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A B S T R A C T   

A cerebrovascular accident or stroke is the second commonest cause of death in the world. If it is not fatal, it can 
result in paralysis, sensory impairment and significant disability. Rehabilitation plays an important role to help 
survivors relearn lost skills and assist them to regain independence and thus ameliorate their quality of life. With 
the development of technology, researchers have come up with new solutions to assist clinicians in monitoring 
and assessing their patients; as well as making physiotherapy available to all. The objective of this review is to 
assess the recent developments made in the field of post-stroke rehabilitation using wearable devices for data 
collection and machine learning algorithms for the exercises’ evaluation. To do so, PRISMA guidelines for sys-
tematic reviews were followed. Scopus, Lens, PubMed, ScienceDirect and Microsoft academic were electronically 
searched. Peer-reviewed papers using sensors in post-stroke rehabilitation were included, for the period between 
2015 to August 2021. Thirty-three publications that used wearable sensors for patients’ assessment were 
included. Based on that, we have proposed a taxonomy that divided the assessment systems into three categories 
namely activity recognition, movement classification, and clinical assessment emulation. Moreover, The most 
commonly employed sensors as well as the most targeted body–limbs, outcome measures, and study designs are 
reviewed, in addition to the examination of the machine learning approaches starting from the feature engi-
neering to the classification done. Finally, limitations and potential study directions in the field are presented.   

1. Introduction 

Worldwide, there are more than 13.7 million episodes of stroke each 
year, with a quarter of the over 25 population experiencing it in their 
lifetime [1]. A stroke is a brain attack that occurs when blood flow is cut 
off to a part of the brain, subsequently resulting in the death of brain 
cells [2,3]. There are three main types of stroke [4]: Transient Ischemic 
Attack (TIA) [5], ischemic stroke [6], and hemorrhagic stroke [7].  

1. TIA is caused by a temporary interruption to the blood supply to the 
brain and may result in no lasting neurological deficit, it is consid-
ered to be a precursor and warning of a future stroke.  

2. Ischemic stroke which is estimated at 87 per cent of strokes [8], 
occurs when a blood vessel supplying blood to the brain is 
obstructed.  

3. Hemorrhagic stroke happens when a blood vessel ruptures [9]. 

Brain damage caused by stroke - if not deadly - will influence how the 

body functions including instigating temporary or permanent paralysis 
[10,11]. Subsequently, some stroke survivors will make a quick recov-
ery, while others will need help and more time to recuperate, and 
relearn skills they lost [12,13]. 

To speed up the process of recovery, and to regain their indepen-
dence, post-stroke patients ought to engage in physical therapy or 
rehabilitation [14,15]. The conventional approach is for physical ther-
apists to evaluate physical activities of patients through visual obser-
vation, clinical impression, or tests and measures [16–18]. 
Rehabilitation activities might include:  

• Motor skill exercises: to ameliorate the strength of the muscles and 
body coordination [19].  

• Mobility training: in order to relearn functional activities including 
walking which may include the use of, mobility aids, such as walkers, 
wheelchairs and canes to help support the body’s weight [20]. 
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• Constraint-induced rehabilitation or forced-use therapy: to improve 
limb function, where the patients practise using the affected limb 
while the unaffected one is held still [21].  

• Active or passive Range Of Motion (ROM): to help patients regain the 
ROM of the affected body joints [22]. 

However, this approach presents many limitations [23], indeed the 
availability of therapy may be limited and the patients need regular 
consultations in order to achieve their goals [24], moreover the addi-
tional expense of public and private transport from and to hospitals are 
an additional burden to the patients’ finances [25]. Also, transportation 
to hospitals may cause discomfort and pain to post-stroke patients who 
lack the mobility and energy to leave their houses and periodically visit 
their doctors for training sessions [26]. Besides, doctors and therapists 
are overwhelmed with the workload with sessions lasting more than half 
an hour - on average - with a cadence of many sessions per week [27]. 

To tackle these issues, researchers have developed applications to 
assess rehabilitation outcomes using novel technologies namely ”wear-
able sensors” [28], which provide a high level of portability and low 
price giving researchers and therapists a plethora of possibilities and 
solutions [29]. Indeed, wearable sensors allow patients to execute their 
exercises at home relieving them of the drain of transportation. Subse-
quently, several types of sensing devices are used in applications 
extending from monitoring subjects’ physiologic responses like Elec-
tromyography (EMG) [30], Electrocardiogram (ECG) [31], or glucose 
level in the blood [32] to evaluating kinematics of the individuals: gait, 
ROM, balance using Inertial Measurement Units (IMU) [33]. These 
sensors are employed in conjunction with clinical tests and outcome 
measures, such as sit-to-stand [34], Timed Up and Go (TUG) [35] to give 
an objective assessment and monitoring of the patient condition [36]. 

Besides, the breakthrough in Machine Learning (ML) that provide 
outstanding performance tasks that used to require a lot of knowledge 
and time to model [37], as well as the tremendous advances made in 
processing system technologies that made the ML computing possible 
have given researchers more tools and resources to handle and process 
the data collected from the sensors and hence permitting a more accu-
rate and quicker assessment [38]. 

The objective of this paper is to assess the progress made in the 
domain of stroke rehabilitation and to make a status report of the 
different technological developments in smart upper and lower limb 
recovery, with the objective to answer the following questions:  

• What are the different aims of the post-stroke rehabilitation systems?  
• What wearable sensing devices are more used?  
• What are the most common outcome measures and the targeted 

sensors’ placements?  
• What are the different study designs followed by the researcher in 

this field?  
• Which ML algorithms and feature engineering techniques were more 

used?  
• What limitations and challenges are encountered by researchers and 

what are the possible direction to take in this field of study? 

In the following section, we introduce the review method used 
within this study, talk about the procedure for the selection of the papers 
and present the results of the selection. After that, we give a discussion 
about the different included papers by surveying the different wearable 
sensors used, the outcome measures, the types of the assessment systems 
and the different algorithms. Then, we present the different limitations 
and challenges encountered in the post-stroke rehabilitation to finally 
give some tips on potential direction to take to have more effective 
systems. 

2. Review method 

2.1. Literature search strategy 

A literature search was undertaken using the five following data-
bases: Lens, PubMed, Scopus, ScienceDirect Microsoft academic. Works 
dealing with a variation of the following aspects were included: Stroke, 
body part, rehabilitation, sensor, system type, algorithm, and wearable 
systems. Title and abstract keywords and their synonyms were employed 
in several combinations for every database with the help of 2dSearch 
[39] to convert from the different database search-syntaxes. Articles 
published from January 2015 to August 2021 (The period has been 
chosen arbitrarily to evaluate recent trends) were reviewed. This search 
includes English-written peer-reviewed journal papers and conference- 
proceeding articles only. The search query including the used search 
terms is listed in Table 1. 

2.2. Study selection 

The process of selecting articles consisted of following the steps 
introduced by the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines [40]. An electronic computerised- 
search was performed for the last decade (January 2015 - August 
2021). Using reference manager software, duplicates were removed, the 
remaining works were screened by their titles and abstracts. After that, 
the selected papers were fully read and filtered out using the inclusion/ 
exclusion criteria given in the following. When authors published 
numerous studies on the same research topic, only the most recent one 
was retained. 

2.2.1. Inclusion criteria 
aaa  

1. Only web-available journal articles or conference papers were 
considered.  

2. Works published in the period January 2015 and August 2021.  
3. The system is intended for lower/upper limb rehabilitation 

assessment.  
4. Works using wearable sensors only for the data collection.  
5. Works using machine learning algorithms for the assessment. 

2.2.2. Exclusion criteria 
aaa  

1. Reviews, magazine or book chapter papers.  
2. Non-English written articles. 

Table 1 
Our search query.  

Parameter Search query 

Stroke (“stroke ” or “post-stroke ”) And 
Body part (Lower-body OR upper-body OR “upper body” OR Lower- 

extremity OR “lower extremity” OR upper-extremity OR “upper 
extremity” OR Lower-limb OR “lower limb” OR “upper-limb ” OR 
“lower body” OR upper limb) And 

Rehabilitation (“rehabilitation” OR “telerehabilitation”OR “physical 
therapy”OR“telemedicine”OR “neuro-rehabilitation”OR “Motor- 
recovery”) And 

Sensor (“ Wearable sensor” OR “wearable device ”OR “ wearable sensing 
device ”OR “wearable detector ”OR “IMU ”OR “EMG 
”“Accelerometer ”) And 

Type (“ assessment”OR “monitoring ”OR “ quantification ”or 
“evaluation”) And 

Algorithm (“machine learning”OR “intelligent system ”OR “Deep learning 
”OR “classification ”) and 

Undesired 
results 

(Not (“ Heat-stroke” or “heat” or “stroke detection” or “robot” or 
“stroke detection”))  
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3. Stroke detection systems.  
4. Previous works of the same author on the same topic (only most 

recent is considered).  
5. Robotic systems or exoskeleton based systems (considered to be 

obtrusive and already covered in other review papers).  
6. Non-wearable sensors based systems like cameras and radars. 

2.3. Results 

Initially, an overall 530 articles were identified using our search 
query, 303 duplicates were excluded either using a reference manager 
software or manually. The resulting 227 papers were screened based on 
their titles and abstracts, 82 were selected for full-text evaluation based 
on our inclusion/exclusion criteria. A total of 33 papers fitted the con-
ditions and were finally retained. Fig. 1 shows the flow of information 
through the different search phases of this systematic review. 

3. Discussion 

Study characteristics related to the wearable sensor used and its 
placement, the monitored exercises, the participants, the selected fea-
tures and the ML algorithm used and the classification performance for 
the included papers are presented in Table 2. The studies are divided 
into three categories based on the assessment type namely activity 
recognition, movement classification and clinical assessment emulation 
(explained bellow). After that a more in-depth discussion on each topic 
is done separately with a quantitative comparison done at the end of this 
section. 

3.1. Assessment systems and outcome measures 

In the post-stroke rehabilitation, and based on the reviewed papers 
we have introduced a new taxonomy gleaned from which we classified 
the assessments systems in post-stroke rehabilitation. Subsequently, we 
distinguished three assessment approaches depending on the system’s 
aim: activity recognition, movement classification and clinical assess-
ment emulation. 

3.1.1. Activity recognition 
Are systems which aim to identify specific movements of rehabili-

tation of the patients and differentiate between them for record and 
monitoring purposes [41–51], in this category researchers monitored 
Activities of Daily Living (ADL) [75] and they most frequently covered 
detecting general activities like standing, sitting, lying, standing up, 
sitting down [42,44,47,48,50], performing kitchen tasks like making a 
drink, chopping food [42] and other routine activities like making the 
bed, reading and lacing shoes [48], folding, sweeping and brushing teeth 
[46,48,49]. Other researchers covered activities for specific body parts 
like recognising different hand gestures [41], arm gestures [43] and 
some exercises to strengthen shoulders, and arms [48]. 

3.1.2. Movement classification 
The system objective is to classify well and poorly executed tasks 

[52–61,63,64], to do so many approaches were followed. Some re-
searchers implemented systems to distinguish between normal and 
abnormal gaits for lower-limb rehabilitation [56,59,60], in which par-
ticipants executed 10 m walks. Other researchers assessed the execution 
of ADLs [54,57] like different kitchen related activities or routine 
bedroom tasks. Moreover, Lee et.al [52] utilised exercises that belong to 
popular batteries of tests like Fugi Mayer assessment (FMA) [76,77], and 

Fig. 1. Review flow chart based on the PRISMA guidelines.  
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Table 2 
Summary of the reviewed papers.  

Paper Sensor/limb Exercise Participants Feature ML method Best performance   

Activity recognition   
[41] EMG/ Forearm 9 different hand gestures 3 AB1 Time domain features 

corresponding to variance, 
waveform length, root mean 
square, zero-crossing and auto- 
regressive coefficients. PCA was 
then applied to the resulting 56 
features vector and the three first 
components that contributed with 
95.86% of the overall information 
were utilised. 

MLP and SVM Accuracy of 96.25%   

[42] IMU, level sensor/ 
Hand 

ADLs (Walking, standing, 
sitting, up/down, drinking) 

15 AB Discrete cosine transform on the 
segmented time series data signals 
to extract frequency domain 
features and regroup the energy in 
the low frequency coefficients. 

SVM, MLP Accuracy of more 
than 92% for SVM   

[43] Accelerometer/ 
Arm 

ADLs (20 arm movements) 10 SP 2 The data was segmented to time 
windows and down sampled and 
the normalised magnitude of the 
acceleration was used. The 
different segments are then labeled 
according to the activity. Two 
different configurations were used 
for the participants: naturalistic 
data where patients are in their 
houses and 97.89% on semi- 
naturalistic data where patients 
are in labs 

CNN Accuracies of 88.87% 
on the naturalistic 
data and 97.89% on 
the semi-naturalistic 
data respectively.   

[44] IMU/ Right-front 
hip 

ADLs (41 mobility tasks) 15 AB, 17 El 
3, 12 SP 

Extracted a number of 76 time 
series features, relief-F, 
correlation-based feature selection 
and fast correlation based filter 
were then used to select the most 
relevant features. 

Bayes, SVM and RT Variant for different 
tasks   

[45] IMU/ Hand and hips Bilateral shoulder flexion with 
both hands interlocked; wall 
push exercise; active scapular 
exercise; and towel slide 
exercise. 

23 SP Raw data from gyroscope, 
accelerometer and the 
combination of both to Recognise 
and record the type and frequency 
of the rehabilitation exercises. 

CNN 99.9%   

[46] IMU/ Wrist ADLs (Doing the laundry, 
performing kitchen tasks, 
shopping related tasks, and 
making the bed.) 

10 AB, 10 SP Extracted overall and axial means, 
overall and axial variances, 
entropy, minima, and maxima. The 
feature vectors were then 
compressed using PCA to reduce 
the high from 11 to 3 columns. 

K-Means, KNN, RF, 
SVM, RBF SVM 

RF accuracy 83%   

[47] IMU, barometer/ 
Waist 

ADLs (Sitting, Lying, Standing, 
Stairs Up, Stairs Down, and 
Walking) 

30SP Features included statistical 
measures of the sensor signal, its 
derivatives, and the frequency 
domain (mean, range,skewness… 
etc) 

RF Trained on stroke 
activity achieved 75%   

[48] IMU, barometer/ 
Sternum 

ADLs (sitting, standing, 
walking, lying,sit-to-stand, 
stand-to-sit,walking up and 
down the stairs, taking the 
elevator, washing hands, 
eating, pouring and drinking 
water, sleeping, shoe lacing, 
reading the newspaper..etc) 

12SP Different algorithms developed 
from previous researches by 
detecting transitional phases for 
different ADLs 

Hierarchical Fuzzy 
Inference System 

70.3%   

[49] IMU/ Wrist, arm ADLs (Chopping food, 
vacuuming, sweeping, 
spreading jam or butter, folding 
laundry, eating, brushing 
teeth…etc) 

11SP Time series features (mean, 
standard deviation, 
autocorrelation, and slope) and 
frequency domain features (not 
mentioned) 

DT, RF, SVM, and 
eXtreme Gradient 
Boosting 
(XGBoost) 

82%   

[50] IMU/ Waist ADLs (Walking, walking up, 
walking down, sit to stand, 
stand to sit, laying) 

30AB Segmented data were encoded into 
images using GMAF technique 

Different CNN 
models 

VGG16 98.53%   

[51] IMU, sEMG/ Wrist, 
arms forearms, legs, 
ankles 

ADLs (Walking, tooth brush, 
gace washing, drinking) 

9SP, 14AB Noise was filtered through 
Butterworth filter and band-pass, 
then data were normalised, then 
28 different time-series features 
were extracted RMS, meqn, 
variance…etc 

SVM (linear and 
rbf), Adaboost, 
KNN, RF, DT, KNN 

SVM-rbf 82.47%.    

Movement classification   

(continued on next page) 
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Table 2 (continued ) 

Paper Sensor/limb Exercise Participants Feature ML method Best performance   

[52] IMU/ Wrist Motor tasks associated with the 
FMA 

20 SP, 10 El Applied the minimal-redundancy 
maximal-relevance algorithm on 
the minimum, maximum, range, 
mean, standard deviation, RMS 
values, and the number of zero 
crossings of the time-series data. 

LR, RF 87% and 84.3% 
successively   

[53] Accelerometer/ 
Finger and wrist 

Estimate amount of hand use 18 AB Extracted multiple time-series 
features (mean, inter-quartile 
range, minimum and maximum, 
root mean square of the 
acceleration time-series, standard 
deviation, ratio of the energy at the 
dominant frequency to the entire 
signal, energy of the time-series, 
skewness, kurtosis, and signal 
entropy) then a correlation based 
feature selection was utilised to 
identify the most relevant features. 

SVR 0.11 RMSE   

[54] IMU/ Arms and 
chest 

ADLs (washing the face, 
applying deodorant, combing 
the hair, donning and doing 
glasses, preparing and eating a 
slice of bread, …etc) 

48 SP Raw data to measure functional 
primitive 

CNN 70 %   

[55] IMU and pressure 
sensors/ Legs and 
feet 

extension and abduction of the 
legs, sit-to-stand, gait and 
Bipodaal Bridge 

NA Extracted 64 features consisting of 
mean and the variance for the 
different sensing nodes 

TB, RT, hyper- 
plane, MLP 

MLP reported the best 
F-measure with 
97.9%   

[56] IMU/ Shanks Gait 15 SP Used a total of 18 features 
consisting of Hidden Markov 
Model (Log-likelihood, EL model, 
Log-likelihood PS model, Log- 
likelihood, HD model, Difference 
between log-likelihoods given EL 
and PS models, Difference between 
log-likelihoods given EL and HD 
models, Difference between log- 
likelihoods given PS and HD 
models) time (Mean value 
Evaluated, Standard deviation, 
Variance, Maximum, Minimum, 
Range) and frequency domain 
features (Power at first dominant 
frequency (P1), Power at second 
dominant frequency, First 
dominant frequency, Second 
dominant frequency, Total power 
(PT), P1/PT). 

SVM LOSO cross validation 
and an accuracy of 
90.5%   

[57] IMU/ index and 
finger 

9 different ADLs: resting, 
eating, pouring water, 
drinking, brushing,folding 
towel, grasp bottle, grasp 
brush, and grasp towel. 

10AB, 12SP A low-pass fourth-order 
Butterworth filter was applied to 
all the signals to remove the tremor 
noise. A high pass fourth-order 
Butterworth filter was 
implemented for frequency 
analysis to eliminate the 
continuous component of the 
signal. then data was normalised 
then different features were 
extracted: skewness, average, 
RMS, jerk…etc 

SVM, ANN ANN 99.9% for a 
dataset containing 
both SP and AB   

[58] IMU/ Wrist, arm, 
sternum 

Uni-manual tasks, bi-manual 
asymmetric tasks, bi-manual 
symmetric tasks all performed 
with dominant and non- 
dominant hand 

20SP, 20AB Classifier Attribute Evaluator, 
ReliefF, Info Gain Attribute 
Evaluator and Gain Ratio Attribute 
were used to select the most 
relevant features then Root Mean 
Square, Mean, Signal Magnitude 
Area, Signal Vector Magnitude, 
Energy, Entropy, FFTPeak, and 
Standard Deviation were then 
selected. 

Bayes,SMO, IBk, 
KStar, Multiclass 
Classifier, Bagging, 
DT, J48 and RF 

RF 85%   

[59] IMU/ Lower back, 
both sides of the 
thigh, shank, foot 

10 m gait 11SP, 9NDP4 Data were filtered with a fourth- 
order bi-directional Butterworth 
band-pass filter, then minimal 
peak distance and minimal peak 
height were applied to the 
resulting data. after that different 
gaits parameters were computed. 

RF, Adaboost, DT, 
Gaussian naive 
bayes, MLP 

The shank placement 
DT 89.13%   

(continued on next page) 
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Table 2 (continued ) 

Paper Sensor/limb Exercise Participants Feature ML method Best performance   

[60] IMU/ shank 10 m gait 8SP,7AB Data were normalised and labeled 
different gait phases 

MLP 99.35%   

[61] IMU, EMG, 
temperature/ Arms 
and chest 

Flexor synergy, shoulder 
flexion hand to lumbar 
pronation and supination 

NA Employed Empirical mode 
decomposition [62] to partition 
the times series data into the three 
first intrinsic mode functions. The 
mean values and standard 
deviations of these components are 
used in conjunction with mean 
values and standard deviations, 
entropy and energy of the motion 
signals as features for large joint 
actions. 

AdaBoost Accuracy of 99.25%.   

[63] IMU,/ Arms, 
forearms, thighs 

ADLs (e.g. walking, walking 
up/downstairs, arm and leg 
flexion/extension, arm 
rotation, writing, using phone, 
drinking) 

NA walking-related gait parameters 
(stride duration, cadence and 
stride count) 

unspecified 
regression models    

[64] IMU,/ Arm, 
forearms, hand 

Flexion/extension of the elbow, 
supination/pronation of the 
forearm, extension/flexion of 
the wrist 

13AB, 13SP Linear interpolation was done to 
synchronise data, then data was 
normalised 

Different KNN 
models, Different 
SVM models, Fine 
tree 

Fine KNN 98.5%    

Clinical assessment emulation   

[65] Accelerometer/ 
Wrist and the 
sternum 

tasks associated with WFT 34 AB Segmented time-series data RF correlation with 
therapists scores 
R2=0.97    

[66] IMU/ Forearm ADLs (Doing the laundry, 
Performing kitchen activities, 
Shopping, Making the bed.) 

10 AB, 10 SP Extracted entropy, mean, and 
variance-based measures 

Tree based Accuracy of 88%   

[67] IMU/ Arms and 
chest 

A battery of activities from 
WMFT 

16 SP Derived the time-series 
magnitudes of displacement, 
velocity, acceleration, and jerk to 
extract multiple time series 
features i.e.. minimum, maximum, 
and mean values, root mean- 
square value, ratio of the 
magnitude of the dominant 
frequency and total signal energy, 
jerk, skewness, signal entropy, 
kurtosis, correlation coefficients 
computed for different axes, and 
duration of the data segments. 

RF 0.38 RMSE   

[68] Accelerometer, 
flex/ Shoulder, 
elbow, wrist, finger 

Seven different exercises based 
on the short FMA 

24SP Raw sensor data was denoised with 
5 point smooth method, and AMP, 
MEAN, RMS, JERK, and ApEn were 
extracted and then RRelief 
algorithm was applied to find the 
optimal features for each exercise. 

ELM,SVM SVM 92.2%   

[69] IMU/ Sternum, 
arms, wrist, elbow 

Synergy, out of synergy, 
combination of synergies, 
wrist/hand function and fine 
motor coordination 

8SP RMS, mean, entropy, dominant 
frequency. 

DT, Bagging Forest Bagging Forest 
reported lowest RMSE   

[70] Accelerometer/ 
arms, shanks 

ADLs (Exercises from the 
Oxford Grading Motor Scale) 

4SP Gravity component was removed 
from the norm of the acceleration 
data then the mean, max, mean, 
normalized average rectified jerk, 
powers and frequencies of FFT 

SVM 82%   

[71] Accelerometer/ 
Wrist 

ADLs (Exercises from the 
Oxford Grading Motor Scale) 

59SP signal vector magnitude is 
computed by substracting the 
gravity effect from the 
acceleration, then DWT to extract 
wavelet coefficients, normalised 
Sum of Absolute value of DWT 
coefficients is used as features 

LMGP, lSVM, rbf 
SVM, mlp 

LMGP reached RMSE 
3.12 for Chronic) and 
5.75 for acute   

[72] IMU/ Wrist grabbing a cube and moving it 
for an ARAT assesment 

34SP Raw data from IMUs Matching pursuit Accuracy of 95 
percent   

[73] IMU/ Wrist,sternum continuous, random, voluntary 
upper-limb movements 
spanning the entire range of 
active motion 

23SP Zero-Crossing Decomposition 
applied on gravity free 
acceleration, resulting data is 
normalised to engineer different 
features 

unspecified 
regression model 

R2 value of 0.985    

[74] IMU/ Wrist, and feet Stretch and hold their arms for 
20 s, and lift and stretch their 
left or right leg 

15SP Features related to the degree of 
drift of the limbs 

Ensemble 
algorithm and SVM 

Accuracy of 83.3% for 
SVM   

1AB: Able-Bodied; 2SP: Stroke patients; 3El: Elderly; 4NDP: Neurologically disordered participants 
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extension or flexion of elbow and flexibility movements of shoulders 
[55,61]. 

Movement classification englobes as well systems that quantify limb 
use in order to classify the tasks, in [58], Miller et.al distinguished be-
tween uni-manual and bi-manual tasks using both dominant and non- 
dominant activities while Liu et.al [53] estimated the amount of the 
affected hand use compared to the unaffected hand. In [63] Derungs 
extracted digital biomarkers consisting of convergence points physical 
activity and functional ROM to investigate the affected and less-affected 
body side. Whereas, Balestra et.al [64], identified different executed 
tasks in order to count the number of repetitions and determine a cor-
relation with the degree of severity of stroke. 

3.1.3. Clinical assessment emulation 
In this category, systems that aim to quantify the level of correctness 

in executing the prescribed exercises are identified. Researchers ach-
ieved this by using popular post-stroke assessment scoring systems 
[65–74]: 

FMA variants are the most commonly used batteries of tests from the 
included works [68,69,73], it comprises five domains namely motor 
functioning, balance, sensation, joint functioning and joint pain in both 
upper and lower extremities rehabilitation. Scale items are scored on the 
basis of ability to complete the item using a 3-point ordinal scale where a 
score of 0 means the incapacity to perform, 1 a partial performance and 
2 a full performance of the task. The total possible score is 226 divided 
into 100 points for motor functioning, 14 for balance, 24 for sensation 
while joint functioning joint pain have 44 points each. Other variants of 
this assessment were used such as the short FMA used in developed in 
[77] which includes less exercises than the original. 

Wolf Motor Function Test (WMFT) [78,79] is an upper-limb assess-
ment system through timed and functional tasks, the most popular form 
consists of 17 items in which 6 involve timed functional tasks, 2 are 
measures of strength, while the remaining consist of analysing the 
quality of movement quality when performing various activities. It uses 
a scaling system that ranges from 0 that signifies Does (i.e no attempt 
with the limb being tested) to 5 that signifies the attempt was made with 
a normal-appearing movement. Two included studies used the WMFT 
[65,67,73]. 

Action Research Arm Test (ARAT) [80] is a 19-item observational 
measures for upper-limb post-stroke assessment. Items comprising the 
ARAT are categorised into four subscales namely grasp, grip, pinch and 
gross movement. Task performance is rated on a 4-point scale, ranging 
from 0 (no movement) to 3 (movement performed normally). Two of the 
included works used the ARAT system [66,72] 

Oxford Grading Motor-Scale (OGM) [81] used in a single study 
included [70], it evaluates the muscle strength of the rehabilitated pa-
tient and can help diagnose problems in which weakness plays a role. It 
is not proper to stroke rehabilitation and targets both upper and lower 
extremities. According to the OGM scale, muscle strength is graded from 
0 to 5 where 0 implies no muscle contraction and 5 equals movement 
through a full range against full resistance. Performing OGM requires 
knowledge of muscle anatomy so that the joints can be positioned 
correctly as well as the tendon and muscle palpated in order to make a 
judgement on how much muscle action can be made on the patient. 

Chedoke Arm and Hand Activity Inventory (CAHAI) [82], it is an 
upper-limb post-stroke clinical assessment method that evaluates func-
tional ability. The original CAHAI involved 13 functional items that and 
incorporates a range of movements and grasps that reflect stages of 
motor recovery following stroke. The clinician will score based on pa-
tient’s performance at a scale from 1 that implies a weak performance to 
7 that shows complete independence. From the included works Chen et. 
al used the CAHAI in [71]. 

National Institutes of Health Stroke Scale (NIHSS) is a 15-item 
neurologic scale used to assess the effect of acute cerebral infarction 
on different levels of consciousness, language, neglect, visual field-loss, 
extraocular movement, motor strength, ataxia, dysarthria, and sensory 

loss. Scores range from 0 to 42, with higher scores indicating greater 
severity. A single included paper [64] used this assessment system. Fig. 2 
shows our study taxonomy and the different categories. 

3.2. Wearable sensors 

Over the past few years, effort has been put into developing unob-
trusive, effective and objective motion-modeling systems, taking 
advantage of the progress made in the sensor technology which became 
more compact and more power-efficient [83]. All the included works 
utilised IMUs for the data acquisition 
[42–50,52–61,65–70,63,71–74,64]. IMUs are devices that combine 
linear acceleration from accelerometer and the angular turning rates 
from gyroscopes [84]. IMUs were chosen for their portability and for 
their low-costs, but also because they provide accurate modeling of the 
participant motion. Some studies used individual accelerometers 
[43,45,53,54,65,67,68,70,71] or gyroscopes [45] while the rest used 
their combination to give more detailed information. Moreover, IMUs 
were coupled with different sensors to acquire more information: a 
barometric pressure sensor to detect changes in altitude [47,48], insole 
pressure sensors in [55] to measure the force exercised by the feet while 
performing the activities, flex sensors to measure the amount of 
deflection or bending while griping objects [68], liquid level detectors in 
a cup [42] to measure drinking activity and EMG sensors [61,51] to 
measure the activity of the muscles that can translate as strength. Only a 
single study did not use IMUs and employed EMG sensors only [41]. 

3.3. Sensors’ placements 

Placement of the sensing technology on the body has shown a het-
erogeneous distribution linked to the different nature of the employed 
technology and to the purpose for which the monitoring system was 
designed. Systems that focused on upper-limb rehabilitation used more 
frequently the wrists [46,49,52,53,58,65,68,69,71–74] in twelve 
studies, arms [43,49,54,58,61,67,69,70,63,64] in ten studies, four 
studies used forearm [41,66,63,64], three studies used fingers 
[53,57,68], and hands [42,45,64], and a single study used elbow and 
shoulder [68]. These placements were targeted to monitor activities that 
involved using hands. By contrast, systems that focused on lower limbs 
for activities that involved walking utilised more frequently the chest in 
eight studies [48,54,58,61,65,67,69,73] the shank in four works 
[56,59,60,70], thighs [55,59,63], and feet [55,59,74] in three studies, 
while two works targeted either the hip [44,45], or the waist [47,50], 
and finally a single study used the lower back [59]. Fig. 3 shows the 
targeted placements reviewed in the different studies. 

3.4. Study designs and populations 

In the included works, different study settings were explored. More 
commonly it was in controlled environments [85] like labs and hospitals 
were patients are under direct supervision of the researchers and ther-
apists. Other studies used semi-naturalistic environments [86] where a 
home-environment are replicated in the labs e.g participants performing 
their exercises in a kitchen environment under supervision of re-
searchers. Other studies monitored participants in an outpatient home 
environment [63]. For the study population, many works recruited 
stroke survivors with different degrees of severity after getting ethical 
approvals [43–49,52,54,56–60,66–70,63,71–74,64]. Some of them un-
dertook a cohort study by combining them with Able Bodied (AB) par-
ticipants [43–46,52,57,58,60,67,64] elderly [52] and neurologically 
disordered patients [59]. Other works only used AB [41,42,50], while 
some studies did not specify or did not use participants [61,53]. For the 
number of participants it varied from 4 SP [70] to 59 SP [71]. 
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3.5. Pre-processing and feature engineering 

Feature engineering is the process of creating features from raw data 
to improve the accuracy of a system [87]. Some sophisticated ML al-
gorithms i.e deep learning don’t require features and can learn to find 

similarities and differences in raw data automatically [88].Prior to 
selecting features, pre-processing is undertaken on the data in order to 
make it ready for the feature study. 

According to the different included papers, for filtering unwanted 
data, designed modules have usually applied threshold-based methods 

Fig. 2. Proposed taxonomy for post-stroke systems’ classification.  

Fig. 3. Sensors’ placements in the included studies.  
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to filter sensor data [43,44] or used different statistical tools to inter-
polate the missing data points [64]. Moreover to filter frequency based 
noise, in frequency domain, other methods are applied such as power 
spectral density (PSD) [70,56] Fast Fourier Transforms (FFT) [70,58], as 
well as designing different filtering to remove the fluctuations in sensor 
signals. For example, in [44,57] noise and unwanted information is 
filtered out by a low-pass fourth-order Butterworth filter, after that a 
high pass fourth-order Butterworth filter was implemented for fre-
quency analysis to eliminate the continuous component of the signal. In 
[59] Hsu et.al filtered data with a fourth-order bi-directional Butter-
worth band-pass filter. 

Moreover When dealing with accelerometer data, gravity is usually 
removed from the acceleration as done in [71,73,64] by computing the 
magnitude of acceleration a(t) and subtracting 1. a(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2

x(t) + a2
y(t) + a2

z (t)
√

, in which ax, ay, az is the acceleration along the x, 

y, z. The gravity effect can be removed by VM = |a − 1|. Compared with 
raw acceleration triaxial data, VM is insensitive to the gravity effect. In 
addition, using multiple data sources and thus different sampling rates 
requires data to be synchronised, in order to have the same time basis, 
this has been done by first identifying segments from timestamps and 
then using linear interpolation as in [64] or padding with zero [61] on 
the lower frequency data source. 

Since the data collected from wearable sensors is time-series, it 
should be structured in order to be studied. Time series segmentation 
can be considered either as a pre-processing step for variety of data 
mining tasks or as trend analysis techniques. It is also considered as a 
discretisation problem [89]. A fixed length window is used to segment a 
time series into sub-sequences and the time series is then represented by 
the primitive shape patterns that are formed [90]. Segmentation was 
used by all the papers included herein with time windows varying from 
2 s to 10 s depending on the monitored activities. For deep learning 
algorithms data after these steps is ready to be fed [45,54,60,65]. 

By contrast, conventional ML algorithms require further data pro-
cessing and features that most describe the activities are selected and 
extracted. In most of the included papers, feature engineering is hand- 
crafted based on the authors’ knowledge of the human movements. 
Time-domain based features [91] were the most commonly used 
approach, numerous works extracted Root Mean Square (RMS), mean of 
time windows, variances, correlatiion between different axes and fea-
tures, minima and maxima, skewness and other related features 
[41,44,46,47,49,52,53,55,57,58,61,66–70,73,74]. Some studies 
coupled it with frequency domain features by converting the data seg-
ments using Discrete Cosine Transform (DCT) [42] and extract energy 
and frequency related features or using Fourier transform [58,70] and 
extract frequency components. In [71],Lee et.all used the Discrete 
Wavelet Transform (DWT) representation to extract wavelet coefficients 
and then computed their normalised sSum of absolute value. Whereas, 
in [73] zero-crossing decomposition is applied on the gravity free ac-
celeration data, to then extract relevant features. 

On an other hand, Boukhennoufa et.al in [50] encoded time series 
windows into Gramian Angular Field [92] images and fed them into 
some popular computer vision algorithms. Studies involving post-stroke 
rehabilitation require usually many sensors with multiple axes, this 
could yield to huge numbers of features and cause systems to over-fit. To 
remedy to this, dimensional reduction technique were used. Dimen-
sionality reduction refers to techniques for reducing the number of input 
variables in training data by projecting the data to a lower dimensional 
subspace which captures the essence of the data. Multiple techniques 
were used in the studies included here. Yang et.al, and Tran et.al [41,46] 
used a technique called Principal Component Analysis (PCA) that 
transforms data into fewer dimensions. keeping the three first compo-
nents only allowed Yang et.al to keep 95.86% of the overall information 
stored in 56 feature vectors while it allowed Tran to keep 99% of the 
information, reducing it from the 11 feature vectors. Other studies 
[44,58] employed Relief-F that takes a filter-method approach to feature 

selection to keep only the most relevant features. 

3.6. Machine learning 

ML is an application of AI that provides systems with the ability to 
automatically learn and improve from experience without being 
explicitly programmed to do so using the features selected before. 
Depending on weather to incorporate the outcomes, ML algorithms can 
be divided into two major categories: unsupervised learning and su-
pervised learning. Unsupervised learning is well known for feature 
extraction, while supervised learning is suitable for predictive modelling 
through building some relationships between the patient traits and the 
outcome of interest [93]. All the papers included used supervised ML 
algorithms. 

Support Vector Machines (SVM) were the most used classifier 
[94,42,44,46,49,53,56,57,68,70,74], it was used mainly for classifica-
tion problems in activity recognition but also in regression problems for 
clinical assessments where participants are given a clinical score 
[65–71,73,74]. The reasons for choosing SVM variants is their good- 
generalisation ability for sequential data structures [95] and datasets 
that are not too large. This has been the case in most of the reviewed 
paper as recruiting post-stroke patients is not an easy task. Moreover, 
SVM has different kernel types allowing to deal both with linear and 
non-linear problems. 

Random Forrest (RF) and more specifically Random Trees (DT) were 
also massively employed [44,46,47,49,55,60,61,65,67,69]. DT is one of 
the commonest oldest ML algorithm, it models it decision logics to 
outcomes in a tree-like architecture. Its easiness to interpret as well as its 
rapidity to learn made it popular to use in the tele-rehabilitation domain 
and especially in multi-class activity recognition problems. The reason 
for that is when going through the tree for a classification sample, the 
outcomes of all tests at each node will provide relevant information to 
infer about its class. RF were less used than the former [46,47,52,58], 
the reason is it is an ensemble of RT making it more prone to over-fitting. 
It is only used when the available dataset is relatively large. 

Artificial Neural networks (ANNs) were also a common choice 
among researchers for post-stroke rehabilitation assessment. ANNs are a 
set of ML algorithms that are inspired by the neurons of the brain. ANN 
may be represented as an interconnection of layers of nodes in which the 
output of one node is an input to another node for subsequent processing 
layer. Multilayer perceptron (MLP) was the commonest among them 
[94,42,55,57,59,60]. MLP does not require feature engineering thus 
necessitate less domain expertise, although a drawback is the fact that 
they are considered to be black-box having sometimes unpredictable 
behaviour. MLP achieved very good results for activity recognition and 
movement classification. Another ANN architecture that was employed 
is Convolutional Neural Network (CNN) Architectures [43,45,50,54]. 
They are designed to automatically and adaptively learn spatial hier-
archies of features through backpropagation by using multiple building 
blocks, such as convolution layers, pooling layers, and fully connected 
layers [96]. CNNs achieved outstanding accuracies in the computer 
vision field but this did not translate to time-series data structure which 
is the structure of the data from the sensors. Boukhennoufa et.al [50], 
encoded the sequential data into images and then employed a popular 
CNN architecture which is the VGG-16 to then achieve a very high 
accuracy. 

k-Nearest Neighbour (kNN) is another algorithm that was used in 
three included works [64,51,46]. The kNN classifier is based on distance 
metric and was widely used in real-time applications as it is free from the 
underlying assumptions about the distribution of the dataset. Moreover, 
The setting of different values for ’K’ can result in different classification 
results for the same problem which makes it an additional hyper- 
parameter to find the most performing model, especially in the activ-
ity recognition. Fig. 4 shows an example a wearable sensor based 
rehabilitation assessment steps. 

As per the metric to assess the system, almost all the papers used the 
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accuracy. It is the proportion of the total number of predictions that 
were correct. The accuracy was computed using the formula: 

Accuracy = (TP+ TN)/(TP+ TN +FP+FN) ∗ 100  

where TP is true positive, TN is true negative, FP is false positive, and FN 
is false negative.Two works [65,73] used the coefficient of determina-
tion, denoted R2 which is a statistic that will give some information 
about the goodness of fit of a model in regression models. It was used for 
the clinical assessment algorithms to compare the predicted score with 
the score from the clinician. 

R2 = 1 − RSS
/

TSS  

where RSS is the sum of squares of residuals and TSS is the total sum of 
squares 

Moreover, another metric used in regression problems and especially 
in the clinical emulation assessment [53,67,69,71] is the Root Mean 
Square Error(RMSE) it is defined to be the standard deviation of the 
residuals (prediction errors): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
Σn

i=1(di − fi)
2

√

Where diis the predicted score value and fi is the actual one given by the 
therapist. 

3.7. Quantitative analysis 

In this subsection, a quantitative analysis related to the specifics of 
the included papers is presented, statistics about number of citations, 
system aim, year and 1st author’s country of the different works are 
given. Fig. 5 shows some statistics charts. 

The system aim is almost homogeneously divided between the three 
categories with eleven of the included works treating activity recogni-
tion [41–51], twelve dealing with movement classification 
[52–61,63,64] and ten with clinical assessment emulation. [65–74]. 
This demonstrates that the different categories are of equal interests to 
researchers. 

For the publication year a growing interest has been noticed starting 
from 2020 in the included sample of works. Two studies were published 
in 2015 [44,48], three in 2016 [56,68,69], four in 2017 [47,61,65,72], 
six in 2018 [41,42,46,52,59,66], five in 2019 [43,53,55,57,70] and then 
the maximum eight in 2020 [45,54,58,63,67,71,73,74] and finally five 
up to now in 2021 (up to August) [49–51,60,64]. Subsequently, publi-
cations made in a period of two years and a half (2019, 2020,2021) 
which consists of a third of the overall time range (seven years and a 
half) accounted for 55% of the total publications. The growing interest 
maybe due to the recent Covid-19 pandemic. 

As per the academic citations of the included papers, it ranged from 
no citations at all [50,58,60,64] to 126 citations [56] (up to August 
2021). The papers with no citations were tolerated only in the most 
recent works written in 2021, and that the authors felt it presented an 
interesting approach worth reviewing. In the same context, statistics of 
the 1st author’s publication are also given. The US, is the country with 
most publications with thirteen papers [46,47,49,52,54,58, 
64–67,69,70,73] followed by china with four papers [41,51,53,68], 
three papers for South Korea [45,61,74] and Italy [55–57], two papers 
for the UK [50,71] and Thailand [59,60] and finally a single study for 
France [42], India [43], Canada [44], Switzerland [48], Germany [63], 
Singapore [72]. 

Additionally, as for the targeted limbs from the included papers, 
upper extremity rehabilitation is the dominant practice with fifteen 
papers [41,43,53,54,57,58,61,64,65,67–69,71–73]. This is justified by 

Fig. 4. wearable sensor based rehabilitation assessment steps.  
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the fact that most of the clinical assessment batteries of test that the 
researchers tried to emulate are for the upper extremities, as well as the 
fact that most of the ADLs involve using hands. Both-limb rehabilitation 
comes second with twelve papers [42,45,46,48–52,63,66,70,74] and 
finally 6 papers for lower-limbs only [44,47,55,56,59,60]. 

4. Limitations challenges and potential study directions 

In this section we will present in subsection first 4.1 the objective and 
the limitation for each of the included studies, based on that we present 
a list of challenges that the researchers in this field most commonly 
found in subSection 4.1.1 and at this end we will give some tips and 
some potential study directions to ameliorate the assessment systems in 
subSection 4.3. 

4.1. Limitations 

Table 3 presents a summary of each paper and the corresponding 
limitations and objectives. 

4.1.1. Challenges 
Based on the limitations presented in Table 3, we assessed different 

challenges encountered by the researchers in post-stroke tele- 
rehabilitation. 

4.2. Quantity and quality of data 

ML based system as it is the case for post-stroke smart tele- 
rehabilitation, requires rigorous computational models to achieve the 
desired results and estimate properly the needed parameters. The 
starting point to construct an efficient model is to have a massive 
amount of data, besides, the most sophisticated algorithms (e.g. deep 
learning) require at least 10 times the number of samples as parameters 
in the network. Indeed, These algorithms thrive in the domains where 
large amounts of data are easily collected (e.g. computer vision). On the 
other hand, in the healthcare area and more specifically in post-stroke 
rehabilitation, the number of patients is limited, and are not always 
keen to take part into research projects as it is an extra burden they 
endure. moreover, more than 70 percent of the patients live in low and 
middle-income countries [98] that do not give enough importance yet to 
data collection or do not have the necessary means. Subsequently, the 
available information is still limited to build and train efficient models 
that would generalise under different conditions and for different cases. 
Besides, in contrast with other fields where the data is well-structured, 

Fig. 5. Statistics on the included papers.  
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Table 3 
Summary of the reviewed papers.  

Paper Study aim Limitation  

[41] Real-time gesture recognition 
performance to control a five 
finger dexterous robot;  

• Focused only on user-specific 
condition, where the training 
data and the verification data 
are from the same subject 
posing a generalisation issue.  

• Did not test the model on stroke 
patients.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[42] Monitor the overall body 
activity and the drinking 
activity from the liquid level of 
the mug. Subjects were asked to 
accomplish while holding the 
cup some ADL. the resulting 
data were fused together to 
increase the performance of the 
processing algorithm.  

• The absence of a study on the 
acceptability of the smart cup 
by stroke patients.  

• No stroke patients were 
included and no research 
studies were conducted.  

• The absence of an assessment 
system.  

[43] A single sensor was used to 
collect data from the impaired 
arm of stroke survivors, the 
participants execute twenty 
different arm tasks in two 
different environment settings: 
patients at home and patients at 
labs.  

• The absence of a real-time 
implementation of the system  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[44] The study determined signal 
features that are best suited for 
activity recognition with 
various populations (stroke 
patients, able bodied and 
elderly participants) 
independent of the chosen 
classifier.  

• The study did not present any 
platform.  

• The classifiers were not 
customized to the specific HAR 
application.  

[45] Developed a home-based 
rehabilitation system that can 
recognise and record the type 
and frequency of rehabilitation 
exercises conducted by the user 
using a smartwatch.  

• The total number of patients 
who completed the program 
was relatively small to derive 
statistically strong evidence.  

• The actual accuracy of exercise 
detection at home was not 
assessed.  

[46] A system that classifies 
functional and nonfunctional 
arm movement from 
accelerometry sensor data.  

• Limited activities and ADL tasks 
that the participants 
performed..  

[47] Compared HAR performance for 
persons with stroke while 
varying the origin of training 
data, based on either population 
(AB or SP) or environment 
setting.  

• The healthy cohort did not age 
match the stroke cohort.  

• Different sensor placements 
throughout the study.  

• Data associated with stroke 
patients in home setting was 
small compared to the others.  

[48] Proposed a wearable activity 
monitoring system based on a 
fuzzy logic based activity 
classifier that exploits fused 
information from the sensors 
which accounts for behavioral 
constraints and estimates the 
body elevation during standing 
and locomotion.  

• Non-uniformity of the number 
of data samples for the different 
activities.  

• Limited number of SP.  
• There is no mention if the final 

prototype has been used in 
clinical environments 
afterwards.  

[49] Developed a novel prediction 
model based on ML algorithms 
and determine the accuracy of 
detecting different ADLs 
performed by stroke survivors. 
The study was conducted in a 
simulation living room and 
kitchen. Lastly, additional 
independent training and 
testing data were collected to 
perform external validation to  

• The sample size is relatively 
small so the model might not 
generalise well.  

• Data was collected in a semi- 
naturalistic environment 
instead of participants’ homes.  

• The accuracy might be more 
improved.  

• It is a pilot study so it did not 
yield to an assessment platform 
yet.   

Table 3 (continued ) 

Paper Study aim Limitation  

further imitate real-world 
prediction conditions. 

[50] Encoded time-series data into 
gray-scale and RGB images and 
tested different CNN models to 
profit from computer vision 
development.  

• No SP were included in the 
collected data.  

• The presence of confounding 
movements induced by clinical 
practitioner patient interactions 
while performing the exercises.  

[51] A comparative study to 
investigate the performance of 
different sensors and different 
placements for classifying four 
different ADLs with the purpose 
to find the optimal placement of 
a single sensor that achieves 
best accuracy.  

• The study was preliminary.  
• Only five ADLs were included, 

they also have similar patterns  
• There is no mention if the final 

prototype has been used in 
clinical environments 
afterwards.  

[52] Used two sensors to 
differentiate between goal- 
directed exercises and ADL as 
well as detecting the poorly 
executed exercises following the 
FMA [76] assessment during in- 
home rehabilitation exercises.  

• The sample size was relatively 
small and thus the reported 
results may not be generalised.  

• Movements that were both 
goal-directed and non goal- 
directed in nature were not 
considered.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[53] The Establishment of a 
quantitative measurement 
system of the amount of hand 
use of 11 motor tasks of ADL 
using two sensors.  

• The proposed technology 
cannot capture the use of the 
hands for stabilizing objects (e. 
g.. holding a cup or stabilizing a 
piece of steak with a fork) as it 
focuses on estimating the 
amount of hand movement.  

• No stroke patients were 
included and no research 
studies were conducted.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[54] Developed an approach that 
identifies and counts functional 
primitives that constitute 
rehabilitation activities in an 
automated manner.  

• The primitives were only 
recognised, no system has been 
set up to count them.  

• No platform was implemented.  
• Has not been tested in clinical 

settings.  
[55] SmartPants is used to perform 

therapy exercises and recognise 
some ADL lower-limbs taks.  

• The number of sensors might be 
reduced to design a more 
unobtrusive system.  

• Did not test the model on stroke 
patients.  

• There is no mention if the final 
prototype has been used in- 
clinical environments 
afterwards.  

[56] Validate a general probabilistic 
modeling approach for the 
classification of different 
pathological gaits.  

• Metrics for gait assessment were 
not included.  

[57] Recognise purposeful and non 
purposeful arms’ movements of 
post-stroke patients when 
performing ADLs for identifying 
and promoting the use of the 
impaired limb during daily life 
in people affected by stroke. 
different datasets were 
investigated to see which gives 
better results, namely SP, AB, 
and both.  

• Data collected from index and 
wrist sensors only.  

• The recruited groups were not 
age-matched.  

• Data were collected in a 
controlled environment.  

[58] Investigated the performance of 
unimanual, bimanual 
asymmetric, and bimanual 
symmetric tasks in participants 
post-stroke and controls for a  

• Accuracy could be further 
improved.  

• There is no mention if the final 
prototype has been used in  

(continued on next page) 
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healthcare data, in particular and sensor data in general, is heteroge-
neous, abstruse, noisy and difficult to interpret if not an expert.This 
makes building a good learning model tricky and requires to address 
several challenges, such as data-sparsity, missing and dismissed values, 
sensor miss-calibration issues and noisy segments. In the same context, 
data bias which is another issue can cause the assessment algorithm to 
evolve in an unpredictable manner and not generalise to new patients 
that have different degrees of severity. This was very common among 
the reviewed papers, where researchers complained about their algo-
rithms not generalising well. [41,49,52,58,60]. Another data-related 
issue is confidentiality, especially with the growing use of cloud plat-
forms and Internet of Things. Therefore, effort should be spent to secure 
the data transmission between the platforms to ensure privacy for the 
users of the assessment systems. 

Table 3 (continued ) 

Paper Study aim Limitation  

variety of signal processing and 
ML tools. The system classifies 
bi-manual and uni-manual 
tasks. 

clinical environments 
afterwards.  

• Accuracy could be further 
improved.  

• The sample size was relatively 
small and thus the reported 
Results may not be generalised. 

[59] Examined IMU sensor 
placement configuration with 
different classification 
algorithms and differentiate 
between SP and NDP gaits. It 
showed that shank placement 
provided better accuracy.  

• Limited sample size.  
• No clinical application was 

implemented from this research 
yet.  

[60] Developed a model that can 
recognise stroke gait with the 
help of therapists.  

• Limited number of participants 
which causes the system to not 
generalise well.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[61] A sensing sub-system placed on 
a shirt sleeve (smart shirt) 
collected data that are then 
processed locally on a smart 
wireless access point based on 
Raspberry Pi and then sent to an 
Android device via a 
Transmission Control Protocol 
(TCP) socket by a Wi-Fi master 
node where the patient is given 
a personal account that the 
physicians use to login into and 
visualise the real-time data. The 
information is then sent to a 
data cloud built with MySQL 
where it is stored and then 
pushed to a computing cloud 
that utilises ML algorithms 
implemented on MATLAB to 
evaluate the data [76].  

• Limited number of activities 
included.  

• The data was collected from a 
single person.  

• No stroke patients were 
included and no research 
studies were conducted.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[63] Proposed three digital 
biomarkers namely 
convergence points, physical 
activity and functional range of 
motion for the longitudinal 
performance monitoring and 
movement evaluation of stroke 
patients  

• Some subtle movement changes 
require further research to 
distinguish improved 
movement ability due to 
recovery from movement 
compensation mechanisms.  

• Further analysis should be done 
to see how the algorithm would 
generalise.  

[64] Evaluate the feasibility of using 
body-worn sensors to track 
rehabilitation exercises in the 
inpatient setting and counting 
exercise repetitions in order to 
identify stroke severity  

• Has only been tested on three 
basic ADLs.  

• Gyroscope data did not include 
all patients.  

• Stroke patient data were from 
subjects with at least moderate 
strength and did not include 
more severe cases.  

[65] Only two IMU sensors to assess 
quality of movement Functional 
Ability Scale scores[78], the 
results were then correlated 
with therapists scores giving 
very high accuracy.  

• Further analysis should be done 
to see how the algorithm would 
generalise.  

• No stroke patients were 
included and no research 
studies were conducted.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

[66] A single sensor to measure 
upper extremities functional use 
during ADL and distinguish it 
from the upper extremities 
movements that occur while 
walking.  

• Establishing clinical validity 
requires further research with 
larger patient populations to 
determine how well this 
methodology generalises across 
stroke survivors.  

[67] Multiple upper-limbs 
assessment system utilising two  

• Further analysis on 
supplementary participants to   

Table 3 (continued ) 

Paper Study aim Limitation  

different rehabilitation 
evaluation scoring systems the 
FAS [97] and FMA associated 
with different ADL tasks. 

see how the algorithms would 
generalise.  

• Accuracy could be improved 
further.  

• Has not been tested in clinical 
settings. 

[68] Proposes a novel remote 
quantitative FMA assessment 
system in home settings. Sensors 
record the movement 
information in real time and 
wirelessly transmit to the 
computer through ZigBee 
protocol and finally upload to 
the web server database through 
Internet.  

• Only seven exercises were 
included.  

• The placement of sensors has 
not been investigated further.  

• The system is obtrusive.  
• There is no mention if the final 

prototype has been used in 
clinical environments 
afterwards.  

[69] Evaluated two approaches 
designed to estimate the quality 
of post””stroke upper extremity 
motion as measured by the FMA 
subscale for the upper extremity 
using paretic and non”paretic 
limb kinematic data.  

• Limited number of participants 
which causes the system to not 
generalise well.  

• No clinical application was 
implemented from this 
research.  

• Research was not conducted in 
a research environment.  

[70] Assessed whether long-term 
monitoring of seven days or 
more, in unilaterally impaired 
stroke patients is useful in 
determining motor impairment 
using [81].  

• Very small sample size which 
would not generalise to more 
data.  

• The presence of confounding 
movements induced by clinical 
practitioner patient interactions 
while performing the exercises.  

[71] Developed an automated system 
that can predict the assessment 
score in an objective manner to 
do so two new features were 
proposed.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

• Included activities are limited  
[72] Employ time–frequency 

methods to provide a better 
analytical basis for the 
derivations.  

• Very small data sample, only 78 
data segments were collected.  

• There is no mention if the final 
prototype has been used in 
clinical environments 
afterwards.  

• No clinical application was 
implemented from this 
research.  

• Research was not conducted in 
a research environment.  

[73] Proposed an approach to 
estimate upper-limb 
impairment in stroke survivors 
using two wearable inertial 
sensors, on the wrist and the 
sternum.  

• Small sample size which may 
not generalise to more data.  

• Reliance on the performance of 
large, continuous movements, 
which can be tiresome for 
stroke patients.  

[74] Developed an autonomous 
grading system for stroke 
patients using NIHSS and MRC 
scores.  

• Very small sample size which 
may not generalise to more 
data.  

• Very limited set of exercises.   
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4.2.1. Recruitment related challenges 
Dealing with post-stroke participants is a sensitive task and require 

researchers to follow strict procedures, starting from the recruitment 
process which requires undertaking tedious ethical approval applica-
tions to mounting sensors and collecting data from the participants. In 
addition, in order to design efficient ML-based assessment systems that 
generalises to new users a large number of participants should take part 
with different and variant degrees of severity [43,48,49,69,70], which is 
not always available and taken into account. Besides, a common issue 
we found on the included papers when doing cohort studies is not 
recruiting AB participants that age-match the SP recruited [47,57], this 
could yield to introduce inequalities that are not caused by stroke dis-
ease rather it is by the age difference. 

4.2.2. Field complexity and field standards 
Understanding illnesses in general and stroke in particular, is a more 

challenging task than dealing with natural language or image process-
ing. It also requires an advanced expertise since the systems will be 
deployed to deal with human subjects to assist them in their rehabili-
tation process or to assess their execution. Moreover, the standards 
applied in healthcare are highly rigorous, ethical committees have to 
approve studies involving human subjects, in addition to the privacy 
restrictions that govern personal patients’ data and sensitive informa-
tion that limit the use of some modern platforms like computing and 
data clouds. Furthermore, threats introduced by hacking has become a 
leading cause of breaches in patients’ data, and sensing devices are no 
exception to this since the information is often transmitted wirelessly. 
All of these reasons resulted in IoT systems locally processing data 
[41,56,55]. In the same context, some stroke clinical assessments, and 
some severe cases require particular expertise in dealing with patients to 
position their limbs, this is usually done with the assistance of experts in 
the field and is hard to translate to only wearable sensors. 

4.2.3. Power consumption and latency issues 
The wearable sensors are continuously sensing data, pre-processing 

and transmitting it to a remote platform for analysis or visualisation. 
This results in a huge power consumption that may yield to the devices 
turning off and thus terminating the monitoring process of the patients. 
In addition to that, absolute dependence on cloud platforms for the 
analysis of data may result in latency of the processing of information 
due to the huge amounts of data that these platforms receive at once, this 
may lead to the loss of the real-time aspect of the system or in worst 
cases to the complete failure of the system when the internet connection 
is lost. 

4.2.4. Patients’ acceptance 
Patients’ approval should be considered in order to build up plat-

forms that will be used in both clinical and home setting. Sensing devices 
may turn out to be redundant if the patients or clinicians do not use 
them. Therefore, the wearable device should be unobtrusive, and easy to 
operate. It should not influence the ADL of the user. Researchers should 
also concentrate on the implications of the patients’ preferences when 
designing the systems and more efforts should be spent on making stroke 
patients more familiar with intelligent sensing devices. 

4.3. Potential directions 

In this subsection we try to give some potential study directives and 
tips that might be worth considering to address a few challenges we 
noticed when reviewing the different papers and therefore design more 
efficient wearable sensor based post-stroke rehabilitation systems: 

• Provide a person-centric approach that considers both what the in-
dividual should and can achieve during rehabilitation. Indeed, 
integrating the quantification and analysis of the present and future 

conditions of the patient would result in a personalised treatment 
that takes into account the specificities of the different users.  

• Employing additional sensors in conjunction with IMUs to model 
additional quantities to limbs kinematics depending on the exercise. 
For batteries of test that involve strength exercises, employing EMG 
sensors would be an interesting approach to have the muscular ac-
tivity, for gait related tasks and sit/standing, using insole pressure 
sensor would add useful information related to which lower limb is 
more active. For exercises that involve changing body level like 
standing up or sitting down or going up-stairs using level sensors 
would be an interesting approach. This will permit to lay out a more 
holistic and subjective assessment of the movement dysfunction  

• Employing non-invasive, unobtrusive wearable sensors and take into 
more consideration the patient’s comfort as now many studies 
proved the possibility to design effective systems with a very small 
number of sensors (sometimes a single sensor is sufficient) as is the 
case in [43,51]. Moreover, making the system simple to use and 
providing visual tips as using avatars, and giving positive feedback 
on the execution would attract more users.  

• Implementing a more holistic assessment system by combining 
multiple evaluation categories as a movement classification in 
conjunction with clinical assessment emulation, this would allow to 
have different and complementary perspectives and therefore a more 
effective assessment. From the works reviewed, no paper combined 
it. 

• Taking the assistance of field professionals when designing the sys-
tems, as some stroke clinical assessments, and some severe stroke 
cases require particular expertise in dealing with patients as for 
example to position their limbs when doing their recovery tasks.  

• Making more use of deep learning algorithms as they do not require 
thorough feature engineering and thus require less signal processing 
expertise. Moreover, 1D time series deep learning has emerged and 
they provide better accuracies than conventional ML algorithms and 
are even much faster like [99].  

• As the AI based technologies are going to be an important part of the 
modern world, it is important to follow universal standards and 
guidelines that orient the patients well-being in light of the social and 
ethical issues these AI technologies beget. The recent IEEE 
7010–2020 [100] is one good example. 

5. Conclusion and study limitations 

The COVID-19 global pandemic highlighted the need for designing 
novel remote-working technologies especially in rehabilitation. In this 
paper we assessed numerous research works done in the post-stroke tele- 
rehabilitation assessment. Based on that, we proposed a new taxonomy 
on which we can divide the field namely activity recognition, movement 
classification and clinical assessment emulation. We surveyed the 
different wearable sensors used for data collection, we found that IMU 
dominate the other sensors with a slight presence of EMG sensors. 
Moreover, we scrutinised the sensors’ placements, the study designs in 
addition to the feature engineering and the machine learning used for 
the assessment. Feature engineering in conventional ML algorithms re-
quires domain expertise which makes a tedious process to implement 
performant systems. Nevertheless, with the development of computing 
platforms sophisticated algorithms namely deep learning are taking over 
which necessitate less domain knowledge. From the reviewed papers, 
we identified challenges encountered by the researchers in the field that 
relates to the data-aspect, recruitment to undertake the studies, Field 
complexity, Power consumption and patients’ acceptance. We finally 
gave some tips to help researchers in the field improve their systems. 

A limitation of this work is that We have selected articles based on 
our inclusion/exclusion criteria which we know is not perfect. We have 
made our best to select the maximum number of articles, we also 
decided not to include some papers that satisfied our preliminary 
criteria because we found the ideas they dealt with are already treated in 
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other works. Moreover, we have excluded some systems that are also 
used in post-stroke rehabilitation such as exoskeleton because we 
believe it to be an obtrusive device that exceeds the definition of a 
simple wearable device. Virtual reality based systems were also not 
included, as they were treated in many recent reviews. 
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