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Abstract—Rapid and accurate diagnosis of Alzheimer’s disease
(AD) is critical for patient treatment, especially in the early
stages of the disease. While computer-assisted diagnosis based
on neuroimaging holds vast potential for helping clinicians
detect disease sooner, there are still some technical hurdles to
overcome. This study presents an end-to-end disease detection
approach using convolutional autoencoders by integrating su-
pervised prediction and unsupervised representation. The 2D
neural network is based upon a pre-trained 2D convolutional
autoencoder to capture latent representations in structural brain
magnetic resonance imaging (MRI) scans. Experiments on the
OASIS brain MRI dataset revealed that the model outperforms
a number of traditional classifiers in terms of accuracy using a
single slice.

Index Terms—Alzheimer’s Disease, Deep Learning, Image
Classification, Autoencoder, MRI, Neuroimaging

I. INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease which progressively impairs cognitive func-
tions [1]. Clinical and neurological evaluations are an in-
tegral component of an accurate diagnosis considering the
complex nature of disease pathology [2], [3]. The integration
of neuroimaging can provide essential additional information
and therefore contribute to a more accurate and earlier AD
diagnosis. An emerging approach to support AD diagnosis is
the computer-assisted diagnosis of AD based on neuroimage
analysis [4], [5]. In neurodegenerative diseases research, the
clinical understanding of neuroimaging scans can be complex,
as brain modifications can be challenging to discern from
those due to healthy aging. Especially in the early stages of
an illness, detecting disease-related changes from magnetic
resonance imaging (MRI) scans could be extremely problem-
atic. Thus, in the last few years, there has been a research
interest in modeling the deviation of brain structure due to
neurodegeneration [6].

Among those, deep learning-based approaches quickly stand
out as they automatically discover discriminative features in
the training data collection even when the raw data is used as
input [7]. Here, in medical image analysis, one of the biggest
challenges is the high dimensionality of the input [8]. For
instance, even though there are only several hundred MRIs

in the Open Access Series of Imaging Studies (OASIS), each
image has more than six million dimensions (176 × 176 ×
208) [9].

In this work, to parse neuroanatomical alterations in AD, we
proposed an end-to-end deep learning approach based on deep
convolutional autoencoders (CAE) using MRI [10], [11]. An
autoencoder is an artificial neural network built to recreate its
input. Deep CAEs consist of two parts. The first component,
which is the encoding function of the model, learns how to
compress the original input in a latent representation. The
second part, known as the decoder, learns to recreate the
input data as near as possible to the original using the latent
representation. In this work, a 26-layer deep CAE model has
been used to retrieve a lower-dimensional representation of
the data, which contains all the important information needed
to describe the original data point. Then, those latent space
representations extracted from brain MRI data are used to
differentiate subjects with AD and mild cognitive impairment
(MCI) from healthy controls (HC). We are also searching
for cerebral atrophy patterns to discover the early changes in
the brain characterising AD. To this end, we visualised the
intermediate activations across different convolutional layers
to understand why the model makes certain decisions.

The rest of the paper is organised as follows: The following
section II briefly describes the related work in the literature. In
section III, the detailed methodology of the proposed frame-
work is presented. Section IV explains evaluation methods
and section V presents the obtained results and following
by discussion. Finally Section VI discusses the results and
Section VII concludes this work.

II. RELATED WORKS

A set of 2D slices extracted from the MRI volume was
used as input to 2D CNN architectures in various studies
for the purpose of AD diagnosis [12]–[19]. Among those,
not many studies explored the possibility of integrating CAE
into their framework to learn an efficient representation of
data. Martinez et al. [20] proposed a deep CAE architecture
to extract data-driven features and stated that in the case



Fig. 1. Overview of the proposed method.

of neuropsychological assessment variables like the Mini-
Mental State Exam (MMSE) or the AD Assessment Scale
(ADAS11) ratings, imaging-derived markers could forecast
clinical variables with correlations above 0.6 [21], [22]. In
2020, Oh et al. [23] used volumetric CAE-based unsupervised
learning for the AD vs. HC classification task, then applied
supervised transfer learning to solve the progressive mild cog-
nitive impairment (pMCI) vs. stable mild cognitive impairment
(sMCI) classification task. Basu et al [24] proposed a model
which consists of a 3D convolutional variational autoencoder
and a Multi-Layer Perceptron (MLP) to predict the likelihood
of the next disease label. Lastly, in 2021 Ferri et al. [25]
presented an ANN with stacked autoencoders to differentiate
AD and HC using resting-state electroencephalogram (rsEEG),
MRI, and rsEEG + MRI features.

III. PROPOSED METHODOLOGY

We propose an end-to-end AD diagnostic framework that
extracts latent representations for each class from a brain
MRI with a 2D-CAE, then performs classification with a
stacked CNN. The methodology is structured by two main
components: 2D CAE training/validation for latent space rep-
resentation and disease classification using latent represen-
tation, as shown in Figure 1. In section III-A we present
our data selection procedure together with the preprocessing
steps. CAE architecture and training strategy is illustrated
in section III-B, followed by our classification approach in
section III-C. Finally, visualisation of activations is described
in section III-D.

A. MRI preprocessing

The publicly available pre-processed version of OASIS
data (gain-field corrected, brain masked, and co-registration)
(Han et al., 2018) has been used in the experiments. In that
version, an atlas-registration-based method was used to create
the OASIS brain masks (Marcus et al., 2007). The Talairach
and Tournoux atlases were also used for co-registration of
each volume. The data matrix size of each pre-processed
T1-weighted volume was 176 × 208 × 176, and the voxel
size was 1mm × 1mm × 1mm (Han et al., 2018). From
these volumes, we selected the middle axial slice (the 106th)
as input for our models. In the work of Mendoza-Léon et
al. [26], it has been shown that this axial location corresponds
to the anatomical slice, which has a higher degree of disease-
associated information due to its high individual content-based
image retrieval performance. When the disease label was used
as the criteria of interest, the performance results are evaluated
by mean average precision values for axial plane [27]. This
finding was interpreted as an indication of a higher degree
of disease-related knowledge, making them good candidates
for a single-slice classification method. However, it should
be noted that the number of the selected slice is heavily
dependent on the dataset/atlas used. Mendoza-Leon et al. [26]
have been used the same dataset; therefore, we followed the
same procedure while selecting our single slice candidate.
Before feeding the network, the MRI slices in the dataset are
normalised in the range [0,1] to receive an unvaried contrast
and intensity range.



B. Convolutional autoencoder

Autoencoder is an unsupervised artificial neural network
that consists of two parts: an encoder and a decoder. While
the encoder tries to learn efficient representations of the input
in a reduced dimension, the decoder part of the network
reconstructs the input as close to the original as possible
using latent representation coming from the encoding part. In
other words, an autoencoder aims to learn an approximation
to the identity function by minimizing the reconstruction error
between input and output. In this work, the Mean Squared
Error (MSE) is used as reconstruction error between the
input image x and the reconstructed image at the output
x̂i = g(f(xi)) :

L =
1

N

∑
i

(xi − g(f(xi)))2 (1)

Autoencoders are mainly used for data dimensionality re-
duction and image denoising as well as learning latent repre-
sentations that can be used to generate novel data samples.

The number of convolutional layers, filter size of convolu-
tional layers, and convolutional kernel size are the three main
hyperparameters in the CAE. In our model, the encoder has
three convolution blocks, where each block has a convolution
layer (a kernel size of 3×3) followed by a batch normalization
layer. After the first and second convolution blocks, a max-
pooling layer (a kernel size of 2×2) is used to downsample the
output features of the convolutions. Whereas in the decoder,
there are two convolution blocks with convolutional layers
(a kernel size of 3×3) with ReLU activations and batch
normalization layers. Here, upsampling layers (a kernel size
of 2 × 2) are used after the first and second convolution
blocks. Moreover, batch normalization is used to standardise
the layer’s input for each mini-batch and stabilise the learning
process. The details of the network can be seen in Figure 2.

Fig. 2. Detailed architecture of the proposed convolutional autoencoder.

The given model is fit to the training data for 400 epochs
with a batch size of 32. Out of 200 subjects, we picked
140 (70 AD, 70 HC) for training the autoencoder. 20% of
the training data (28 subjects) were used as validation to
control model generalisation, and to interrupt training when
generalization stops improving. Thus, train data shape is (112,
176, 176, 1) whereas validation data shape is (28, 176, 176,
1). The remaining 60 subjects have been chosen to use in the

subsequent experiments for testing the full model with unseen
patients. We used a first-order gradient-based optimization
algorithm called Adam with adaptive learning rates (alpha =
0.0001, beta1 = 0.9, beta2 = 0.999).

C. Classification model

In the classification part, we used the exact same encoder
architecture that we used in the convolutional autoencoder
model. After the last convolutional layer of the encoder, there
is a ‘flatten’ layer in which the two-dimensional matrix of
features is flattened into a vector that can be fed into dense
layers. Flatten layer is followed by two dense layers with 256
and 128 nodes, respectively. A dropout of 0.2 was added to
the first dense layer together with ReLU activation. In the
output layer, the sigmoid activation function has been used.
In the training process, we first started by freezing the first
15 layers coming from the pre-trained autoencoder and train
only the dense layers. Then, we fine-tune all the layers in
the second stage. The model has been trained for 400 epochs
each time with a batch size of 32 using Adam optimizer with
a 0.001 learning rate. Binary cross entropy has been used as
a loss function. As overfitting was a big concern for us due
to our relatively complex model with a small dataset, dropout
regularization has been implemented to prevent the network
from overfitting.

D. Visualisation

In the literature, several methods for comprehending and
visualising convolutional networks have been created mostly
because to interpret the learned features in a neural net-
work [28]–[30]. In the context of our research, the activations
or, in other words, feature maps of the network during the
forward pass have been used. Feature maps are created by
applying filters to the input image or the feature map output of
the previous layers. The internal representations for the input
for each of the layers in the model are shown by visualisation.

The effect of applying the filters in the first convolutional
layer, as seen in Figure 3, is a variety of representations
of the axial brain image with various features illuminated.
Some draw attention to shapes, while some concentrate on
the background or the foreground. The feature maps closest
to the model’s input catch a lot of fine detail in the picture,
while the feature maps reveal less and less detail as we go
further into the model.

IV. EVALUATION

This section reports a detailed description of the dataset
together with the range of evaluation methods. In the subsec-
tion IV-A, we describe the data collection and dataset used in
the experiments in more detail, whereas in the subsection IV-B
model training and validation strategies are presented.

A. OASIS dataset description

In this study, we use the Open Access Series of Imaging
Studies (OASIS) dataset1, which is publicly available [9]. The

1https://www.oasis-brains.org/



Fig. 3. Visualisation results of selected convolutional layer feature maps. First row, from top to bottom: first, second and third convolutional layers. Second
row, from top to bottom: fourth, fifth and sixth convolutional layers.

T1-weighted images of 100 AD patients and 100 HCs have
been selected from the OASIS-1 study – a cross-sectional
cohort of the OASIS brain MRI dataset (Marcus et al., 2007).
In the dataset, there was no substantial difference in age
(p = 0.15 at t-test), but there was a significant (borderline)
difference in gender (p = 0.04 at χ2-test) between the two
classes. The clinical characteristics of the subjects included in
this study are summarised in Table I. T1-weighted images were
acquired on a 1.5 T MR scanner (Vision, Siemens, Erlangen,
Germany) in the sagittal plane using a Magnetization Prepared
Rapid Gradient Echo (MPRAGE) series.

The global Clinical Dementia Rating (CDR) score derived
from individual CDR ratings is used in OASIS-1 to assess the
diagnosis of AD as well as the seriousness of the disorder.
On the Clinical Dementia Rating (CDR) scale, MCI is staged
at the 0.5 mark. In the scope of our experiments, HCs had
the clinical dementia rating (CDR) scores 0, while scores of
0.5 (very mild), 1 (mild), 2 (moderate), and 3 (severe) were
all labeled as AD, making classification task more challenging
compared to AD vs. HC.

TABLE I
DEMOGRAPHIC FEATURES OF SUBJECTS BELONGING TO OASIS DATASET.

OASIS Patients Healthy controls
Number of subjects 100 100
Age (range,years) 62-96 59-94
Age (mean ± SD, years) 76.70 ± 7.10 75.50 ± 9.10
Gender (women/men) 59/41 73/27

B. Model training and validation

The MSE (see Equation 1) has been used as an evaluation
measure to show how well the AE is capable of reconstructing
unseen images. Moreover, in the scope of this experiment, the
peak signal-to-noise ratio (PSNR) has been calculated as a
quality measurement between the original and a reconstructed
image. A measure of image quality is required when com-
paring reconstructed outcomes. MSE and PSNR ratio are two
widely used metrics. One drawback of MSE is that it is highly
dependent on image intensity scaling. By scaling the MSE
according to the image range, PSNR prevents this problem,
and it is calculated as:



PSNR = 10 log10
MaxI

2

MSE
(2)

where MaxI is the maximum pixel value.
To measure the prediction performance of the model, accu-

racy and F1 score have been used as evaluation metrics.
The model has been evaluated using an independent test

set. The average accuracy is obtained by repeating the full
experimentation five times. The architecture was built using
Keras (v2.3.1) with TensorFlow backend (v2.0.0) [31], [32].
The training and validation of CNN models were performed
on a workstation equipped with an NVidia RTX2080 GPU.
The average computational time for model training was 3.2
hours.

V. EXPERIMENTAL RESULTS

In this section, the detailed performance of the end-to-
end stacked autoencoder model is reported together with the
disease prediction performance.

Fig. 4. Sample test images (above) and reconstruction of test images (below).

1) Reconstruction capability: The image quality of the
restored image increases as the PSNR grows. In our ex-
periments, we achieved 33.34 dB PSNR of reconstructed
validation images. The visualisation of sample test images and
reconstructed test images can be seen in Figure 4.

2) Performance of the classification: The mean percentage
± standard deviation of accuracy, over 400 iterations are re-
ported in Table II. The autoencoder-based classification model
achieves 74.66 ± 0.01 with an F1 score of 0.66.

TABLE II
CLASSIFICATION PERFORMANCE ON THE TEST SET. THE MEAN

PERCENTAGE ± STANDARD DEVIATION OF ACCURACY AND F1 SCORE ARE
LISTED.

Model Parameters Accuracy F1- score

CAE+NN 723,905 74.66 ± 0.01% 0.66

VI. DISCUSSION

We used a single 2D slice of MRI volume for each subject
in our framework, which provided many functional benefits.
First, it reduced the computational time and resources drasti-
cally as the processing complexity, and memory bandwidth
demands of 2D CNN models are smaller than 3D CNN
models. Second, by using 2D MRI slices, clinical researchers

could take advantage of the most recent CNN architectures,
which are often implemented in 2D due to the availability of
large 2D image datasets such as ImageNet, CIFAR, and so on.

Given the scale of the networks and the small amount of
data used, overfitting was a major concern for us. In order to
prevent the network from overfitting, the dropout method is
implemented. Moreover, during the experiments, we realised
that after epoch 400, the error on training data kept decreasing,
whereas validation loss started to increase to a considerable
value. Thus, early stopping is employed to avoid overfitting
during training.

MCI patients are considered to be at a higher risk of de-
mentia, so they are included in our research. MCI is clinically
challenging to distinguish from cognitively stable HC. Thus,
in most AD diagnosis frameworks, they are not added to
the dataset, which explains the higher accuracy reported in
previous works [20].

Compared to other methods where multiple MRI slices
are used with well-known deep 2D CNN architectures such
as VGG16 and ResNet50, the proposed method outperforms
in terms of diagnosis accuracy [18] (In that work, VGG16
model achieved 64.3% whereas ResNet50 obtained 67.1%
using transfer learning). The experimental results show that
when latent representations are learned in a way that promotes
sparsity, classification accuracy improves [33].

VII. CONCLUSION

An early and precise AD diagnosis is needed, and an au-
tomated diagnostic tool helped by neuroimaging data analysis
would offer a more detailed and effective solution, as well
as potentially increase diagnostic precision. In this paper, we
presented a CAE-based deep learning method for classify-
ing AD+MCI vs. HC subjects using single 2D brain MRI
slices. Experimental results on the test set demonstrated the
effectiveness of the proposed method in the classification of
AD+MCI vs. HC. As far as classification accuracy is con-
cerned, our approach outperforms the conventional approach
where deep CNNs use whole MRI slices as input instead
of the latent representations [18]. By integrating supervised
prediction and unsupervised representation together, the model
achieves 74.66% classification accuracy using only one MRI
slice for each subject. As future work, we will extend our
current model to 3D to extract volumetric latent representation
for MCI and HC classification while trying to expand our
datasets and perform a deeper analysis.
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