Title:

Specificity of isokinetic assessment in noncontact knee injury prevention screening: a novel assessment procedure with relationships between variables in amateur adult agility-sport athletes.

Authors and Affiliations

First Author and Corresponding Author

Nicholas C. Clark. School of Sport, Rehabilitation, and Exercise Sciences. University of Essex. Colchester, Essex, CO4 3SQ. United Kingdom. n.clark@essex.ac.uk

Second Author

Nicholas R. Heebner. College of Health Sciences. University of Kentucky. Lexington, Kentucky, KY 40508. United States. nick.heebner@uky.edu

Third Author

Scott M. Lephart.

College of Health Sciences. University of Kentucky. Lexington, Kentucky, KY 40508. United States. scott.lephart@uky.edu

Fourth Author

Timothy C. Sell. Atrium Health Musculoskeletal Institute. Charlotte, North Carolina, NC 28210. United States. Timothy.Sell@atriumhealth.org

DOI: https://doi.org/10.1016/j.ptsp.2021.11.012

Accepted: 30 November 2021

To appear in: Physical Therapy in Sport

© 2021. This manuscript version is made available under the Creative Commons <u>CC-BY-NC-ND 4.0</u> license

To cite this manuscript: Clark N.C., Heebner N.R., Lephart S.M., Sell T.C. Specificity of isokinetic assessment in noncontact knee injury prevention screening: a novel assessment procedure with relationships between variables in amateur adult agility-sport athletes, Physical Therapy in Sport (2021), doi: <u>https://doi.org/10.1016/j.ptsp.2021.11.012</u>

Title:

Specificity of isokinetic assessment in noncontact knee injury prevention screening: a novel assessment procedure with relationships between variables in amateur adult agility-sport athletes.

Authors and Affiliations

First Author and Corresponding Author

Nicholas C. Clark. School of Sport, Rehabilitation, and Exercise Sciences. University of Essex. Wivenhoe Park, Colchester, Essex, CO4 3SQ. United Kingdom. n.clark@essex.ac.uk

Second Author

Nicholas R. Heebner. College of Health Sciences. University of Kentucky. Lexington, Kentucky, KY 40508. United States. nick.heebner@uky.edu

Third Author

Scott M. Lephart. College of Health Sciences. University of Kentucky. Lexington, Kentucky, KY 40508. United States. scott.lephart@uky.edu

Fourth Author

Timothy C. Sell. Atrium Health Musculoskeletal Institute. Charlotte, North Carolina, NC 28210. United States. Timothy.Sell@atriumhealth.org

Ethical statement

This study received institutional ethics approval and all participants gave informed consent to participate.

Funding Statement

This research was funded by the Freddie H. Fu, MD Graduate Research Award.

Conflicts of Interest Statement

None declared.

Declaration of Interest Statement

None.

Acknowledgements

This research was performed when the authors were with the Neuromuscular Research Laboratory, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, United States.

BLIND TITLE PAGE

Specificity of isokinetic assessment in noncontact knee injury prevention screening: a novel assessment procedure with relationships between variables in amateur adult agility-sport athletes.

ABSTRACT

Objectives: To present a new knee isokinetic assessment procedure linked to noncontact knee injury mechanisms and examine correlations between variables relevant to noncontact knee injury prevention screening (peak torque [PT, Nm], time-to-peak torque [TTPT, ms], angle-of-peak torque [APT, °], mean PT [MPT, Nm]).

Design: Cross-sectional.

Setting: Sports medicine laboratory.

Participants: Thirty-four agility-sport athletes (male/female n=18/16, age 24.1±3.5yr, height 171.8±9.6cm, mass 70.6±12kg).

Main Outcome Measures: Pearson's/Spearman's correlation (r/r_s) , coefficient of determination (r^2/r_s^2) .

Results: Most correlations were statistically non-significant or statistically-significant with only weak-to-moderate coefficients. For both knee extension and flexion, PT and MPT were significantly and strongly correlated (r=0.99, r^2 =0.98, p=0.001). Graphical analyses revealed two datapoint clusters for knee flexion TTPT and APT. One cluster indicated some participants could generate knee flexor PT rapidly (<150ms) at low knee flexion angles (<45°) and the other cluster indicated that other participants could not (>200ms, >50°).

Conclusions: In this study, most isokinetic variables represented distinct knee neuromuscular characteristics. For both knee extension and flexion, only PT or MPT need be used to represent isokinetic maximal strength. Knee flexion TTPT and APT may have utility in noncontact knee injury prevention screening with amateur adult agility-sport athletes.

KEYWORDS

Knee, injury prevention, isokinetic, screening

INTRODUCTION

Team sports such as football, basketball, and netball are played by millions of amateur adult male and female athletes worldwide (1-3). Such sports require athletes to execute agility skills as they manoeuvre within playing boundaries, avoid interception by opponents, and score points by depositing a ball in the opposition's goal (4). Given the agility nature of many team sports, noncontact knee injuries (e.g., anterior cruciate ligament sprain) are common (5-8). Noncontact knee injuries account for over two-thirds of knee trauma in team sports (9, 10), are defined as those happening without any contact with an opponent (11), and typically occur in situations involving single-limb stance-phase loading during agility-running and landing tasks (12-14). Knee injuries result in profound consequences, including physical disability (15), substantial healthcare costs (16), post-trauma osteoarthritis (17), and depression (18). Because of profound personal and socioeconomic consequences, injury prevention interventions are needed to help mitigate the burden of knee injuries for athletes and society and promote athletes' safe agilitysport participation.

Injury prevention refers to preventing first-time (primary) injury and includes all countermeasures to eliminate or minimise its occurrence (19). Primary injury prevention includes assessment and intervention procedures that combine to decrease the probability of first-time injury (19, 20). Assessment (screening) in primary injury prevention is a process to identify characteristics (risk factors) that increase athletes' predisposition for injury (21, 22). Skeletal muscle shields joint tissues from excessive loads (23), and isokinetic assessment of knee muscle performance has been used to profile athletes when considering predisposition for noncontact knee injury (24-26). When using isokinetic assessments of muscle performance, the specificity principle should be acknowledged relative to a sport's athletic tasks (27-29). The specificity principle requires that an isokinetic assessment procedure resembles the 'functional' movement pattern of interest and includes consideration for the range-of-motion through which a joint moves and the velocity-of-motion at which a joint moves (27-29).

In knee injury prevention, the specificity principle of assessment can also be considered relative to the mechanism of noncontact knee injuries (Figure 1; modified from (30)). The direction of knee joint motion during noncontact knee injury can be identified from video analyses of realworld injury events (Figure 1). Common mechanisms of noncontact knee injury include singlelimb stance-phase loading with knee abduction (valgus), tibial internal rotation (IR), and anterior tibial displacement (ATD), all within a knee flexion range-of-motion of $0-60^{\circ}$ (12, 13). It is not possible to voluntarily perform all planes and directions of knee motion observed during noncontact knee injury events on an isokinetic dynamometer (e.g., frontal plane, abduction/adduction); therefore, researchers can only study the planes/directions of knee motion that are possible to perform voluntarily (e.g., sagittal plane, flexion/extension) (Figure 1). When simulating real-world injury events in the laboratory, researchers can employ representative athletic tasks; these tasks contain biomechanical features similar or identical to those observed during real-world noncontact knee injury events (e.g., single-limb, stance-phase, high-velocity loading) (Figure 1). Biomechanical studies of athletic tasks involving stance-phase loading report uninjured participants can perform tasks with peak knee abduction velocities $>169^{\circ} \cdot \text{sec}^{-1}$ (31) and >240° · sec⁻¹ (32, 33). Therefore, for noncontact knee injury prevention screening that considers the common mechanism of injury in agility-sports, it is logical to include knee muscle performance assessments in a knee flexion-extension range-of-motion of 0-60° at velocities near 240° sec⁻¹. When the mechanism of injury, range-of-motion, and velocity-of-motion are determined, relevant muscle performance variables can be considered (Figure 1).

Figure 1. Suggested steps for considering the specificity principle in the design of knee isokinetic muscle performance assessments.

Isokinetic dynamometry is a valid procedure for collecting joint position, velocity, and torque data (34). Many muscle performance variables are output from isokinetic dynamometers. For example, peak torque (PT), time-to-peak torque (TTPT), and mean peak torque (MPT) (28, 29). Some criticise the term 'torque' because it implies torsion around the longitudinal axis of a bone (35). The term 'moment' is argued as preferable for isokinetic assessments because it is a force that tends to cause rotation of a bone around a joint axis (35). Whether 'torque' or 'moment' is used in the name of a variable, an isokinetic variable is an output that *indirectly represents* a distinct neuromuscular characteristic and its underlying physiological processes expressed through the lever system of the skeleton (28, 29, 35). For example, PT refers to the highest value from a set number of isokinetic repetitions (28, 29) and represents the maximal force-generating

capacity of the neuromuscular system (i.e. maximal strength) (35). Time-to-peak torque refers to the time required to generate peak torque (28, 29) and represents the ability of the neuromuscular system to generate force rapidly (28). Therefore, it is essential to understand different isokinetic variables and the neuromuscular characteristics they represent to clinically-reason why a specific variable might be important in noncontact knee injury prevention contexts. It is also essential to understand the relationship between isokinetic variables in order to consider whether different variables sample similar or distinct neuromuscular characteristics; this will further inform clinical reasoning processes that underpin the design and specificity of knee isokinetic assessment procedures.

Several research groups have assessed knee isokinetic muscle performance in noncontact knee injury prevention contexts. Researchers consistently assess knee isokinetic muscle performance in 0-90° flexion-extension ranges-of-motion (25, 26, 36). Assessments are performed at angular velocities of 60° sec⁻¹ (25, 37, 38), 90° sec⁻¹ (36), 180° sec⁻¹ (25, 38, 39), 240° sec⁻¹ (38, 40), and $300^{\circ} \cdot \sec^{-1}$ (25, 26, 41). Low to medium-velocity knee isokinetic assessments appear most common where low/slow, medium/moderate, and high/fast velocity are defined as 60° sec-1, 180°·sec⁻¹, and 300°·sec⁻¹, respectively (41, 42). No research group has published a knee isokinetic assessment procedure that considers the flexion-extension range-of-motion and abduction velocity-of-motion linked to the mechanism of noncontact knee injury. Few researchers have examined the relationship between different variables extracted from a single knee isokinetic assessment procedure. Correlations between PT and TTPT have been examined for knee isokinetic assessments in a 0-90° range-of-motion at $60^{\circ} \cdot \sec^{-1}$, $180^{\circ} \cdot \sec^{-1}$, and $300^{\circ} \cdot \sec^{-1}$ (43, 44). Correlations between PT and angle-of-peak torque (APT) have also been examined for knee isokinetic assessments in a 0-90° range-of-motion at $60^{\circ} \cdot \sec^{-1}$ and $180^{\circ} \cdot \sec^{-1}(42, 45)$. No research group appears to have published correlations between more than two output variables from one isokinetic assessment procedure.

The purpose of this study was to examine the correlation between knee extension-flexion variables (PT, TTPT, APT, MPT) extracted from a novel isokinetic assessment procedure linked to the mechanism of noncontact knee injury. Peak torque was selected because as knee muscle strength increases, more favourable knee kinematics are displayed during athletic tasks (46, 47). Time-to-peak torque was selected because rapid force generation by the knee muscles is critical for restraining excessive knee joint displacements and restoring knee joint alignment following perturbation (37, 48, 49). Angle-of-peak torque was selected because the ability of the hamstrings and quadriceps to resist an external force causing knee joint perturbation changes according to knee flexion angle (50-52). Mean peak torque was selected because it is a variable commonly used in knee injury control research (53-55). It was hypothesised there would be no statisticallysignificant strong correlation between variables. The hypothesis was set to align with previous researchers' views that each isokinetic variable represents a distinct neuromuscular characteristic and its underlying physiological processes (28, 29, 35). Data were collected as part of a larger noncontact knee injury control project. This study is original because no previous work has examined relationships between PT, TTPT, APT, and MPT extracted from a knee isokinetic assessment procedure designed to consider the specific mechanism of noncontact knee injury. The findings from this study will be practically significant and offer real-world impact because they will inform the specificity of future isokinetic assessments in noncontact knee injury prevention screening with amateur adult agility-sport athletes.

MATERIALS AND METHODS

Study design, sample size calculation

This was a cross-sectional study. A power analysis was performed using G*Power (56). To detect a correlation of 0.75 with a power of 0.80 and an alpha of 0.05, 37 participants were required.

Ethical approval, participant recruitment, informed consent

Institution ethics approval was obtained (IRBPRO13030035). Participants were recruited from the local community (university campus, university sports medicine centre, health/fitness facilities, sports teams) using flyers posted on official noticeboards. Informed consent was obtained from all participants.

Participants

Inclusion criteria were: males/females aged 18-40 years participating in Level I-II sports according to the knee Sports Activity Rating Scale (SARS) (57). Exclusion criteria were: current lower-quadrant pain or time-loss injury in the previous two months (i.e. injury requiring withdrawal from one or more training/matches), diagnosed knee ligament deficiency or cartilage lesion, history of knee surgery, and any current condition affecting sensorimotor processing. Thirty-four athletes volunteered (male *n*=18, female *n*=16, Table 1).

Table 1. Participant descriptive statistics (n = 34)								
_	Age (yr)	Height (cm)	Mass (kg)	SARS				
Minimum	19.0	153.0	48.9	80.0				
Maximum	32.0	194.0	91.4	100.0				
Median	23.0	173.0	70.5	95.0				
Mean	24.1	171.8	70.6	90.9				
SD	3.5	9.6	12.2	7.3				

yr = years; cm = centimetres; kg = kilograms

SARS = Sports Activity Rating Scale

SD = standard deviation

Procedures

Data collection occurred in a sports medicine laboratory in one session. Athletes were instructed to avoid fatiguing exercise/sports for 48 hours beforehand. The dominant limb was assessed and defined by the preferred kicking limb (58). Participants wore their preferred athletic attire.

Data were collected with a Biodex System 3 isokinetic dynamometer (Biodex, Shirley, New York) at 100Hz. The dynamometer was calibrated before each data collection session according to the manufacturer's procedures. Participants were seated on the dynamometer, the popliteal fossa approximately 5cm off the edge of the chair, the lateral epicondyle of the dominant limb's knee aligned with the lever-arm axis-of-rotation, the nondominant limb hanging freely (Figure 2). The torso, pelvis, and dominant limb were secured using the dynamometer's straps (Figure 2). The dynamometer's knee attachment was adjusted so the lower edge of the shank strap was just above the proximal margin of the medial malleolus (Figure 2).

Figure 2. Participant-dynamometer configuration

Sagittal plane range-of-motion limits were set to start with the knee flexed and allow a $60-0^{\circ}$ extension-flexion range-of-motion. Extension-flexion movements were assessed because these can be voluntarily performed on an isokinetic dynamometer (Figure 1), because the quadriceps are dynamic restraints to knee abduction (50, 59, 60), and because the hamstrings are dynamic

restraints to knee abduction, tibial IR, and ATD (50, 59, 60). A 60-0° extension-flexion range-ofmotion was used because it is the range-of-motion in which noncontact knee injuries occur (12, 13, 61). Because the dynamometer is positioned adjacent to the lateral aspect of the knee (Figure 2), it is not possible to access the lateral bony landmarks required for knee goniometry and measurement of knee angles. Therefore, the knee's 0° position (anatomical position) and extension range-of-motion limit was determined with visual estimation, which is reliable for experienced practitioners (62) and not significantly different from goniometric measurement (63). Next, the 60° flexion range-of-motion limit was set using the dynamometer's digital goniometer. The limb was weighed, and participants instructed to extend and flex the knee with no resistance to ensure correct participant-dynamometer configuration under dynamic conditions. At the same time, thigh strap (Figure 2) tension was checked to ensure it was not restricting quadriceps girth expansion during knee extension. Velocity of assessment was set at 240° sec⁻¹. A velocity of 240° sec-1 was used because it corresponds to the upper limits of knee abduction velocities published for single-limb loading athletic tasks (32, 33). We also reviewed unpublished participant data (n=30) from 3D motion-analysis of single-limb athletic tasks used in our laboratory (46) and calculated a stance-phase mean peak knee abduction velocity of 244.5±83.3° sec⁻¹ Reciprocal extension-flexion concentric-concentric muscle actions were used because concentric muscle actions restore joint alignment following perturbation by pulling bones in the direction opposite to that of the initial displacement (40, 64, 65).

Participants performed five sub-maximal warm-up trials at 50% perceived maximum voluntary velocity (MVV) immediately followed by five warm-up trials at 100% MVV. Participants were provided with 60-seconds rest, given a "3, 2, 1, Go!" countdown, and instructed to perform five reciprocal extension-flexion measured trials at 100% MVV. Participants were permitted to hold the dynamometer handles (Figure 2), and strong verbal instructions included "Kick out as fast as you can! Pull back as fast as you can!" (66).

Data was gravity corrected automatically by the dynamometer's software (Biodex Advantage Software v.3.0, Biodex, Shirley, New York). Immediately after the measured trials, two data quality-control procedures were performed using the dynamometer's software and computer display. First, the graphical output of the isokinetic curve was visually inspected for any aberrancy (67, 68). Second, the text file output was reviewed to verify that participants achieved a minimum range-of-motion of 55-5° and a maximum velocity of at least 235°. sec⁻¹ for each extension-flexion cycle. If graphical or text file outputs were unsatisfactory, the assessment procedure was discarded, the participant given adequate rest, and a new assessment procedure performed. For PT (Newton-metres (Nm)), data were windowed to ensure PT values were extracted from constant-velocity portions of an assessment (29, 69). For TTPT (milliseconds (ms)), data included the entire acceleration period for the limb/dynamometer lever-arm system. For APT (°), data were for the angular position of the knee rather than the dynamometer lever-arm. For MPT (Nm), data were for the average peak torque across the five measured trials. Pilot work with male and female agility-sport athletes established the intra-rater, between-day, test-retest reliability for all variables (Table 2).

	Tuble 1. Initia facely, between augy, test feldest fendemity for an isokinetic variables (<i>n</i> - 12)								
	Knee Extension					Knee I	Flexion		
	PT	TTPT	APT	MPT	PT	TTPT	APT	MPT	
ICC	0.98	0.90	0.70	0.98	0.97	0.99	0.99	0.98	
SEM	6.0Nm	4.5ms	1.0°	5.6Nm	6.0Nm	7.4ms	1.6°	3.7Nm	
MDD	16.7Nm	12.5ms	2.7°	15.4Nm	13.9Nm	20.6ms	4.4°	10.2Nm	

Table 2. Intra-rater, between-day, test-retest reliability for all isokinetic variables (n = 12)

PT = peak torque; TTPT = time-to-peak torque; APT = angle of peak torque; MPT = mean peak torque ICC = intraclass correlation coefficient: ICC (2,1) for PT, TTPT, and APT, and ICC (2,*k*) for MPT SEM = standard error of measurement; Nm = Newton-metres; ms = milliseconds; $^{\circ}$ = degrees MDD = minimum detectable difference

Statistical Analyses

There were no missing data. Summary statistics were calculated, including 95% confidence intervals. Normality of data was assessed using histogram inspection and Shapiro-Wilk tests.

Inter-variable relationships were assessed with scatterplot inspection, Pearson's correlation (r) for normally distributed y variables, and Spearman's correlation (r_s) for non-normally distributed yvariables. Sensitivity analyses were guided by the graphical appearance of data to examine the potential influence of outliers and datapoint clusters on statistical outputs (70). Correlations were defined as weak-to-moderate (0.25-0.50), moderate-to-strong (0.50-0.75), and strong-to-very strong (0.75-1.00) (71). The proportion (%) of variance shared between variables was assessed with the coefficient of determination (r^2/r_s^2) (72). An $r^2/r_s^2 \ge 0.60$ was employed as a threshold for defining a large proportion of shared variance between variables (72, 73). For all analyses, alpha was set *a priori* at 0.05.

RESULTS

All participants were right limb dominant. No participant experienced pain during data collection. There were no adverse events. Summary statistics are presented in Table 3.

Table 5. Summary statistics (n = 5+)									
	Knee Extension					Knee Flexion			
	PT (Nm) TTPT (ms) APT (°) MPT (Nm)				PT (Nm)	TTPT (ms)	APT (°)	MPT (Nm)	
Minimum	53.3	90.0	36.0	48.5	44.1	90.0	17.0	40.7	
Maximum	183.0	140.0	45.0	170.7	149.0	310.0	56.0	144.8	
Median	95.6	110.0	41.0	87.0	83.2	230.0	55.0	76.4	
95% CI	87.3, 109.0	106.3, 114.9	39.8, 41.1	80.8, 101.7	75.1, 92.6	168.3, 226.4	33.6, 45.8	70.0, 86.3	
Mean	98.2	110.6	40.1	91.2	83.6	197.4	39.7	78.3	
SD	31.2	12.3	2.0	30	25.1	83.4	17.5	23.3	

 Table 3. Summary statistics (n = 34)

PT = peak torque; TTPT = time-to-peak torque; APT = angle of peak torque; MPT = mean peak torque

Nm = Newton-metres; ms = milliseconds; $^{\circ}$ = degrees

95% CI = 95% confidence interval (lower bound, upper bound); SD = standard deviation

Knee extension PT, APT, and MPT and knee flexion PT and MPT were normally distributed $(p \ge 0.12)$. Knee extension TTPT and knee flexion TTPT and APT were not normally distributed $(p \le 0.04)$. Knee flexion TTPT (Figure 3a) and APT (Figure 3b) demonstrated a binomial distribution. Datapoints were reviewed, verified, and retained. There was no pattern for either left or right sides of the knee flexion TTPT or APT histograms. For both histograms, males and

females were present on both sides and with comparable ages and SARS levels. For both histograms, more females were present in the right side (n=11) than the left side (n=5).

Figure 3. Frequency distribution histograms for knee flexion time-to-peak torque and angle-of-peak torque variables.

ms = milliseconds

Between-variable scatterplots are presented for knee extension in Figure 4 (a-d) and knee flexion in Figure 5 (a-d). Correlation matrices are presented in Table 4 and 5. For most knee extension relationships, correlations were significant, negative, and moderate-tostrong (Table 4). One correlation, between MPT and PT, was significant, positive, and very strong. The proportion of variance for the three significant negative correlations ranged 27-45% and for the significant positive correlation was 98%. For most knee flexion relationships, correlations were non-significant (Table 5). Two correlations were significant, positive, and strong-to-very strong. The proportion of variance for the two significant correlations ranged from 61-98%.

Figure 4. Scatterplots for knee extension isokinetic variables (*n*=34)

ms = milliseconds; Nm = Newton-metres

Figure 5. Scatterplots for knee flexion isokinetic variables (*n*=34)

ms = milliseconds; Nm = Newton-metres

Table 4. Knee extension correlation matrix $(n = 34)^*$								
	PT	TTPT	APT	MPT				
РТ	1.00, 1.00							
TTPT	-0.52, 0.27 (0.002)	1.00, 1.00						
APT	-0.08, 0.00 (0.671)	-0.67, 0.45 (0.001)	1.00, 1.00					
MPT	0.99, 0.98 (0.001)	-0.54, 0.29 (0.001)	-0.03, 0.00 (0.867)	1.00, 1.00				
PT = peak torque; TTPT = time-to-peak torque; APT = angle of peak torque								

MPT = mean peak torque

*cells contain Pearson's correlation coefficient, coefficient of determination (p value) Significant correlations are in bold text

Table 5. Knee flexion correlation matrix $(n = 34)^*$								
	PT	TTPT	APT	MPT				
PT	1.00, 1.00							
TTPT	-0.21, 0.04 (0.242)	1.00, 1.00						
APT	0.04, 0.00 (0.823)	<u>0.78</u> , 0.61 (0.001)	1.00, 1.00					
MPT	0.99, 0.98 (0.001)	-0.25, 0.06 (0.150)	-0.08, 0.01 (0.671)	1.00, 1.00				
DT		4 1 4 AT						

PT = peak torque; TTPT = time-to-peak torque; APT = angle of peak torque MPT = mean peak torque

*cells contain Pearson's correlation coefficient (without underline), coefficient of determination (p value) *cells contain Spearman's correlation coefficient (with underline), coefficient of determination (p value)

Significant correlations are in bold text

Four sensitivity analyses were conducted for the knee flexion TTPT versus PT data (Figure 5a). First, for the entire left-side cluster alone, a significant statistic was returned (r=-0.73, $r^2=0.53$, p=0.001). Second, for the left-side cluster without the single outlier above, a significant statistic was returned (r=-0.70, $r^2=0.49$, p=0.004). Third, for the entire right-side cluster alone, a significant statistic was returned (r=-0.59, $r^2=0.35$, p=0.001). Fourth, for the right-side cluster without the two outliers to the left, a significant statistic was returned (r=-0.67, $r^2=0.45$, p=0.004). Therefore, sensitivity analyses returned very different statistical outputs to that for the complete knee flexion TTPT versus PT data (Table 5).

DISCUSSION

The purpose of this study was to examine the correlation between knee extension-flexion variables extracted from a novel isokinetic assessment procedure linked to the mechanism of noncontact knee injury. It was hypothesised there would be no statistically-significant strong correlation between variables. Findings partially support the hypothesis because there was no statistically-significant strong correlation between the majority of knee extension (Table 4) or flexion (Table 5) isokinetic variables. However, there were statistically-significant strong-to-very strong correlations between knee extension MPT and PT (Table 4), knee flexion MPT and PT (Table 5), and knee flexion TTPT and APT (Table 5). Sensitivity analyses revealed the initial statistically non-significant weak correlation between knee flexion TTPT and PT (Table 5) was altered to statistically-significant moderate-to-strong correlations when separate datapoint clusters were considered and outliers were removed.

Direct comparison of the present knee extension and flexion values (Table 3) to other work is not possible because no other group has reported data using the knee isokinetic assessment procedure described here. The alternative, therefore, is to compare the present mean data to that reported for other knee isokinetic studies at 240°·sec⁻¹ with different participants and different ranges-of-motion (Table 6) (38, 40, 74-80). Compared to the knee extension and flexion PT values in Table 6, the current values are generally similar or higher, respectively (Table 3). The present knee extension and flexion mean TTPT values (Table 3) are shorter than or within the ranges of other work, respectively (Table 6). The present knee extension and flexion mean APT values (Table 3) appear lower than or similar to other work, respectively (Table 6). Compared to the knee extension and flexion MPT values in Table 6, the current values are generally similar or higher, respectively (Table 6). Compared to the knee extension and flexion mean APT values (Table 3) appear lower than or similar to other work, respectively (Table 6). Compared to the knee extension and flexion MPT values in Table 6, the current values are generally similar or higher, respectively (Table 3).

Table 6.	Selected	output	variables	from knee	isokinetic	studies	performed	at 240°·sec ⁻¹	
Knee Ex	tension								

KIEC EXCHISION						
Authors	Participants	ROM (°)	PT (Nm)	TTPT (ms)	APT (°)	MPT (Nm)
Bračič et al., 2011	Professional male athletes	5-90	-	120.0-155.0	53.0-64.0	-
Dibrezzo et al., 1988	Healthy females	Unspecified	-	-	-	71.0-72.2
Greenberger & Paterno 1995	Healthy males and females	Unspecified	-	-	-	97.4-97.8
Huston & Wojtys 1996	Elite male and female athletes	Unspecified	-	153.0-158.0	-	-
Maciel et al., 2020	Sports students	30-90	-	160.4-168.9	-	-
Thompson et al., 1989	Healthy males and females	Unspecified	-	-	43.0-69.3	-
Xaverova et al., 2015	Elite female athletes	10-90	109.6-109.9	-	-	-
Yilmaz & Kabadayi 2019	Amateur male athletes	Unspecified	80.3-88.7	-	-	-
Yilmaz & Kabadayi 2020	Amateur male athletes	0-90	111.3-119.8	-	-	-
Knee Flexion						
Authors	Participants	ROM (°)	PT (Nm)	TTPT (ms)	APT (°)	MPT (Nm)
Bračič et al., 2011	Professional male athletes	5-90	-	320.0-350.0	75.0-77.5	-
Dibrezzo et al., 1988	Healthy females	Unspecified	-	-	-	45.0-47.2
Huston & Wojtys 1996	Elite male and female athletes	Unspecified	-	150.0-169.0	-	-
Maciel et al., 2020	Sports students	30-90	-	197.1-227.3	-	-
Thompson et al., 1989	Healthy males and females	Unspecified	-	-	34.4-37.0	-
Xaverova et al., 2015	Elite female athletes	10-90	70.3-71.6	-	-	-
Yilmaz & Kabadayi 2019	Amateur male athletes	Unspecified	49.4-56.4	-	-	-
Yilmaz & Kabadayi 2020	Amateur male athletes	0-90	63.2-65.8	-	-	-
		C 1 (00	. 00.1			

ROM = range-of-motion in which the isokinetic procedure was performed (0° represents 0° knee extension)

PT = peak torque; TTPT = time-to-peak torque; APT = angle of peak torque; MPT = mean peak torque

° = degrees; Nm = Newton-metres; ms = milliseconds

Direct comparison of the present knee extension and flexion inter-variable correlations (Table 4 and 5) to other work is also not possible because no other group has performed such correlations using the knee isokinetic assessment configuration described here. The alternative, therefore, is also to compare the present inter-variable correlations to other knee isokinetic studies with different participants, ranges-of-motion, and velocities. For knee extension PT and TTPT, statistically-significant correlations of r=-0.50 (9-10 year old boys, 0-90°, $180^{\circ} \cdot \sec^{-1}$) (43) and r=-0.54 (university male/female athletes, 0-90°, $180^{\circ} \cdot \sec^{-1}$) (44) have been reported. For knee flexion PT and TTPT, no statistically-significant inter-variable correlations are evident (43). For knee extension PT and APT, no statistically-significant inter-variable correlations are evident (42). For knee flexion PT and APT, statistically-significant correlations of r=-0.24--0.47 (healthy males/females, $0-90^{\circ}$, $60^{\circ} \cdot \sec^{-1}$) (42) and r=-0.23--0.39 (healthy males/females, $0-90^{\circ}$, $180^{\circ} \cdot \sec^{-1}$) (42) have been reported. As for the present findings (Table 4 and 5), the studies just cited and the inter-variable correlations therein are consistently statistically non-significant or statistically-significant with only weak-to-moderate relationships.

Interpretation of the size and relevance of correlation coefficients can alter according to a study's context and the coefficient of determination is useful for indicating the proportion (%) of variance in one variable shared by another variable (71, 72). Together, correlation and the coefficient of determination are used to examine whether one variable captures similar or different aspects of neuromuscular performance compared to another variable (73, 81). Of the knee extension statistically-significant correlations (Table 4), only MPT and PT shared a large proportion of variance (98%). The present data indicate that knee extension MPT and PT capture highly similar aspects of neuromuscular performance, and only one need be used to represent knee extension isokinetic maximal strength. Of the knee flexion statistically-significant correlations (Table 5), MPT versus PT and TTPT versus APT shared large proportions of variance (98% and 61%, respectively). Knee flexion MPT and PT also capture highly similar aspects of neuromuscular performance, and only one need be used to represent knee flexion isokinetic maximal strength. Knee flexion TTPT and APT appear to capture similar aspects of neuromuscular performance, and researchers can clinically-reason which is preferred for a specific study context. The majority of knee extension and flexion inter-variable correlations examined in this study were either statistically non-significant or statistically-significant with only weak-to-moderate relationships (Table 4 and 5). Therefore, the majority of variables appear to represent distinct knee neuromuscular characteristics. Researchers should clinically-reason meticulously why a particular variable might be important in noncontact knee injury prevention screening.

Unexpected findings included two separate datapoint clusters for the knee flexion data (Figure 5a/5b/5d). Sensitivity analyses for the knee flexion TTPT versus PT data (Figure 5a) revealed statistically-significant, negative, moderate-to-strong correlations; for both clusters, as the time required to generate peak torque increased, peak torque (maximal strength) decreased. For knee flexion TTPT versus APT (Figure 5d), a statistically-significant, positive, strong-to-very strong correlation existed (Table 5); this is logical given higher angles-of-peak torque require longer timeframes for the knee to acquire such angles from the 0° starting position. The two datapoint

clusters (Figure 5a, 5d) indicate some participants were capable of generating knee flexion PT rapidly (<150ms, Figure 5a, left-side cluster) at low knee flexion angles (<45°, Figure 5d, left-side cluster), but others were not (Figure 5a, 5d, right-side cluster). Such findings are clinically-important because rapid force generation by the knee muscles is critical for restoring knee joint alignment following external perturbations (37, 48, 49), because the knee flexors become effective at resisting knee abduction, IR, and ATD perturbations between 0-45° knee flexion (50-52), and because the angle at which noncontact knee injury occurs is commonly <50° knee flexion (12, 13, 61). Therefore, it is plausible that athletes who require longer timeframes to generate knee flexor PT at higher knee flexion angles (e.g., Figure 5a/5d, right-side cluster) may be more predisposed to noncontact knee injury.

Potential limitations include not performing analyses also using the nondominant limb. Such analyses were not performed because there is no statistically-significant between-limb difference for dominant and nondominant knee isokinetic muscle performance (82). Potential limitations also include not performing analyses using data collected using eccentric muscle actions. Eccentric muscle actions were not employed here because previous work reported knee isokinetic eccentric muscle performance assessments demonstrate poor reliability and substantial measurement error, particularly at medium-to-high velocities (83, 84). The findings of this study are only generaliseable to amateur adult agility-sport athletes participating in Level I-II sports (57). Future research should replicate this study's design with professional adult agility-sport athletes. Future research should also employ the novel knee isokinetic assessment procedure described here within prospective studies designed to examine the utility of injury prevention screening procedures for identifying athletes' predisposition for noncontact knee injury. Emphasis could include the role of knee flexion TTPT and APT variables.

CONCLUSION

The novel knee isokinetic assessment procedure used in this study was safely employed with amateur adult agility-sport athletes. The majority of inter-variable correlations were either statistically non-significant or statistically-significant with weak-to-moderate relationships. For both knee extension and flexion, MPT and PT were significantly and strongly correlated. For both knee extension and knee flexion, only MPT or PT need be used to represent isokinetic maximal strength. Graphical analyses revealed two datapoint clusters for knee flexion TTPT and APT. One cluster indicated some participants could generate knee flexor PT rapidly at low knee flexion angles, the other cluster indicated that other participants could not. Sensitivity analyses for TTPT versus PT revealed statistically-significant moderate-to-strong correlations for each cluster, although the proportion of shared variance was not high for either cluster. Findings indicate that most isokinetic variables used in this study represent distinct knee neuromuscular characteristics. Knee flexion TTPT and APT may have utility to help discriminate between athletes with and without an increased predisposition for noncontact knee ligament injury. The new findings from this study will inform researchers' clinical-reasoning regarding the specificity of knee isokinetic assessments. The findings will also support researchers' choices for isokinetic variables used in prospective studies examining noncontact knee injury prevention screening with amateur adult agility-sport athletes.

REFERENCES

1. FIBA. FIBA Facts and Figures: Fédération Internationale de Basketball (FIBA); 2021 [Available from: http://www.fiba.com/presentation#|tab=element_2_1.

2. FIFA. About FIFA: Fédération Internationale de Football Association (FIFA); 2021 [Available from: http://www.fifa.com/about-fifa/index.html.

3. INF. History of Netball: International Netball Federation (INF); 2021 [Available from: http://netball.org/game/history-of-netball.

4. Breed R, Spittle M. Developing Game Sense in Physical Education. Illinois: Human Kinetics; 2021.

5. Agel J, Evans T, Dick R, Putukian M, Marshall S. Descriptive epidemiology of collegiate men's soccer injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2002-2003. Journal of Athletic Training. 2007;42(2):270-7.

6. Dick R, Putukian M, Agel J, Evans TA, Marshall SW. Descriptive epidemiology of collegiate women's soccer injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2002–2003. Journal of Athletic Training. 2007;42(2):278-85.

7. Flood L, Harrison JE. Epidemiology of basketball and netball injuries that resulted in hospital admission in Australia, 2000–2004. Medical Journal of Australia. 2009;190(2):87-90.

8. Kay MC, Register-Mihalik JK, Gray AD, Djoko A, Dompier TP, Kerr ZY. The epidemiology of severe injuries sustained by National Collegiate Athletic Association student-athletes, 2009–2010 through 2014–2015. Journal of Athletic Training. 2017;52(2):117-28.

9. Agel J, Arendt E, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. American Journal of Sports Medicine. 2005;33(4):524-30.

10. Mountcastle S, Posner M, Kragh Jr J, Taylor D. Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population. American Journal of Sports Medicine. 2007;35(10):1635-42.

11. Marshall S, Padua D, McGrath M. Incidence of ACL injury. In: Hewett T, Shultz S, Griffin L, editors. Understanding and Preventing Noncontact ACL Injuries. Illinois: Human Kinetics; 2007. p. 5-29.

12. Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. American Journal of Sports Medicine. 2010;38(11):2218-25.

13. Krosshaug T, Nakamae A, Boden B, Engebretsen L, Smith G, Slauterbeck J, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. American Journal of Sports Medicine. 2007;35(3):359-67.

14. Stuelcken M, Mellifont D, Gorman A, Sayers M. Mechanisms of anterior cruciate ligament injuries in elite women's netball: a systematic video analysis. Journal of Sports Sciences. 2016;34(16):1516-22.

15. Finch C, Cassell E. The public health impact of injury during sport and active recreation. Journal of Science and Medicine in Sport. 2006;9(6):490-7.

16. Loes Md, Dahlstedt LJ, Thomée R. A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scandinavian Journal of Medicine and Science in Sports. 2000;10(2):90-7.

17. Lie MM, Risberg MA, Storheim K, Engebretsen L, Britt EØ. What's the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. British Journal of Sports Medicine. 2019;53(18):1162-7.

18. Mainwaring LM, Hutchison M, Bisschop SM, Comper P, Richards DW. Emotional response to sport concussion compared to ACL injury. Brain Injury. 2010;24(4):589-97.

19. Barss P, Smith G, Baker S, Mohan D. Injury Prevention: An International Perspective. New York: Oxford University Press; 1998.

20. Rivara F. Introduction: the scientific basis for injury control. Epidemiologic Reviews. 2003;25:20-3.

21. Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clinical Journal of Sport Medicine. 2007;17(3):215-9.

22. Verhagen E, van Dyk N, Clark N, Shrier I. Do not throw the baby out with the bathwater; screening can identify meaningful risk factors for sports injuries. British Journal of Sports Medicine. 2018;52(19):1223-4.

23. Clark N, Lephart S. Management of the sensorimotor system: The lower limb. In: Jull G, Moore A, Falla D, Lewis J, McCarthy C, Sterling M, editors. Grieve's Modern Musculoskeletal Physiotherapy. Edinburgh: Elsevier; 2015. p. 319-27.

24. Brito J, Figueiredoa P, Fernandesa L, Seabraa A, Soaresa JM, Krustrupb P, et al. Isokinetic strength effects of FIFA's "The 11+" injury prevention training programme. Isokinetics and Exercise Science. 2010;18:211-5.

25. Fousekis K, Tsepis E, Vagenas G. Multivariate isokinetic strength asymmetries of the knee and ankle in professional soccer players. Journal of Sports Medicine and Physical Fitness. 2010;50(4):465-74.

26. Myer G, Ford K, Foss KB, Liu C, Nick T, Hewett T. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clinical Journal of Sport Medicine. 2009;19(1):3-8.

27. Brown L, Weir J. ASEP procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology. 2001;4(3):1-21.

28. Chan K, Maffulli N, Korkia P, Li R. Principles and Practice of Isokinetics in Sports Medicine and Rehabilitation. Hong Kong: Williams and Wilkins; 1996.

29. Davies G, Heiderscheit B, Brinks K. Test interpretation. In: Brown L, editor. Isokinetics in Human Performance. Illinois: Human Kinetics; 2000. p. 3-24.

30. Clark NC. Noncontact knee ligament injury prevention screening in netball: A clinical commentary with clinical practice suggestions for community-level players. International Journal of Sports Physical Therapy. 2021;16(3):911-29.

31. Edwards S, Steele JR, Purdam CR, Cook JL, McGhee DE. Alterations to landing technique and patellar tendon loading in response to fatigue. Medicine and Science in Sports and Exercise. 2014;46(2):330-40.

32. Sinclair J, Bottoms L. Gender differences in the kinetics and lower extremity kinematics of the fencing lunge. International Journal of Performance Analysis in Sport. 2013;13(2):440-51.

33. Valldecabres R, de Benito AM, Littler G, Richards J. An exploration of the effect of proprioceptive knee bracing on biomechanics during a badminton lunge to the net, and the implications to injury mechanisms. PeerJ. 2018;6:e6033.

34. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. European Journal of Applied Physiology. 2004;91:22-9.

35. Dvir Z. Isokinetics. Muscle Testing, Interpretation, and Clinical Applications. 2nd ed. Edinburgh: Churchill Livingstone; 2004.

36. Magalhaes J, Ascensao A, Soares J. Concentric quadriceps and hamstrings isokinetic strength in volleyball and soccer players. Journal of Sports Medicine and Physical Fitness. 2004;44:119-25.

37. Wojtys EM, Huston LJ, Taylor PD, Bastian SD. Neuromuscular adaptations in isokinetic, isotonic, and agility training programs. American Journal of Sports Medicine. 1996;24:187-92.

38. Xaverova Z, Dirnberger J, Lehnert M, Belka J, Wagner H, Orechovska K. Isokinetic strength profile of elite female handball players. Journal of Human Kinetics. 2015;49:257-66.

39. Rozzi SL, Lephart SM, Gear WS, Fu FH. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. American Journal of Sports Medicine. 1999;27:312-9.

40. Huston L, Wojtys E. Neuromuscular performance characteristics in elite female athletes. American Journal of Sports Medicine. 1996;24(4):427-36.

41. Daneshjoo A, Mokhtar AH, Rahnama N, Yusof A. The effects of injury preventive warm-up programs on knee strength ratio in young male professional soccer players. PloS one. 2012;7:e50979.

42. Kannus P, Beynnon B. Peak torque occurrence in the range of motion during isokinetic extension and flexion of the knee. International Journal of Sports Medicine. 1993;14:422-6.

43. De Ste Croix M, Deighan M, Armstrong N. Time to peak torque for knee and elbow extensors and flexors in children, teenagers and adults. Isokinetics and Exercise Science. 2004;12:143-8.

44. Kowalski CA. Correlation Between Time to Peak Torque and Peak Torque to Vertical Jump in College Age Athletes. West Virginia: Marshall University; 2003.

45. Kannus P, Jarvinen M. Knee angles of isokinetic peak torques in normal and unstable knee joints. Isokinetics and Exercise Science. 1991;1:92-8.

46. Nagai T, Sell TC, House AJ, Abt JP, Lephart SM. Knee proprioception and strength and landing kinematics during a single-leg stop-jump task. Journal of Athletic Training 2013;48:31-8.

47. Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clinical Biomechanics. 2002;17:56-63.

48. Beard D, Dodd C, Trundle H, Simpson A. Proprioception enhancement for anterior cruciate ligament deficiency. A prospective randomised trial of two physiotherapy regimes. Journal of Bone and Joint Surgery. 1994;76B:654-9.

49. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, DeMaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. American Journal of Sports Medicine. 2006;34:1512-32.

50. Lloyd D, Buchanan T. Strategies of muscular support of varus and valgus isometric loads at the human knee. Journal of Biomechanics. 2001;34:1257-67.

51. Louie J, Mote Jr C. Contribution of the musculature to rotatory laxity and torsional stiffness at the knee. Journal of Biomechanics. 1987;20(3):281-300.

52. Olmstead T, Wevers H, Bryant J, Gouw G. Effect of muscular activity on valgus/varus laxity and stiffness of the knee. Journal of Biomechanics. 1986;19(8):565-77.

53. Rosene JM, Fogarty TD, Mahaffey BL. Isokinetic Hamstrings:Quadriceps ratios in intercollegiate athletes. Journal of Athletic Training. 2001;36:378-83.

54. Tsepis E, Vagenas G, Giakas G, Georgoulis A. Hamstring weakness as an indicator of poor knee function in ACL-deficient patients. Knee Surgery, Sports Traumatology, Arthroscopy. 2004;12:22-9.

55. Xergia SA, Pappas E, Zampeli F, Georgiou S, Georgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. Journal of Orthopaedic and Sports Physical Therapy. 2013;43:154-62.

56. Buchner A, Erdfelder E, Faul F, Lang A. G*Power: Statistical power analyses for Windows and Mac 2019 [Available from: http://www.gpower.hhu.de/.

57. Noyes F, Barber S, Mooar L. A rationale for assessing sports activity levels and limitations in knee disorders. Clinical Orthopaedics and Related Research. 1989(246):238-49.
58. Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clinical Orthopaedics and Related Research. 2002;401:162-9.

59. Besier T, Lloyd D, Ackland T. Muscle activation strategies at the knee during running and cutting maneuvers. Medicine and Science in Sports and Exercise. 2003;35(1):119-27.

60. Hewett T, Myer G, Ford K, Heidt Jr R, Colosimo A, McLean S, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. American Journal of Sports Medicine. 2005;33(4):492-501.

61. Koga H, Bahr R, Myklebust G, Engebretsen L, Grund T, Krosshaug T. Estimating anterior tibial translation from model-based image-matching of a noncontact anterior cruciate ligament injury in professional football: a case report. Clinical Journal of Sport Medicine. 2011;21(3):271-4.

62. Hancock GE, Hepworth T, Wembridge K. Accuracy and reliability of knee goniometry methods. Journal of Experimental Orthopaedics. 2018;5:1-6.

63. Brosseau L, Balmer S, Tousignant M, O'Sullivan JP, Goudreault C, Goudreault M, et al. Intra-and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Archives of Physical Medicine and Rehabilitation. 2001;82(3):396-402.

64. Beard D, Kyberd P, O'Connor J, Fergusson C, Dodd C. Reflex hamstring contraction latency in anterior cruciate ligament deficiency. Journal of Orthopaedic Research. 1994;12(2):219-28.

65. Hirokawa S, Solomonow M, Luo Z, Lu Y, D'Ambrosia R. Muscular co-contraction and control of knee stability. Journal of Electromyography and Kinesiology. 1991;1(3):199-208.

66. Sahaly R, Vandewalle H, Driss T, Monod H. Maximal voluntary force and rate of force development in humans - importance of instruction. European Journal of Applied Physiology. 2001;85:345-50.

67. Almosnino S, Stevenson JM, Day AG, Bardana DD, Diaconescu ED, Dvir Z. Differentiating between types and levels of isokinetic knee musculature efforts. Journal of Electromyography and Kinesiology. 2011;21:974-81.

68. Kannus P. Isokinetic evaluation of muscular performance. International Journal of Sports Medicine. 1994;15:S11-S8.

69. Baltzopoulos B, King M, Gleeson N, De Ste Croix M. The BASES expert statement on measurement of muscle strength with isokinetic dynamometry. The Sport and Exercise Scientist. 2012;31:12-3.

70. Jang D-H, Anderson-Cook CM, Kim Y. Graphical methods for the sensitivity analysis in discriminant analysis. Communications for Statistical Applications and Methods. 2015;22:475-85.

71. Portney L, Watkins M. Foundations of Clinical Research: Applications to Practice. 3rd ed. New Jersey: Pearson/Prentice Hall; 2009.

72. Thomas J, Nelson J, Silverman S. Research Methods in Physical Activity. 6th ed. Illinois: Human Kinetics; 2011.

73. Clark NC, Reilly LJ, Davies SC. Intra-rater reliability, measurement precision, and inter-test correlations of 1RM single-leg leg-press, knee-flexion, and knee-extension in uninjured adult agility-sport athletes: Considerations for right and left unilateral measurements in knee injury control. Physical Therapy in Sport 2019;40:128-36.

74. Yılmaz A, Kabadayı M, Bostancı Ö, Özdal M, Mayda M. Analysis of isokinetic knee strength in soccer players in terms of selected parameters. Physical Education of Students. 2019;23(4):209-16.

75. Yılmaz AK, Kabadayı M. Electromyographic responses of knee isokinetic and singleleg hop tests in athletes: dominant vs. non-dominant sides. Research in Sports Medicine. 2020;Published online(https://doi.org/10.1080/15438627.2020.1860047).

76. Bračič M, Hadžič V, Čoh M, Derviševič E. Relationship between time to peak torque of hamstrings and sprint running performance. Isokinetics and Exercise Science. 2011;19(4):281-6.

77. Maciel DG, Dantas GAF, Cerqueira MS, Barboza JAM, Caldas VVDA, de Barros ACM, et al. Peak torque angle, acceleration time and time to peak torque as additional parameters extracted from isokinetic test in professional soccer players: a cross-sectional study.

Sports Biomechanics. 2020;Published

online(https://www.tandfonline.com/doi/abs/10.1080/14763141.2020.1784260).

78. Thompson MC, Shingleton LG, Kegerreis ST. Comparison of values generated during testing of the knee using the Cybex II Plus® and Biodex Model B-2000® isokinetic dynamometers. Journal of Orthopaedic and Sports Physical Therapy. 1989;11(3):108-15.

79. Dibrezzo R, Fort IL, Brown B. Dynamic strength and work variations during three stages of the menstrual cycle. Journal of Orthopaedic and Sports Physical Therapy. 1988;10(4):113-6.

80. Greenberger HB, Paterno MV. Relationship of knee extensor strength and hopping test performance in the assessment of lower extremity function. Journal of Orthopaedic and Sports Physical Therapy. 1995;22(5):202-6.

81. Swearingen J, Lawrence E, Stevens J, Jackson C, Waggy C, Davis DS. Correlation of single leg vertical jump, single leg hop for distance, and single leg hop for time. Physical Therapy in Sport 2011;12(4):194-8.

82. McGrath T, Waddington G, Scarvell J, Ball N, Creer R, Woods K, et al. The effect of limb dominance on lower limb functional performance - A systematic review. Journal of Sports Sciences. 2016;34(4):289-302.

83. Alvares JBdAR, Rodrigues R, de Azevedo Franke R, da Silva BGC, Pinto RS, Vaz MA, et al. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Physical Therapy in Sport. 2015;16:59-65.

84. Wilhite MR, Cohen ER, Wilhite SC. Reliability of concentric and eccentric measurements of quadriceps performance using the KIN-COM dynamometer: the effect of testing order for three different speeds. Journal of Orthopaedic and Sports Physical Therapy. 1992;15:175-82.