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Abstract

We provide a utility representation theorem for the revealed preference of
an agent choosing in an arbitrary space endowed with a separable partial
order. The result can be applied to construct new revealed preference tests
for choices over infinite consumption streams and probability distribution
spaces, among other cases of interest in economics. As an illustration, we
construct revealed preference tests for best-responding behavior in strategic
games and infinite horizon consumption problems.
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1. Introduction

We provide a necessary and sufficient revealed preference condition for
an observed set of choices to be generated by maximization of a utility func-
tion. The condition only requires the space to be endowed with a separable
partial order. Our result extends the scope of applications of revealed pref-
erence tests to spaces which are not covered by existing results, including
infinite consumption streams and probability distributions (including mixed
strategies in games). We illustrate our approach by constructing a revealed
preference test for best-responding behavior in strategic games and infinite
horizon consumption problems.

Starting with Samuelson (1938), Richter (1966), and Afriat (1967), re-
vealed preference literature seeks to test whether an observed set of choices
can be consistent with maximization of a utility function. The central
premise is that we can only observe choices and not the entire preference rela-
tion. Revealed preference theory allows data to speak for itself and therefore
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avoids the problem of parametric misspecification of preferences. Chambers
and Echenique (2016) offer a general review of the revealed preference ap-
proach and its use for testing theories of individual behavior.

There is a growing interest in developing a comprehensive approach to re-
vealed preference that can be applied in a wide variety of contexts of interest.
There are two related strands of research. The first of them deals with pref-
erence extensions in an abstract setting. Suzumura (1976), Duggan (1999),
and Demuynck (2009) provide preference extension theorems and their links
with consistency conditions in terms of revealed preferences. A drawback
of using a completely abstract framework is obtaining a preference relation
which may not be representable by a utility function.

The second strand of literature generalizes the classical result of Afriat
(1967). In this line, Forges and Minelli (2009) generalizes the applicability
of the Afriat test to nonlinear budget sets. Nishimura et al. (2017) extends
Afriat results to general topological spaces instead of the standard assump-
tion of a real hyperplane. A fundamental assumption behind results in this
line of research is local compactness of the topological space. This assump-
tion does not necessarily hold for important settings like the spaces containing
infinite consumption streams and probability measures.

This paper attempts to close the gap between the two strands of litera-
ture. In particular, we construct an extension of the revealed preference that
can be represented by a utility function under the minimal assumption of
separability of the partial order associated to the space of alternatives. This
assumption is similar to making the separability assumption over the natural
topology of this order.1

The remainder of this paper is organized as follows. Section 2 contains
the basic definitions. Section 3 shows the main result and it’s applications.
Section 4 provides concluding remarks. All proofs omitted in the text are
collected in an Appendix.

1Formally, our assumption is even weaker since the topology we require to be separable
can be coarser (smaller).

2



2. Preliminaries

Consider a partially ordered space2 (X,≥) representing the universal set
of alternatives. Denote by >⊆≥ the strict part of ≥, that is the part that
is asymmetric3 and transitive. A partial order ≥ is said to be separable if
there is a countable set Z ⊆ X such that for every y > x there is z ∈ Z such
that y ≥ z ≥ x.4 A utility function u : X → R is said to be monotonic if
x ≥ y implies u(x) ≥ u(y) and x > y implies u(x) > u(y).

Let B be a collection of subsets over X, representing possible budget sets.
Denote by C : B → 2X a choice correspondence over B assigning to each
B ∈ B a nonempty set C(B) ⊆ B. Further we refer to C(B) =

⋃
B∈B

C(B) as

to the collection of all chosen points. A data set is a tuple (B, C) that assigns
choices to every budget from a collection. A data set (B, C) is rationalizable
if there is a monotonic utility function u : X → R such that u(x) ≥ u(y) for
every y ∈ B and x ∈ C(B) for every B ∈ B.

Denote by

B≥ = {y ∈ X : there is x ∈ B such that y ≤ x}

the downward closure of budget B, and by

B> = {y ∈ X : there is x ∈ B such that y < x}

the interior of the downward closure of B.

Definition 1. A data set (B, C) satisfies the Generalized Axiom of Re-
vealed Preferences (GARP) if for every sequence x1 ∈ C(B1), . . . , xn ∈
C(Bn), B1, . . . , Bn ∈ B,

xt+1 ∈ B≥t for every t = 1, . . . , n− 1 implies x1 /∈ B>
n .

2A partially ordered space is a set X equipped with a partial order ≥, that is a binary
relation ≥⊆ X × X that is reflexive (∀x ∈ X x ≥ x), antisymmetric (∀x, y ∈ X x ≥
y & y ≥ x⇒ x = y) and transitive (∀x, y, z ∈ X x ≥ y & y ≥ z ⇒ x ≥ z).

3A binary relation is said to be asymmetric if x ≥ y implies y 6> x for every x, y ∈ X.
4This condition is sometimes referred as Debreu separability in the literature (see e.g.

Herden and Levin, 2012) in order to avoid confusion with the stronger condition of Cantor
separability.
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3. Results

3.1. A general revealed preference condition

Theorem 1. Let X be a space of alternatives endowed with the separable
partial order ≥. A data set (B, C) is rationalizable if and only if it satisfies
GARP.

The starting point for the proof of the theorem is an argument from the
preference extension literature. We consider revealed preference as an in-
complete preference relation, and show that there is a converging algorithm
leading to a complete preference relation. Moreover, the algorithm guaran-
tees the limit preference relation is transitive and separable, which guarantees
the existence of a utility representation (see Debreu, 1954). While our def-
inition of GARP incorporates monotonicity, the algorithm can incorporate
other desiderata such as homotheticity and quasi-linearity.

3.2. Revealed best responses

Let I = {1, . . . , k} be a set of players, let Si be a countable set of pure
strategies available to player i ∈ N , let S = ×i∈ISi be the set of strategy
profiles, and let φi : S → R be the monetary payoff function of player i ∈ I.
Abusing terminology, we refer to the triple G = 〈N,S, (φi)〉 as a game form,
though we have specified only the monetary payoffs of the players, not their
actual (unobserved) utility payoffs. From now on we assume that players are
concerned exclusively with their own monetary payoffs – the more money the
better.

Let σi ∈ 4(Si) be a finite support mixed strategy for player i ∈ I, and
let σ = ×i∈Iσi be a profile of mixed strategies. By finite support we mean
that each mixed strategy only uses a finite number of pure strategies with
positive probability. Each profile of strategies induces a profile of lotteries
over monetary payoffs – a single lottery for each player. We denote by Li

the space of monetary lotteries for player i generated by profiles of mixed
strategies. Since we consider only countable sets of strategies we can restrict
our attention to the space of lotteries with countably many outcomes.

We can describe the lottery over monetary payoffs for player i induced
by σ by its cumulative distribution function Fi,σ : R → [0, 1]. Note that
Fi,σ satisfies the usual properties, i.e., it is nondecreasing, right-continuous,
and satisfies lim

x→−∞
Fi,σ(x) = 0 and lim

x→+∞
Fi,σ(x) = 1. A lottery Fi,σ first-

order stochastically dominates a lottery Fi,σ′ (denoted by Fi,σ ≥FSD Fi,σ′)
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if Fi,σ(x) ≤ Fi,σ′(x) for every x ∈ R. Next we define the strict first-order
stochastic dominance relation. Let Fi,σ >FSD Fi,σ′ if Fi,σ(x) < Fi,σ′(x) for
every x such that 0 < Fi,σ(x) < 1. Bringing back the framework to the
revealed preference setup, we only need to consider unilateral deviations to
investigate best-responding behavior. The budget set from which a player
makes a choice is determined by the strategies of other players. Let

Bi = {Fi,σi,σ−i
∈ Li : σi ∈ 4(Si)}

given σ−i ∈ 4(S−i). We denote the downward closure of the budget set by

B≥FSD
i = {Fi ∈ Li : there is F ′i ∈ Bi such that F ′i ≥FSD Fi}

and the strict downward closure by

B>FSD
i = {Fi ∈ Li : there is F ′i ∈ Bi such that F ′i >FSD Fi}.

Next, we define the data set. We observe a collection of mixed strategy
profiles from a collection of games. Given a game Gt, the actions of other
players σt−i and the strategies available to a player i ∈ I determine the
player’s budget set Bt

i .
Let us briefly explain which parts can and what cannot vary within the

data set. First, we keep the universal set of strategies Si and therefore
universal strategy profiles to be constant as well as the universal mapping
φi : Si → R from strategies to the payoffs.5 Hence, an instance of a game
can be uniquely determined by selecting a subset of strategies for each player
Sti for every i ∈ I. This subset would define the corresponding subset o
strategy profiles and payoffs. We keep the number of players to be fixed for
the simplicity of the argument, but in general even that can change.

Hence, a data set can be defined as a triple D = {(Gt, σt, Bt
i)}t∈T . A

data set is said to be rationalizable with best-responding behavior
for player i if there is a monotonic utility function Ui : Li → R such that
Ui(Fi,σt

i ,σ
t
−i

) ≥ Ui(Fi,σ′i,σt
−i

) for every σ′i ∈ 4(Sti ) for every observation t ∈ T .
Note that we do not require expected utility maximization.

5There is no restriction coming with this assumption, because if one wants to add a
different payoff to the strategy profile then it is enough to add the instance of strategy to
the universal set.
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Corollary 1. The data set D = {(Gt, σt, Bt
i)}t∈T is rationalizable with best-

responding behavior for player i if and only if for every sequence 1, . . . , n ∈ T
such that

Fi,σt+1 ∈ [Bt
i ]
≥FSD for every t ∈ {1, . . . , n− 1} implies Fi,σ1 /∈ [Bn

i ]>FSD .

The condition in Corollary 1 adapts GARP to this framework.6 Moreover,
this condition is necessary as long as we observe only an approximation of
the mixed strategies. If we could observe the actual mixed strategies adopted
by every player, then testing best-responding behavior for every player i ∈ I
would result in a test of equilibrium play.

We are not the first to present revealed preference conditions for games.
The literature can be roughly split into two strands. The first strand starts
with Sprumont (2000), who assumes that observations go beyond just the
group choice from the game. In particular, Sprumont requires observing
the projections of the game. This idea has been developed further by Lee
(2012), who provides revealed preference conditions for equilibrium play in
zero-sum games and Ray and Zhou (2001) and Ray and Snyder (2013), who
provide conditions for Nash and subgame perfect equilibrium rationalization
in dynamic games. The second strand in the literature assumes that we
only observe group choices, but concentrates in particular classes of games.
In this line, Carvajal et al. (2013) characterize revealed preference implica-
tions for Cournot competition, Chambers and Echenique (2014) develop tests
of consistency with different bargaining theories, Agatsuma (2016) provides
conditions for the core in transferable utility (market) games, and Cherchye
et al. (2017a) and Cherchye et al. (2017b) provide criteria for the stability of
marriage market.

In a sense, we combine both approaches. We deal with a collection of
arbitrary games and provide conditions for mixed strategy best-responding
in the collection of games. Hence, on the one hand, we operate at a level of
generality which is closer to the first strand. On the other hand, as in the
second strand, we require to observe only group choices albeit in different
games.

6GARP in this case implies that choice is undominated (Fi,σt /∈ [Bt
i ]
>FSD ), which

follows from taking the trivial sequence t1, t2 such that t1 = t2.
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3.3. Intertemporal consumption
Denote by T ⊆ N the time horizon along which the agent makes her

decisions. Denote by X ⊆ R|T | the vector of intertemporal consumption
streams. We assume that for every x ∈ X there is a time period after which
the agent “retires”, that is the her consumption stream stabilizes. That is,
for every x ∈ T there is tr such that xt = xtr for every t ≥ tr. We define
a partial order as x ≥ x′ if xt ≥ x′t for every t ∈ T . The strict part of the
partial relation is defined as x > x′ if xt > x′t for every t ∈ T . Note that in
general the time of “retirement” may differ between different observations.

Given the defined space restriction and partial order, we are ready to set
up the consumption problem and rationalizability problem for this setting.
An agent makes a choice from a compact set B ⊆ X. Let B a collection of
compact budget sets and C : B → X be the choice function that corresponds
to the observed choice from budgets. The dataset is a tuple (B, C); that is,
a collection of choices from budget sets. We denote the downward closure of
the budget set by

B≥ = {x ∈ X : there is x′ ∈ B such that x′ ≥ x}

and the strict downward closure of the budget set by

B> = {x ∈ X : there is x′ ∈ B such that x′ > x}.

Finally, we can define rationalizability of the data set with utility over con-
sumption streams. A data said is said to be consumption stream ra-
tionalizable if there is a monotone utility function U : X → R such that
U(C(B)) ≥ U(x) for every x ∈ B and every B ∈ B.

Corollary 2. A data set is consumption stream rationalizable if and only if
for every sequence x1 ∈ C(B1), . . . , xn ∈ C(Bn), B1, . . . , Bn ∈ B,

xt+1 ∈ B≥t for every t = 1, . . . , n− 1 implies x1 /∈ B>
n .

4. Concluding remarks

We conclude by making some remarks about the connection of our work
to existing results. First, we show why the construction of Nishimura et al.
(2017) cannot be applied to our setting once we drop the local-compactness
assumption. Second, we show that our work generalizes some of the results
from Reny (2015) by allowing the experiment to be infinite. Third, we link
our work to the literature on utility representation of incomplete partial
orders.
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4.1. Continuity and topological assumptions

The result of Nishimura et al. (2017) relies on the Nachbin (1965) ex-
tension theorem, which requires (local-)compactness of the space in order to
obtain a continuous utility function.7 We do not assume local-compactness of
the space of the alternatives. Therefore, Nachbin (1965) extension theorem
cannot be applied directly to our setting. Further we show why compact-
ness is deeply linked with continuity. Let us show the intuition behind the
fact that a continuous partial order8 in the compact Hausdorff space can be
represented by continuous utility function. The key idea is to find disjoint
increasing and decreasing9 open supersets for every two sets (F1, F2) such
that none of the elements in the first set (F1) is greater than element in the
second one (F2). These two sets play the role of upper and lower contour
sets.

The construction of the open sets F1, F2 relies on the compactness of the
space. In particular, there are two crucial implications of compactness of
the Hausdorff space. First, for every two closed disjoint sets there are open
disjoint neighborhoods of these sets.10 Second, a crucial property is that F1

appears to be a compact set as well. This fact implies that it can be covered
by the union of decreasing open neighborhoods of a finite amount of points.
Moreover, the intersection of the increasing neighborhoods of these points
covers F2. Hence, it is essential to have a finite amount of neighborhoods to
make sure that the cover of the F2 is open.11 At the same time the finiteness
of cover-generating open neighborhoods is a consequence of the compactness

7To be precise, Nishimura et al. (2017) uses the Levin (1983) theorem. Although the
intuition is the same, considering the Levin (1983) theorem would further complicate the
explanation without adding extra intuition of what goes wrong with the construction of
the continuous utility function without compactness of the space assumption.

8A partial order is said to be continuous if lower and upper contour sets of > are open
set. Formally lower contour set can be defined as L>(x){y : y > x} and upper contour set
can be defined as U>(x){y : y > x}.

9Both properties should be defined with respect to binary relation �. Increasing means
that if x ∈ F , then every x′ such that x′ � x implies that x′ ∈ F . Decreasing means that
if x ∈ F , then every x′ such that x � x′ implies x′ ∈ F .

10This observation is a consequence of the fact that compact Hausdorff spaces are nor-
mal.

11Recall that to guarantee the continuous utility representation of the complete and
transitive preference relation it is important to ensure that this relation is continuous as
well. That is, all strict upper and lower contour sets are open.
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of the space.
Hence, the proof used in Nishimura et al. (2017) and Nachbin (1965)

relies on local-compactness of the space, while our result does not require this
assumption and requires only separability of the space if the partial order is
continuous. In addition we need to assume that the space is connected, that
is there are only two sets which are closed and open empty set and X itself.

Corollary 3. Let X be a connected and separable space endowed with a
continuous partial order ≥. A data set (B, C) is rationalizable if and only if
it satisfies GARP.

In light of Corollary 3, one can think that the assumption of stabiliza-
tion of consumption we made above is unnecessary. Similarly, one can think
of generalizing the result for mixed strategies. This idea may result from
Hewitt-Marczewski-Pondiczery theorem which implies that RN (and RR in
general) is a separable space. Hence, one can think of employing the conti-
nuity of the partial order ≥ in the separable space RN to show that the par-
tial order is separable (as product of continuous orders in connected spaces).
However, this result is not applicable because it relies on the product topology.
In order to ensure the continuity of the order ≥, we need to endow the space
with the box topology, which is finer than product topology. To illustrate
this point, let us simply refer to the definition of the product topology. Let
(Xi, τi)i∈I be an infinite family of topological spaces. The product topology
contains open sets such as

U =
∏
i∈I

Ui,

where each Ui is open in Xi, but Ui 6= Xi for only finitely many i ∈ J ⊂ I.
Note that this definition would imply that we can only ensure the continuity
of the order which compares no more than finite amount of elements in the
infinite vector. The box topology relaxes the assumption of finitely many
Ui 6= Xi and proceeds with any product of open sets. However, there are
rather strong negative results for the box topology on the product of the sets.
For instance, no infinite box product of nondegenerate Hausdorff spaces is
separable. Summing up, one can see the requirements of finite support for
the mixed strategies or stabilization of the infinite stream of consumption
aimed at making sure that the partial order is not too large to be continuous
in the product topology.
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4.2. Size of the data set

Note that we do not make any assumption about the size of the data set,
and still obtain a monotone utility representation of the revealed preference
ordering. Hence our results is a generalization of Theorem 1 and Proposition
6 in Reny (2015) which provide a utility representation of a consistent re-
vealed preference relation over the real hyperplane for a data set of arbitrary
size. We show that a similar result holds for an arbitrary space endowed with
separable partial order where data set contains arbitrary budgets. Examples
I and II in Reny (2015) show that if data set is rationalizable and at least
countable then there are data sets which cannot be rationalized by upper-
or lower-semicontinuous utilities. Hence, our utility representation result is
tight with respect to the size of the observed data set.

4.3. Representation of partial orders

Our paper is indirectly connected to the literature dealing with the rep-
resentation of partial orders. The closest result in this direction is the one
of Herden and Levin (2012), who relax the assumption of separability of the
partial order and still obtain a utility representation.12 However, we are not
only seeking to represent the partial order ≥ but find a representation which
is also consistent with revealed preference relation. Thus, we need to look at
the transitive closure of the union of these relations, which does not have to
be separable. Our starting point is constructing a separable extension of this
relation. Hence, our main result can be considered as a further weakening of
separability conditions for the partial order to be utility representable.

Appendix A. Proofs

Before we proceed with the proof, let us introduce some additional nota-
tion. We first lay out basic definitions related to the preference relations and
extensions. Next, we present the nomenclature and supplementary results
for the transitive closure as a function over preferences. Finally, we present
the formal proof of Theorem 1.

12Part of our proof could be simplified using the result of Herden and Levin (2012).
We prefer to present a full proof to provide a better insight of the properties of tran-
sitive closure which make it possible to construct utility representable extension. This
decision allows the reader to think about other possible desiderata (e.g., homotheticity or
quasilinearity) to which a similar result can be applied.
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Appendix A.1. Preferences and extensions

A set R ⊆ X ×X is said to be a binary relation. We denote the reverse
relation by R−1 = {(x, y)|(y, x) ∈ R}. We denote the symmetric (indifferent)
part of R by I(R) = R ∩ R−1 and the asymmetric (strict) part by P (R) =
R \ I(R). We denote the incomparable part by N(R) = X ×X \ (R ∪R−1).
A binary relation that is reflexive, i.e. (x, x) ∈ R for every x ∈ X, is said to
be a preference relation. We denote the set of all preference relations on X
by R.

Note that
≥≡ {(x, y) ∈ X2 : y ≤ x}

is a preference relation, with

>≡ {(x, y) ∈ X2 : y < x}

being its strict part.

Definition A.1. A preference relation R satisfies:

– completeness if (x, y) ∈ R ∪ R−1 for all x, y ∈ X (or equivalently
N(R) = ∅).

– transitivity if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R for all
x, y, z ∈ X.

– monotonicity if ≥⊆ R and >⊆ P (R).

– Z-separability if there is a countable Z ⊆ X such that (x, y) ∈ P (R)
implies that there is z ∈ Z such that (x, z), (z, y) ∈ R.

As we already mentioned, Theorem 1 is a preference extension theorem.
Hence, in order to proceed further we need to formally define a preference
extension.

Definition A.2. A preference relation R′ is an extension of R, denoted
R � R′, if R ⊆ R′ and P (R) ⊆ P (R′).

We say that R is consistent with R′ if P−1(R) ∩ R′ = ∅. Next we show
that preference relation R′ is an extension of R ⊆ R′ if and only if R is
consistent with R′. Consistency is an operationalizable version of extension
which will be extensively used further.
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Lemma A.1. Let R ⊆ R′. R � R′ if and only if P−1(R) ∩R′ = ∅.

Proof. (⇒) Assume P−1(R) ∩ R′ 6= ∅, then there is (x, y) ∈ P−1(R) ∩ R′.
That is (y, x) ∈ P (R) and (x, y) ∈ R′. At the same time R � R′ implies that
(y, x) ∈ P (R′), that is a contradiction.

(⇐) Assume that R ⊆ R′ but R � R′, that is P (R) * P (R′). Hence, there
is (x, y) ∈ P (R) and (x, y) /∈ P (R′). At the same time R ⊆ R′ implies that
(x, y) ∈ R′. Therefore, (y, x) ∈ R′, because (x, y) ∈ I(R′) = R′ \ P (R′).
Hence, (y, x) ∈ P−1(R) ∩R′ 6= ∅.

Appendix A.2. Transitive closure as function over preferences

Let T : R → R be the transitive closure, defined by (x, y) ∈ T (R) if and
only if there is a finite sequence x = s1, . . . , sn = y such that (sj, sj+1) ∈ R.
The transitive closure is an example of a function over preference relations,
which we develop in what follows.

Lemma A.2 (Demuynck (2009)). R = T (R) if and only if R is transitive.

Definition A.3. For any given function F : R → R, we let

– RF = {R ∈ R|R � F (R)},

– RZ
F = {R ∈ R and R is Z-separable |R � F (R)}.

RF is a set of preferences which are consistent with F , that is every
R ∈ RF can be extended by taking F (R). RZ

F is a set of consistent with
F preference relations which are also Z-separable. Next, we define a set of
properties of function over preference relations which guarantee existence of
complete fixed point extension of every consistent preference relation which
can be represented by a utility function.

Definition A.4. A function F : R → R is said to be

– monotone if R ⊆ R′ implies F (R) ⊆ F (R′) for all R,R′ ∈ R,

– closed if R ⊆ F (R) for all R ∈ R,

– idempotent if F (F (R)) = F (R) for all R ∈ R,

– algebraic if for all R ∈ R and all (x, y) ∈ F (R), there is a finite
relation R′ ⊆ R such that (x, y) ∈ F (R′),
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– expansive if for every R = F (R) such that N(R) 6= ∅, there is a
nonempty set S ⊆ N(R) such that R∪S ∈ RF and P (R) = P (R∪S),13

– transitivity-inducing if T (F (R)) = F (R) for every R, equivalently,
every F (R) is transitive relation.

– separability-preserving with respect to some countable set Z,
if R ∈ RZ

F then F (R) ∈ RZ
F .

The first four properties define an algebraic closure (see Demuynck, 2009).
Further we refer to a function which satisfy all of the properties above as
a rational closure. Results stated below hold for rational closures and
sometimes even for wider classes of the functions over preference relations.
As we show below, the transitive closure is rational.

Lemma A.3. T is a rational closure.

For the proof that T is an algebraic closure as well as for the proof that ev-
ery fixed point of transitive closure is transitive see Demuynck (2009). Since
every fixed point of T is transitive (see Lemma A.2), then T is transitivity-
inducing. Hence, it remains to be shown that T is expansive and separability-
preserving.

Proof.

T is expansive
Consider a relation R = T (R) and assume that N(R) 6= ∅. Take any element
(x, y) ∈ N(R) and consider the relation R′ = R ∪ {(x, y), (y, x)}. We claim
that R′ � T (R′), which would prove that T is expansive. R′ ⊆ T (R′) since
T is closed. Therefore, we left to show that P (R′) ⊆ P (T (R′)). Assume,
on the contrary, that there are elements z and w for which (z, w) ∈ P (R′)
and (w, z) ∈ T (R′). Note that (x, y) 6= (z, w) 6= (y, x) since (z, w) ∈ P (R′)
and (x, y), (y, x) ∈ I(R′). From the definition of T , we know that there is
some finite sequence s1, . . . , sn such that s1 = w, sn = z, and (sj, sj+1) ∈ R′
for each j = 1, . . . , n − 1. Let m be the minimal (integer) length of such
sequence, and let S be any such sequences of length m.

13Equivalently one can just say that S = I(S). We use less straight-forward definition
since that is the implication we actually need in the proof.
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Given a sequence S as described above, there is some j such that either
(sj, sj+1) = (x, y) or (sj, sj+1) = (y, x) for some 1 < j < m − 1; otherwise
(w, z) ∈ T (R) = R, contradicting (z, w) ∈ P (R′). Suppose without loss of
generality that (sj, sj+1) = (x, y) for some 1 < j < m − 1; then there is
no k 6= j such that (sk, sk+1) = (y, x) or (sk, sk+1) = (x, y), otherwise S
would not be a shortest sequence that connects w and z such that every
consecutive pair is in R′. Since (z, w) ∈ P (R′), we have (z, w) ∈ R′. Now
consider the finite sequence y, sj+2, . . . , sm−1, z, w, s1, . . . , sj−1, x. Every pair
of consecutive elements of the sequence is in R′ and is different from (x, y)
and (y, x), so every pair of consecutive elements of the sequence is in R. Then
(y, x) ∈ T (R) = R, contradicting (x, y) ∈ N(R).

Finally, let us note that P (R′) = P (R) since we only added the indiffer-
ent comparison between x and y to the preference relation, i.e. R′ = R ∪ S,
where S = I(S). Given that R′ = I(R′) ∪ P (R′) (by construction of the
sets), it is immediate that P (R′) = P (R).

T is separability-preserving
Take Z such that R is Z-separable. Take (x, y) ∈ P (T (R)). Then there is a
sequence x = s1, . . . , sn = y such that (sj, sj+1) ∈ R for all j = 1, . . . , n − 1
and an index k such that (sk, sk+1) ∈ P (R). Z-separability of R implies that
there is z ∈ Z such that (sk, z), (z, sk+1) ∈ R. Moreover, by construction,
(x, z), (z, y) ∈ T (R). Hence, T (R) is also separable.

Lemma A.4. For every R,R′ ∈ R, T (T (R) ∪ T (R′)) = T (R ∪R′).

Proof. Since T (R) is closed, then R ⊆ T (R) and R′ ⊆ T (R′). Since T (R) is
monotone, then T (R ∪ R′) ⊆ T (T (R) ∪ T (R′)). Hence, we are left to show
that T (R ∪R′) ⊇ T (T (R) ∪ T (R′)) to complete the proof.

Take (x, y) ∈ T (T (R) ∪ T (R′)). Hence, by construction of transitive
closure there is x = s1, . . . , sn = y such that (sj, sj+1) ∈ T (R) ∪ T (R′) for
every j ∈ {1, . . . , n− 1}. Without loss of generality assume that (sj, sj+1) ∈
T (R) for some j, then there is a sequence sj = s′1, . . . , s

′
m = sj+1, such

that (s′k, s
′
k+1) ∈ R. Hence, for every such j we can merge the sequence

to the original one and construct it such that x = s̄1, . . . , s̄N = y such that
(s̄j, s̄j+1) ∈ R∪R′ for every j ∈ {1, . . . , N−1}. Hence, (x, y) ∈ T (R∪R′).

Appendix A.3. Proof of Theorem 1

We start from laying out the schema of the proof. For this purpose
we define a revealed preference relation denoted by RE. Given a data set
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E = (B, C), let (x, y) ∈ RE if there is B ∈ B such that x ∈ C(B) and y ∈ B.
That is, y belongs to some budget from which x is chosen (recall that B
denotes the set of budgets from which the choices are observed).

The proof proceeds as follows:

1. GARP is equivalent to >−1 ∩T (RE∪ ≥) = ∅.

2. If data is rationalizable then >−1 ∩T (RE∪ ≥) = ∅.

3. If >−1 ∩T (RE∪ ≥) = ∅, then data is rationalizable:

a. If >−1 ∩T (RE∪ ≥) = ∅, then there is a separable and transitive
R such that >⊆ P (R) and T (RE∪ ≥) ⊆ R.

b. If there is separable and transitive R such that >⊆ P (R) and
T (RE∪ ≥) ⊆ R, then there is a complete, separable and transitive
R∗ such that >⊆ P (R∗) and T (RE∪ ≥) ⊆ R∗.

c. If there is a complete transitive and separable preference relation
R∗ such that >⊆ P (R∗) and T (RE∪ ≥) ⊆ R∗, then data set is
rationalizable.14

1. GARP is equivalent to >−1 ∩T (RE∪ ≥) = ∅.

Lemma A.5. The data set E = (B, C) satisfies GARP if and only if >−1

∩T (RE ∪ ≥).

Before we start the proof let us make a simple observation on the nature
of transitive closure of the revealed preference relation. Let x = s1, . . . , sn =
y be a shortest sequence such that (sj, sj+1) ∈ RE∪ ≥, then there is no
j ∈ {1, . . . , n − 1} such that sj ≥ sj+1 ≥ sj+2. Otherwise the sequence can
be shortened since the partial order ≥ is transitive. This implies that at least
one of sj and sj+1 is a chosen point for every j ∈ {1, . . . , n− 1}.

Proof. (⇒) Assume that there is (x, y) ∈>−1 ∩T (RE ∪ ≥) so there is a vi-
olation of consistency. Consider some shortest sequence x = s1, . . . , sn = y
such that (sj, sj+1) ∈ RE ∪ ≥ which adds (x, y) to T (RE ∪ ≥). Hence, there

14Steps 3b and 3c of the proof can be omitted by referring to the Theorem 3.1 from
Herden and Levin (2012).
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is a subsequence s′1, . . . , s
′
m = y such that s′k+1 ∈ B≥k and s′k ∈ C(B≥k ) for

every k ∈ {1, . . . ,m−1}. Since x = s1, then construction of the subsequence
(of a shortest sequence) implies that either s1 ∈ C(B1), then s′1 = s1; or
s1 ≥ s2 and s2 ∈ C(B2), then s2 = s′1. Hence, x ≥ s′1. At the same time
y > x ≥ s′1, that is either y ∈ C(Bm) and s′1 ∈ B>

m, or y ∈ B≥m−1 which
implies s′1 ∈ B>

m−1. Either of the cases generates a violation of GARP.

(⇐) Assume there is a sequence x1 ∈ C(B1), . . . , xn ∈ C(Bn) such that
B1, . . . , Bn ∈ B, xj+1 ∈ B≥j for j = 1, . . . , n − 1, and x1 ∈ B>

n , so there is a

violation of GARP. Recall that xj+1 ∈ B≥j implies that there is yj ∈ Bj such
that yj ≥ xj+1. By construction of revealed preference relation RE, (xj, yj) ∈
RE since xj ∈ C(Bj) and yj ∈ Bj for every j ∈ {1, . . . , n−1}. Moreover, x1 ∈
B>
n implies that there is yn ∈ Bn such that yn > x1. Hence, we can construct

a sequence x1 = s1, . . . , sm = yn such that xj = sj and sj+1 = yj+1 for odd
j ∈ {1, . . . ,m− 1}. By construction of this sequence (sj, sj+1) ∈ RE∪ ≥ for
every j ∈ {1, . . . ,m − 1}. Hence, (x1, yn) ∈ T (RE∪ ≥). At the same time,
we know that (yn, x1) ∈>. That is a direct contradiction of consistency since
(x1, yn) ∈>−1 ∩T (RE∪ ≥).

2. If the data is rationalizable then >−1 ∩T (RE∪ ≥) = ∅.

Lemma A.6. If the data is rationalizable then >−1 ∩T (RE∪ ≥) = ∅.

Proof. We proceed by contradiction. Suppose there is (y, x) ∈> and (x, y) ∈
T (RE ∪ ≥). Consider some shortest sequence x = s1, . . . , sn = y such that
(sj, sj+1) ∈ RE ∪ ≥ for j ∈ {1, . . . , n − 1}. If the choices are generated by
a monotonic utility function, then (sj, sj+1) ∈ RE ∪ ≥ implies that u(sj) ≥
u(sj+1). Hence, we can conclude that u(x) ≥ u(y), by transitivity of ≥. At
the same time y > x, hence monotonicity implies that u(y) > u(x), that is a
contradiction.

3. If >−1 ∩T (RE∪ ≥) = ∅ then data is rationalizable.

Before we proceed with the proof let us state an auxiliary lemma which we
use further.

Lemma A.7. For every chain

R0 � R1 � · · · � Rα � · · ·

such that Rα ∈ RT for all α ∈ A, we have R =
⋃
α∈A

Rα ∈ RT .
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Note that here and further we talk about possibly uncountable sequences
of preference relations, since the sequence could add the entire (uncountable)
sequence of comparisons, one-by-one. Hence, one should not think about
about α ∈ A as natural indexing. Given that we are considering a chain,
all its elements can be ordered with respect to the extension partial order
(�). One should rather think of A as a fully ordered set of an arbitrary
cardinality, that can exceed countability or even the continuum cardinality
of R if necessary.

Proof. On the contrary assume that there is (x, y) ∈ T (R) but (y, x) ∈ P (R).
By construction of R we know that (y, x) ∈ Ra for some relation Ra, and
therefore (y, x) ∈ Rα for α ≥ a. Since T is algebraic, there is some finite
relation R′ ⊆ R such that (x, y) ∈ T (R′). Moreover, since R′ is finite, there is
some Rb in the chain such that R′ ⊆ Rb. Since T is monotone, T (R′) ⊆ T (Rb)
and therefore (x, y) ∈ T (Rb). Monotonicity implies (x, y) ∈ T (Rα) ⊇ T (Rb)
for α ≥ b. Hence, there is a c ≥ max{a, b} such that Rc is not consistent,
that is a contradiction.15

3a. If >−1 ∩T (RE∪ ≥) = ∅ and ≥ is separable, then there is a sepa-
rable and transitive R̂ such that >⊆ P (R̂) and T (RE∪ ≥) ⊆ R̂.

Before we proceed with the proof let us introduce some more of additional
notation. Let R = T (R) be a transitive relation such that >⊆ P (R) and
T (RE∪ ≥) ⊆ R. Denote by

SNS(R) ={(x, y) : (y, x) ∈ P (R) for every sequence y = s1, . . . , sn = x

such that (sj, sj+1) ∈ R there is no k ∈ {1, . . . , n− 1}
such that (sk, sk+1) ∈>}

the set of strict but not separated pairs.
Note that it is only defined for the fixed points of T (R) = R that ex-

tend the separable partial order ≥. Since ≥ is a separable partial order, for
every (x, y) ∈>, there is z ∈ Z (recall that Z is a countable set) such that
(x, z), (z, y) ∈≥. Since we want to obtain separable extension of T (R), we
need to define the set of pairs which cannot be separated. Since we only

15The same proof can be conducted for any closed, monotone and algebraic function
F : R → R.
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consider fixed points of T we know that for every (x, y) ∈ T (R) there is a
sequence x = s1, . . . , sn = y such that (sj, sj+1) ∈ R �≥. Hence, if there
is k ∈ {1, . . . , n − 1} such that (sk, sk+1) ∈>, then there is z ∈ Z such
that (sk, z), (z, sk+1) ∈≥. Then, by construction of the transitive closure
(x, z), (z, y) ∈ T (R) = R, i.e. the pair (x, y) ∈ P (R) can be separated
by z ∈ Z. Hence, the non-separated points are such for which there is no
(sk, sk+1) ∈> for every sequence which adds (x, y) to R.

Before we proceed with the proof, note that SNS(T (RE∪ ≥)) is a non-
trivial object. Recall that (x, y) ∈ RE is x ∈ C(B) and y ∈ B for some
B ∈ B. Hence, technically there can be an (x, y) ∈ P (RE) such that (x, y) ∈
P (T (RE∪ ≥)) and there is no z ∈ Z to separate x and y. Therefore, one
way to show that there is separable R̂ ⊇ T (RE∪ ≥) and ≥� R̂ is to make
sure that SNS(T (R̂)) = ∅.16

Denote

Ω̄ = {R = T (R) : T (RE∪ ≥) ⊆ R and >⊆ P (R)}.

If >−1 ∩T (RE∪ ≥) = ∅ then Ω̄ is nonempty. This observation follows from
the fact that T (RE∪ ≥) = T (T (RE∪ ≥)) due to idempotence of T (R) and
the consistency condition implies that >⊆ P (RE∪ ≥). Next we state some
auxiliary results to obtain the goal of this part of the proof.

Lemma A.8. For every

R0 ⊆ R1 ⊆ . . . ⊆ Rα ⊆ . . .

such that Rα ∈ Ω̄ for all α ∈ A we have R̄ =
⋃
α∈A

Rα ∈ Ω̄.

Proof. From Lemma A.7 we already know that R̄ ∈ RT that is R̄ � T (R̄).
Hence we are left to show two properties: (i) T (R̄) ⊆ R̄, and (ii) >⊆ P (R).17

T(R̄) ⊆ R̄
Suppose on the contrary (x, y) ∈ T (R̄) and (x, y) /∈ R̄. Recall that T (R) is

16This is not the only way to obtain separability. For instance, if there are only countable
non-separated points, it suffices to add them to the relation. However, the way we propose
is more general and independent of the cardinality of SNS(R).

17Although we consider chains ordered with � in Lemma A.7, we could use the same
argument using ⊆-ordered chains (see Demuynck, 2009).
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algebraic and therefore, there is a finite R′ ⊆ R̄ such that (x, y) ∈ T (R′).
Since R′ is finite, then there is a ≥ 0 such that R′ ⊆ Ra. At the same time
Ra ∈ Ω̄, hence, Ra = T (Ra) and therefore, (x, y) ∈ T (Ra) = Ra ⊆ R̄.

>⊆ P(R̄)
Assume on the contrary that (z, w) ∈>−1 ∩R̄ 6= ∅. Given the construction
of R̄, there is a ≥ 0 such that (z, w) ∈ Ra, hence, >−1 ∩Ra 6= ∅. That is a
contradiction to the fact that Ra ∈ Ω̄ and hence >⊆ P (R̄).

Lemma A.9. Let R ∈ Ω̄ and SNS(R) 6= ∅, then exists R′ ∈ Ω̄ such that
R ⊂ R′ and >⊂ P (R′).

Proof. Take (x, y) ∈ SNS(R) and let R′ = T (R∪{(x, y)}). Since T : R → R
is closed and monotone we know that T (R) = R ⊂ R′ = T (R ∪ {(x, y)}).
Next we show that >⊆ P (R′). On the contrary assume that (z, w) ∈>−1

∩T (R ∪ {(x, y)}). At the same time (z, w) /∈ T (R), since R = T (R) and
>⊆ P (R). Hence, there is a shortest sequence z = s1, . . . , sn = w such that
(sj, sj+1) ∈ R ∪ {(x, y)} for every j ∈ {1, . . . , n − 1} and there is k ≤ n − 1
and (sk, sk+1) = (x, y).18 Hence, we can reorder the sequence, such that

y = s′1, . . . , w, z, . . . , s
′
n = x

and (s′j, s
′
j+1) ∈ R for every j ∈ {1, . . . , n−1}. Since (x, y) ∈ SNS(R), every

sequence that adds (y, x) to T (R) should not contain (sk, sk+1) ∈>. At the
same time (w, z) ∈> is a contradiction to the fact that (x, y) ∈ SNS(R).
Therefore, >⊆ P (R′) and hence, R′ ∈ Ω̄.

Lemma A.10. If >−1 ∩T (RE∪ ≥) = ∅ and ≥ is separable, then there is a
separable and transitive R̂ such that >⊆ P (R̂) and T (RE∪ ≥) ⊆ R̂.

Proof. Since (Ω̄,⊆) is a partially ordered set and from Lemma A.8 we know
that every chain has a maximal element within Ω̄. Hence, applying Zorn’s
Lemma we know that there is a maximal element R̂ ∈ Ω̄. Since R̂ ∈ Ω̄,
then it is a transitive (since all R ∈ Ω̄ are fixed points of T ), >� R̂ and
T (RE∪ ≥) ⊆ R̂. Hence, we are left to show that R̂ is separable.

18Same argument as in Lemma A.2 applies to show that (x, y) enters a shortest sequence
only once.
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If SNS(R̂) 6= ∅, then we get immediate contradiction to the fact that R̂
is a maximal element given Lemma A.9. Further we consider SNS(R̂) = ∅.
Take (x, y) ∈ P (R̂), given that R̂ = T (R̂) there is a sequence x = s1, . . . , sn =
y such that (sj, sj+1) ∈ R̂ for every j ∈ {1, . . . , n−1}. Moreover SNS(R̂) = ∅
implies that there is k ≤ n− 1 such that (sk, sk+1) ∈>. Since ≥ is separable,
then there is z ∈ Z such that (sk, z), (z, sk+1) ∈≥⊆ R̂. Given that R̂ = T (R̂)
is a transitive relation, (x, z), (z, y) ∈ R̂. Hence, R̂ is separable.

3b. If there is separable and transitive R such that >⊆ P (R) and
T (RE∪ ≥) ⊆ R, then there is a complete, separable and transitive
R∗ such that >⊆ P (R∗) and T (RE∪ ≥) ⊆ R∗.

Lemma A.11. For any countable Z and every chain

R0 � R1 � · · · � Rα � · · ·

such that Rα ∈ RZ
T for all α ∈ A, we have R =

⋃
α∈A

Rα ∈ RZ
T .

Proof. We know that each element Rα of the chain is consistent with T (Rα)
and Z-separable. Hence let us to show that R is consistent and Z-separable.
Lemma A.7 already shows that R is consistent. Hence, we are only left to
show that R̄ is separable.19

R is Z-separable
Take (x, y) ∈ P (R). By construction of R we know that (x, y) ∈ Rβ for some
relation Rd β ∈ A, and (y, x) /∈ Rα for any α ∈ A. Hence (x, y) ∈ P (Rβ).
Since Rβ is Z-separable, there is z ∈ Z such that (x, z) ∈ Rβ and (z, y) ∈ Rd.
Then (x, z) ∈ R and (z, y) ∈ R.

Lemma A.12. If there is separable and transitive R̂ such that >⊆ P (R̂) and
T (RE∪ ≥) ⊆ R̂, then there is a complete, separable and transitive R∗ such
that >⊆ P (R∗) and T (RE∪ ≥) ⊆ R∗.

Proof. Let
Ω(R̂) = {R′ ∈ RZ

T : R̂ � R′}

19The same proof can be conducted for any closed, monotone and algebraic function
F : R → R.
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be the set of extensions of R̂ that are themselves Z-separable and can be ex-
tended by T . Since R̂ is transitive, it is a fixed point of T . That is R̂ = T (R̂),
every preference relation that extends R̂ also extends T (R̂). Clearly, � is
a partial order (reflexive, antisymmetric and transitive binary relation) on
Ω(R̂) and we just showed that every chain has an upper bound. Hence,
Zorn’s lemma, implies that there is a maximal element of Ω(R̂), which we
denote by R∗. Since R∗ ∈ Ω(R̂) it is separable. Hence, we are left to show
that R∗ is complete and transitive.20

R∗ is complete
To see this, assume on the contrary that N(R∗) 6= ∅. If R∗ is a fixed-point of
T , then since T is expansive there is S ⊆ N(R∗) such that R∗ ∪ S ∈ RT and
P (R) = P (R ∪ S). Latter fact also guarantees that R∗ ∪ S is Z-separable,
hence R∗ ∪ S ∈ RZ

T and R∗ � R∗ ∪ S, that is a contradiction to R∗ being
a maximal element of Ω(R̂). If R∗ is not a fixed point of T , then T (R∗) is
an extension of R∗ which is Z-separable (since T is separability-preserving).
That is also a contradiction to the fact that R∗ is a maximal element of Ω(R̂).

R∗ is transitive
In order to show that R∗ is transitive we show that it is a fixed point of T
and therefore is transitive (see Lemma A.3). R∗ ⊆ T (R∗) since R∗ � T (R∗).
Assume on the contrary that R∗ ⊂ T (R∗). That is there is (x, y) ∈ T (R∗)
and (x, y) /∈ R∗. At the same time completeness of R∗ implies (y, x) ∈ P (R∗).
Hence, (x, y) ∈ P−1(R∗) ∩ T (R∗) 6= ∅ that contradicts to the fact that R∗ �
T (R∗). Therefore, R∗ = T (R∗).

3c. If there is complete, transitive and separable R∗ such that
>⊆ P (R∗) and T (RE∪ ≥) ⊆ R∗, then the data set is rationalizable.

Lemma A.13 (Lemma II in Debreu (1954)). R is a complete transitive
and separable relation, then there is a utility function u : X → R such that
u(x) ≥ u(y) if and only if (x, y) ∈ R.

Lemma A.14. If there is complete, transitive and separable R∗ such that >⊆
P (R∗) and T (RE∪ ≥) ⊆ R∗, then the data set E = (B, C) is rationalizable.

Proof. Suppose there is such R∗ as stated in the lemma. The existence of
a utility function that represents R∗ is immediately guaranteed by Lemma

20The same proof can be conducted for an arbitrary rational closure F : R → R.
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A.13. Since>⊆ P (R∗) and≥⊆ R∗, the utility function is monotonic. Finally,
RE ⊆ R∗ implies that (x, y) ∈ R∗ for every x ∈ C(B) and y ∈ B. This in
turn implies that u(x) ≥ u(y) for every x ∈ C(B) and y ∈ B.

Appendix A.4. Separability of Partial Order for the Spaces of Functions

We consider the space of step-functions, that is a functions which can
be written as a finite linear combination of indicator functions over intervals.
Next, we define it more formally. Let X ⊆ N be domain for the step function.
Let

ξA(x) =

{
1 if x ∈ A
0 if x /∈ A

be an indicator function, where A ⊆ N is an interval. Given the domain
considered we allow the interval to include a single point. Moreover, for sim-
plicity we consider the intervals to be left-closed and right-open, i.e. having
a shape of [a, ā[. The same argument can be made without this assumption
but would require significant abuse of notation. Hence, a step function can
be defined as

f(x) =
n∑
i=1

αiχAi
(x)

where n ≥ 0, αi ∈ R, and Ai are intervals such that they are

1. pairwise disjoint: Ai ∩ Aj = ∅ for i 6= j,

2. exhaust the domain:
n⋃
i=1

Ai = X.

Denote by F the space of step functions. We define a partial order over
the set of step functions as

f̄ ≥ f if f̄(x) ≥ f(x) for every x ∈ X,

and let
f̄ > f if f̄(x) > f(x) for every x ∈ X.

Next we construct a countable set Z of functions in order to show that the
partial order ≥ is separable. In order to do so we restrict the set of values to
be rational, that is

f(x) =
n∑
i=1

αiχAi
(x),
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where αi ∈ Q for any finite n and finite collection of intervals. Hence, the
set Z is countable, since it can be obtained as set of all finite subsets of a
countable set.

Lemma A.15. A partial order ≥ over F is separable.

Proof. Consider f̄ > f and refer to n̄ and n the number of intervals corre-

sponding to the f̄ and f and refer to Ā and A the intervals corresponding

to the f̄ and f correspondingly. Recall that every interval can be specified
with its borders, hence, the collection of intervals can be characterized by
the vector of ordered points from 0 to ∞. We refer to the borders of these
intervals as āi and ai (using the lower bound of the interval) Let us construct
the vector

(a1, a2, . . . , an,∞) such thatai ∈
⋃
j∈n

{aj} ∪
⋃
j∈n̄

{āj}

Hence, an interval can be defined as

Ai = [ai, ai+1[ where an+1 =∞,

where αi ∈ [f(x), f̄(x)] ∩Q for any x ∈ Ai.
To finalize the proof that f separates f and f̄ let us make an important

observation. The collection of intervals Ai is finer than both Ai and Āi by
construction. That is, for every Ai there are Aj and Āk such that Ai ⊆ Aj
and Ai ⊆ Āk. This fact implies that both f(x) = f(x′) and f̄(x) = f̄(x′) for
every x, x′ ∈ Ai. Hence, by construction

f̄(x) ≥ f(x) ≥ f(x) for every x ∈ Ai for every i ≤ n,

and therefore, for every x ∈ X since
⋃n
i=1Ai = X.

Note that Lemma A.15 immediately implies the proofs for Corollaries 1
and 2. Every cumulative distribution function defined by a mixed strategy
is already a step function. For the separability of the partial order (≥FSD)
we need to make a little adjustment. In the language of step-functions, the
strict part of the partial order defined as follows.

Fσ >FSD Fσ′ if


Fσ(x) = Fσ′(x) for Fσ(x) = Fσ(x) = 1

Fσ(x) = Fσ′(x) for Fσ(x) = Fσ(x) = 0

Fσ(x) < Fσ′(x) for otherwise
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Hence, we can use the same argument as in Lemma A.15 since 0 and 1 are in
Q and therefore, we would not need to expand the set Z. That is, whenever
we construct the f such that Fσ ≥FSD f ≥FSD Fσ′ we just set

f(x) = 1 if Fσ(x) = Fσ(x) = 1 and f(x) = 0 if Fσ(x) = Fσ(x) = 0,

and the rest of the construction goes the same way as before.
Every consumption stream is clearly a step function. For every period

until tr, the interval is defined as At = [xt, xt+1[. For the periods from tr
and until ∞ the interval is defined as Atr = [xtr ,∞[. Hence, we can define a
consumption stream as a step function as

fx =
tr∑
t=1

xtχAt .

Finally, the partial order ≥ over the space of consumption streams implies
the corresponding partial order over the step functions, that is

xt > x′t implies fx(t) > fx′(t) for every t ∈ T.
Appendix A.5. Proof of Corollary 3
Proof. Since the space X is separable, there is a countable set Z ⊆ X such
that every open set in X contains at least one element of Z. We are going to
use Z as the countable set for the partial order ≥ as well. That is, we need
to show that for every x > x′ there is z ∈ Z such that x ≥ z ≥ x′. Recall
that L>(x) is the lower contour set of x and U>(x′) is the upper contour set
of x′. Hence, we start from showing that

T = L>(x) ∩ U>(x′)

is a non-empty set.
Assume on the contrary that T is an empty set. Then, U≥(x) = U>(x′) 6=

∅. At the same time U>(x′) is an open set, since ≥ is a continuous order and
U≥ = X \ L>(x) is a closed set. This set is clopen (closed and open) and
it is clearly neither ∅ (contains x) nor X itself (x′ is excluded). That is a
contradiction to the fact that X is a connected space, since connected space
contains only two clopen sets, which are ∅ and X itself.

Hence, T 6= ∅ and it is an open set as it is an intersection of two open
sets. Since X is a separable space, then there is z ∈ T ∩Z. Then, z ∈ L>(x)
implies that x ≥ z and z ∈ U>(x′) implies that z ≥ x′, i.e. we obtain

x ≥ z ≥ x′.
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