
sensors

Article

Novel Laser-Based Obstacle Detection for
Autonomous Robots on Unstructured Terrain

Wei Chen 1, Qianjie Liu 1, Huosheng Hu 2 , Jun Liu 1, Shaojie Wang 1 and Qingyuan Zhu 1,*
1 Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China;

chenwei05@stu.xmu.edu.cn (W.C.); qjliu0214@stu.xmu.edu.cn (Q.L.); jliuxmu@stu.xmu.edu.cn (J.L.);
wsj@xmu.edu.cn (S.W.)

2 School of Computer Science & Electronic Engineering, University of Essex, Wivenhoe Park,
Colchester CO4 3SQ, UK; hhu@essex.ac.uk

* Correspondence: zhuqy@xmu.edu.cn; Tel.: +86-059-2218-3501

Received: 6 August 2020; Accepted: 3 September 2020; Published: 5 September 2020
����������
�������

Abstract: Obstacle detection is one of the essential capabilities for autonomous robots operated on
unstructured terrain. In this paper, a novel laser-based approach is proposed for obstacle detection
by autonomous robots, in which the Sobel operator is deployed in the edge-detection process of
3D laser point clouds. The point clouds of unstructured terrain are filtered by VoxelGrid, and then
processed by the Gaussian kernel function to obtain the edge features of obstacles. The Euclidean
clustering algorithm is optimized by super-voxel in order to cluster the point clouds of each obstacle.
The characteristics of the obstacles are recognized by the Levenberg–Marquardt back-propagation
(LM-BP) neural network. The algorithm proposed in this paper is a post-processing algorithm based
on the reconstructed point cloud. Experiments are conducted by using both the existing datasets
and real unstructured terrain point cloud reconstructed by an all-terrain robot to demonstrate the
feasibility and performance of the proposed approach.

Keywords: autonomous robots; obstacle detection; laser point clouds; Gaussian kernel function;
neural networks; 3D sensing

1. Introduction

With the advancement of technology, wheeled mobile robots have gradually moved towards
automation and intelligence in recent years [1,2]. Mobile robots used for rescue and space exploration,
etc. operate in dynamic and unstructured environments and face huge challenges due to the inherent
uncertainties and the unpredictable conditions [3]. To achieve stable and robust operations, researchers
have to develop many decision-making, autonomous navigation, and control algorithms [4–6].

In general, environmental understanding is the essential prerequisite for ensuring the stable and
robust operations of autonomous robots [7], and many methods have been proposed up to now [8,9].
Optical camera-based methods have become very popular [10,11]. However, camera-based methods
have several limitations such as the lack of geospatial and reflectivity intensity information, as well as
image distortions and illumination variations. Consequently, traditional optical camera-based systems
are difficult to be used for the understanding of unstructured environment [12].

In contrast, light detection and ranging (LiDAR) systems have been rapidly developed recently,
which can obtain accurate geospatial and reflectivity intensity information [13,14]. Moreover, they are
very robust to illumination variations and have much reduced image distortions. Therefore, LiDAR
systems are more suitable for scene understanding and are gradually used in autonomous robots on
unstructured environment [15–17]. Wang et al. proposed a fast plane segmentation algorithm to detect
objects [18]. Díazvilariño, et al. used point clouds for detecting potential objects in the route planning

Sensors 2020, 20, 5048; doi:10.3390/s20185048 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5797-1412
https://orcid.org/0000-0001-5521-5023
http://www.mdpi.com/1424-8220/20/18/5048?type=check_update&version=1
http://dx.doi.org/10.3390/s20185048
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 5048 2 of 18

according to the real state of the depictured obstacles [19]. However, the surface of unstructured terrain
is uneven. Traditional planar-based segmentation methods cannot effectively deal with various shapes
and different heights of obstacles on outdoor unstructured terrains [20].

Edges provide crucial information on terrain surfaces. Bazazian et al. proposed a fast and precise
method to detect sharp edge features, which analyses the eigenvalues of the covariance matrix defined
by k-nearest neighbors of each point [21]. Daniels et al. presented spline-based feature curves from
point sampled geometry [22], and Oztireli et al. employed robust statistics to extract sharp features [23].
Lin et al. explored line segment extraction for large scale unorganized point clouds [24]. Wang and
Feng employed the majority voting scheme to detect distinct geometric features such as sharp edges
and outliers in a scanned point cloud [25], A region growing method that can segment the point cloud
into clusters and identify the regions with sharp features was proposed based on the analysis of the
normal of the points [26]. However, all these methods only perform well with sharp edges or edge
features are particularly noticeable.

As extracting sharp edge features from a 3D point cloud requires accurate normal estimation,
the performance of shared point-based techniques depends on the accuracy of the normal input,
particularly for the relevant points located around the edge. Furthermore, normal estimation is
computationally time-consuming for large scale point clouds. In this paper, a LiDAR system is
deployed for an autonomous robot to understand the unstructured environment. The Sobel operator is
applied to the edge detection of 3D laser point clouds, then optimizes the operator according to the
characteristics of the 3D point cloud and realizes the edge detection of unstructured terrain.

The rest of the paper is organized as follows. Section 2 proposes a novel system framework
for obstacles detection on unstructured terrain. Then, the obstacle feature recognition algorithm is
presented in Section 3, which is based on LM-BP neural network. In Section 4, the proposed algorithm
is firstly verified by using an unstructured terrain 3D mapping dataset from the Autonomous Space
Robotics Laboratory (ASRL) of Canada. Section 5 conducts the experiments on a real robot platform to
verify the proposed approach. Finally, a brief conclusion and future work are given in Section 6.

2. Materials and Methods

2.1. Introduction

We propose a point cloud post-processing algorithm for obstacle detection based on an
reconstructed unstructured terrain point cloud, which provides essential priori information for
autonomous robots to operate in uneven and dynamic changing terrains. Figure 1 shows our proposed
obstacle detection approach, which mainly includes three algorithms: (i) point cloud edge detection
algorithm, (ii) obstacle-clustering algorithm with super-voxel segmentation, and (iii) obstacle feature
recognition algorithm based on the LM-BP neural network. Note that algorithms (i) and (ii) will be
explained in this section, and algorithm (iii) will be presented in the next section.

Sensors 2020, 20, x FOR PEER REVIEW 2 of 18

of unstructured terrain is uneven. Traditional planar-based segmentation methods cannot effectively
deal with various shapes and different heights of obstacles on outdoor unstructured terrains [20].

Edges provide crucial information on terrain surfaces. Bazazian et al. proposed a fast and precise
method to detect sharp edge features, which analyses the eigenvalues of the covariance matrix
defined by k-nearest neighbors of each point [21]. Daniels et al. presented spline-based feature curves
from point sampled geometry [22], and Oztireli et al. employed robust statistics to extract sharp
features [23]. Lin et al. explored line segment extraction for large scale unorganized point clouds [24].
Wang and Feng employed the majority voting scheme to detect distinct geometric features such as
sharp edges and outliers in a scanned point cloud [25], A region growing method that can segment
the point cloud into clusters and identify the regions with sharp features was proposed based on the
analysis of the normal of the points [26]. However, all these methods only perform well with sharp
edges or edge features are particularly noticeable.

As extracting sharp edge features from a 3D point cloud requires accurate normal estimation,
the performance of shared point-based techniques depends on the accuracy of the normal input,
particularly for the relevant points located around the edge. Furthermore, normal estimation is
computationally time-consuming for large scale point clouds. In this paper, a LiDAR system is
deployed for an autonomous robot to understand the unstructured environment. The Sobel operator
is applied to the edge detection of 3D laser point clouds, then optimizes the operator according to the
characteristics of the 3D point cloud and realizes the edge detection of unstructured terrain.

The rest of the paper is organized as follows. Section 2 proposes a novel system framework for
obstacles detection on unstructured terrain. Then, the obstacle feature recognition algorithm is
presented in Section 3, which is based on LM-BP neural network. In Section 4, the proposed algorithm
is firstly verified by using an unstructured terrain 3D mapping dataset from the Autonomous Space
Robotics Laboratory (ASRL) of Canada. Section 5 conducts the experiments on a real robot platform
to verify the proposed approach. Finally, a brief conclusion and future work are given in Section 6.

2. Materials and Methods

2.1. Introduction

We propose a point cloud post-processing algorithm for obstacle detection based on an
reconstructed unstructured terrain point cloud, which provides essential priori information for
autonomous robots to operate in uneven and dynamic changing terrains. Figure 1 shows our
proposed obstacle detection approach, which mainly includes three algorithms: (i) point cloud edge
detection algorithm, (ii) obstacle-clustering algorithm with super-voxel segmentation, and (iii)
obstacle feature recognition algorithm based on the LM-BP neural network. Note that algorithms (i)
and (ii) will be explained in this section, and algorithm (iii) will be presented in the next section.

Figure 1. The proposed novel approach to obstacle detection in unstructured environment.

Sensors 2020, 20, 5048 3 of 18

2.2. Point Cloud Edge-Detection Algorithm

The edge-detection operator consists of a first-order differential operator and a second-order
differential operator. As the unstructured terrain point clouds contain a lot of noise, the first-order
differential operator is used in this paper to reduce the influence of noise, which is also called the
gradient operator. The gradient value of the image gray is maximum at the edge area, which is a vector
and is expressed as:

∇I(x, y) =
(
∂I
∂x

,
∂I
∂y

)
,
∣∣∣∇I(x, y)

∣∣∣ =
√(

∂I
∂x

)2

+

(
∂I
∂y

)2

(1)

θ = arctan
(
∂I
∂y

)
/
(
∂I
∂x

)
(2)

where ∂I
∂x is the x-direction gradient. ∂I

∂y is the y-direction gradient.
∣∣∣∇I(x, y)

∣∣∣ is the magnitude of
the gradient, indicating the edge intensity information. θ is the gradient direction, providing trend
information for an edge.

The first-order differential operators mainly include a Roberts operator [27], Sobel operator [28],
Prewitt operator [29], and Canny operator [30]. The Roberts operator has high edge positioning
accuracy but is sensitive to noise. The Prewitt operator suppresses noise by pixel averaging, but the
edge positioning accuracy is underdeveloped. The Canny operator is complicated and easy to smooth
out some of the edge information. In contrast, the Sobel operator introduces distance weights, thereby
improving the ability to suppress noise, which therefore is used in this research.

Although the Sobel operator can effectively handle a 2D image whose pixels are evenly distributed,
it cannot effectively handle the points of 3D point clouds that are mostly unevenly distributed in space,
resulting in a large error. Therefore, the Gaussian kernel function estimation is introduced to solve this
problem, which is shown in Figure 2. The point cloud is projected on to the plane. Point c(xi, yi) is the
target point. The neighbor points of it in the r range are searched and then each neighbour point is
used by the Gaussian kernel function. The Z value is weighted. Finally, the weighted mean is taken as
the estimated Z value of the target point. The Gaussian kernel function used for weighting is:

K(xw, yw) = 0.6171 exp
(
−

1
2

(xw − xi
2r

)2
)

exp
(
−

1
2

(yw − yi

2r

)2
)

(3)

where (xw, yw) is the neighboring point in the neighborhood of the target point r. xi and yi are the x
value and the y value of the target point, respectively. r is the radius of the neighbour point search.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 18

Figure 1. The proposed novel approach to obstacle detection in unstructured environment.

2.2. Point Cloud Edge-Detection Algorithm

The edge-detection operator consists of a first-order differential operator and a second-order
differential operator. As the unstructured terrain point clouds contain a lot of noise, the first-order
differential operator is used in this paper to reduce the influence of noise, which is also called the
gradient operator. The gradient value of the image gray is maximum at the edge area, which is a
vector and is expressed as:

∇I(ݔ, (ݕ = ൬߲ݔ߲ܫ , ൰ݕ߲ܫ߲ , |∇I(ݔ, |(ݕ = ඨ൬߲ݔ߲ܫ൰ଶ + ൬߲ݕ߲ܫ൰ଶ
 (1)

ߠ = ݊ܽݐܿݎܽ ൬߲ݕ߲ܫ൰ / ൬߲ݔ߲ܫ൰ (2)

where డூడ௫ is the x-direction gradient. డூడ௬ is the y-direction gradient. |∇I(ݔ, is the magnitude |(ݕ

of the gradient, indicating the edge intensity information. ߠ is the gradient direction, providing
trend information for an edge.

The first-order differential operators mainly include a Roberts operator [27], Sobel operator [28],
Prewitt operator [29], and Canny operator [30]. The Roberts operator has high edge positioning
accuracy but is sensitive to noise. The Prewitt operator suppresses noise by pixel averaging, but the
edge positioning accuracy is underdeveloped. The Canny operator is complicated and easy to smooth
out some of the edge information. In contrast, the Sobel operator introduces distance weights, thereby
improving the ability to suppress noise, which therefore is used in this research.

Although the Sobel operator can effectively handle a 2D image whose pixels are evenly
distributed, it cannot effectively handle the points of 3D point clouds that are mostly unevenly
distributed in space, resulting in a large error. Therefore, the Gaussian kernel function estimation is
introduced to solve this problem, which is shown in Figure 2. The point cloud is projected on to the
plane. Point c(ݔ௜, ௜) is the target point. The neighbor points of it in the r range are searched and thenݕ
each neighbour point is used by the Gaussian kernel function. The Z value is weighted. Finally, the
weighted mean is taken as the estimated Z value of the target point. The Gaussian kernel function
used for weighting is: ݔ)ܭ௪, (௪ݕ = 0.6171exp ൬− 12 ቀݔ௪ − ݎ௜2ݔ ቁଶ൰ exp ൬− 12 ቀݕ௪ − ݎ௜2ݕ ቁଶ൰ (3)

where (ݔ௪, ௜ areݕ ௜ andݔ .௪) is the neighboring point in the neighborhood of the target point rݕ
the x value and the y value of the target point, respectively. r is the radius of the neighbour point
search.

Figure 2. Gaussian kernel function estimation method. Figure 2. Gaussian kernel function estimation method.

The weights of the neighboring points close to the target point are larger so that the accuracy of
the target point z-value estimation is improved. For the target point (xi, yi), the estimated Z value is:

Sensors 2020, 20, 5048 4 of 18

Z(xi, yi) =

∑
(xw,yw)∈w(c,r) Z(xw, yw)K(xw, yw)∑

(xw,yw)∈w(c,r) K(xw, yw)
(4)

As shown in Figure 3, the 3D point cloud is first projected onto the plane, in which A5 is taken as
the target point of the estimated elevation gradient, d is the specified spacing and 8 neighboring points
arranged in a planar grid array. The Gaussian kernel function estimation method is used to obtain Z of
each neighboring point. Finally, the Sobel operator is used to calculate the elevation gradient of the
target point.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 18

The weights of the neighboring points close to the target point are larger so that the accuracy of
the target point z-value estimation is improved. For the target point (ݔ௜, ௜) , the estimated Z valueݕ
is: ܼ(ݔ௜, (௜ݕ = ∑ ,௪ݔ)ܼ ,௪ݔ)ܭ(௪ݕ ∑௪)(௫ೢ,௬ೢ)∈௪(௖,௥)ݕ ,௪ݔ)ܭ ௪)(௫ೢ,௬ೢ)∈௪(௖,௥)ݕ (4)

As shown in Figure 3, the 3D point cloud is first projected onto the plane, in which A5 is taken
as the target point of the estimated elevation gradient, d is the specified spacing and 8 neighboring
points arranged in a planar grid array. The Gaussian kernel function estimation method is used to
obtain Z of each neighboring point. Finally, the Sobel operator is used to calculate the elevation
gradient of the target point.

Figure 3. Sobel operator estimated by combining Gaussian kernel function.

The edge detected by the Sobel operator contains a lot of redundant information. To further
optimize the edge of the extracted obstacle and speed up the subsequent processing, a non-maximum
suppression is utilized to eliminate elements that are not maxima in the local neighborhood. Figure
4 shows the implementation of the algorithm of the previously obtained obstacle edge point cloud,
in which p is the target point and also the center of symmetry, c1 and c2 are the centers for search, r
is the radius to search for the neighbors, θ is the angle along the horizontal direction, d is the distance
between c1 and c2 in the gradient direction.

First, the point cloud is projected onto the plane, and then the gradient direction of the target
point p is determined according to the previously calculated information. The elevation gradients of
all the neighbors are taken as the elevation gradient values of c1 and c2 and compared with the
gradient values of the target points. The target point is retained if both are smaller than the gradient
value of the target point. Otherwise, it is rejected. After all the points in the point cloud have been
processed as described above, an optimized obstacle edge point cloud is obtained.

Figure 3. Sobel operator estimated by combining Gaussian kernel function.

The edge detected by the Sobel operator contains a lot of redundant information. To further
optimize the edge of the extracted obstacle and speed up the subsequent processing, a non-maximum
suppression is utilized to eliminate elements that are not maxima in the local neighborhood. Figure 4
shows the implementation of the algorithm of the previously obtained obstacle edge point cloud,
in which p is the target point and also the center of symmetry, c1 and c2 are the centers for search, r is
the radius to search for the neighbors, θ is the angle along the horizontal direction, d is the distance
between c1 and c2 in the gradient direction.Sensors 2020, 20, x FOR PEER REVIEW 5 of 18

Figure 4. Non-maximum suppression applied to point clouds.

2.3. Obstacle Clustering Algorithm with Super-Voxel Segmentation

Clustering is the process of dividing the similar data points into multiple independent point
clouds such that the points in a point cloud are similar to each other but different from the points in
other groups. The Euclidean clustering algorithm adopts the spatial distance between adjacent points
as the criterion to judge whether the point clouds should be clustered into one group, as shown in
Algorithm 1.

Algorithm 1 Single Point Cloud Clustering

Input: A point in point cloud (P)

Output: Group of points (Q)
1. Put P into Q
2. while (Points in Q has increased)
3. Search for the KDTree nearest neighbor points N of P
4. for each ଵܰ ∈ ܰ do
5. if Distance from ଵܰ to P <= Threshold
6. ଵܰ put into Q
7. end if
8. end for
9. Select points other than point P in Q
10. end while

The Euclidean clustering algorithm can be implemented quickly, but has some limitations, such
as initial guess of the number of groups/classes and a random choice of cluster centers which lack
consistency. When there are some noise points, the Euclidean clustering algorithm is unable to
achieve correct clustering. As shown in Figure 5, class A and class B should have been split. However,
due to the influence of the noise points between the two clusters, they have been wrongly classified
into a point cluster.

Figure 4. Non-maximum suppression applied to point clouds.

Sensors 2020, 20, 5048 5 of 18

First, the point cloud is projected onto the plane, and then the gradient direction of the target
point p is determined according to the previously calculated information. The elevation gradients of all
the neighbors are taken as the elevation gradient values of c1 and c2 and compared with the gradient
values of the target points. The target point is retained if both are smaller than the gradient value of
the target point. Otherwise, it is rejected. After all the points in the point cloud have been processed as
described above, an optimized obstacle edge point cloud is obtained.

2.3. Obstacle Clustering Algorithm with Super-Voxel Segmentation

Clustering is the process of dividing the similar data points into multiple independent point
clouds such that the points in a point cloud are similar to each other but different from the points in
other groups. The Euclidean clustering algorithm adopts the spatial distance between adjacent points
as the criterion to judge whether the point clouds should be clustered into one group, as shown in
Algorithm 1.

Algorithm 1 Single Point Cloud Clustering

Input: A point in point cloud (P)
Output: Group of points (Q)

1. Put P into Q
2. while (Points in Q has increased)
3. Search for the KDTree nearest neighbor points N of P
4. for each N1 ∈ N do
5. if Distance from N1 to P <= Threshold
6. N1 put into Q
7. end if
8. end for
9. Select points other than point P in Q
10. end while

The Euclidean clustering algorithm can be implemented quickly, but has some limitations, such as
initial guess of the number of groups/classes and a random choice of cluster centers which lack
consistency. When there are some noise points, the Euclidean clustering algorithm is unable to achieve
correct clustering. As shown in Figure 5, class A and class B should have been split. However, due to
the influence of the noise points between the two clusters, they have been wrongly classified into a
point cluster.Sensors 2020, 20, x FOR PEER REVIEW 6 of 18

Figure 5. Effect of noise points on Euclidean clustering algorithm.

To solve this problem, a super-voxel segmentation method is introduced here to improve the
anti-noise ability of the clustering process. It is a means of over-segmentation. According to the
similarity of features the scene point cloud is divided into many small blocks for understanding the
point cloud. The process is similar to the crystallization process. First, the crystal nucleus is uniformly
arranged in the space after the point cloud data is voxelized, and then all the nuclei grow at the same
time and similar particles (voxels) are continuously absorbed. Finally, the point cloud is segmented
into a crystal, which is called the cloud block. Crystal growth is controlled by the following distance
metric D:

ܦ = ඨݓ௖ܦ௖ଶ + ௦ଶ3ܴ௦௘௘ௗଶܦ௦ݓ + ௡ଶ (5)ܦ௡ݓ

where ܦ௖ is the difference in colour. ܦ௦ is the difference in distance. ܦ௡ is the difference in the
normal direction. ݓ∗ is the weight used to control the crystallization process. ܴ௦௘௘ௗ is the nucleation
distance.

The super-voxel segmentation method can make discrete noise points gather into small cloud
blocks, which is convenient for filtering and improving clustering accuracy. At the same time, the
gravity center of the point cloud block is used as a clustering object to improve the efficiency of the
whole clustering process as shown in Algorithm 2.

Algorithm 2 Obstacle point cloud clustering

Input: Original point cloud (O)

Output: Point cloud of obstacle clustering (C)
1. Divide O into point cloud blocks (B) by super-voxel segmentation
2. for each ܤଵ ∈ do ܤ
3. if point number of ܤଵ <= Threshold
4. delete ܤଵ
5. end if
6. end for
7. Calculate the gravity center of ܤ
8. Center of gravity point cloud clustering

Figure 5. Effect of noise points on Euclidean clustering algorithm.

Sensors 2020, 20, 5048 6 of 18

To solve this problem, a super-voxel segmentation method is introduced here to improve the
anti-noise ability of the clustering process. It is a means of over-segmentation. According to the
similarity of features the scene point cloud is divided into many small blocks for understanding the
point cloud. The process is similar to the crystallization process. First, the crystal nucleus is uniformly
arranged in the space after the point cloud data is voxelized, and then all the nuclei grow at the same
time and similar particles (voxels) are continuously absorbed. Finally, the point cloud is segmented
into a crystal, which is called the cloud block. Crystal growth is controlled by the following distance
metric D:

D =

√
wcD2

c +
wsD2

s

3R2
seed

+ wnD2
n (5)

where Dc is the difference in colour. Ds is the difference in distance. Dn is the difference in the normal
direction. w∗ is the weight used to control the crystallization process. Rseed is the nucleation distance.

The super-voxel segmentation method can make discrete noise points gather into small cloud
blocks, which is convenient for filtering and improving clustering accuracy. At the same time, the gravity
center of the point cloud block is used as a clustering object to improve the efficiency of the whole
clustering process as shown in Algorithm 2.

Algorithm 2 Obstacle point cloud clustering

Input: Original point cloud (O)
Output: Point cloud of obstacle clustering (C)

1. Divide O into point cloud blocks (B) by super-voxel segmentation
2. for each B1 ∈ B do
3. if point number of B1 <= Threshold
4. delete B1

5. end if
6. end for
7. Calculate the gravity center of B
8. Center of gravity point cloud clustering

3. Obstacle Feature Recognition Based on Levenberg–Marquardt Back-Propagation (LM-BP)
Neural Network

3.1. BP Neural Network Optimized by LM (Levenberg–Marquardt) Algorithm

The neural network has the self-learning function and can deal with incomplete, fuzzy, uncertain
or irregular data. As the most widely utilized neural network, the BP neural network (BPNN) uses
back propagation to repeatedly adjust the weights and bias of the network so that the output vector is
extremely close to the expected vector [31]. However, it is easy to fall into the local minimum, as well
as slow convergence and oscillations during training. Therefore, the LM (Levenberg–Marquardt)
algorithm is used here to solve these problems, in which Gauss–Newton is used to generate an ideal
search direction near the optimal value of the function approximation and the network weights are
adaptively adjusted. Finally, the network convergence speed is greatly improved.

Let wk be the vector consisting of the weight and threshold of the kth iteration, then the weight of
the (k+1)th is updated as:

wk+1 = wk + ∆w (6)

The weight update error index function E(w) is:

E(w) =
1
2

N∑
i

(ti − oi)
2 =

1
2

N∑
i

e2
i (7)

Sensors 2020, 20, 5048 7 of 18

where N is the dimension of the output vector. ti is the target output of the ith output neuron in the
output layer. oi is the actual output of the neuron.

For Newton’s method:
∆w = −H−1

k gk (8)

where Hk is the Hessian matrix of the error index function E(w) and gk is the gradient.

g = JT(w)e(w) (9)

H = JT(w)J(w)e(w) + S(w) (10)

S(w) =
N∑

k=1

ei(w)∇2ei(w) (11)

where e(w) = [e1(w), e2(w), · · · , eN(w)]T and J is the Jacobian matrix.

J =


∂e1(w)

∂w1

∂e1(w)

∂w2
· · ·

∂e1(w)

∂wn
∂e2(w)

∂w1

∂e2(w)

∂w2
· · ·

∂e2(w)

∂wn

...
∂eN (w)

∂w1

∂eN (w)

∂w2
· · ·

∂eN (w)

∂wn

 (12)

When the minimum value of the energy function is approached, the element value of the matrix
S(w) becomes extremely small. Therefore, the Hessel matrix is:

H ≈ JT(w)J(w) (13)

∆w = −
[
JT(w)J(w)

]−1
JT(w)e(w) (14)

The LM algorithm is used to improve the Gauss–Newton method, which overcomes the
inconsistency of the network caused by the instability of Gauss–Newton inversion in the Hessel
matrix. The LM algorithm is obtained by modifying Formula (13).

H ≈ JT J + uI (15)

where u is an extremely small number and I is an n× n identity matrix.
The LM network weights are updated to:

w(k + 1) = w(k) −
[
JT
k (w)J(w) + uI

]−1
J(w)e(w) (16)

Figure 6 shows the flowchart of the LM algorithm to improve the BP neural network.
Figure 7 shows the original BP neural network training curve and the LM algorithm-improved

BP neural network training curve. As can be seen, the convergence speed of LM-BP neural network
training has been significantly improved.

Sensors 2020, 20, 5048 8 of 18

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

ܪ ≈ ܬ்ܬ + (15) ܫݑ

where u is an extremely small number and I is an n × n identity matrix.
The LM network weights are updated to: ݓ(݇ + 1) = (݇)ݓ − ௞்ܬ] (ݓ)ܬ(ݓ) + (16) (ݓ)݁(ݓ)ܬଵି[ܫݑ

Figure 6 shows the flowchart of the LM algorithm to improve the BP neural network.

Figure 6. The flowchart of the Levenberg–Marquardt (LM) algorithm to improve the back-
propagation (BP) neural network.

Figure 7 shows the original BP neural network training curve and the LM algorithm-improved
BP neural network training curve. As can be seen, the convergence speed of LM-BP neural network
training has been significantly improved.

(a) (b)

Figure 7. Comparison of network training curves. (a) Original BP neural network training curve; (b)
LM algorithm-improved BP training curve.

Figure 6. The flowchart of the Levenberg–Marquardt (LM) algorithm to improve the back-propagation
(BP) neural network.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

ܪ ≈ ܬ்ܬ + (15) ܫݑ

where u is an extremely small number and I is an n × n identity matrix.
The LM network weights are updated to: ݓ(݇ + 1) = (݇)ݓ − ௞்ܬ] (ݓ)ܬ(ݓ) + (16) (ݓ)݁(ݓ)ܬଵି[ܫݑ

Figure 6 shows the flowchart of the LM algorithm to improve the BP neural network.

Figure 6. The flowchart of the Levenberg–Marquardt (LM) algorithm to improve the back-
propagation (BP) neural network.

Figure 7 shows the original BP neural network training curve and the LM algorithm-improved
BP neural network training curve. As can be seen, the convergence speed of LM-BP neural network
training has been significantly improved.

(a) (b)

Figure 7. Comparison of network training curves. (a) Original BP neural network training curve; (b)
LM algorithm-improved BP training curve.
Figure 7. Comparison of network training curves. (a) Original BP neural network training curve;
(b) LM algorithm-improved BP training curve.

3.2. Feature Selection and Evaluation Indicators

Figure 8 shows the profile analysis of obstacles, in which
→
n is the normal vector of a surface point

of the obstacle,
→
m is the horizontal vector pointing from the surface point to the central axis, and θ is

the angle between the two vectors. For a positive obstacle, θ is an acute angle. For a negative obstacle,
θ is an obtuse angle. 3D obstacles have innumerable sections that produce numerous central axes.
Therefore, the central axis is replaced by the gravity axis center of an obstacle in practical applications.
At the same time, the θ corresponding to all surface points of the obstacle (all points in the single
obstacle point cloud) is calculated as one of the main features of the positive and negative of the
target obstacle.

Sensors 2020, 20, 5048 9 of 18

Sensors 2020, 20, x FOR PEER REVIEW 9 of 18

3.2. Feature Selection and Evaluation Indicators

Figure 8 shows the profile analysis of obstacles, in which ሬ݊Ԧ is the normal vector of a surface
point of the obstacle, ሬ݉ሬԦ is the horizontal vector pointing from the surface point to the central axis,
and θ is the angle between the two vectors. For a positive obstacle, θ is an acute angle. For a negative
obstacle, θ is an obtuse angle. 3D obstacles have innumerable sections that produce numerous central
axes. Therefore, the central axis is replaced by the gravity axis center of an obstacle in practical
applications. At the same time, the θ corresponding to all surface points of the obstacle (all points in
the single obstacle point cloud) is calculated as one of the main features of the positive and negative
of the target obstacle.

(a) (b)

Figure 8. Profile analysis of positive and negative obstacles. (a) positive obstacle; (b) negative obstacle.

Finally, both geometric and dimensional features are used to separate the different
characteristics of obstacles: (i) F1: the average height; (ii) F2: maximum height; (iii) F3: minimum
height; (iv) F4: the number of acute angle θ; (v) F5: the number of obtuse angle θ. Based on this
feature, the structure of the established neural network for recognizing positive and negative
obstacles is shown in Figure 9.

Figure 9. Structure of the established neural network.

To quantitatively assess the accuracy and correctness of our classification method, three metrics
are employed, namely recall, precision and F1-measure. The recall represents the percentage of true
positives in the ground truth, the precision represents the percentage of true positives in the extracted
result, and the F1-measure is a combination of the two metrics. They are calculated as follows: ݈݈ܽܿ݁ݎ = ܶܲܶܲ + (17) ܰܨ

݊݋݅ݏ݅ܿ݁ݎ݌ = ܶܲܶܲ + (18) ܲܨ

Figure 8. Profile analysis of positive and negative obstacles. (a) positive obstacle; (b) negative obstacle.

Finally, both geometric and dimensional features are used to separate the different characteristics
of obstacles: (i) F1: the average height; (ii) F2: maximum height; (iii) F3: minimum height; (iv) F4:
the number of acute angle θ; (v) F5: the number of obtuse angle θ. Based on this feature, the structure
of the established neural network for recognizing positive and negative obstacles is shown in Figure 9.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 18

3.2. Feature Selection and Evaluation Indicators

Figure 8 shows the profile analysis of obstacles, in which ሬ݊Ԧ is the normal vector of a surface
point of the obstacle, ሬ݉ሬԦ is the horizontal vector pointing from the surface point to the central axis,
and θ is the angle between the two vectors. For a positive obstacle, θ is an acute angle. For a negative
obstacle, θ is an obtuse angle. 3D obstacles have innumerable sections that produce numerous central
axes. Therefore, the central axis is replaced by the gravity axis center of an obstacle in practical
applications. At the same time, the θ corresponding to all surface points of the obstacle (all points in
the single obstacle point cloud) is calculated as one of the main features of the positive and negative
of the target obstacle.

(a) (b)

Figure 8. Profile analysis of positive and negative obstacles. (a) positive obstacle; (b) negative obstacle.

Finally, both geometric and dimensional features are used to separate the different
characteristics of obstacles: (i) F1: the average height; (ii) F2: maximum height; (iii) F3: minimum
height; (iv) F4: the number of acute angle θ; (v) F5: the number of obtuse angle θ. Based on this
feature, the structure of the established neural network for recognizing positive and negative
obstacles is shown in Figure 9.

Figure 9. Structure of the established neural network.

To quantitatively assess the accuracy and correctness of our classification method, three metrics
are employed, namely recall, precision and F1-measure. The recall represents the percentage of true
positives in the ground truth, the precision represents the percentage of true positives in the extracted
result, and the F1-measure is a combination of the two metrics. They are calculated as follows: ݈݈ܽܿ݁ݎ = ܶܲܶܲ + (17) ܰܨ

݊݋݅ݏ݅ܿ݁ݎ݌ = ܶܲܶܲ + (18) ܲܨ

Figure 9. Structure of the established neural network.

To quantitatively assess the accuracy and correctness of our classification method, three metrics
are employed, namely recall, precision and F1-measure. The recall represents the percentage of true
positives in the ground truth, the precision represents the percentage of true positives in the extracted
result, and the F1-measure is a combination of the two metrics. They are calculated as follows:

recall =
TP

TP + FN
(17)

precision =
TP

TP + FP
(18)

F1 measure =
2·recall·precision
recall + precision

(19)

where TP, FN and FP denote the number of true positives, false negatives and false positives respectively.

Sensors 2020, 20, 5048 10 of 18

4. Experimental Verification on Dataset

The proposed algorithm is firstly verified by experiments on the 3D mapping dataset of an
unstructured terrain from the Autonomous Space Robotics Laboratory (ASRL) of Canada [32], as shown
in Figure 10. Many researchers conducted their research on robotic navigation and obstacle avoidance
based on this unstructured terrain data set [33–35]. We also use it in the experiments to verify the
proposed algorithm.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18

݁ݎݑݏܽ݁݉ 1ܨ = 2 · · ݈݈ܽܿ݁ݎ ݈݈ܽܿ݁ݎ݊݋݅ݏ݅ܿ݁ݎ݌ + ݊݋݅ݏ݅ܿ݁ݎ݌ (19)

where TP, FN and FP denote the number of true positives, false negatives and false positives
respectively.

4. Experimental Verification on Dataset

The proposed algorithm is firstly verified by experiments on the 3D mapping dataset of an
unstructured terrain from the Autonomous Space Robotics Laboratory (ASRL) of Canada [32], as
shown in Figure 10. Many researchers conducted their research on robotic navigation and obstacle
avoidance based on this unstructured terrain data set [33–35]. We also use it in the experiments to
verify the proposed algorithm.

(a)

(b)

(c)

Figure 10. The unstructured terrain 3D mapping dataset. (a) Original picture of the unstructured
terrain; (b) depth image of the unstructured terrain; (c) point cloud of the unstructured terrain (914608
points).

4.1. Obstacle Edge-Extraction Experiment of Terrain Point Cloud

Figure 10. The unstructured terrain 3D mapping dataset. (a) Original picture of the unstructured terrain;
(b) depth image of the unstructured terrain; (c) point cloud of the unstructured terrain (914608 points).

4.1. Obstacle Edge-Extraction Experiment of Terrain Point Cloud

Figure 11 shows the point cloud (413,591 points) generated after the filtering method. The data is
streamlined, and the noise is reduced to provide a good foundation for the following obstacle extraction
experiments. Figure 12 shows the results of the obstacle extraction experiment based on edge detection.
As can be seen, the ground points of the non-obstacle in the topographic point cloud are filtered out
and the same is the point of the flat area at the top of obstacle. Therefore, the shape and contour

Sensors 2020, 20, 5048 11 of 18

of the extracted obstacle are completely clear. The useful information is completely preserved and
enhanced while most of the redundant information and noisy data are eliminated. Figure 13 shows the
optimization result of obstacle extraction based on non-maximum suppression (26,011 points).

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18

Figure 11 shows the point cloud (413591 points) generated after the filtering method. The data
is streamlined, and the noise is reduced to provide a good foundation for the following obstacle
extraction experiments. Figure 12 shows the results of the obstacle extraction experiment based on
edge detection. As can be seen, the ground points of the non-obstacle in the topographic point cloud
are filtered out and the same is the point of the flat area at the top of obstacle. Therefore, the shape
and contour of the extracted obstacle are completely clear. The useful information is completely
preserved and enhanced while most of the redundant information and noisy data are eliminated.
Figure 13 shows the optimization result of obstacle extraction based on non-maximum suppression
(26011 points).

Figure 11. Unstructured terrain point cloud after filtering (413591 points).

Figure 12. Results of obstacle extraction based on edge detection (82242 points).

Figure 13. Optimization of obstacle extraction based on non-maximum suppression (26011 points).

4.2. Obstacle Clustering Experiment of Terrain Point Cloud

To verify the effectiveness of the obstacle-clustering method combined with super-voxel
segmentation, the Euclidean clustering algorithm is used to cluster the obstacle point cloud clusters.
The clustering results are shown in Figure 14. The obstacle point cloud is divided into five categories,
and the phenomenon of under-segmentation appears. Many different obstacles are divided into the
same class (Category 5) due to the influence of a large number of scattered noisy points. The different
sizes of the super-voxel are firstly tested as our method is based on the super-voxel. Figure 15 shows
the F1-measure performance of the proposed algorithm under different super-voxel sizes. As a result,
we choose the super-voxel size as 0.05 m.

Figure 11. Unstructured terrain point cloud after filtering (413,591 points).

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18

Figure 11 shows the point cloud (413591 points) generated after the filtering method. The data
is streamlined, and the noise is reduced to provide a good foundation for the following obstacle
extraction experiments. Figure 12 shows the results of the obstacle extraction experiment based on
edge detection. As can be seen, the ground points of the non-obstacle in the topographic point cloud
are filtered out and the same is the point of the flat area at the top of obstacle. Therefore, the shape
and contour of the extracted obstacle are completely clear. The useful information is completely
preserved and enhanced while most of the redundant information and noisy data are eliminated.
Figure 13 shows the optimization result of obstacle extraction based on non-maximum suppression
(26011 points).

Figure 11. Unstructured terrain point cloud after filtering (413591 points).

Figure 12. Results of obstacle extraction based on edge detection (82242 points).

Figure 13. Optimization of obstacle extraction based on non-maximum suppression (26011 points).

4.2. Obstacle Clustering Experiment of Terrain Point Cloud

To verify the effectiveness of the obstacle-clustering method combined with super-voxel
segmentation, the Euclidean clustering algorithm is used to cluster the obstacle point cloud clusters.
The clustering results are shown in Figure 14. The obstacle point cloud is divided into five categories,
and the phenomenon of under-segmentation appears. Many different obstacles are divided into the
same class (Category 5) due to the influence of a large number of scattered noisy points. The different
sizes of the super-voxel are firstly tested as our method is based on the super-voxel. Figure 15 shows
the F1-measure performance of the proposed algorithm under different super-voxel sizes. As a result,
we choose the super-voxel size as 0.05 m.

Figure 12. Results of obstacle extraction based on edge detection (82,242 points).

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18

Figure 11 shows the point cloud (413591 points) generated after the filtering method. The data
is streamlined, and the noise is reduced to provide a good foundation for the following obstacle
extraction experiments. Figure 12 shows the results of the obstacle extraction experiment based on
edge detection. As can be seen, the ground points of the non-obstacle in the topographic point cloud
are filtered out and the same is the point of the flat area at the top of obstacle. Therefore, the shape
and contour of the extracted obstacle are completely clear. The useful information is completely
preserved and enhanced while most of the redundant information and noisy data are eliminated.
Figure 13 shows the optimization result of obstacle extraction based on non-maximum suppression
(26011 points).

Figure 11. Unstructured terrain point cloud after filtering (413591 points).

Figure 12. Results of obstacle extraction based on edge detection (82242 points).

Figure 13. Optimization of obstacle extraction based on non-maximum suppression (26011 points).

4.2. Obstacle Clustering Experiment of Terrain Point Cloud

To verify the effectiveness of the obstacle-clustering method combined with super-voxel
segmentation, the Euclidean clustering algorithm is used to cluster the obstacle point cloud clusters.
The clustering results are shown in Figure 14. The obstacle point cloud is divided into five categories,
and the phenomenon of under-segmentation appears. Many different obstacles are divided into the
same class (Category 5) due to the influence of a large number of scattered noisy points. The different
sizes of the super-voxel are firstly tested as our method is based on the super-voxel. Figure 15 shows
the F1-measure performance of the proposed algorithm under different super-voxel sizes. As a result,
we choose the super-voxel size as 0.05 m.

Figure 13. Optimization of obstacle extraction based on non-maximum suppression (26,011 points).

4.2. Obstacle Clustering Experiment of Terrain Point Cloud

To verify the effectiveness of the obstacle-clustering method combined with super-voxel
segmentation, the Euclidean clustering algorithm is used to cluster the obstacle point cloud clusters.
The clustering results are shown in Figure 14. The obstacle point cloud is divided into five categories,
and the phenomenon of under-segmentation appears. Many different obstacles are divided into the
same class (Category 5) due to the influence of a large number of scattered noisy points. The different
sizes of the super-voxel are firstly tested as our method is based on the super-voxel. Figure 15 shows
the F1-measure performance of the proposed algorithm under different super-voxel sizes. As a result,
we choose the super-voxel size as 0.05 m.

Sensors 2020, 20, 5048 12 of 18

Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

Figure 14. Results of direct use of the Euclidean clustering method.

Figure 15. F1-measure achieved by proposed method with different sizes of super-voxel.

Figure 16 shows the process and results of clustering experiments using the obstacle-clustering
method combined with super-voxel segmentation. More specifically, Figure 16a shows the results of
the super-voxel segmentation of the original obstacle point cloud, in which different point clouds are
distinguished from each other in different colors. It can be seen that the obstacle point cloud is
divided into small units and relatively sparse and independent noise forms a small cloud. By culling
these small point clouds (points <6) and calculating the gravity center of the points in the remaining
point-cloud blocks, the point cloud of the gravity center is shown in Figure 16b. It can be seen that
most noises in the point cloud have been filtered out and the cloud of each obstacle is further
highlighted, which provides a positive initial condition for the Euclidean clustering method.

Figure 14. Results of direct use of the Euclidean clustering method.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

Figure 14. Results of direct use of the Euclidean clustering method.

Figure 15. F1-measure achieved by proposed method with different sizes of super-voxel.

Figure 16 shows the process and results of clustering experiments using the obstacle-clustering
method combined with super-voxel segmentation. More specifically, Figure 16a shows the results of
the super-voxel segmentation of the original obstacle point cloud, in which different point clouds are
distinguished from each other in different colors. It can be seen that the obstacle point cloud is
divided into small units and relatively sparse and independent noise forms a small cloud. By culling
these small point clouds (points <6) and calculating the gravity center of the points in the remaining
point-cloud blocks, the point cloud of the gravity center is shown in Figure 16b. It can be seen that
most noises in the point cloud have been filtered out and the cloud of each obstacle is further
highlighted, which provides a positive initial condition for the Euclidean clustering method.

Figure 15. F1-measure achieved by proposed method with different sizes of super-voxel.

Figure 16 shows the process and results of clustering experiments using the obstacle-clustering
method combined with super-voxel segmentation. More specifically, Figure 16a shows the results
of the super-voxel segmentation of the original obstacle point cloud, in which different point clouds
are distinguished from each other in different colors. It can be seen that the obstacle point cloud is
divided into small units and relatively sparse and independent noise forms a small cloud. By culling
these small point clouds (points <6) and calculating the gravity center of the points in the remaining
point-cloud blocks, the point cloud of the gravity center is shown in Figure 16b. It can be seen that most
noises in the point cloud have been filtered out and the cloud of each obstacle is further highlighted,
which provides a positive initial condition for the Euclidean clustering method.

Figure 16c shows the clustering results of the center of the gravity point cloud, in which different
point clouds are given different colors. In the end, the point cloud was split into 18 point clouds, and the
noise was further suppressed by setting the minimum number of cluster points. However, the 17th
group is not completely divided as the convex plate is connected to the top of the terrain. The other
point clouds of the obstacle achieved an excellent clustering segmentation effect. Figure 16d shows the
obstacle point-cloud clustering results, in which the point cloud block is aggregated. In comparison with
the clustering results of Figure 14, Figure 16d show the effectiveness of the obstacle-clustering method
combined with super-voxel segmentation. It not only achieves complete separation of individual
obstacles, but also suppresses a large amount of noise, making the extracted single obstacle data
more accurate.

Sensors 2020, 20, 5048 13 of 18
Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

(a) (b)

(c) (d)

Figure 16. The process of clustering obstacles combined with super-voxel segmentation. (a) Super-
voxel segmentation results; (b) center of gravity point cloud; (c) center of gravity point cloud
clustering results; (d) obstacle point cloud clustering results.

Figure 16c shows the clustering results of the center of the gravity point cloud, in which different
point clouds are given different colors. In the end, the point cloud was split into 18 point clouds, and
the noise was further suppressed by setting the minimum number of cluster points. However, the
17th group is not completely divided as the convex plate is connected to the top of the terrain. The
other point clouds of the obstacle achieved an excellent clustering segmentation effect. Figure 16d
shows the obstacle point-cloud clustering results, in which the point cloud block is aggregated. In
comparison with the clustering results of Figure 14, Figure 16d show the effectiveness of the obstacle-
clustering method combined with super-voxel segmentation. It not only achieves complete
separation of individual obstacles, but also suppresses a large amount of noise, making the extracted
single obstacle data more accurate.

4.3. Experiment of Recognising Obstacles on Terrain Point Clouds

Figure 17 shows the obstacle recognition result from the 3D mapping dataset of an unstructured
terrain [32]. As the 17th point cloud is not completely divided and is not processed, it is marked as
black. For the remaining obstacle point cloud clusters, the positive obstacle is marked in blue and the
negative obstacle is marked in red. As can be seen in Figure 17, the point clouds 4, 7, 10, 11, 14, 15
and 16 are judged as negative obstacles, and the rest are positive obstacles, which matches the actual
situation.

Figure 16. The process of clustering obstacles combined with super-voxel segmentation. (a) Super-voxel
segmentation results; (b) center of gravity point cloud; (c) center of gravity point cloud clustering
results; (d) obstacle point cloud clustering results.

4.3. Experiment of Recognising Obstacles on Terrain Point Clouds

Figure 17 shows the obstacle recognition result from the 3D mapping dataset of an unstructured
terrain [32]. As the 17th point cloud is not completely divided and is not processed, it is marked as
black. For the remaining obstacle point cloud clusters, the positive obstacle is marked in blue and
the negative obstacle is marked in red. As can be seen in Figure 17, the point clouds 4, 7, 10, 11, 14,
15 and 16 are judged as negative obstacles, and the rest are positive obstacles, which matches the
actual situation.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 18

Figure 17. Obstacle recognition result of the 3D mapping dataset.

5. Experimental Verification on Real Unstructured Terrain

5.1. System Configuration

Figure 18 presents our proposed framework, in which a LiDAR (Velodyne VLP-16, which
produced by Velodyne Lidar of San Jose, California, U.S.) is mounted on an all-terrain robot for
acquiring the point cloud data. Table 1 shows main parameters of the sensors fixed on the mobile
platform. As there are redundancy and uncertainty among the used sensors with different sampling
frequencies, we use the multi-sensor data fusion technology to improve the reliability and robustness
of the system.

Figure 18. Mobile light detection and ranging (LiDAR) point-cloud data acquisition system.

Table 1. The main parameters of the sensors.

Sensors Model Physical data Main parameters
LiDAR Velodyne VLP-

16
3D Point of

terrain
Measurement range: 100 m.

Accuracy: ±3 cm.
Angular Resolution (Horizontal):

0.1° – 0.4°.
Angular Resolution (Vertical): 2.0°.

IMU Xsens MTi-700 Euler angle Latency: <2 m. Bias repeatability:
0.1°/s.

Figure 17. Obstacle recognition result of the 3D mapping dataset.

Sensors 2020, 20, 5048 14 of 18

5. Experimental Verification on Real Unstructured Terrain

5.1. System Configuration

Figure 18 presents our proposed framework, in which a LiDAR (Velodyne VLP-16, which produced
by Velodyne Lidar of San Jose, California, U.S.) is mounted on an all-terrain robot for acquiring the
point cloud data. Table 1 shows main parameters of the sensors fixed on the mobile platform. As there
are redundancy and uncertainty among the used sensors with different sampling frequencies, we use
the multi-sensor data fusion technology to improve the reliability and robustness of the system.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 18

Figure 17. Obstacle recognition result of the 3D mapping dataset.

5. Experimental Verification on Real Unstructured Terrain

5.1. System Configuration

Figure 18 presents our proposed framework, in which a LiDAR (Velodyne VLP-16, which
produced by Velodyne Lidar of San Jose, California, U.S.) is mounted on an all-terrain robot for
acquiring the point cloud data. Table 1 shows main parameters of the sensors fixed on the mobile
platform. As there are redundancy and uncertainty among the used sensors with different sampling
frequencies, we use the multi-sensor data fusion technology to improve the reliability and robustness
of the system.

Figure 18. Mobile light detection and ranging (LiDAR) point-cloud data acquisition system.

Table 1. The main parameters of the sensors.

Sensors Model Physical data Main parameters
LiDAR Velodyne VLP-

16
3D Point of

terrain
Measurement range: 100 m.

Accuracy: ±3 cm.
Angular Resolution (Horizontal):

0.1° – 0.4°.
Angular Resolution (Vertical): 2.0°.

IMU Xsens MTi-700 Euler angle Latency: <2 m. Bias repeatability:
0.1°/s.

Figure 18. Mobile light detection and ranging (LiDAR) point-cloud data acquisition system.

Table 1. The main parameters of the sensors.

Sensors Model Physical Data Main Parameters

LiDAR Velodyne VLP-16 3D Point of terrain

Measurement range: 100 m.
Accuracy: ±3 cm.

Angular Resolution (Horizontal):
0.1◦–0.4◦.

Angular Resolution (Vertical):
2.0◦.

IMU
(Inertial measurement unit) Xsens MTi-700 Euler angle

Latency: <2 m. Bias repeatability:
0.1◦/s.

Sampling frequency: 10 KHz.

Encoder E6B2-CWZ6C Velocity

Accuracy: 1000 P/R;
Maximum speed: 6000 r/min.

Maximum response frequency:
100 KH.

Figure 19 shows the flowchart of our multi-sensor data fusion algorithm, which takes advantage
of the parallelism of multi-threading to achieve efficient collection and processing of multi-sensor data.
Moreover, its flexibility and extensibility ensure that the system can be efficiently supplemented.

Sensors 2020, 20, 5048 15 of 18

Sensors 2020, 20, x FOR PEER REVIEW 15 of 18

(Inertial measurement
unit)

Sampling frequency: 10KHz.

Encoder E6B2-CWZ6C Velocity Accuracy: 1000 P/R;
Maximum speed: 6000 r/min.

Maximum response frequency: 100
KH.

Figure 19 shows the flowchart of our multi-sensor data fusion algorithm, which takes advantage
of the parallelism of multi-threading to achieve efficient collection and processing of multi-sensor
data. Moreover, its flexibility and extensibility ensure that the system can be efficiently
supplemented.

Figure 19. The flowchart of the multi-sensor data fusion algorithm based on multi-thread technology.

5.2. Real Experimental Results

To further verify the performance of the proposed algorithm, we used an all-terrain robot and
reconstructed the real unstructured terrain point cloud as the original point cloud based on a two-
step registration algorithm [36]. Figure 20 shows the experimental results, which clearly show that
the proposed approach can effectively detect positive and negative obstacles within the unstructured
terrain. We collected 65 frames of the original terrain point clouds with 325 positive and negative
obstacles to compare the proposed algorithm with the traditional BPNN algorithm and SVM
(Support vector machine) algorithm. Figure 21 shows the comparison experiment results which
clearly show that our approach outperformed the traditional BPNN algorithm and SVM algorithm.
The precision, recall and F1-measure of proposed algorithm are 0.963, 0.988 and 0.975 respectively,
which can be effectively used to detect and recognize obstacles on unstructured terrain.

Figure 19. The flowchart of the multi-sensor data fusion algorithm based on multi-thread technology.

5.2. Real Experimental Results

To further verify the performance of the proposed algorithm, we used an all-terrain robot and
reconstructed the real unstructured terrain point cloud as the original point cloud based on a two-step
registration algorithm [36]. Figure 20 shows the experimental results, which clearly show that the
proposed approach can effectively detect positive and negative obstacles within the unstructured
terrain. We collected 65 frames of the original terrain point clouds with 325 positive and negative
obstacles to compare the proposed algorithm with the traditional BPNN algorithm and SVM (Support
vector machine) algorithm. Figure 21 shows the comparison experiment results which clearly show
that our approach outperformed the traditional BPNN algorithm and SVM algorithm. The precision,
recall and F1-measure of proposed algorithm are 0.963, 0.988 and 0.975 respectively, which can be
effectively used to detect and recognize obstacles on unstructured terrain.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 18

Figure 20. Results for obstacles detection on real unstructured terrain point cloud.

Figure 21. Accuracy comparison for obstacle recognition using Levenberg–Marquardt back-
propagation (LM-BP), back-propagation neural network (BPNN) and support vector machine (SVM).

6. Conclusion

This paper presents a novel laser-based approach for obstacle detection of autonomous robots.
The Sobel algorithm and the Gaussian kernel function estimation are deployed to effectively handle
the points of 3D point clouds for the extraction of obstacle edges in the unstructured terrains. Then,
a non-maximum suppression method is introduced to optimize the result of obstacle extraction.
Furthermore, super-voxel segmentation is combined with the Euclidean clustering algorithm to
achieve robustness and high-precision clustering segmentation of obstacle point clouds. Finally, a
LM-BP neural network is created to recognize the positive and negative obstacles. Both the existing
dataset and a real unstructured terrain point cloud reconstructed by an all-terrain robot are used to
verify the proposed point cloud post-processing approach. The results of extraction, clustering and
recognition have demonstrated the effectiveness of the proposed approach. Out future research will
be focused on further practical applications such as path planning and obstacle avoidance of
autonomous robots in an unstructured environment.

Author Contributions: Wei Chen and Qingyuan Zhu conceived and designed the experiments; Qianjie Liu set
up the experimental platform; Wei Chen and Jun Liu performed the experiments and analyzed the experimental
data; Huosheng Hu and Shaojie Wang helped perform the analysis with constructive discussions, Wei Chen
wrote the manuscript.

Figure 20. Results for obstacles detection on real unstructured terrain point cloud.

Sensors 2020, 20, 5048 16 of 18

Sensors 2020, 20, x FOR PEER REVIEW 16 of 18

Figure 20. Results for obstacles detection on real unstructured terrain point cloud.

Figure 21. Accuracy comparison for obstacle recognition using Levenberg–Marquardt back-
propagation (LM-BP), back-propagation neural network (BPNN) and support vector machine (SVM).

6. Conclusion

This paper presents a novel laser-based approach for obstacle detection of autonomous robots.
The Sobel algorithm and the Gaussian kernel function estimation are deployed to effectively handle
the points of 3D point clouds for the extraction of obstacle edges in the unstructured terrains. Then,
a non-maximum suppression method is introduced to optimize the result of obstacle extraction.
Furthermore, super-voxel segmentation is combined with the Euclidean clustering algorithm to
achieve robustness and high-precision clustering segmentation of obstacle point clouds. Finally, a
LM-BP neural network is created to recognize the positive and negative obstacles. Both the existing
dataset and a real unstructured terrain point cloud reconstructed by an all-terrain robot are used to
verify the proposed point cloud post-processing approach. The results of extraction, clustering and
recognition have demonstrated the effectiveness of the proposed approach. Out future research will
be focused on further practical applications such as path planning and obstacle avoidance of
autonomous robots in an unstructured environment.

Author Contributions: Wei Chen and Qingyuan Zhu conceived and designed the experiments; Qianjie Liu set
up the experimental platform; Wei Chen and Jun Liu performed the experiments and analyzed the experimental
data; Huosheng Hu and Shaojie Wang helped perform the analysis with constructive discussions, Wei Chen
wrote the manuscript.

Figure 21. Accuracy comparison for obstacle recognition using Levenberg–Marquardt back-propagation
(LM-BP), back-propagation neural network (BPNN) and support vector machine (SVM).

6. Conclusions

This paper presents a novel laser-based approach for obstacle detection of autonomous robots.
The Sobel algorithm and the Gaussian kernel function estimation are deployed to effectively handle
the points of 3D point clouds for the extraction of obstacle edges in the unstructured terrains. Then,
a non-maximum suppression method is introduced to optimize the result of obstacle extraction.
Furthermore, super-voxel segmentation is combined with the Euclidean clustering algorithm to achieve
robustness and high-precision clustering segmentation of obstacle point clouds. Finally, a LM-BP
neural network is created to recognize the positive and negative obstacles. Both the existing dataset
and a real unstructured terrain point cloud reconstructed by an all-terrain robot are used to verify the
proposed point cloud post-processing approach. The results of extraction, clustering and recognition
have demonstrated the effectiveness of the proposed approach. Out future research will be focused on
further practical applications such as path planning and obstacle avoidance of autonomous robots in
an unstructured environment.

Author Contributions: W.C. and Q.Z. conceived and designed the experiments; Q.L. set up the experimental
platform; W.C. and J.L. performed the experiments and analyzed the experimental data; H.H. and S.W. helped
perform the analysis with constructive discussions, W.C. wrote the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant number
51575463, grant number 51905460), and the Key Project in Science and Technology Plan of Xiamen (grant number
3502Z20191019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bernard, M.; Kondak, K.; Maza, I.; Ollero, A. Autonomous transportation and deployment with aerial robots
for search and rescue missions. J. Field Robot. 2011, 28, 914–931. [CrossRef]

2. Dooraki, A.R.; Lee, D.J. An end-to-end deep reinforcement learning-based intelligent agent capable of
autonomous exploration in unknown environments. Sensors 2018, 18, 3575. [CrossRef] [PubMed]

3. Hagras, H.; Sobh, T. Intelligent learning and control of autonomous robotic agents operating in unstructured
environments. Inf. Sci. 2002, 145, 1–12. [CrossRef]

4. Bjelonic, M.; Kottege, N.; Homberger, T.; Borges, P.; Beckerle, P.; Chli, M. Weaver: Hexapod robot for
autonomous navigation on unstructured terrain. J. Field Robot. 2018, 35, 1063–1079. [CrossRef]

5. Kolar, P.; Benavidez, P.; Jamshidi, M. Survey of datafusion techniques for laser and vision based sensor
integration for autonomous navigation. Sensors 2020, 20, 2180. [CrossRef]

6. Kayacan, E.; Young, S.N.; Peschel, J.M.; Chowdhary, G. High-precision control of tracked field robots in the
presence of unknown traction coefficients. J. Field Robot. 2018, 35, 1050–1062. [CrossRef]

http://dx.doi.org/10.1002/rob.20401
http://dx.doi.org/10.3390/s18103575
http://www.ncbi.nlm.nih.gov/pubmed/30360397
http://dx.doi.org/10.1016/S0020-0255(02)00221-9
http://dx.doi.org/10.1002/rob.21795
http://dx.doi.org/10.3390/s20082180
http://dx.doi.org/10.1002/rob.21794

Sensors 2020, 20, 5048 17 of 18

7. Jayaratne, M.; de Silva, D.; Alahakoon, D. Unsupervised machine learning based scalable fusion for active
perception. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1653–1663. [CrossRef]

8. Kosaka, N.; Ohashi, G. Vision-based night-time vehicle detection using CenSurE and SVM. IEEE Trans. Intell.
Transp. Syst. 2015, 16, 2599–2608. [CrossRef]

9. Cheon, M.; Lee, W.; Yoon, C.; Park, M. Vision-based vehicle detection system with consideration of the
detecting location. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1243–1252. [CrossRef]

10. Ross, P.; English, A.; Ball, D. Online covariance estimation for novelty-based visual obstacle detection.
J. Field Robot. 2017, 34, 1469–1488. [CrossRef]

11. Yu, H.S.; Zhu, J.; Wang, Y.N.; Jia, W.Y.; Sun, M.G.; Tang, Y.D. Obstacle classification and 3D measurement in
unstructured environments based on ToF cameras. Sensors 2014, 14, 10753–10782. [CrossRef] [PubMed]

12. Wu, F.; Wen, C.L.; Guo, Y.L.; Wang, J.J.; Yu, Y.T.; Wang, C.; Li, J. Rapid localization and extraction of street
light poles in mobile LiDAR point clouds: A Supervoxel-based approach. IEEE Trans. Intell. Transp. Syst.
2017, 18, 292–305. [CrossRef]

13. Pang, C.; Zhong, X.Y.; Hu, H.S.; Tian, J.; Peng, X.F.; Zeng, J.P. Adaptive obstacle detection for mobile robots
in urban environments using downward-looking 2D LiDAR. Sensors 2018, 18, 1749. [CrossRef] [PubMed]

14. Williams, K.; Olsen, M.J.; Roe, G.V.; Glennie, C. Synthesis of transportation applications of mobile LiDAR.
Remote Sens. 2013, 5, 4652–4692. [CrossRef]

15. Bietresato, M.; Carabin, G.; Vidoni, R.; Gasparetto, A.; Mazzetto, F. Evaluation of a LiDAR-based 3D-stereoscopic
vision system for crop-monitoring applications. Comput. Electron. Agric. 2016, 124, 1–13. [CrossRef]

16. Yu, Y.T.; Li, J.; Guan, H.Y.; Wang, C. Automated extraction of urban road facilities using mobile laser scanning
data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2167–2181. [CrossRef]

17. Morales, N.; Toledo, J.; Acosta, L.; Sanchez-Medina, J. A combined voxel and particle filter-based approach
for fast obstacle detection and tracking in automotive applications. IEEE Trans. Intell. Transp. Syst. 2017, 18,
1824–1834. [CrossRef]

18. Wang, Z.; Liu, H.; Qian, Y.L.; Xu, T. Real-Time Plane Segmentation and Obstacle Detection of 3D Point
Clouds for Indoor Scenes. In Proceedings of the 12th European Conference on Computer Vision (ECCV),
Florence, Italy, 7–13 October 2012.

19. Diaz-Vilarino, L.; Boguslawski, P.; Khoshelham, K.; Lorenzo, H.; Mahdjoubi, L. Indoor navigation from point
clouds: 3D modelling and obstacle detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41,
275–281. [CrossRef]

20. Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Santos, C.H.; Pekkeriet, E. Agricultural Robotics for Field
Operations. Sensors 2020, 20, 2676. [CrossRef]

21. Bazazian, D.; Casas, J.R.; Ruiz-Hidalgo, J. Fast and Robust Edge Extraction in Unorganized Point Clouds.
In Proceedings of the International Conference on Digital Image Computing: Techniques and Applications,
Adelaide, Australia, 23–25 November 2015.

22. Daniels, J.; Ochotta, T.; Ha, L.K.; Silva, C.T. Spline-based feature curves from point sampled geometry.
Vis. Comput. 2008, 24, 449–462. [CrossRef]

23. Oztireli, A.C.; Guennebaud, G.; Gross, M. Feature preserving point set surfaces based on non-linear kernel
regression. Comput. Graph. Forum 2009, 28, 493–501. [CrossRef]

24. Lin, Y.B.; Wang, C.; Cheng, J.; Chen, B.L.; Jia, F.K.; Chen, Z.G.; Li, J. Line segment extraction for large scale
unorganized point clouds. ISPRS-J. Photogramm. Remote Sens. 2015, 102, 172–183.

25. Wang, Y.T.; Feng, H.Y. Outlier detection for scanned point clouds using majority voting. Comput.-Aided Des.
2015, 62, 31–43. [CrossRef]

26. Feng, C.; Taguchi, Y.; Kamat, V.R. Fast Plane Extraction in Organized Point Clouds Using Agglomerative
Hierarchical Clustering. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 31 May–7 June 2014.

27. Lu, W.; Zeng, M.J.; Wang, L.; Luo, H.; Mukherjee, S.; Huang, X.H.; Deng, Y.M. Navigation algorithm based
on the boundary line of tillage soil combined with guided filtering and improved anti-noise morphology.
Sensors 2019, 19, 3918. [CrossRef]

28. Li, J.Q.; Zhou, W.N.; Zhang, Y.D.; Dong, W.; Zhang, X.D. A novel method of the Brillouin gain spectrum
recognition using enhanced Sobel operators based on BOTDA system. IEEE Sens. J. 2019, 19, 4093–4097.
[CrossRef]

http://dx.doi.org/10.1109/TASE.2019.2910508
http://dx.doi.org/10.1109/TITS.2015.2413971
http://dx.doi.org/10.1109/TITS.2012.2188630
http://dx.doi.org/10.1002/rob.21724
http://dx.doi.org/10.3390/s140610753
http://www.ncbi.nlm.nih.gov/pubmed/24945679
http://dx.doi.org/10.1109/TITS.2016.2565698
http://dx.doi.org/10.3390/s18061749
http://www.ncbi.nlm.nih.gov/pubmed/29844278
http://dx.doi.org/10.3390/rs5094652
http://dx.doi.org/10.1016/j.compag.2016.03.017
http://dx.doi.org/10.1109/TITS.2015.2399492
http://dx.doi.org/10.1109/TITS.2016.2616718
http://dx.doi.org/10.5194/isprsarchives-XLI-B4-275-2016
http://dx.doi.org/10.3390/s20092672
http://dx.doi.org/10.1007/s00371-008-0223-2
http://dx.doi.org/10.1111/j.1467-8659.2009.01388.x
http://dx.doi.org/10.1016/j.cad.2014.11.004
http://dx.doi.org/10.3390/s19183918
http://dx.doi.org/10.1109/JSEN.2019.2899034

Sensors 2020, 20, 5048 18 of 18

29. Zhou, R.G.; Yu, H.; Cheng, Y.; Li, F.X. Quantum image edge extraction based on improved Prewitt operator.
Quantum Inf. Process. 2019, 18, 261. [CrossRef]

30. Cao, J.F.; Chen, L.C.; Wang, M.; Tian, Y. Implementing a parallel image edge detection algorithm based on the
Otsu-Canny operator on the hadoop platform. Comput. Intell. Neurosci. 2018, 3, 1–12. [CrossRef] [PubMed]

31. Zhu, Q.Y.; Chen, W.; Hu, H.S.; Wu, X.F.; Xiao, C.X.; Song, X.Y. Multi-sensor based attitude prediction for
agricultural vehicles. Comput. Electron. Agric. 2019, 156, 24–32. [CrossRef]

32. Tong, C.H.; Gingras, D.; Larose, K.; Barfoot, T.D.; Dupuis, E. The Canadian planetary emulation terrain 3d
mapping dataset. Int. J. Robot. Res. 2013, 32, 389–395. [CrossRef]

33. Pire, T.; Mujica, M.; Civera, J.; Kofman, E. The Rosario dataset: Multisensor data for localization and mapping
in agricultural environments. Int. J. Robot. Res. 2019, 38, 633–641. [CrossRef]

34. Norouzi, M.; Miro, J.V.; Dissanayake, G. Planning stable and efficient paths for reconfigurable robots on
uneven terrain. J. Intell. Robot. Syst. 2017, 87, 291–312. [CrossRef]

35. Norouzi, M.; Miro, J.V.; Dissanayake, G. Probabilistic stable motion planning with stability uncertainty for
articulated vehicles on challenging terrains. Auton. Robot. 2016, 40, 361–381. [CrossRef]

36. Zhu, Q.Y.; Wu, J.J.; Hu, H.S.; Xiao, Q.S.; Chen, W. LiDAR point cloud registration for sensing and reconstruction
of unstructured terrain. Appl. Sci. 2018, 8, 2318. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11128-019-2376-5
http://dx.doi.org/10.1155/2018/3598284
http://www.ncbi.nlm.nih.gov/pubmed/29861711
http://dx.doi.org/10.1016/j.compag.2018.11.008
http://dx.doi.org/10.1177/0278364913478897
http://dx.doi.org/10.1177/0278364919841437
http://dx.doi.org/10.1007/s10846-017-0495-8
http://dx.doi.org/10.1007/s10514-015-9474-8
http://dx.doi.org/10.3390/app8112318
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Introduction
	Point Cloud Edge-Detection Algorithm
	Obstacle Clustering Algorithm with Super-Voxel Segmentation

	Obstacle Feature Recognition Based on Levenberg–Marquardt Back-Propagation (LM-BP) Neural Network
	BP Neural Network Optimized by LM (Levenberg–Marquardt) Algorithm
	Feature Selection and Evaluation Indicators

	Experimental Verification on Dataset
	Obstacle Edge-Extraction Experiment of Terrain Point Cloud
	Obstacle Clustering Experiment of Terrain Point Cloud
	Experiment of Recognising Obstacles on Terrain Point Clouds

	Experimental Verification on Real Unstructured Terrain
	System Configuration
	Real Experimental Results

	Conclusions
	References

