirements, we obtain Proposition 1.

Proposition 1. In a massive MTC system with target decoding
error probability ε ≥ 10−5 and blocklength Lm ≥ 392, the
rate f (ρ) is concave and increasing with ρ if ρ > −5dB.

Proof: Based on Lemma 1, we have f ′′ (ρ) < 0 if φ(ρ) <
0, where φ(ρ) = −(1 + ρ) + κ

[ρ(ρ+2)]
3
2

+ 3κ√
ρ(ρ+2)

. We can

obtain φ(ρ) is descreasing in ρ, L and ε. When ρ = −5dB,
L = 392, and ε = 10−5, φ(ρ) = −1.8168×10−4 and f (ρ) >
0, f ′ (ρ) > 0. Hence, the rate f (ρ) is concave and increasing
with the ρ if ρ > −5dB.

IV. REINFORCEMENT LEARNING BASED SUBCHANNEL
ALLOCATION

In the considered massive MTC network scenario, we model
the process of subchannel allocation as a multi-agent finite
Markov decision process. A central controller is employed
to manage the subchannel allocation and each MTC device,
with selfish and rational, acts as a learning agent to submit
their requests to the central controller. Furthermore, the multi-
agent Q-learning scheme for NOMA based massive MTC
networks is proposed to solve the subchannel allocation. The
key components of multi-agent Q-learning framework for
NOMA based massive MTC networks are given in Fig. 2. Each
subchannel allocation solution corresponds to an action taken
by the central controller. In the process, the rewards of MTC
devices depend on the states and actions of both themselves
and central controller. The state, action, transition probability
and reward are defined as following:

State: An MTC device is in state sn if it occupies the nth
sub-channel.

Actions: The action a (s, s′) is defined as a transition from
a certain state s to a target stat s′, which is a request of MTC
device to change its preference from one subchannel to another
subchannel. When the mth MTC device needs to be served, it
will send an action request to the central controller according
to the current state s and {U}. If the number of MTC device
sharing this subchannel is equal to the maximum number Nn,
the action is unavailable and set as 0 (xm,n = 0); otherwise

s

s

m
s

M
s

a

a

m
a

n N

RE

RE

m
RE

M
RE M

a

Fig. 2. Multi-agent Q-learning Frame for NOMA based mMTC Networks

it will be 1 (the subchannel allocation temporarily is set as
xm,n = 1). In summary, we have

a (s, s′) =

{
1 |Un| < Nn,
0 |Un| = Nn.

(11)

Transition Probability: The transition probability πa de-
notes the probability of an MTC device choosing a certain
action a, and resulting in a transition from state s to s′.
However, they do not know other MTC devices’ preferences.
With reinforcement learning, the MTC devices learn what
action to take in the next step according to the action selection
policy.

Reward: The reward RE (s, a) is obtained by the mth MTC
device after its request is accepted by the central controller.
No reward is given if the request is blocked, which means
that the mth MTC device cannot use its requested subchannel.
As defined in (8), the achievable effective EE is related to
the achievable effective rate in the numerator and the total
transmission power in the denominator. Fixing the power
allocation and other MTC devices’ {M − m} subchannel
allocation, the achievable effective EE of the mth MTC device
is concave and increasing with CINR if ρ > −5dB. To reduce
the computation complexity of central controller, the reward
RE (s, a) is defined as the CINR of the requested subchannel.

At each selection time, the MTC device receives a reward
and passes into the successor state s′. The selection of actions
depends on a policy. The goal of MTC device is to find
an optimal policy to decide which subchannel is its optimal
choice. The optimal policy πopt(s) = max

a∈A
Q (a, s), where

Q (a, s) is the action-utility function and represents the ex-
pected discounted reward when starting in state s and selecting
action a.

Since the Q-values provide insights on the future quality of
the actions in the successor state, the update rule of Q-value
function for state-action pair [40] is

Q (a, s) = Q (a, s)

+ ω

(
RE (a, s) + ϕmax

a∈A
Q (a′, s′)−Q (a, s)

)
,

(12)
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where ω represents the learning rate and ϕ is the discount
factor to balance the immediate and future reward.

Furthermore, MTC devices make the decision whether
exploration or exploitation to maximize the rewards at each
decision epoch. We consider the ε-greedy exploration. The
MTC device selects exploration with probability ε to discover
new state and submits a new subchannel request to central
controller. Moreover, it will select exploitation with 1 − ε
to select the same action without submiting any suchannel
requests and use previous subchannel allocation policy. When
the learning time increases, MTC devices will choose smaller
exploration probability to maximize its reward. Thus, the
exploration probability ε(s) can be written as

εtq+1(s) = δεtq (s), (13)

where δ is the ratio of the number of current state to the
maximum learning times.

V. POWER ALLOCATION FOR MAXIMIZING ACHIEVABLE
EFFECTIVE EE

Since the problem in (9) belongs to a fractional problem,
its optimal solution is non-trival. Without loss of generality,
we define the maximum achievable effective EE of P1 as η*,
and

η∗ =

∑N
n=1

∑Mn

m=1 R̄m,n (p∗)

Ptotal (p∗)
,

= max
{pm,n}

∑N
n=1

∑Mn

m=1 R̄m,n
Ptotal

.

(14)

However, due to the channel dispersion in short packet
communications, rm,n is not always concave/convex, meaning
that the optimization problem in (9) is a non-convex opti-
mization problem due to the non-concavity involed in the
objective function. According to the analysis in Appendix A,

log2 (1 + ρ) and κ
√
ρ(ρ+2)

1+ρ are continuous concave functions.
Hence, we exploit the first-order Taylor approximation to
approximate rm,n, which is expressed as

rm,n = Cm,n − κm,nf1
(
p(k)m,n, γm,n

)
− κm,nf2

(
p(l)m,n, γm,n

)(
pm,n − p(l)m,n

)
,

(15)

where f1 (p, γ) =

√
pγ(pγ+2)

1+pγ , f2 (p, γ) = γ

(1+pγ)2
√
pγ(pγ+2)

is the first order partial derivative of f1 (p, γ) in terms of p.
Both f1

(
p
(l)
m,n, γm,n

)
and f2

(
p
(l)
m,n, γm,n

)
are constant value

in each iteration l.
Furthermore, MTC devices sharing the same subchannel

are coupled through intra-interference, rendering rm,n still
being a quasi-concave function with respect to pm,n. The
numerator of objective function in (14) is a summation of
quasi-concave functions, which invalidates the theory of non-
negative summation of concave functions preserving concavity
for quasi-concave functions [41]. By exploiting the successive
convex approximation [42], we first establish a concave lower

bound of Cm,n, which is parameterized by a given power
allocation p,

Cm,n ≥ αm,nlog2 (pm,nγm,n) + βm,n

= αm,n [log2 (pm,n) + log2 (γm,n)] + βm,n,
(16)

where

αm,n =
p̃m,nγ̃m,n

1 + p̃m,nγ̃m,n
,

βm,n = log2(1 + p̃m,nγ̃m,n)− αm,nlog2(p̃m,nγ̃m,n).

the equality in (16) holds when pm,nγm,n = p̃m,nγ̃m,n.
Furthermore, we let qm,n = log2 (pm,n), the lower bound

of Cm,n becomes

C̃m,n = αm,n [qm,n + log2 (γ̃m,n)] + βm,n, (17)

where C̃m,n is a concave function [42], and

γ̃m,n =
|hm,n|2∑m−1

j=1 εj,n2qj,n |hj,n|2 +
∑Mn

i=m+1 2qi,n |hi,n|2 + σ2
.

Applying the equation of both (15) and (17) into (7), the
R̄m,n can be rewritten as

R̄m,n = (1− εm,n) [αm,n (qm,n + log2γ̃m,n) + βm,n]

− (1− εm,n)
[
κm,nf1

(
p(l)m,n, γm,n

)]
− (1− εm,n)κm,nf2

(
p(l)m,n, γm,n

)(
pm,n − p(l)m,n

)
.

(18)

Theorem 1. The maximum achievable effective EE can be
achieved only when η∗ and the optimal resource allocation
policies p∗ satisfy,

max
{pm,n}

∑N

n=1

∑Mn

m=1
R̄m,n − η∗Ptotal

=
∑N

n=1

∑Mn

m=1
R̄m,n (p∗)− η∗Ptotal (p∗)

= 0.

(19)

Proof: Refer to Appendix B.
Based on the Dinckel Algorithm [33], we propose an

iterative power allocation algorithm to maximize the achiev-
able effective EE in (19), which is shown in Algorithm 1.
The proposed power allocation algorithm converges to its
optimum when a fixed convergence error θ3 or the maximum
of iterations is achieved. Furthermore, we convert it to a series
of subproblems as follows

(P2) max
p

∑N

n=1

∑Mn

m=1
R̄m,n − η(t−1)Ptotal

s.t. (9b)− (9c)
∣∣
pm,n=2qm,n ,∀m,n.

(20)

where η(t−1) is a non-negative parameter.

Lemma 2. Problem P2 is a concave function problem, any
of its local maximum is a global maximum and Karush-Kuhn-
Tucker (KKT) conditions are sufficient to maximum.

Proof: According to [42] and the characteristic of the
first-order Taylor approximation, the R̄m,n in (18) can be
proved to be concave in q due to the fact that the log-sum-
exp function convex. It means that the first part of objective
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pm,n =
(1− εm,n + µm,n)αm,n

ln 2
[
κm,n (1− εm,n + µm,n) f2

(
pkm,n, γ

k
m,n

)
+ Iinterm,n + Iresm,n +η/τ

] , (24)

where

Iinterm,n =
∑m−1

j=1
(1− εj,n + µj,n)αj,n

γj,n|hm,n|2

|hj,n|2
,

Iresm,n =
∑Mn

i=m+1
(1− εi,n + µi,n)αi,n%m,n

γi,n|hm,n|2

|hi,n|2
.

function in (18) is concave in q and the feasible set in
(9b). Furthermore, it can be easily proven that the power
consumption of the first part in objective function (18) and the
transmission power set in (9c) are also convex in q. Therefore,
we conclude that the problem P2 is a concave function. This
implies that any local maximum is a global maximum and
KKT conditions are sufficient to the maximum solution.

A. Proposed Solution

Since P2 is a standard concave maximization problem, we
derive an algorithm to solve this concave problem in this
section using gradient methods, which are computationally
efficient and without the need for a brute-force or heuristic
search of any kind. In uplink NOMA, we can first obtain the
solution of the user with the lowest channel gain, which is free
of interferences. Then, we can obtain the solution of the user
with the second lowest channel gain. At last, we can obtain
the solution of the user with the highest channel gain. Once
the q of all MTC devices are obtained, we can transform back
to the transmission power P -space with pm,n = 2qm,n .

We derive an algorithmic solution to P2 via the dual
problem min

µ,λ≥0
Q (µ, λ), where µ and λ are the Lagrange

multipliers of (9b) and (9c). The dual function is given by

Q (µ, λ) = max
q

L (q, µ, λ) , (21)

and the corresponding Lagrangian is

L (q, µ, λ) =
∑N

n=1

∑Mn

m=1
(1− εm,n + µm,n) r̃m,n

− η
(∑N

n=1

∑Mn

m
τ2qm,n +

∑N

n=1

∑Mn

m
pm,n,C

)
−
∑N

n=1

∑Mn

m=1
µm,nRm,min.

(22)

Since the Lagrangian (22) is strictly concave in q, it has
a unique solution. Furthermore, because the dual function
Q (µ, λ) is differentiable everywhere and we can employ the
gradient-descent to solve the outer minimization

µ(s+1)
m =

[
µ(s)
m + ξµ

(
Rm,min −

∑N

n=1
R̄m,n

)]+
. (23)

where ξµ is sufficiently small step sizes, [x]
+= max (0, x) and

s is an iteration number.
The dual function (21) is evaluated by finding the stationary

point of the Lagrangian (22) with multipliers fixed. With KKT
conditions, we obtain the optimal transmission power in (24).

Algorithm 1: EE Maximization with Joint Resources
Allocation
Input: µ, λ, θ1, θ2, θ3, Rmin

m,n, P
max
m,n , h, σ

2, η(0),p(0)

Output: η,p
(1) Reinforcement Learning based Subchannel

Allocation for Maximizing EE
Initialize Q(s, a), tq
repeat

Initialize the state s if exploration then
choose an action a from s randomly

else
choose an action a from s using action
selection policy a = arg max

a∈A
Q (a, s)

end
Take action a, observe RE and s′

Update Q-value according to equation (12)
Update ε(s) with equation (13)
Update x and {Un}n=1,2,...,N

s← s′, tq ← tq + 1
until tq > T ;
(2) Power Allocation for Maximizing EE
repeat

repeat
repeat

update p(l) with equation (24),
p(l) = min

(
Pmax,p

(l)
)

until
∣∣p(l) − p(l−1)

∣∣ ≤ θ1;
update µ(s)

m with equation (23)
until

∣∣∣µ(s)
m − µ(s−1)

m

∣∣∣ ≤ θ2;

update η(t) =
∑N

n=1

∑Mn
m=1 R̃m,n

Ptotal

until
∣∣η(t) − η(t−1)∣∣ ≤ θ3;

B. Complexity and Convergence

The computational complexity of Algorithm 1 is the total
computational complexity of the proposed scheme, which in-
cludes the computational complexity of reinforcement learning
based subchannel allocation and that of power allocation for
maximizing achievable effective EE. Because there are M
MTC devices and N subchannels, the complexity of subchan-
nel allocation isO (MN) Q-learning iteration. The complexity
of sublinear rate, such as f(xk)− f∗ ≤ ξ, is O

(
1
ξ2

)
.

Therefore, the complexity of power allocation algorithm is
O
(
MN
θ21

)
O
(
M
θ22

)
O
(

1
θ23

)
. The computational complexities
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TABLE II
SIMULATION PARAMETERS [43]

Parameter Settings
Transmission bandwidth 10 MHz
Number of subchannels 50
Bandwidth of one subchannel 180 kHz
Distance dependent path loss 128.1+37.6log10(d)

(dB), d (km)
Shadowing standard deviation 8 dB
Fading Rayleigh fading
Noise Density -174 dBm/Hz
Max MTC devices in same subchannel Nn 2
Max transmission power of MTC Pm,max 23 dBm
Static circuit power Pm,C 5 dBm [20]
Power amplifier efficiency τ 0.38 [20]
Blocklength Lm 392 [44]
Decoding error probability ε 10−5 [45]

increase with the number of MTC devices.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the proposed achievable effective
EE performance in short packet communication for uplink
NOMA-based massive MTC networks through Monte Carlo
simulations. We assume that there are Nn users simultaneously
multiplexed on the same subchannel to perform short packet
communication. The system parameters used in simulations
are given in Table II unless otherwise stated, where the
wireless parameters are based on the 3GPP standard in [43].
Considering the characteristics of MTC devices , we set the
static circuit power of MTC devices to 5dBm. As defined in
[44], the packet size follows 20∼200 Pareto distribution in
massive MTC devices scenario, and the higher layer protocol
overhead is 29 bytes. Therefore, we set the blocklength range
is 392∼1832 symbols. Although the target packet error ratio
(PER) of an individual massive MTC transmission is on the
order of 10−1 [45], we consider a lower PER as 10−5, which
can cover most MTC devices , such as mission critical MTC
devices and low-cost MTC devices.

We name the proposed maximizing achievable EE algorithm
applied to uplink NOMA-based massive MTC networks with
short packet communication as maxEE-NOMA-proposed in
Fig. 3, Fig. 4 and Fig. 5. For convenience, we give the
explanation of the compared schemes and other baseline
schemes:

1) To study the performance of short packet communica-
tion in uplink NOMA, we name the proposed maxi-
mizing achievable EE algorithm applied to a conven-
tional Orthogonal Frequency Division Multiple Access
(OFDMA)system as maxEE-OFDMA, where each user
can only be assigned to one subchannel.

2) The benchmark scheme in [31] is termed as maxEE-
OPSNR, which aims for minimizing the power consump-
tion via finding the optimal SINR and blocklength.

3) The proposed schemes in [37] is named as maxEE-PBO,
where the arrived power of MTC devices in the same
subchannel are gradually degraded with a step of % dB.

4) To evaluate the tradeoff between the achievable effective
EE and rate, we compare the algorithm of maximizing

achievable effective rate in NOMA system, which is
termed as maxRate-NOMA.
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Fig. 3. Available effective EE versus number of MTC devices

In Fig. 3, we evaluated the performance of achievable effec-
tive EE for the proposed maxEE-NOMA and other benchmark
algorithms. The total number of MTC devices ranges from
100 to 300 and the upper limit number of MTC devices per
subchannel is Nn = 2. The blocklength is 392 symbols and
the decoding error probability is 10−5. The achievable ef-
fective EE of the maxEE-NOMA-proposed outperforms other
four algorithms. Especially, the proposed maxEE-NOMA in
achievable effective EE is more than 2000 times that of
the benchmark maxRate-NOMA scheme. This is because the
MTC devices strive to maximize the achievable effective rate
with large transmission power in maxRate-NOMA. While the
MTC devices will try their best to reduce the transmission
power to maximize the achievable effective EE in maxEE-
NOMA. Hence, The transmission power in maximizing their
achievable effective rate is larger than that in maximizing
their achievable effective EE. It means that performing proper
power allocation can make the energy of MTC devices more
efficient. Furthermore, the channel gain of MTC devices in
the proposed maxEE-NOMA scheme are better. They can
deliver more bits with lower transmission power and obtain
a good performance in terms of achievable effective EE.
Compared with maxEE-OFDMA, maxEE-PBO [37], maxEE-
OPSNR [31], the proposed maxEE-NOMA are more suitable
for energy-efficient short packet communications in massive
MTC networks.

The achievable effective rate of different schemes are eval-
uated in Fig. 4, where the simulation conditions are the same
as in Fig. 3. Compared with maxRate-NOMA, the algorithms
maximizing achievable effective EE have a rate loss. As seen
in Fig. 3 and Fig. 4, the maxEE-NOMA-proposed obtains
huge gain in achievable effective EE at the cost of 50.15%
loss in the achievable effective rate. It is caused by the
tradeoff between achievable effective EE and rate in short
packet communication. Because the maxEE-OPSNR minimize
the power consumption of MTC devices without considering
the circuit power consumption, the performance of it in
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Fig. 4. Available effective rate versus the number of MTC devices

achievable effective rate and EE are poor. For the energy-
sensitive MTC devices, it is better to adjust their power to
maximize the achievable effective EE, because it will transmit
more information data bits with less Joule consumed.
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Fig. 5. Jain fairness index versus number of MTC devices

Because the fairness is an important metric to measure the
limited subchannel and power allocation, we introduce the

Jain’s fairness index [46] as Fairness index =
(
∑M

m=1 EEm)
2

M
∑M

m=1(EEm)2
.

With the same simulation conditions in Fig. 3 and Fig. 4,
the fairness performance versus the number of MTC devices
is shown in Fig. 5. Since the difference among maxRate-
NOMA, maxEE-OPSNR and maxEE-NOMA-proposed is the
transmission power, their corresponding fairness curves fol-
low the same trend. Affected by the introduced interference
in NOMA, the power allocation is the main factor when
the number of MTC devices increases. Therefore, their Jain
Fairness Index decreases as the number of MTC devices
competing for the limited resources increases. Compared with
the maxEE-OFDMA (Nn = 1) scheme, although the maxEE-
NOMA-proposed (Nn = 2) scheme obtains gains in available

effective EE and rate are 5.93% and 5.95%, the gain in fairness
is 38.42%. Furthermore, constrained by the back-off power
control, the transmission power and introduced interference
are limited, thus the Jain fairness index of maxEE-PBO is
decreasing slowly. From Fig. 5, we obtain that the maxEE-
NOMA-proposed also has a better performance in fairness.
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Fig. 6. System performances with the different maximum number of MTC
devices Nn per subchannel

The Fig. 6 presents the performance of available effective
EE, rate and fairness versus the maximum number of MTC
devices Nn per subchannel. The total number of subchannels
is N = 50. For fixed the total number of MTC devices M ,
there is a critical value of Nn for the system performance. The
available effective EE increases with Nn when Nn×N < M
and is up to the maximum when Nn × N = M . However,
the loss generated by the multi-user interference is over the
gain brought by the subchannel sharing. Compared with the
maximum, the available effective EE has a slight decrease
when Nn × N > M . The performance of the available
effective rate follows a similar trend of that of available
effective EE. While in the performance of fairness, the fairness
index increases with Nn when Nn is smaller than the critical
value. Then the fairness performance may not be improved by
increasing Nn. Furthermore, the critical value increases with
the total number of MTC devices, because the MTC devices
have more chances to select their preference sub-channels.

The performance of available effective EE versus block-
length Lm is evaluated in Fig. 7. The blocklength ranges
from 392∼1832 symbols. The achievable effective rate is a
monotonically increasing function of blocklength [24]. When
the blocklength increases to a certain value, the gain of rate
approximates to zero. Thus, the achievable effective EE in Fig.
7 first increases with the blocklength Lm, then converges to a
certain value. It means that a suitable blocklength will benefit
for the energy efficient short packet transmission. Although
the influence of blocklength on achievable effective EE is
negligible with fixed number of MTC devices, it becomes
more and more important when the number of MTC devices
increases. Therefore, in future we will further study how to
choose a suitable blocklength to maximize the achievable
effective EE of each MTC device.
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Fig. 8. Available effective EE versus the decoding error probability ε

The performance of achievable effective EE versus the
decoding error probability is evaluated in Fig. 8. Due to
the decoding error probability, the SIC technology cannot
be perfectly performed in removing the multiuser co-channel
interference. Meanwhile, the larger the probability of decoding
errors, the more residual co-channel interference will be left
to degrade the performance. Another reason is we consider the
achievable effective EE, large decoding error probability will
also reduce the successful probability of receiving data. The
reliability and the EE are a pair of contradictories to measure
the system’s performance. Thus, the achievable effective EE
decreases dramatically with the decoding error probability ε
increasing.

The achievable effective EE with respect to the maximum
transmission power Pmax of each MTCD is demonstrated in
Fig. 9. The maximum transmission power of MTC devices
varies from 0 dBm to 30 dBm. With a fixed number of
MTC devices, since the increased achievable effective rate
is greater than the increased power, the achievable effec-
tive EE increases with the maximum transmission power if
Pmax ≤ 12 dBm. However, the achievable effective EE has a
slight decrease when Pmax > 12 dBm. This is because large

power will generate more penalty to the achievable effective
rate. Furthermore, multiuser interference in the same channel
will be greatly aggravated due to the increased transmission
power. Therefore, the achieved sum rate of all MTC devices
grows slower than the total transmission power consumption.
For better performance in achievable effective EE, the MTC
devices will choose lower transmission power and Pm,n ≤ 12
dBm.
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Fig. 9. Available effective EE versus the maximum transmission power Pmax
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Fig. 10. Available effective EE versus the static circuit power Pm,C

The performance of achievable effective EE versus the static
circuit power Pm,C of each MTCD is shown in Fig. 10. The
static circuit power of MTC devices varies from 0 dBm to
15 dBm. Fixed the number of MTC devices and maximum
transmission power, the achievable effective EE decreases
with the static circuit power. Due to the hardware limitation
of MTC devices, with the increase of static circuit power,
the influence of the number of MTC devices on achievable
effective EE becomes smaller and smaller, and static circuit
power becomes the main factor affecting SEE. Thus, it is
important to design the MTC devices with high energy and
cost efficiencies or develop more energy-efficient technology
to compensate the energy consumption in the static circuit. For
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example, the energy harvesting technology can be exploited
for MTC devices with long lifetime requirements.

VII. CONCLUSION

Different with HTC, massive MTC has different characteris-
tics in terms of uplink dominant, short packet communications
and energy efficient. This paper maximizes the achievable
effective EE of massive MTC devices in uplink NOMA-based
short packet communications. The decoding error probability
in receiver and the minimum data rate requirements of MTC
devices are taken into consideration. Moreover, we set an
upper bound for the number of MTC devices sharing the
same subchannels to reduce the decoding error probability and
complexity of receiver. The formulated optimization problem
is decoupled into subchannel allocation problem and power
allocation problem. Furthermore, we formulate an efficient
Q-learning algorithm to allocate the subchannels and ap-
proximated the achievable effective rate in uplink NOMA-
based short packet communications to obtain the optimal
transmission power. Simulations validate that the proposed
scheme can significantly improve the achievable effective EE
of MTC devices. In addition, we mainly study the influence
of finite blocklength packets and decoding error probability
in this paper, while the data arrival rate, delay and the
secure transmission are not involved. In future, we will further
investigate the optimal resource allocation in short packet com-
munications for uplink NOMA-based massive MTC networks
by considering the influences of aforementioned factors.

APPENDIX A
PROOF OF LEMMA1

Proof: Based on (10), we have R = f (ρ), then
1) Positive R ≥ 0

f (ρ) = log2 (1 + ρ)− κ
√
ρ (ρ+ 2)

1 + ρ
≥ 0 (25)

Thus, we can obtain

κ ≤ log2 (1 + ρ) (1 + ρ)√
ρ (ρ+ 2)

= g (ρ) (26)

2) Monotonically increasing ∂R
∂ρ ≥ 0

f ′ (ρ) =
1

ln 2 (1 + ρ)
− κ

(1 + ρ)
2
√
ρ (ρ+ 2)

≥ 0 (27)

κ ≤
(1 + ρ)

√
ρ (ρ+ 2)

ln 2
= g1 (ρ) (28)

It is obviously that g1 (ρ) ≥ g (ρ)

3) Concave ∂2R
∂ρ2 ≤ 0

f ′′ (p) = − 1

ln 2(1 + ρ)
2 +

κ

(1 + ρ)
3
[ρ (ρ+ 2)]

3
2

+
3κ

(1 + ρ)
3
√
ρ (ρ+ 2)

=

[
ln 2κ

(
3ρ2 + 6ρ+ 1

)
− (1 + ρ) [ρ (ρ+ 2)]

3
2

]
ln 2(1 + ρ)

3
[ρ (ρ+ 2)]

3
2

(29)

If f ′′ (ρ) ≤ 0, then we have ln 2κ
(
3ρ2 + 6ρ+ 1

)
−

(1 + ρ) [ρ (ρ+ 2)]
3
2 ≤ 0, and

κ ≤ (1 + ρ) [ρ (ρ+ 2)]
3
2

ln 2 (3ρ2 + 6ρ+ 1)
= g2 (p) (30)

g (ρ) , g2 (ρ) are monotonically increasing functions{
g2 (ρ) ≤ g (ρ) 0 ≤ ρ ≤ ρ0
g2 (ρ) > g (ρ) ρ > ρ0

(31)

where ρ0 is the positive solution of equation g2 (ρ0) = g (ρ0).
Furthermore, we define ϑ=g2 (ρ0) = g (ρ0).

• κ > ϑ, i.e., κ > ϑ = g2 (ρ0) = g (ρ0), this mean that
ρ0 ≤ g−12 (κ) ≤ g−1 (κ). To guarantee the non-negative
finite block-length achievable rate, ρ ≥ g−1 (κ). There-
fore, this condition implies that ρ ≥ g−1 (κ) ≥ g−12 (κ),
which satisfies κ ≤ g2 (ρ) that R is concave.

• κ ≤ ϑ, i.e., κ ≤ ϑ = g2 (ρ0) = g (ρ0), this mean
that ρ0 ≥ g−12 (κ) ≥ g−1 (κ). To guarantee the non-
negative finite block-length achievable rate, ρ ≥ g−1 (κ).
Therefore, there are two possible cases: 1) ρ ≥ g−12 (κ) ≥
g−1 (κ), then κ ≤ g2 (ρ) and R is concave. 2) g−12 (κ) ≥
ρ ≥ g−1 (κ), then κ ≥ g2 (ρ) and ∂2R

∂ρ2 ≥ 0, hence R is
convex.

APPENDIX B
PROOF OF THEOREM 1

Proof: According to (19), we have UR (P) =∑N
n=1

∑Mn

m=1 R̄m,n and UTP (p) = Ptotal. Therefore, we have

η*=
UR (p∗)

UTP (p∗)
≥ USC (p)

UTP (p)
(32)

and

UR (p)− η*UTP (p) ≤ 0

UR (p∗)− η*UTP (p∗) = 0
(33)

We can obtain that max
{p∗m,n}

{USC (p) − η∗UTP (p)} = 0.

Thus, the sufficient condition of Theorem 1 has been proved.
Then, the necessary condition should be proved. If {p∗}

is the optimal power allocation policy, we have UR (p∗) −
η*UTP (p∗) = 0. Then, for any feasible {p}, we can obtain

UR (p)− η*UTP (p)

≤ UR (p∗)− η*UTP (p∗) = 0
(34)

Hence,
UR (p∗)

UTP (p∗)
= η*,

UR (p)

UTP (p)
≤ η* (35)

Therefore, the optimal power allocation strategies p∗ of the
transformed objective function is also the optimal ones of the
original objective function.
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