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Abstract— Chemosensory communication is known as an
effective way to influence the human emotion system. Phe-
nomena like food selection or motivation, based on chemical
signals, present a unique pathway between chemosensory and
emotion systems. Human chemosignals (i.e. sweat) which are
produced during different emotional states contain associated
distinctive odors and are able to induce same emotions in other
people. For instance, sweat is known as a social chemosignal
participating in social interaction. Chemosignal perception
engages a distributed neural network which has not been well
characterized yet. In this paper, we use functional magnetic
resonance imaging (fMRI) to investigate the neural circuits un-
derlying social emotional chemosignal processing. Chemosignals
associated with disgust and neutral conditions were used to
induce specific emotional states in fMRI participants during a
healthy food judgement. We performed fMRI analysis with the
aim of detecting active areas in the brain, followed by a dy-
namic causal modeling (DCM) analysis. fMRI analysis revealed
functional activity in the fusiform face area (FFA), amygdala
(AMG) and orbitofrontal cortex (OFC). In order to determine
the effective connectivity among these regions as a result of
emotional chemosignal processing, a set of dynamic causal
models is proposed. Estimating parameters of the proposed
models shows that social chemosignals modulate the connections
between FFA, AMG and OFC. The results indicate that social
chemosignals of disgust converge on orbitofrontal cortex - an
area which is a critical region for object appraisal and valuation
- after first influencing fusiform face area and amygdala.

Index Terms— Human Chemosignal, Dynamic Causal Mod-
eling (DCM), Effective Connectivity, fMRI

I. INTRODUCTION

Chemosignals play an important role as social cues which
are able to carry a wide range of information [1]–[3].
Many animals communicate with each other by changing
the chemical secretions of their body and skin. Food se-
lection and sexual interest are two well-known examples
of situations where chemosignals have a significant role
in social communication [4], [5]. Since there is a unique
association between the olfactory system and feeding, mice
use chemical secretion as an effective tool for food related
communication [6]. Although the role of human chemosignal
in social communication is well supported, our understanding
of the function of human chemosignals and its underlying
neurobiological changes is limited. Nevertheless, valuable
studies have been performed in this context. Jasper et al. [2]
conducted a study with the aim of investigating how people

*This work was funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 824153 “POTION”.

1School of Computer Science and Electronic Engineering (CSEE), Uni-
versity of Essex, UK. s.ferdowsi@essex.ac.uk

2Department of Psychology, University of Essex, UK.
3Department of Psychology, Florida State University, FL, USA.

communicate with their body secretions. They collected
sweat from a group of healthy males who were attending
emotional videos. Two emotions were elicited by the videos:
fear and disgust. Then, a group of females with normal sense
of smell were asked to sniff the collected chemosignals.
Facial electromyography (EMG) was used to measure the
activity of face muscles representing emotions induced by
sniffing chemosignals. Acquired EMGs revealed that facial
muscle configurations changed in line with the emotion that
was experienced by the sweat donor when he was watching
the emotional video.

A recent fMRI study examined the role of human
chemosignals of disgust in facilitating food judgment [7].
In this study, a factorial design including social and non-
social odors was used to induce emotional states which in
turn facilitated food judgement. Zheng et al. [7] reported
that chemosignals of disgust (i.e. sweat collected during the
watching of a disgusting video) improved outcomes of food
healthiness judgement. This seemed to involve the recruiting
of key social and emotional areas of the brain.

Krusemark et al. [8] explored changes in emotion process-
ing neural circuits when anxiety was induced by olfactory
stimuli. They used fMRI followed by DCM analysis to inves-
tigate connections between olfactory and emotion systems in
the brain. Although they did not employ social chemosignals
(i.e., sweat), the outcome of their research provides mean-
ingful information about the function of networks underlying
olfaction-emotion processing. A combined anxiety induction
and odor detection (negative vs. neutral) task was utilized to
describe effective connectivity among nodes in the olfaction-
emotion processing network. Results of the fMRI analysis
revealed activity in the olfactory cortical hierarchy (APC,
PPC and OFC) and two key emotion regions (amygdala
and pregenual ACC/pgACC). Krusemark et al. [8] specified
sixteen dynamic causal models including the above five
regions in the right hemisphere. Bidirectional endogenous
connections between regions were considered, along with an
initial input of odors/air into either both APC and AMG or
APC alone. The result of estimating model parameters before
and after anxiety induction indicated that neutral odors were
detected as negative odors after inducing anxiety. Moreover,
subjects needed more time to detect these odors. Exploring
the model’s parameters after anxiety induction indicated that
the olfactory sensory system adapted to increased anxiety.
This was explained through the amygdala having effective
connections with all levels of olfactory cortex.

In other research, Hummer et al. [9] investigated how
human chemosignals influence frontolimbic activity in re-



sponse to emotional stimuli. The main aim was to investigate
the neural network underlying chemosignal impact when
subjects attend to emotional stimuli. Hummer et al. [9]
used dynamic causal modelling to characterize how human
chemosignals change connections within this network during
perception of emotional images. They repeated their experi-
ments in the presence and absence of human chemosignals.
The specified dynamic model involved primary visual cortex
(VC), amygdala, prefrontal cortex (PFC) and orbitofrontal
cortex (OFC) for both hemispheres. They considered bidi-
rectional connections between all nodes apart from VC
and PFC. Image blocks (i.e. visual stimuli) stimulated VC
which was connected to the amygdala. The emotion of the
image acted to modulate the connection between VC and
the Amygdala. Their findings showed that, in the presence
of chemosignals, emotional images decrease the input from
VC to amygdala, leading to increased activity in OFC and
PFC. On the other hand, chemosignals enhanced activity in
the areas allocated to attentional resources and emotional
information processing by modifying amygdala connectivity.

To the best of our knowledge, Hummer et al. [9] is the
only study which has examined the role of chemosignals in
modulating effective connectivity in neural networks when
an emotion processing task is undertaken. However, they
did not focus on the direct neural influence of smelling
chemosignals. Therefore, in order to investigate how social-
emotional signals directly influence brain activity and con-
nectivity during healthy food judgement, we conducted a
DCM study of the fMRI dataset recorded by Zheng et al.
[7]. Their finding showed that human chemosignals of dis-
gust outperform visual signals in helping people distinguish
between healthy and unhealthy foods. So, a connectivity
analysis for this dataset can reveal important information
about the brain mechanisms involved in social emotional
interaction.

In the next section, details of the fMRI data used in this
study is provided. This data was previously described and
reported by Zheng et al. [7], and for full details the reader
should consult this work. Information about the procedure
that we have used to analyse data and implement effective
connectivity is provided in section II. Section III presents the
experimental results and section IV concludes the paper.

II. MATERIAL AND METHODS

A. Subjects

Eighteen healthy female participants took part in this
study. The reason for recruiting females was that, on average,
they have higher sensitivity to sweat chemosignals than
men [10]. Exclusion criteria included abnormal olfaction,
abnormal vision, nasal infections, allergies and neuropsycho-
logical problems. Subjects were asked to avoid consuming
food with a strong smell or flavor within thirty minutes
of the experiment. All participants gave written informed
consent that was approved by the University of Wisconsin
Institutional Review Board. Data of two subjects who could
not perform the task were removed from the dataset. Further
details can be found in [7].

[h]

Fig. 1. Experimental Paradigm. (A) Stimuli for the eight experimental
conditions. Primary olfactory stimuli were synthetic odors with the given
composition, see [7] for more details. (B) One example trial. Note: For
privacy and copyright concern the actual face and donut images have not
shown here. [7]

B. Stimuli

A factorial experimental design including two emotions
(disgust and neutral) × two sources (social and primary)
× two modalities (visual and olfactory) was employed as
stimulation to help subjects discriminate healthy and un-
healthy foods. Social olfactory stimuli (sweat) were collected
from fourteen healthy heterosexual Caucasian males1 who
provided informed consent similar to the female participants.
All sweat donors were non-smokers who had been asked to
avoid odorous food, alcohol, deodorants, scented products,
strenuous activity and sexual activity [2], [10]. In order to in-
duce emotions, sweat donors watched video clips containing
disgusting and neutral scenes. Primary (non-social) olfactory
stimuli were synthetic chemical odors which have been
used to induce disgust and neutral emotions. Face images
representing neutral or disgust emotions were used as social
visual stimuli. Animal images such as cockroaches and bugs
were used as disgusting primary visual stimuli. In contrast,
bird and fish images were used as neutral primary visual
stimuli. As mentioned earlier, in this study social and primary
stimuli were employed to induce disgust and as a conse-
quence influence food healthiness judgement. Therefore, a
set of food images including healthy foods (apple, juice and
multigrain bread) and unhealthy foods (donuts, cakes and
cookies) were selected from the Object Categories Set [12].
Figure 1 illustrates the experimental design. The paradigm
consists of eight experimental conditions and one control

1The authors of [7] took the conventional approach in human chemosen-
sory research by recruiting female subjects and male donors in the study.
While we understand this inclusion criteria serves to reduce the variance in
the sample and increase the chance to detect subtle social chemosignaling,
we also acknowledge the important problem of bias in scientific research,
which has long been recognised [11]. For this reason, any results will need to
be reproduced on a more diverse population to assess their external validity.



condition. To note, each experimental condition includes 12
trials. Participants performed a food judgement task at the
end of each trial. A grey fixation crosshair was presented for
2000ms when each trial started. In olfactory trials, the cue
“Sniff Now” was shown on the screen for 300ms followed
by a sweat or odor delivery for 2000ms. The screen remained
blank during the delivery of olfactory stimuli. In visual trials,
the cue “Watch Now” was shown on the screen followed by
a face or animal image for 2000ms. After stimulus delivery,
a food picture was presented on the screen for 700ms and
subjects were asked to make a two alternative forced choice
(“healthy” or “unhealthy”) using a button box. The ninth
condition is control condition which delivered clean air to
subjects. The order of stimulus was pseudo-randomized to
have repetitive conditions over trials. More details about the
stimuli can be found in [7].

C. fMRI acquisition and analysis

fMRI images were acquired using a 3T GE MR750 MRI
scanner by eight channel head coil with sagittal acquisition.
For each run of each participant, 655 volumes were scanned,
each one containing 48 slices. Pulse sequence parameters
were TR/TE=2350/20ms; flip angle=60◦; slice thickness:
2mm, in-plane resolution/voxel size: 1.72 × 1.72mm and
matrix size: 128 × 128. A high resolution structural image
was also scanned. The first six volumes were discarded
to stabilize longitudinal magnetization. Moreover, field map
data including phase and magnitude images were acquired
using a gradient echo sequence to correct EPI distortion
resulted from field inhomogeneity. Short and long TE for
this sequence were 7ms and 10ms, respectively. The total
readout time was 17.92ms and the blip direction was −1.

What follows presents details of the secondary fMRI
analysis that has been performed in the present study. All the
analysis, comprising fMRI preprocessing, blood oxygenation
level dependent (BOLD) detection, fMRI group analysis
and effective connectivity analysis was executed using the
SPM12 toolbox [13]. We began by replicating the standard
fMRI analysis of [7]. The first step consisted of standard
fMRI preprocessing. Our preprocessing pipeline included
slice time correction, movement correction, field map correc-
tion, co-registration with structural scans, normalization and
smoothing. In the first stage of preprocessing, slice time cor-
rection was performed with reference to the middle slice. It
should be noted that the slice order of each recorded volume
was top-down interleaved. In the movement correction stage,
fMRI volumes were spatially realigned to the first volume
of the session. Then, field map correction was applied to
realigned volumes for reducing distortions resulting from
magnetic field inhomogeneity. In this study, spatial normal-
ization and smoothing was performed with the Difeomorphic
Anatomical Registration Trough Exponentiated Lie algebra
(DARTEL) package implemented in SPM12. Smoothing was
performed using a 6mm full-width half maximum Gaussian
kernel. After preprocessing, the number of slices and voxel
size were changed to 91 slices and 2×2×2mm3, respectively.

In the second step, we conducted first level analysis to

detect the BOLD signal. A general linear model (GLM)
comprising of 9 onset vectors including 8 experimental
conditions and the clean air control condition was specified
for each participant. Onset vectors were coded as delta func-
tions and convolved with canonical hemodynamic response
function (HRF) with temporal and dispersion derivatives
to generate event-related regressors for fMRI analysis. Six
movement-related vectors estimated during spatial realign-
ment were also included in the model as nuisance regres-
sors to consider motion-related variance. After designing
the model, the parameters (β values) associated with each
predefined regressor were estimated.

In the third step of the fMRI analysis, the estimated
parameters were submitted to one-sample t-tests, resulting
in second-level analysis. Based on the previous results by
Zheng et al. [7], we focused on amygdala, orbitofrontal
cortex and fusiform face area (FFA) as regions of interest
(ROIs). For this purpose a set of anatomical masks were
defined based on Neurosynth meta analysis maps [14]. We
used the MarsBaR toolbox [15] to generate these anatomical
masks by defining a 8mm sphere around the peak voxels
reported in Neurosynth meta analysis maps. The main focus
of this work is on the neural processing associated with social
emotional signals. Therefore the contrast “Disgust Sweat
− Neutral Sweat” was considered for further analysis. In
second-level analysis, the effects of interest that reach a
heuristic threshold (i.e. p < 0.001, 10 voxel extent) are
corrected for multiple comparisons across small volumes
of interest (SVC; p < 0.05FWE) based on the predefined
anatomical masks. The results of this analysis is reported
in section III(A). The BOLD signals which were estimated
in regions of interest were then used to investigate effective
connectivity between the social and emotional areas of the
brain. In the next section, details of the DCM technique
employed to explore effective connectivity will be given.

D. Dynamic Causal Modeling

Dynamic causal modeling is a Bayesian framework pre-
dominantly used for inferring effective connectivity between
brain regions [16]. DCM considers the brain to be a de-
terministic dynamic system (i.e. a neural network). Experi-
mental stimuli (i.e. inputs) lead to changes in neural activity
and as a consequence perturb the state of this system. DCM
models variations of brain states based on the inputs and
measured brain activities. In particular, DCM estimates a
set of parameters including intrinsic, driving and modulatory
parameters. Intrinsic parameters characterise effective con-
nectivity between active brain regions. Effective connectivity
refers to direct causal influences among neural populations in
the network. Driving parameters refer to direct influence of
inputs to change activity in the brain regions. Modulatory
parameters characterise changes in the activity of neural
states resulting from experimental input manipulation.

In order to start a DCM process, neural populations
are selected between those active in the task-based fMRI
analyses of interest. These areas form the nodes of network
models of interacting neural populations. Figure 2 represents



Fig. 2. Illustration of the concept underlying dynamic causal modeling. In
our study, z1, z2 and z3 are FFA, Amg and OFC respectively and u1 and
u2 are driving and modulatory inputs respectively.

a general schematic illustration of causal dynamic model
considered in this study. Nodes z1, z2 and z3 represent
FFA, Amg and OFC respectively. In principle, the intrinsic
connections among these nodes which transfer influence
of activity from one node to connected nodes could be
bidirectional, one-directional, or null. u1 is driving input
which can have direct influence on single, multiple, or
no node(s). And u2 is the modulatory input that is either
nonexistent or able to modulate one or multiple nodes. It
should be noted that the mentioned nodes are outputs of the
dynamic network and produce observed brain signals which
are BOLD signals here. Different combinations of intrinsic,
driving and modulatory connections lead to generating dif-
ferent dynamic models. After specifying dynamic models,
parametrized differential equations describe the interaction
and neuronal dynamics of the network models. Then, taking
into account prior beliefs about the value the parameter can
assume and using the observed data, BOLD time series in
this case, the posterior distribution for each unknown param-
eter is estimated for each model using Bayesian optimization.
Finally, Bayesian model comparison is performed to select
the model that explains the data most accurately and has the
fewest parameters.

Figure 3 presents our proposed dynamic models which
were evaluated at the level of each subject. As can be
seen, the specified models use bidirectional endogenous con-
nections between all active regions during social-emotional
olfactory processing. In general, based on figure 2 there are a
large number of possible models with different combinations
of active areas and inputs. We tested different configurations
where the valence of social chemosignal directly affected the
different areas involved. However, the obtained results were
not consistent. Hence, following the literature [1], [7], we
only report models that emphasize the role of the FFA in per-
ceiving social chemosignals. Parameter estimation was then
performed for each specified model and for each participant.
In the last step, model comparison was implemented using
random-effect (RFX) Bayesian model selection in SPM12 to
find the best optimal model [17]. We computed exceedance

Fig. 3. Model specification for DCM analysis. A set of three regions DCM
model with bidirectional intrinsic connections between all active regions
with driving and modulatory inputs.

and posterior probability to find the best model. Exceedance
probability of a given model refers to the probability that the
model is more likely to be valid than any other examined
model for the given data.

III. RESULTS

A. BOLD Detection

Results of the group-level analysis of fMRI data are
provided in this section. As mentioned, the main aim of this
study is to examine networks involved in social and emotion
processing. Therefore, the contrast image of brain activation
based on “disgust sweat − neutral sweat” was estimated to
determine the BOLD response to social chemosignals. Then,
single subject contrasts were entered into a one-sample t-test
resulting in a group level statistical parametric map of the T
statistic. Sagittal, coronal and transversal views of detected
active areas from this fMRI group analysis are shown in
Figure 4. Consistent with previous literature, significant



(a)

(b)

(c)

Fig. 4. Estimated BOLD response for social emotional olfactory processing.
Group statistical parametric maps are superimposed on the group mean
structural image. (a) FFA, (b) OFC and (c) AMG

responses were observed in the right FFA, right amygdala
and right OFC. Table I presents more details, including the
coordinates, the Z-score and the number of active voxels of
each extracted BOLD signal. Active voxels are overlaid on
the high resolution structural image of the figure. Our exam-
ined contrast between disgust and neutral sweat revealed that
the brain will engage the FFA. This is in contrast to a primary
olfactory processing task which would be expected to involve
primary and higher order olfactory cortices and emotional
networks (i.e. PPC, OFC and Amygdala). The FFA is a
face processing area in the brain which is mainly responsive
during facial recognition tasks. It is remarkable that this
area is also engaged during human chemosignal processing,
even though in the olfactory conditions no face stimuli were
presented. We propose that this region is active because
human chemosignals communicate social information in a
similar way to faces. This implies that the FFA participates
in social perception in an amodal manner. Moreover, as can
be seen from the results presented in Table I, disgust sweat
also selectively activates the Amygdala and OFC. In general,

TABLE I
COORDINATE, Z SCORE AND NUMBER OF ACTIVE VOXELS OF BRAIN

RESPONSE TO SOCIAL CHEMOSIGNALS.

Region Talairach Coordinates Z Cluster Size
Fusiform Face Area (44,-44,-28) 2.60 105
Orbitofrontal Cortex (30,38,-18) 2.38 26

Amygdala (26,0,-28) 2.81 15

we were able to replicate the analysis of Zheng at al. [7]
on the same data and we now move on to our most novel
contribution which examines effective connectivity within
this neural network.

B. Effective Connectivity Analysis

The main aim of this research is to explore the effective
connectivity between nodes of the neural network underpin-
ning social-emotional processing. For this purpose, a subset
of possible dynamic causal models which are shown in
figure 2 were specified. Seven proposed dynamic models
shown in figure 3 were specified using the time series of
detected active areas for each subject. Then, parameters of
these models were estimated. In the final stage, Bayesian
model averaging (BMA) across all subjects and all models
was implemented. Figure 5 represents results of Bayesian
model averaging for specified models. The results of BMA
averaging showed that model number 2 outperforms other
models in terms of higher expected probability (0.2) and
higher exceedance probability (0.26). This model contains a
driving input from the social olfactory stimuli and bidirec-
tional connections between the key regions of interest. Most
importantly, it is distinguished by chemosignal modulation of
the connection from Amygdala to OFC. Averaged intrinsic
and input (includes driving and modulatory) parameters over
all subjects for this model are presented in Table II and Table

Bayesian Model Selection
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Fig. 5. Expected probability and exceedance probability for specified
models.



TABLE II
AVERAGE ESTIMATED PARAMETERS FOR THE INTRINSIC CONNECTIONS

IN THE WINNING DCM MODEL (MODEL 2).

Pathway Mean
FFA → OFC 0.043
FFA → AMG 0.074
AMG → OFC 0.093
AMG → FFA 0.085
OFC → FFA 0.064

OFC → AMG 0.077

TABLE III
AVERAGE ESTIMATED PARAMETERS FOR DRIVING AND MODULATORY

INPUTS IN THE WINNING DCM MODEL .

Chemosignal Input Type Mean
Disgust Driving 0.035
Neutral Driving 0.017
Disgust Modulatory 0.026

III respectively. The results suggest that social chemosignals
modulate the connection from AMG to OFC. The obtained
results for intrinsic connections highlight the importance of
connectivity between Amygdala and OFC (the main node of
olfactory processing) and FFA as the main node of social in-
formation processing. Positive parameters show that activity
in one region lead to increase activity in connected regions.
Specifically, the estimated intrinsic projection parameters
between Amygdala and FFA confirm the integrative role of
these areas in chemosignal processing. The modulatory effect
of disgust could have emerged at various different places in
this network. However, the results showed that it was the
pathway between the Amygdala and OFC which was being
modulated (not, for example, connections involving FFA).
This is interesting because it suggests an influence on activity
of the OFC which is a critical region for object appraisal and
evaluation, which would have been important in the food
judgement task. The estimated parameters for driving input
showed that disgust chemosignals increase the activity in the
FFA region.

IV. CONCLUSION AND DISCUSSION

This paper presents an fMRI study exploring effective con-
nectivity in a social-emotional task. After processing fMRI
data at both subject and group levels, a set of dynamic causal
models was implemented using extracted BOLD time series
from FFA, AMG and OFC regions. The obtained results by
fMRI and DCM analysis illustrated that FFA region is highly
involved in social chemosignal processing, consistently with
previous literature [1], [7]. More specifically, this region
showed strong variation of activity in different emotional
conditions (i.e. disgust and neutral). In contrast, lower level
olfactory sensory brain regions showed minor direct response
variation. This may be surprising as FFA is not as near to
the sensory signal as the AMG. However, AMG may be
involved in core processing for this task, which is common

across conditions and thus unlikely to change its overall
activation level on the basis of high level signals. On the
other hand, the FFA is strongly involved in higher level
social signal processing, e.g. faces, and so it is a good target
for a discriminative activation in response to such signals.
Social chemosignals also modulate on AMG connectivity to
OFC. In our future work, a more comprehensive study with a
higher number of possible models and contrasts is expected.
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