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Abstract

We offer an axiomatic characterization of quantiles through only one axiom. Among all

real-valued mappings on a general set of distributions, left quantiles are the only ones sat-

isfying left-ordinal covariance, meaning that they commute with increasing left-continuous

transforms; the case of right quantiles is analogous. Other convenient properties of quantiles,

monotonicity in particular, follow from this axiom. In banking and insurance, quantiles are

known as Value-at-Risk (VaR), a standard regulatory risk measure. Thus, we obtain an ax-

iomatization of VaR with only one axiom among law-based risk measures. We further show

that VaR can be alternatively characterized via the axiom of locality, plus four standard

axioms relevant in financial risk management, namely, monotonicity, normalization, cash

additivity, and semicontinuity.

Key-words: ordinal covariance; locality; monotonicity; risk measures; Value-at-Risk

1 Introduction

Quantiles are prominent objects in statistics, decision theory, optimization, machine learn-

ing, and finance, and they have been widely applied in the natural and social sciences as well as

engineering through quantile regression and quantile optimization; see e.g., Koenker and Hallock

(2001). In this paper, we offer an axiomatization of quantiles among all mappings on a general

set of distributions via only one property. We first explain our main result.

Let X be a set of random variables in an atomless probability space (Ω,F ,P) containing

all bounded random variables. The left quantile at probability level p ∈ (0, 1] is defined as

Qp(X) = inf{x ∈ R : P(X 6 x) > p}, X ∈ X ,
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where inf ∅ =∞. We consider law-based mappings R on X , meaning that R(X) is determined

by the distribution of X. Throughout, terms like “increasing” are in the non-strict sense.

Theorem 1. For a law-based mapping R : X → R, the following are equivalent:

(i) R ◦ φ = φ ◦ R for all increasing left-continuous functions φ : R→ R;

(ii) R = Qp for some p ∈ (0, 1].

The property in Theorem 1 (i) will be called left-ordinal covariance, and R ◦ φ = φ ◦ R

means that R(φ(X)) = φ(R(X)) for all X ∈ X such that φ(X) remains in X . An alternative

version of Theorem 1, including right quantiles, is formulated as Theorem 2 in Section 3.

The interpretation of left-ordinal covariance in decision making is roughly the same as

ordinal covariance: For an index which quantifies random objects, a possibly non-linear scale

change in the random outcomes gives rise to the same scale change on the index; see e.g.,

Chambers (2007) in the context of utility aggregation.

Theorem 1 is an extension of Chambers (2009), who showed that the left quantile is the

only function that satisfies the three axioms of monotonicity, lower semicontinuity, and ordinal

covariance (commuting with strictly increasing and continuous functions); see Section 2 for

details. Contrasting Theorem 1 with that result, our left-ordinal covariance is slightly stronger

than ordinal covariance, and monotonicity and lower semicontinuity are not imposed. Moreover,

results of Chambers (2009) are obtained on either X = L∞ (the set of essentially bounds random

variables) or X = L0 (the set of all random variables) whereas our result holds on any domain

X with L∞ ⊆ X ⊆ L0.

Despite the obvious similarity, our extension of Chambers (2009) is by no means straightfor-

ward. Enlarging the set of functions that commute with R makes the corresponding covariance

property stronger, but choosing such an enlargement requires subtle sophistication. For instance,

one may be tempted to require R to commute with all increasing functions, but such R does

not exist; see Example 1 below. Therefore, extra care has to be taken when formulating the

set which R commutes with, and this may partially explain why the concise characterization in

Theorem 1 was not found in the literature.

Example 1. There is no such R : L∞ → R satisfying R◦φ = φ◦R for all increasing function φ.

To see this, suppose otherwise. Take any continuously distributed random variable X ∈ L∞ and

denote by a = R(X). Let φ1(x) = 1{x>a} and φ2(x) = 1{x>a}, where 1 is the indicator function.

Note that φ1(X) = φ2(X) almost surely (and thus they are equal in L∞). A contradiction arises

as R(φ1(X)) = φ1(R(X)) = 1 > 0 = φ2(R(X)) = R(φ2(X)) = R(φ1(X)).

In Section 4 we discuss in more detail whether the set of transforms in Theorem 1 can be

made smaller without invalidating the characterization result. If we concentrate on compactly
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supported distributions, there is a possible slight relaxation in Proposition 1, but such relaxations

are not harmless in general, as illustrated by means of two counter-examples. Moreover, in

Proposition 2, we improve a result of Chambers (2009) on unbounded distributions by relaxing

the property of strong ordinal covariance.

Since quantiles are characterized by left-ordinal covariance alone, all the other nice proper-

ties of quantiles, such as monotonicity, cash additivity, positive homogeneity, continuity, comono-

tonic additivity (see Föllmer and Schied (2016)), elicitability (see Gneiting (2011)), and tail

relevance (see Liu and Wang (2021)) are obtained for free. In particular, it may be surpris-

ing that monotonicity is implied, noting that it does not follow from ordinal covariance of

Chambers (2009). An observation in a similar fashion is made by Wang and Wei (2020), in

which a comonotonic-additive, elicitable and uniformly continuous mapping on L∞ is necessar-

ily monotone (either increasing or decreasing), although no single one of these properties implies

monotonicity by itself.

We proceed to show in Theorem 3 that quantiles can be characterized via locality, which

roughly means that the output value of the mapping depends on the input distribution only

through its behaviour around the output value itself. This property may be seen as a numerical

counterpart of the pivotal monotonicity axiom of Rostek (2010). In particular, a law-based

mapping is normalized, monotone, semicontinuous, cash additive and local if and only if it is a

quantile; see Section 5 for details. This result is built on a recent characterization of Λ-quantiles

by Bellini and Peri (2021) using locality; Λ-quantile are a generalization of VaR proposed by

Frittelli et al. (2014).

Our result gives a simple axiomatic foundation for quantiles, and it may be useful in many

other contexts, as quantiles are a useful alternative to the standard utility theory in decision

making. Preferences induced by quantiles are axiomatized by Rostek (2010), and Embrechts et

al. (2018) studied collaborative and competitive equilibria for quantile agents. de Castro and

Galvao (2019) developed a dynamic model for a rational quantile maximizer, and de Castro et

al. (2020) provided empirical evidence for decision making with quantile optimization.

In financial risk management, quantiles are known as Value-at-Risk (VaR), the dominating

risk measure in banking and insurance over the past two decades. Although Expected Shortfall

(ES) is proposed to replace VaR in the recent Basel Accords, VaR is still widely applied in

regulatory capital calculation, decision making, performance analysis, and backtesting. We refer

to McNeil et al. (2015) for a general treatment on VaR and other risk measures. Because of

the practical importance of VaR, there are a few other sets of axioms for VaR, or quantiles,

in addition to Chambers (2009). With some other standard properties including monotonicity,

VaR is characterized via elicitability and comonotonic additivity by Kou and Peng (2016), via
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surplus invariance by He and Peng (2018), and via elicitability and tail relevance by Liu and

Wang (2021). On the other hand, ES is axiomatized by Wang and Zitikis (2021) with a property

reflecting portfolio diversification. In each result above, a class of risk measures is characterized

by at least three properties, whereas Theorem 1 axiomatizes VaR using only one.

For the rest of the paper, we conveniently formulate all mappings with domains being sets

of distributions instead of random variables. Although we have focused on left quantiles in the

Introduction, results on right quantiles are analogous to those on left quantiles, and they will be

presented in a symmetric manner.

2 Preliminaries

Let M0 be the set all distributions on R and Mc be the set of all compactly supported

distributions inM0. Throughout the paper,M is the domain of a mapping of interest, satisfying

Mc ⊆ M ⊆ M0. Distributions in M will be identified with their cdfs. For a cdf F ∈ M, we

define its (left) quantile as

F−1(t) = inf{x ∈ R : F (x) > t}, t ∈ (0, 1], (1)

and its right quantile as

F−1+ (t) = inf{x ∈ R : F (x) > t}, t ∈ [0, 1). (2)

Denote by GL the set of all increasing left-continuous functions φ : R→ R and by GR the set of

all increasing right-continuous functions φ : R → R. For notational convenience, we extend the

domain of F ∈M to [−∞,∞] by letting F (−∞) = 0 and F (∞) = 1.

For an increasing function φ, the shape transform T [φ] :M→M is defined as a mapping

from the distribution of a random variable X to the distribution of φ(X). In particular,

(a) for φ ∈ GL, T [φ](F )(x) = F (φ−1+ (x)), x ∈ R, where φ−1+ (x) = sup{y ∈ R : φ(y) 6 x};

(b) for φ ∈ GR, T [φ](F )(x−) = F (φ−1(x)−), x ∈ R, where φ−1(x) = inf{y ∈ R : φ(y) > x}.

The convention here is inf ∅ =∞ and sup ∅ = −∞, and for any function f , f(x−) = limy↑x f(x)

and f(x+) = limy↓x f(x) as usual. In the context of distributional transforms, which are map-

pings fromM toM, Liu et al. (2021) showed that shape transforms can be used to characterize

probability distortions; similarly, for mappings from M→ R, shape transforms can be used to

characterize quantiles, as in Chambers (2009) and this paper.

In the remainder of the paper, different from Section 1, we will conveniently treat law-based

mappings as functions from M to R. We first define left- or right-ordinal covariance, the most

important property in this paper.
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Definition 1. A mapping ρ : M → R satisfies left-ordinal covariance (resp. right-ordinal

covariance) if ρ ◦ T [φ] = φ ◦ ρ for all φ ∈ GL (resp. φ ∈ GR).

Here, ρ◦T [φ] = φ◦ρ means that ρ(T [φ](F )) = φ(ρ(F )) for all F ∈M such that T [φ](F ) ∈M.

Left- or right-ordinal covariance is stronger than ordinal covariance assumed by Chambers (2009).

We explain the three axioms of Chambers (2009) below.

Definition 2. For a mapping ρ :M→ R,

(i) ρ is monotone if ρ(F ) 6 ρ(G) whenever F 6st G and F,G ∈ M, where F 6st G means

F (x) > G(x) for all x ∈ R;

(ii) ρ is lower semicontinuous (resp. upper semicontinuous) if ρ(F ) 6 α (resp. ρ(F ) > α)

whenever {Fn}n∈N ⊆M with ρ(Fn) 6 α (resp. ρ(Fn) > α) converges weakly to F ∈M;

(iii) ρ satisfies ordinal covariance if ρ ◦ T [φ] = φ ◦ ρ for all φ ∈ G∗, where G∗ is the set of all

strictly increasing and continuous functions φ satisfying φ(R) = R.

Since G∗ ( GL ∩ GR, it is clear that left- or right-ordinal covariance implies ordinal co-

variance. As the main result of Chambers (2009, Theorem 1), for M = Mc, monotonicity,

lower semicontinuity and ordinal covariance together are sufficient and necessary for ρ to be a

left quantile, that is, ρ(F ) = F−1(p) on Mc for some p ∈ (0, 1]. Chambers (2009) imposed a

slightly stronger condition for a similar result on M = M0, and we will see in Section 4 that

this stronger condition can be relaxed.

In contrast to the three axioms in Definition 2, we will show that left-ordinal covariance

alone characterizes the left quantile, and monotonicity and lower semicontinuity are thereby

consequences instead of assumptions. Moreover, our characterization readily carries through to

any domain M satisfying Mc ⊆ M ⊆ M0, whereas the proofs in Chambers (2009) cannot be

easily extended to the setting of an arbitrary domain without strengthening ordinal covariance,

since these techniques involve approximations of distributions and taking a limit.

3 Left-ordinal covariance axiomatizes left quantiles

In this section, we present our main result on the characterization of quantiles based on

left- or right-ordinal covariance. Theorem 1 in the Introduction follows directly from Theorem

2 by translating results on M to those on X .

Theorem 2. Let ρ :M→ R where Mc ⊆M ⊆M0. We have

(i) ρ satisfies left-ordinal covariance if and only if there exists p ∈ (0, 1] such that ρ(F ) =

F−1(p) for all F ∈M;
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(ii) ρ satisfies right-ordinal covariance if and only if there exists p ∈ [0, 1) such that ρ(F ) =

F−1+ (p) for all F ∈M.

Proof. (i) To show the “if” part, note that for p ∈ (0, 1] and φ ∈ GL,

ρ(T [φ](F )) = inf{x ∈ R : F (φ−1+ (x)) > p}

= inf{x ∈ R : φ−1+ (x) > F−1(p)}

= inf{x ∈ R : x > φ(F−1(p))} = φ(ρ(F )).

Note that in the above if F−1(1) =∞, then p = 1 is excluded as ρ is real-valued. We next focus

on the “only if” part. We will first prove the result on Mc and then extend it to M. For any

F ∈Mc, let

φ(x) =


F−1+ (0), x 6 0

F−1(x), 0 < x 6 1

F−1(1), x > 1.

(3)

Then we have φ ∈ GL and T [φ](FU ) = F , where FU is uniform on [0, 1]. Hence,

ρ(F ) = ρ(T [φ](FU )) = φ(ρ(FU )). (4)

Combination of (3) and (4) yields that for F ∈Mc,

ρ(F ) =

 F−1(1 ∧ ρ(FU )), ρ(FU ) > 0

F−1+ (0), ρ(FU ) 6 0.

The proof onMc is complete if we show ρ(FU ) > 0. We assume by contradiction that ρ(FU ) 6 0.

Then ρ(F ) = F−1+ (0) for all F ∈Mc. For ϕ(x) = x1{x60} + (1 + x)1{x>0} ∈ GL, we have

ρ(T [ϕ](FU )) = (T [ϕ](FU ))−1+ (0) = ϕ(0+) = 1.

Moreover, it follows from left-ordinal covariance that

ρ(T [ϕ](FU )) = ϕ(ρ(FU )) = ρ(FU ) < 1 = ρ(T [ϕ](FU )),

which is a contradiction. Hence, ρ(FU ) > 0, and with p = 1 ∧ ρ(FU ) ∈ (0, 1],

ρ(F ) = F−1(p), F ∈Mc. (5)

Next we extend (5) to general M. Let φ0(x) = 1
2 + 1

π arctan(x), x ∈ R. For F ∈M\Mc,

T [φ0](F ) ∈Mc. It follows from (5) that

ρ(T [φ0](F )) = φ0(F−1(p)).
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Moreover, by left-ordinal covariance we have ρ(T [φ0](F )) = φ0(ρ(F )). Since φ0 is strictly increas-

ing, we have ρ(F ) = F−1(p). This completes the proof of (i).

(ii) The proof is similar to (i), and we mention slight differences. To show the “if” part, for

p ∈ [0, 1) and φ ∈ GR, we have

ρ(T [φ](F )) = sup{x ∈ R : F (φ−1(x)−) 6 p}

= sup{x ∈ R : φ−1(x) 6 F−1+ (p)}

= sup{x ∈ R : x 6 φ(F−1+ (p))} = φ(ρ(F )).

In the above if F−1+ (0) = −∞, then p = 0 is excluded. We next prove the “only if” part. For

any F ∈Mc, let

φ(x) =


F−1+ (0), x < 0

F−1+ (x), 0 6 x < 1

F−1(1), x > 1.

(6)

Then we have φ ∈ GR and T [φ](FU ) = F . It follows that ρ(F ) = ρ(T [φ](FU )) = φ(ρ(FU )), which,

combined with (6), implies that for F ∈Mc,

ρ(F ) =

 F−1(0 ∨ ρ(FU )), ρ(FU ) < 1

F−1(1), ρ(FU ) > 1.

Analogously to (i), by choosing ϕ : x 7→ x1{x<1} + (1 + x)1{x>1} ∈ GR, we can show that

ρ(FU ) < 1. This completes the proof on Mc. Using φ0 defined in (i), we can extend the result

on Mc to M.

A useful fact in the proof of Theorem 2 is Mc = {T [φ](FU ) : φ ∈ GL} for the uniform

distribution FU on [0, 1]. In other words, Mc can be generated from FU by shape transforms

T [φ] with φ ∈ GL. Then left-ordinal covariance allows us to derive ρ(F ) for all F ∈Mc in terms

of the quantile of F and the value of ρ(FU ) as in (4). Note that Mc cannot be generated from

a distribution by shape transforms T [φ] with φ being strictly increasing and continuous, and

thus (4) cannot be derived from ordinal covariance. This sheds some light on why we can skip

continuity and monotonicity but Chambers (2009) needed these properties.

Remark 1. Note that ρ is assumed to be real-valued on M in Theorem 2. The value p = 1 in

(i) needs to be excluded if M contains F such that F−1(1) =∞. The value p = 0 in (ii) needs

to be excluded if M contains F such that F−1+ (0) = −∞. For instance, these would be the case

if M =M0.
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4 Shrinking the set of transforms

In this section, we discuss three issues related to the sets GL and GR used in formulating

left- or right-ordinal covariance. The general goal is to understand whether a smaller set of

transforms is sufficient for the result in Theorem 2. First, we show that, if the domain M is

the set Mc of compacted supported distributions, then these sets can be slightly shrunk to GL1
and GR1 defined below, respectively. Second, we illustrate, by means of two counter-examples,

that this relaxation does not work for general M, and it is difficult to further make GL1 and GR1
smaller for M =Mc. Third, we provide an improvement of Chambers (2009) by shrinking the

set used in his strong ordinal covariance property to G∗.

Denote by GL1 the set of all increasing left-continuous functions φ : R→ R satisfying

lim
x→−∞

φ(x) = −∞ and lim
x→∞

φ(x) =∞, (7)

and by GR1 the set of all increasing right-continuous functions φ : R→ R satisfying (7). It is clear

that condition (7) corresponds to φ(R) = R in Definition 2 when φ is continuous. Therefore,

G∗ ( GL1 ( GL and G∗ ( GR1 ( GR.

Definition 3. A mapping ρ : M → R satisfies weak left-ordinal covariance (resp. weak right-

ordinal covariance) if ρ ◦ T [φ] = φ ◦ ρ for all φ ∈ GL1 (resp. φ ∈ GR1 ).

Proposition 1. Let ρ :Mc → R. We have

(i) ρ satisfies weak left-ordinal covariance if and only if there exists p ∈ (0, 1] such that ρ(F ) =

F−1(p) for all F ∈Mc;

(ii) ρ satisfies weak right-ordinal covariance if and only if there exists p ∈ [0, 1) such that

ρ(F ) = F−1+ (p) for all F ∈Mc.

Proof. The “if” parts in both statements are implied by Theorem 2. We only show the “only if”

parts.

(i) For any F ∈Mc, let

φ(x) =


x+ F−1+ (0), x 6 0

F−1(x), 0 < x 6 1

x− 1 + F−1(1), x > 1.

(8)

Then we have φ ∈ GL1 and T [φ](FU ) = F , where FU is uniform on [0, 1]. Hence,

ρ(F ) = ρ(T [φ](FU )) = φ(ρ(FU )). (9)

8

Electronic copy available at: https://ssrn.com/abstract=3944312



Next we show ρ(FU ) ∈ (0, 1]. We assume by contradiction that ρ(FU ) > 1. For all F ∈ Mc,

ρ(F ) = F−1(1) + a with a = ρ(FU ) − 1 > 0. Letting ϕ(x) = 2x, x ∈ R and F = U[−1, 0], we

have

ρ(T [ϕ](F )) = (T [ϕ](F ))−1(1) + a = a.

Moreover, by weak left-ordinal covariance, ρ(T [ϕ](F )) = ϕ(ρ(F )) = 2a, implying a = 2a = 0.

Hence ρ(FU ) 6 1. Next we assume ρ(FU ) 6 0. Then for any F ∈ Mc, ρ(F ) = F−1+ (0) + ρ(FU ).

For ϕ(x) = x1{x60} + (1− ρ(FU ) + x)1{x>0} ∈ GL1 , we have

ρ(T [ϕ](FU )) = (T [ϕ](FU ))−1+ (0) + ρ(FU ) = 1 > ρ(FU ) = ϕ(ρ(FU )) = ρ(T [ϕ](FU )),

which is a contradiction. Hence, ρ(FU ) > 0. It follows from (8), (9) and ρ(FU ) ∈ (0, 1] that

ρ(F ) = F−1(ρ(FU )), F ∈Mc.

(ii) For any F ∈Mc, let

φ(x) =


x+ F−1+ (0), x < 0

F−1+ (x), 0 6 x < 1

x− 1 + F−1(1), x > 1.

Then we have φ ∈ GR1 and T [φ](FU ) = F . Hence, it follows that ρ(F ) = ρ(T [φ](FU )) = φ(ρ(FU )).

Analogously to the proof of (i), we have ρ(FU ) ∈ [0, 1).

As a consequence of Proposition 1 and the fact that quantiles are monotone and semicon-

tinuous, we immediately arrive at the following corollary.

Corollary 1. For mappings from Mc to R,

(i) weak left-ordinal covariance implies monotonicity and lower seimicontinuity;

(ii) weak right-ordinal covariance implies monotonicity and upper seimicontinuity.

The next two counter-examples illustrate the subtle technical point that the choice of sets

in both Theorem 2 and Proposition 1 cannot be easily made smaller. We first show that weak

left- or right-ordinal covariance is not sufficient to guarantee that ρ :M0 → R is a quantile, and

hence the assumption in Proposition 1 is not sufficient for the conclusion in Theorem 2.

Example 2. We divide the set M0 into four disjoint sets as follows:

M1 = {F ∈M0 : F−1+ (0) = −∞ and F−1(1) <∞},

M2 = {F ∈M0 : F−1+ (0) > −∞ and F−1(1) =∞},

M3 = {F ∈M0 : F−1+ (0) = −∞ and F−1(1) =∞},
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and M4 =Mc. It follows that for φ ∈ GL1 , T [φ](Mi) ⊆Mi, i = 1, 2, 3, 4. For p1, . . . , p4 ∈ (0, 1),

define

ρ(F ) =



F−1(p1), F ∈M1

F−1(p2), F ∈M2

F−1(p3), F ∈M3

F−1(p4), F ∈M4.

For φ ∈ GL1 , using the closeness of T [φ] on each Mi for i = 1, 2, 3, 4, we have ρ(T [φ](F )) =

φ(ρ(F )). If p1, . . . , p4 are not identical, ρ is not a quantile function on M0.

Our next question is whether GL1 can be further made smaller to characterize quantiles

on Mc. A natural candidate might be GL2 = {φ ∈ GL1 : φ is strictly increasing}. Note that

G∗ ( GL2 ( GL1 ( GL. In the next counter-example, we find that GL2 is indeed not sufficient to

force ρ to be a quantile.

Example 3. Let us start with a split of Mc. Define

M(1) = {F ∈Mc : F−1(t) is strictly increasing on (0, 1)}, and M(2) =Mc \M(1).

Note that for φ ∈ GL2 ,

(T [φ](F ))−1(p) = φ(F−1(p)), p ∈ (0, 1).

Hence for φ ∈ GL2 , T [φ] is closed onM(1) andM(2) respectively, i.e., T [φ](M(i)) ⊆M(i), i = 1, 2.

Define, for some distinct p, q ∈ (0, 1),

ρ(F ) =

 F−1(p), F ∈M(1)

F−1(q), F ∈M(2).

Using the closeness of T [φ] on M(1), for φ ∈ GL2 and F ∈M(1),

ρ(T [φ](F )) = (T [φ](F ))−1(p) = φ(F−1(p)) = φ(ρ(F )).

Moreover, using the closeness of T [φ] on M(2), for φ ∈ GL2 and F ∈M(2),

ρ(T [φ](F )) = (T [φ](F ))−1(q) = φ(F−1(q)) = φ(ρ(F )).

Hence, ρ satisfies ρ ◦ T [φ] = φ ◦ ρ for φ ∈ GL2 . Nevertheless, ρ is not a quantile.

On M = M0, Chambers (2009) obtained a characterization of quantiles using a property

called strong ordinal covariance, which replaces the set G∗ in ordinal covariance by the larger

set of strictly increasing and continuous functions φ : R → [−∞,∞] and R ⊆ φ(R); in other

words, ±∞ is allowed in the range of the functions φ. In the next proposition, we show that G∗

is sufficient for the desired result, thus relaxing the condition in Theorem 2 of Chambers (2009).
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Proposition 2. Let ρ :M0 → R. We have

(i) ρ satisfies monotonicity, ordinal covariance, and lower semicontinuity if and only if there

exists p ∈ (0, 1) such that ρ(F ) = F−1(p) for all F ∈M0;

(ii) ρ satisfies monotonicity, ordinal covariance, and upper semicontinuity if and only if there

exists p ∈ (0, 1) such that ρ(F ) = F−1+ (p) for all F ∈M0.

Proof. We first show (ii) and then return to (i).

(ii) The “if” part is implied by Theorem 2 of Chambers (2009). We next focus on the “only

if” part. As in Example 2, we divide M0 into four disjoint subsets Mi, i = 1, . . . , 4. It follows

from Theorem 1 of Chambers (2009) that there exists p ∈ [0, 1) such that

ρ(F ) = F−1+ (p) for all F ∈M4 =Mc. (10)

Next we extend this relation from Mc to M0 and show that p > 0.

We first consider the distributions onM1. Define Fn(x) = F (x)1{x>−n}, n > 1. Note that

Fn ∈Mc and F 6st Fn. By monotonicity and (10), we have

ρ(F ) 6 ρ(Fn) = (Fn)−1+ (p).

If p = 0, then

ρ(F ) 6 lim
n→∞

(Fn)−1+ (p) = lim
n→∞

−n = −∞,

which contradicts with the assumption that ρ(F ) ∈ R. Hence, ρ ∈ (0, 1). As a consequence, for

n sufficiently large, we have

ρ(F ) 6 (Fn)−1+ (p) = F−1+ (p).

As Fn weakly converges to F and ρ(Fn) = F−1+ (p) for sufficiently large n, by upper semicontinuity

we obtain ρ(F ) > F−1+ (p). Consequently, ρ(F ) = F−1+ (p) for all F ∈M1.

Next we focus on M2. Define Gn(x) = F (x)1{x<n} + 1{x>n}, n > 1. We have Gn ∈ Mc

and Gn 6st F . Hence, it follows from monotonicity and (10) that ρ(F ) > ρ(Gn) = (Gn)−1+ (p).

As n sufficiently large, we have (Gn)−1+ (p) = F−1+ (p), leading to ρ(F ) > F−1+ (p). For x0 ∈ R, we

denote

φn(x) =

 x, x 6 x0

x0 + x−x0

n , x > x0
, and φ0(x) = min(x, x0).

Then it follows that F ◦ (φ0)−1+ ∈Mc, F ◦ (φn)−1 ∈M2 and F ◦ (φ0)−1+ 6st F ◦ (φn)−1 for n > 1.

By ordinal covariance, we have

ρ(F ◦ (φn)−1) = φn(ρ(F )) > φ0(ρ(F )).
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Note that F ◦ (φn)−1 weakly converges to F ◦ (φ0)−1+ . Hence, by upper semicontinuity, ρ(F ◦

(φ0)−1+ ) > φ0(ρ(F )), which, together with (10), implies φ0(F−1+ (p)) > φ0(ρ(F )). If we take

x0 > max{F−1+ (p), ρ(F )}, then the above equality implies ρ(F ) 6 F−1+ (p). Consequently, ρ(F ) =

F−1+ (p) for F ∈M2.

We finally consider the distributions on M3. For F ∈M3, let Fn(x) = F (x)1{x>−n}, n >

1, and Gn(x) = F (x)1{x<n} + 1{x>n}, n > 1. Then we have Fn ∈ M2, Gn ∈ M1 and

Gn 6st F 6st Fn. By monotonicity, ρ(Gn) 6 ρ(F ) 6 ρ(Fn). Using (10) on M1 and M2, we

have

(Gn)−1+ (p) 6 ρ(F ) 6 (Fn)−1+ (p).

Letting n→∞ in the above inequalities, we obtain ρ(F ) = F−1+ (p). This completes the proof of

(ii).

(i) Define ρ̂ : M0 → M0 by ρ̂(F ) = −ρ(F̂ ), where F̂ the distribution of −X for X ∼ F .

Then one can check that ρ̂ satisfies monotonicity, upper semicontinuity and ordinal covariance.

Hence by (i) there exists p ∈ (0, 1) such that for all F ∈M0, ρ̂(F ) = F−1+ (p), which means that

ρ(F̂ ) = F̂−1(1− p). We complete the proof by noting that {F̂ : F ∈M0} =M0.

Combination of Proposition 2 above and the results of Chambers (2009), we arrive at the

following conclusion without imposing semicontinuity.

Corollary 2. Let ρ :M→ R with M =M0 or M =Mc. Then ρ satisfies monotonicity and

ordinal covariance if and only of there exists p ∈ [0, 1] such that ρ(F ) = F−1+ (p) for all F ∈ M

or ρ(F ) = F−1(p) for all F ∈M.

5 Locality and Λ-quantiles

Next, we connect our results to the locality property, which intuitively means that the value

of ρ does not change if a distribution F is replaced by a different one but identical to F in a

neighbourhood of ρ(F ). Locality is closely related to the pivotal monotonicity axiom of Rostek

(2010) in decision theory. This property is satisfied by the quantiles, and more generally, they

are satisfied by the Λ-quantiles introduced by Frittelli et al. (2014). For a function Λ : R→ [0, 1],

the Λ-quantile is defined as

ρ(F ) = inf{x ∈ R : F (x) > Λ(x)}. (11)

Definition 4. For ρ :M→ R,

(i) ρ is local if for any interval (a, b) ⊆ R, ρ(F ) ∈ (a, b) implies ρ(F ) = ρ(G) for all G ∈ M

with G = F on (a, b);
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(ii) ρ is cash additive if ρ(T [+c] ◦ F ) = ρ(F ) + c for all F ∈ M and c ∈ R, where T [+c] = T [φ]

with φ : x 7→ x+ c;

(iii) ρ is normalized if ρ(δc) = c for all c ∈ R, where δc is a point mass at c.

We briefly verify that these three properties are weaker than left- or right-ordinal covariance.

Cash additivity is implied by left- or right-ordinal covariance since φ : x 7→ x + c for c ∈ R is

in GL ∩ GR, and normalization is implied by left- or right-ordinal covariance since φ : x 7→ c for

c ∈ R is also in GL ∩ GR. Moreover, the function φ : x 7→ a ∨ x ∧ b for a < b is in GL ∩ GR.

Note that T [φ](F ) = T [φ](G) if F = G on (a, b). Using left- or right-ordinal covariance we obtain

φ(ρ(F )) = φ(ρ(G)), and hence locality holds. Therefore, all three properties are implied by left-

or right-ordinal covariance.

Locality is an essential property that leads to a characterization of Λ-quantile as shown

by Bellini and Peri (2021). Since locality is weaker than left- or right-ordinal covariance, it

remains to understand with what extra conditions quantiles can be characterized via locality.

Theorem 13 of Bellini and Peri (2021) states that if ρ :M0 → R is normalized, monotone, lower

semicontinuous and local, then ρ is a Λ-quantile defined in (11) with a decreasing Λ. It turns

out that if we include the extra property of cash additivity, then we arrive at a characterization

of quantiles.

Theorem 3. For ρ :M→ R with M =M0 or M =Mc,

(i) ρ is normalized, monotone, lower semicontinuous, cash additive and local if and only if

there exists p ∈ (0, 1] such that ρ(F ) = F−1(p) for all F ∈M;

(ii) ρ is normalized, monotone, upper semicontinuous, cash additive and local if and only if

there exists p ∈ [0, 1) such that ρ(F ) = F−1+ (p) for all F ∈M.

Proof. (i) The “if” part follows directly from the properties of left-quantile. We will show the

“only if” part. By Theorem 13 of Bellini and Peri (2021), ρ is a Λ-quantile in (11) for some

decreasing Λ : R→ [0, 1]. We next show that Λ is a constant on R. We assume by contradiction

that there exist x1 < x2 such that Λ(x1) > Λ(x2). Let

F1(x) =
Λ(x1) + Λ(x2)

2
1{x1−16x<x2+1} + 1{x>x2+1}, x ∈ R.

By (11), we have ρ(F1) ∈ (x1−1/2, x2+1/2). Note that T [+1/2](F1) = F1 on (x1−1/2, x2+1/2).

Hence, locality implies ρ(T [+1/2](F1)) = ρ(F1). However, it follows from cash additivity that

ρ(T [+1/2](F1)) = ρ(F1) +
1

2
,

leading to a contradiction. Therefore, Λ is a constant on R which is denoted by p ∈ [0, 1]. Hence

by (11), we have p ∈ (0, 1] and ρ(F ) = F−1(p). Note that p ∈ (0, 1) if M =M0.
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The proof of (ii) is similar to that of (i) and is omitted.

Similarly to Remark 1, in case M = M0, the value p = 1 in (i) and the value p = 0 in

(ii) need to be excluded. A direct consequence of the above result and Theorem 2 is a relation

between left- or right-ordinal covariance and locality.

Corollary 3. For mappings from Mc or M0 to R,

(i) left-ordinal covariance is equivalent to normalization, monotonicity, lower semicontinuity,

cash additivity and locality together;

(ii) right-ordinal covariance is equivalent to normalization, monotonicity, upper semicontinu-

ity, cash additivity and locality together.
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