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Complete reducibility of subgroups of reductive algebraic

groups over nonperfect fields IV: An F4 example

Falk Bannuscher, Alastair Litterick, Tomohiro Uchiyama

Abstract

Let k be a nonperfect separably closed field. Let G be a connected reductive algebraic
group defined over k. We study rationality problems for Serre’s notion of complete re-
ducibility of subgroups of G. In particular, we present the first example of a connected
nonabelian k-subgroup H of G that is G-completely reducible but not G-completely re-
ducible over k, and the first example of a connected nonabelian k-subgroup H

′ of G that is
G-completely reducible over k but not G-completely reducible. This is new: all previously
known such examples are for finite (or non-connected) H and H

′ only.

Keywords: algebraic groups, complete reducibility, rationality, geometric invariant theory,
spherical buildings, pseudo-reductive groups

1 Introduction

Let k be a field. Let k be an algebraic closure of k. Let G be a connected affine algebraic
k-group: we regard G as a k-defined algebraic group together with a choice of k-structure in
the sense of Borel [8, AG. 11]. We say that G is reductive if the unipotent radical Ru(G) of
G is trivial. Throughout, G is always a connected reductive k-group (unless stated otherwise).
In this paper, we continue the investigation of rationality problems for complete reducibility of
subgroups of G; see [30], [31], [33]. By a subgroup of G we mean a (possibly non-k-defined)
closed subgroup of G. Following Serre [24, Sec. 3] we make the following definition.

Definition 1.1. A subgroup H of G is called G-completely reducible over k (G-cr over k for
short) if whenever H is contained in a k-defined parabolic subgroup P of G, then H is contained
in a k-defined Levi subgroup of P . In particular, if H is not contained in any proper k-defined
parabolic subgroup of G, H is called G-irreducible over k (G-ir over k for short).

This notion of G-complete reducibility faithfully generalises the notion of completely re-
ducible representations, see [24, Sec. 3] for more detail. So far, most studies on G-complete
reducibility consider the case k = k̄, for example [17], [26], [18], and not much is known for
a non-algebraically closed k (in particular for nonperfect k) except a few general results and
important examples, see [2], [3, Sec. 5], [30], [31], [33]. We say that a subgroup H of G is G-cr
(G-ir) if H is G-cr (G-ir) over k̄. Now it is natural to ask:

Question 1.2. Let H be a subgroup of G.

1. If H is G-cr, then is it G-cr over k?

2. If H is G-cr over k, then is it G-cr?

Here is the main result of this paper:
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Theorem 1.3. Let k be a nonperfect separably closed field of characteristic 2. Let G be a
simple k-group of type F4. Then there exists a connected nonabelian k-subgroup H of G that is
G-cr but not G-cr over k, and a connected nonabelian k-subgroup H ′ of G that is G-cr over k
but not G-cr.

Several comments are in order. First, when we consider Question 1.2, we can assume k = ks

(a separable closure of k) by the following result, which is [4, Thm. 1.1]:

Proposition 1.4. A subgroup H of G is G-cr over k if and only if H is G-cr over ks.

In particular, Question 1.2 has an affirmative answer if k is perfect. Proposition 1.4 depends
on the recently proved and deep centre conjecture of Tits (see Conjecture 5.1) in spherical
buildings [24], [27], [21]. The centre conjecture (theorem) has been used to study complete
reducibility over k, see [1], [31]. In this paper, we prove Proposition 5.5 which is related to a
rationality problem for the centre conjecture. We assume k = ks throughout.

Second, the third author had already found several examples of a subgroup H (or H ′) satis-
fying Theorem 1.3 for G of type D4, G2, E6, and E7 and for k of characteristic 2 in [29], [30], [32].
We stress that Theorem 1.3 not only extends our collection of such examples, but it is new:
we give the first connected such subgroup. In fact, our subgroups H and H ′ are just slight
modifications of a simple subgroup of type G2 in F4. We are surprised with this pathological
example since connected (moreover simple) subgroups of G usually behave nicely.

Third, it is not hard to find examples of such behaviour if we allow H (or H ′) to be non-k-
defined. To find a k-defined H , we have used nonseparability of H (or a part of H ′) in G. In
fact, combining [2, Thms. 1.5 and 9.3] we have that if a k-subgroup H of G is separable in G
and H is G-cr, then it is G-cr over k. Recall [29, Def. 1.5]:

Definition 1.5. Let H and N be affine algebraic groups. Suppose that H acts on N by group
automorphisms. The action of H on N is called separable if Lie CN (H) = cLieN (H).

Note that the notion of a separable action is a slight generalisation of that of a separable
subgroup [5, Def. 1.1]. See [5] and [14] for more on separability. In our construction, it is
crucial that our H (or a part of H ′) acts nonseparably on the unipotent radical of some proper
k-parabolic subgroup of G. It is known that if the characteristic p of k is very good for G,
every subgroup of G is separable [5, Thm. 1.2]. This suggests that we need to work with small
p. Such proper nonseparable subgroups are hard to find. Only a handful of such examples are
known [5, Sec.7], [29], [30], [32] and all of them are finite subgroups. In our example, H (or the
nonseparable part of H ′) is connected (and very close to G2).

Fourth, our method to construct H and H ′ via group-theoretic arguments and geometric
invariant theory is almost identical to the constructions in D4, G2, E6, and E7 examples
mentioned above [29], [30], [32]. Since the same method works for many examples (for finite
and connected H and H ′) we believe that there should be some general phenomenon underlying
these constructions (cf. [33, Thms. 1.2, 1.3]).

Open Problem 1.6. Suppose that there exists a k-subgroup H of G that acts nonseparably on
the unipotent radical of some proper k-parabolic subgroup of G.

1. If H is G-cr, can one always find some modification H ′ of H such that H ′ remains a
k-subgroup, H ′ remains G-cr, but for which H ′ is not G-cr over k?

2. If H is G-cr over k, can one always find some modification H ′′ of H such that H ′′ remains
a k-subgroup, H ′′ remains G-cr over k, but for which H ′′ is not G-cr?

We have also answered the second part of Question 1.2 using a different method (Weil
restriction) and a different language (scheme-theoretic). First, recall [13, Def. 1.1.1]
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Definition 1.7. Let k be a field. Let G be a connected affine algebraic k-group. If the
k-unipotent radical Ru,k(G) is trivial, G is called pseudo-reductive.

Weil restriction is a standard tool to construct non-reductive pseudo-reductive groups [13,
Ex. 1.6.1]. Using Weil restriction and some scheme-theoretic argument, we show that:

Proposition 1.8. Let k be a nonperfect field of characteristic p. Then for each power ps

(s ∈ N) there exists a k-subgroup H of G = GLps that is G-cr over k but not G-cr.

The subgroup H we find in proving Proposition 1.8 is abelian. We can find an abelian
example (that is G-cr over k but not G-cr) without using Weil restriction: take a k-anisotropic
unipotent element of G for a finite example, and take its connected centraliser for a connected
example, see [31, Rem. 5.3]. Remember that a unipotent element is called k-anisotropic if it is
not contained in any proper k-parabolic subgroup of G. This means the classical construction
of Borel-Tits [10, Thm. 2.5] fails for nonperfect k.

We included Proposition 1.8 in this paper since it shows a relation between rationality
problems for complete reducibility and pseudo-reductivity. We think that this topic should be
investigated further. For example, the answer to the following open problem is true if k is
perfect or CG(H) is pseudo-reductive, see [31, Sec. 6] for more on this:

Open Problem 1.9. Let k be a field. Suppose that a k-subgroup H of G is G-cr over k. then
is CG(H) G-cr over k?

Here is the structure of the paper. In Section 2, we will set our notion and recall some im-
portant results about complete reducibility and related result from geometric invariant theory
(GIT for short). In Section 3, we give a short review of Weil-restriction and prove Proposi-
tion 1.8. Then, in Section 4, we prove Theorem 1.3. Note that since our method is almost
identical to that in [29], [30], [32], our proof is just a minimum skeleton. Finally, in Section 5,
we discuss a rationality problem related to complete reducibility and the centre conjecture.

2 Preliminaries

Throughout, we denote by k a separably closed field. Our references for algebraic groups
are [8], [9], [13], [15], and [25].

Let H be a (possibly non-connected) affine algebraic group. We write H◦ for the identity
component of H . We write [H, H ] for the derived group of H . A reductive group G is called
simple as an algebraic group if G is connected and all proper normal subgroups of G are finite.
We write Xk(G) and Yk(G) for the set of k-characters and k-cocharacters of G respectively.
For k-characters and k-cocharacters of G we simply say characters and cocharacters of G and
write X(G) and Y (G) respectively.

Fix a maximal k-torus T of G (such a T exists by [8, Cor. 18.8]). Then T is split over k since
k is separably closed. Let Ψ(G, T ) denote the set of roots of G with respect to T . We sometimes
write Ψ(G) for Ψ(G, T ). Let ζ ∈ Ψ(G). We write Uζ for the corresponding root subgroup of G.
We define Gζ := 〈Uζ , U−ζ〉. Let ζ, ξ ∈ Ψ(G). Let ξ∨ be the coroot corresponding to ξ. Then

ζ ◦ ξ∨ : k
∗ → k

∗

is a k-homomorphism such that (ζ ◦ ξ∨)(a) = an for some n ∈ Z. Let sξ denote
the reflection corresponding to ξ in the Weyl group of G. Each sξ acts on the set of roots Ψ(G)
by the following formula [25, Lem. 7.1.8]: sξ · ζ = ζ − 〈ζ, ξ∨〉ξ. By [12, Prop. 6.4.2, Lem. 7.2.1]
we can choose k-homomorphisms ǫζ : k → Uζ so that nξǫζ(a)n−1

ξ = ǫsξ·ζ(±a) where nξ =
ǫξ(1)ǫ−ξ(−1)ǫξ(1).

The next result [30, Prop. 1.12] shows complete reducibility behaves nicely under central
isogenies.
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Definition 2.1. Let G1 and G2 be reductive k-groups. A k-isogeny f : G1 → G2 is central if
ker df1 is central in g1 where ker df1 is the differential of f at the identity of G1 and g1 is the
Lie algebra of G1.

Proposition 2.2. Let G1 and G2 be reductive k-groups. Let H1 and H2 be subgroups of G1

and G2 respectively. Let f : G1 → G2 be a central k-isogeny.

1. If H1 is G1-cr over k, then f(H1) is G2-cr over k.

2. If H2 is G2-cr over k, then f−1(H2) is G1-cr over k.

The next result [1, Thm. 1.4] is used repeatedly to reduce problems on G-complete reducibil-
ity to those on L-complete reducibility where L is a Levi subgroup of G.

Proposition 2.3. Suppose that a subgroup H of G is contained in a k-defined Levi subgroup
L of G. Then H is G-cr over k if and only if it is L-cr over k.

We recall characterisations of parabolic subgroups, Levi subgroups, and unipotent radicals
in terms of cocharacters of G [25, Prop. 8.4.5]. These characterisations are essential to translate
results on complete reducibility into the language of GIT; see [3], [6] for example.

Definition 2.4. Let X be a affine k-variety. Let φ : k
∗ → X be a k-morphism of affine

k-varieties. We say that lim
a→0

φ(a) exists if there exists a k-morphism φ̂ : k → X (necessarily

unique) whose restriction to k
∗

is φ. If this limit exists, we set lim
a→0

φ(a) := φ̂(0).

Definition 2.5. Let λ ∈ Y (G). Define Pλ := {g ∈ G | lim
a→0

λ(a)gλ(a)−1 exists},

Lλ := {g ∈ G | lim
a→0

λ(a)gλ(a)−1 = g}, Ru(Pλ) := {g ∈ G | lim
a→0

λ(a)gλ(a)−1 = 1}.

Then Pλ is a parabolic subgroup of G, Lλ is a Levi subgroup of Pλ, and Ru(Pλ) is the
unipotent radical of Pλ. If λ is k-defined, Pλ, Lλ, and Ru(Pλ) are k-defined [23, Sec. 2.1-2.3].
All k-defined parabolic subgroups and k-defined Levi subgroups of G arise in this way since k
is separably closed. It is well known that Lλ = CG(λ(k

∗

)). Note that k-defined Levi subgroups
of a k-defined parabolic subgroup P of G are Ru(P )(k)-conjugate [6, Lem. 2.5(iii)].

Recall the following geometric characterisation for complete reducibility via GIT [3]. Sup-
pose that a subgroup H of G is generated by n-tuple h = (h1, · · · , hn) of elements of G (or
h is a generic tuple of H in the sense of [2, Def. 9.2]), and G acts on Gn by simultaneous
conjugation.

Proposition 2.6. A subgroup H of G is G-cr if and only if the G-orbit G · h is closed in Gn.

Combining Proposition 2.6 and a recent result from GIT [6, Thm. 3.3] we have

Proposition 2.7. Let H be a subgroup of G. Let λ ∈ Y (G). Suppose that h′ := lima→0 λ(a) ·h
exists. If H is G-cr, then h′ is Ru(Pλ)-conjugate to h.

We use a rational version of Proposition 2.7; see [2, Cor. 5.1], [2, Thm. 9.3]:

Proposition 2.8. Let H be a subgroup of G. Let λ ∈ Yk(G). Suppose that h′ := lima→0 λ(a)·h
exists. If H is G-cr over k, then h′ is Ru(Pλ)(k)-conjugate to h.
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3 Complete reducibility and pseudo-reductivity

In this section, we use the language of schemes. Recall [13, Sec. A.5]:

Definition 3.1. Let B → B′ be a finite flat map of noetherian rings, and X ′ a quasi-projective
B′-scheme. The Weil restriction RB′/B(X ′) is a B-scheme of finite type satisfying the universal
property

RB′/B(X ′)(A) = X ′(B′ ⊗B A)

for all B-algebras A.

Now using a special case of a Weil restriction [13, Ex. 1.6.1] we have

Proposition 3.2. Let k′/k be a finite purely inseparable field extension with k′ 6= k and G′

a non-trivial smooth connected reductive k′-group. Then G = Rk′/k(G′) is a pseudo-reductive
and non-reductive k-group.

Note that G = Rk′/k(G′) is smooth due to [13, Prop. A.5.11(1)]. We use the following
standard result [24, Ex. 3.2.2(a)]:

Proposition 3.3. Let H be a k-subgroup of GL(V ) for some finite dimensional k-vector space
V . Then H is GL(V )-cr over k (resp. GL(V )-ir over k) if and only if V is a semisimple (resp.
irreducible) kH-module.

Combining Propositions 3.2 and 3.3 together with the argument in [7, Sec. 5.2.1] (we repro-
duce the argument of [7, Sec. 5.2.1] to make this paper self-contained), we find:

Proof of Proposition 1.8. Let k′/k be a purely inseparable field extension of degree s in charac-
teristic p. Fix a faithful action of Gm(k′) on Ga(k′) (we regard Gm(k′) and Ga(k′) as k′-groups).
Then this action induces an action of H = Rk′/k(Gm) on the [k′ : k]-dimensional k-vector group
Rk′/k(Ga), obtaining an embedding of H = Rk′/k(Gm) in G = GLps .

It is easy to see that there are exactly two Gm(k′)-orbits on Ga(k′). Thus there are exactly
two H(k) = (Rk′/k(Gm))(k)-orbits on G(k) = (Rk′/k(Ga))(k). This shows that G is an irre-
ducible kH-module and then H is G-ir over k by Proposition 3.3. Note that H is not reductive
by Proposition 3.2, so it is not G-cr by [24, Prop. 4.1].

4 G-cr vs G-cr over k (Proof of Theorem 1.3)

Let G be a simple algebraic group of type F4 defined over a nonperfect field k of characteristic
2. Fix a maximal torus T of G and a Borel subgroup B of G containing T . Let Ψ(G) = Ψ(G, T )
be the set of roots corresponding to T , and Ψ(G)+ = Ψ(G, B, T ) be the set of positive roots of
G corresponding to T and B. The following Dynkin diagram defines the set of simple roots of
G.

α β γ δ

We label Ψ(G)+ as in the following. The corresponding negative roots are labelled accord-
ingly. For example, the roots 1, 2, 3, 17 correspond to α, β, γ, δ respectively.

Let λ = 13∨ = 2α∨ + 4β∨ + 3γ∨ + 2δ∨. Then Pλ = 〈T, Uζ | ζ ∈ Ψ(G)+ ∪ {−1, · · · , −9}〉,
Lλ = 〈T, Uζ | ζ ∈ {±1, · · · , ±9}〉, and Ru(Pλ) = 〈Uζ | ζ ∈ Ψ(G)+\{1, · · · , 9}〉. Note that Lλ
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1 1 0 0 0 2 0 1 0 0 3 0 0 1 0 4 1 1 0 0 5 0 1 1 0 6 1 1 1 0

7 0 1 2 0 8 1 1 2 0 9 1 2 2 0 10 0 1 2 2 11 1 1 2 2 12 1 2 2 2

13 1 2 3 2 14 1 2 4 2 15 1 3 4 2 16 2 3 4 2 17 0 0 0 1 18 0 0 1 1

19 0 1 1 1 20 1 1 1 1 21 0 1 2 1 22 1 1 2 1 23 1 2 2 1 24 1 2 3 1

is of type B3. In this section, we use the commutator relations [15, Lem. 32.5, Props. 33.3 and
33.4] repeatedly. Let

M = 〈ǫ2(x1), ǫ−2(x2), ǫ1(x3)ǫ3(x3), ǫ−1(x4)ǫ−3(x4) | xi ∈ k〉.

Using the commutator formulae for root elements of G (we used those found in Magma [11]),
it is straightforward to check that the above generators for M satisfy commutator relations,
so that M is a simple algebraic group of type G2 with the given generators as root elements,
cf. [12, pp. 72–77]. Let a ∈ k\k2 and v(

√
a) = ǫ20(

√
a)ǫ21(

√
a). In the rest of the paper, the

dot action always represents simultaneous conjugation. Define

H := v(
√

a) · M = 〈ǫ2(x1), ǫ−2(x2), ǫ1(x3)ǫ3(x3)ǫ14(ax3), ǫ−1(x4)ǫ−3(x4)ǫ12(ax4) | xi ∈ k〉.

The first main result in this section is

Proposition 4.1. H is connected, k-defined, and G-cr, but not G-cr over k.

Proof. It is clear that H is generated by connected subgroups, each of which is defined over k,
so, H is connected and k-defined by [8, AG. 11]. Also H is G-cr since M is Lλ-ir by [19, Table 10,
ID 3]. We show that H is not G-cr over k. Suppose the contrary. Choose b ∈ k with b3 = 1
and b 6= 1. Let h be a generic tuple of H containing β∨(b) and ǫ1(1)ǫ3(1)ǫ14(a). Then h′ :=
lima→0 λ(a) · h exists since H < Pλ. Then by Proposition 2.8, h′ must be Ru(Pλ)(k)-conjugate
to h. Let v = (β∨(b), ǫ1(1)ǫ3(1)ǫ14(a)). Then v′ := lima→0 λ(a) · v = (β∨(b), ǫ1(1)ǫ3(1)). Thus
there exists an element u ∈ Ru(Pλ)(k) with v = u · v′, which implies that u commutes with

β∨(b). By [25, Prop. 8.2.1] we can set u =
∏24

i=10 ǫi(xi) for some xi ∈ k. Then xi = 0 for
i ∈ {11, 12, 14, 15, 18, 19, 22, 23}. The equation v = u · v′ also implies

ǫ1(1)ǫ3(1)ǫ14(a) = (ǫ10(x10)ǫ13(x13)ǫ16(x16)ǫ17(x17)ǫ20(x20)ǫ21(x21)ǫ24(x24)) · (ǫ1(1)ǫ3(1))

= ǫ1(1)ǫ3(1)ǫ11(x10)ǫ14(x2
21)ǫ18(x17)ǫ22(x20 + x21). (4.1)

This means a = x2
21, which is a contradiction.

Remark 4.2. From the calculation above, we see that the curve C(x) := {ǫ20(x)ǫ21(x)} is not
contained CRu(Pλ)(M), but the corresponding element in Lie(Ru(Pλ)), that is, e20 + e21 is in
cLie(Ru(Pλ))(M). Then the argument in the proof of [29, Prop. 3.3] shows that M (hence H)
acts nonseparably on Ru(Pλ).

We move on to the second main result in this section. We use the same k, a, b, G, M , and
λ as above. Let v(

√
a) = ǫ−20(

√
a)ǫ−21(

√
a). Define

H ′ := 〈v(
√

a) · M, ǫ18(x) | x ∈ k̄〉.

Proposition 4.3. H ′ is connected, k-defined, and G-cr over k, but not G-cr.

Proof. We have

v(
√

a) · M = 〈ǫ2(x1), ǫ−2(x2), ǫ1(x3)ǫ3(x3)ǫ−12(ax3), ǫ−1(x4)ǫ−3(x4)ǫ−14(ax4) | xi ∈ k̄〉.
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Since H ′ is generated by k-defined connected subgroups of G, it is connected and k-defined
by [8, AG. 11]. In the following, we use the nonseparability of M in G again. We show that
H ′ is not G-cr. From [19, Table 38, X = G2, ID 3, p = 2] CG(M)◦ is of type A1. By a direct
computation using commutator relations, we have G13 ≤ CG(M)◦. Then CG(M)◦ = G13. Now
an easy calculation gives CG(H ′)◦ = v(

√
a) · U13. (The point is that U−13 is not centralised by

U18.) Thus CG(H ′)◦ is unipotent. Then by the classical result of Borel and Tits [10, Prop. 3.1],
CG(H ′)◦ is not G-cr. Since CG(H ′)◦ is a normal subgroup of CG(H ′), by [6, Ex. 5.20], CG(H ′)
is not G-cr. Then H ′ is not G-cr by [3, Cor. 3.17]. Now we show that H ′ is G-cr over k. Note
that

v(
√

a)−1 · H ′ = 〈M, ǫ18(x)ǫ−5(
√

ax) | x ∈ k̄〉.
This shows that v(

√
a)−1 · H ′ ≤ Pλ. Thus H ′ ≤ v(

√
a) · Pλ. Using the argument in [32,

Claim 3.6] word-for-word, we have that Pλ is not k-defined. (The same argument works since
v(

√
a) is not a k-point and v(

√
a) 6∈ Pλ.) In the following we show that v(

√
a) ·Pλ is the unique

proper parabolic subgroup of G containing H ′, which implies that H ′ is G-ir over k.
Let Pµ be a proper parabolic subgroup containing v(

√
a)−1 · H ′. Then M ≤ Pµ. Since

M is G-cr, there exists a Levi subgroup L of Pµ containing M . Since Levi subgroups of Pµ

are Ru(Pµ)-conjugate, we may assume L = Lµ. Note that Lµ = CG(µ(k
∗

)), so µ(k
∗

) must
centralise M . Since CG(M)◦ = G13, we have µ = g · 13∨ = g · λ for some g ∈ G13. Using the
Bruhat decomposition, g is of one of the following forms:

g = λ(t)ǫ13(x1) or

g = ǫ13(x1)n13λ(t)ǫ13(x2)

for some x1, x2 ∈ k and t ∈ k
∗

.

We rule out the second case. Suppose g is of the second form. We have ǫ18(1)ǫ−5(
√

a) ≤
v(

√
a) · H ′ ≤ Pµ = Pg·λ = g · Pλ. So it is enough to show that g−1 · ǫ18(1)ǫ−5(

√
a) 6∈ Pλ.

Since U13 and λ(k
∗

) are contained in Pλ, we can assume g = n13. A direct computation shows
that n−1

13 · ǫ18(1)ǫ−5(
√

a) = ǫ−23(1)ǫ−5(
√

a) 6∈ Pλ. Thus g is of the first form, but this implies
Pµ = Pλ. We are done.

Remark 4.4. One might try to get another example of H that is G-cr but not G-cr over k (or
a subgroup H ′ that is G-cr over k but not G-cr) by applying the special graph automorphism
σ of F4 (in the sense of [12, Prop. 12.3.3]) on H in Proposition 4.1 or on H ′ in Proposition 4.3.
Remember that σ(ǫζ(x)) = ǫσ(ζ)(x

f(ζ)) where f(ζ) = 2 if ζ is short and f(ζ) = 1 if ζ is long
(we abuse the notation σ for an automorphism of Ψ(G)). This method fails in both cases since
σ(v(

√
a)) becomes a k-point.

Remark 4.5. The last remark gives a first counterexample to the following [30, Open Prob-
lem. 3.14] that asked: does the second part of Proposition 2.2 hold without assuming f central?
We supply some details. We set f = σ. Then σ is a (non-central) k-isogeny. We use H , M ,
and Lλ in the proof of Proposition 4.1. We have shown that H is not G-cr over k. It is easy
to see that σ(M) is of type G2 and is contained in σ(Lλ) of type C3. By [19, Table 9, ID 4],
σ(M) is σ(Lλ)-ir, thus σ(Lλ)-ir over k. Then σ(M) is G-cr over k and then, σ(H) is G-cr over
k since σ(H) is G(k)-conjugate to σ(M). Since σ−1(σ(H)) = H , we are done. For an easy
counterexample to the first part of Proposition 2.2 without the centrality assumption (using
Frobenius map), see [30, Ex. 3.12].

5 Tits’ centre conjecture

In [27], Tits conjectured the following:
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Conjecture 5.1. Let X be a spherical building. Let Y be a convex contractible simplicial
subcomplex of X. If H is a subgroup of the automorphism group of X stabilizing Y , then there
exists a simplex of Y fixed by H.

This so-called centre conjecture of Tits was proved by case-by-case analyses by Tits, Mühlherr,
Leeb, and Ramos-Cuevas [16], [20], [22]. Recently, a uniform proof was given in [21]. In relation
to the theory of complete reducibility, Serre showed [24]:

Proposition 5.2. Let G be a reductive k-group. Let ∆(G) be the building of G. If H is not
G-cr over k, then the convex fixed point subcomplex ∆(G)H is contractible.

We identify the set of proper k-parabolic subgroups of G with ∆(G) in the usual sense of
Tits [28]. Note that for a subgroup H of G, NG(k)(H) induces a group of automorphisms of
∆(G) stabilising ∆(G)H . Thus, combining the centre conjecture with Proposition 5.2 we obtain

Proposition 5.3. If a subgroup H of G is not G-cr over k, then there exists a proper k-parabolic
subgroup of G containing H and NG(k)(H).

Proposition 5.3 was an essential tool in proving various theoretical results on complete
reducibility over nonperfect k in [30] and [31]. We have asked the following in [31, Rem. 6.5]:

Question 5.4. If H < G is not G-cr over k, then does there exist a proper k-parabolic subgroup
of G containing HCG(H)?

The answer is affirmative if CG(H) is k-defined (or k is perfect). In this case the set of k-
points is dense in CG(H) (since we assume k = ks) and the result follows from Proposition 5.3.
The main result in this section is to present the first counterexample to Question 5.4 when
k is nonperfect and H is connected. (A counterexample with discrete H was given in [32,
Thm. 4.5].)

Proposition 5.5. Let k be nonperfect of characteristic 2. Let G be simple of type F4. Then
there exists a nonabelian connected k-subgroup H of G such that H is not G-cr over k but
HCG(H) is not contained in any proper k-parabolic subgroup of G.

Proof. We use the same H , M , v(
√

a), and λ as in the proof of Proposition 4.1. We have shown
that H is not G-cr over k. We had G13 ≤ CG(M), so 〈M, G13〉 ≤ MCG(M). By the similar
argument as in the proof of Proposition 4.3, we can show that the unique proper parabolic
subgroup of G containing 〈M, U13〉 is Pλ (since n13 · 13 = −13). It is clear that Pλ does not
contain U−13. So there is no proper parabolic subgroup of G containing MCG(M). Thus there
is no proper parabolic subgroup of G containing v(

√
a) · (MCG(M)) = HCG(H).

Remark 5.6. Proposition 5.5 (and the proof) shows that it is hard to control CG(H) when
CG(H) is not k-defined even if H is connected. This makes Open Problem 1.9 difficult even for
connected H .

Acknowledgements

While undertaking the work for this article, the second and third authors were supported
by Alexander von Humboldt Fellowships. The third author also acknowledges the financial
support of JSPS Grant-in-Aid for Early-Career Scientists (19K14516). The authors would like
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