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1 Introduction 1 

Joint moments are commonly calculated in biomechanics research and provide an 2 

indirect measure of muscular behaviors and joint loads (Richards et al., 2018). Joint moments 3 

have been used to understand motor control strategies (Toney and Chang, 2016), injury risk 4 

(Myer et al., 2015), disease progression (Henriksen et al., 2014); and also used to calculate 5 

measures that quantify the mechanical energetics of movement (Aleshinsky, 1986a, b).  6 

Joint moments can be calculated using either a bottom-up or top-down approach. The 7 

more common bottom-up approach requires measuring ground reaction forces (GRF) from force 8 

plates (most commonly embedded in-ground) and partial-body segment kinematics captured 9 

using an optoelectronic system. The less common top-down approach requires capturing whole-10 

body kinematics only using an optoelectronic system (Ren et al., 2008). Both approaches to 11 

calculating joint moments are limited by their lack of scalability. The requirement for force 12 

plates makes a bottom-up approach challenging to undertake outside the laboratory. Compared to 13 

the bottom-up approach, the top-down approach has greater limitations such as the greater 14 

influence of skin artefact and errors in body segment parameters (especially of the heavier trunk 15 

segment) (Ren et al., 2008). 16 

To quantify joint moments outside the biomechanics laboratory, researchers have begun 17 

coupling kinematic-based features with machine learning to predict these measures (Johnson et 18 

al., 2019b; Liu et al., 2009; Stetter et al., 2020) – which we term, the KinematicML approach. 19 

Ideally, the KinematicML predictors should be derived from the most parsimonious number of 20 

kinematic segments which can be measured using either optoelectronic systems or inertial 21 

measurement units (IMUs). Existing studies have used the KinematicML approach during walking 22 
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(Wang et al., 2020), vertical jumping (Liu et al., 2009), running (Stetter et al., 2020), turning 23 

(Stetter et al., 2020), and side-step cutting (Johnson et al., 2019b; Stetter et al., 2020). ML 24 

methods range from shallow learning techniques such as artificial neural networks (ANN) with 25 

one/two “hidden” layers (Liu et al., 2009; Stetter et al., 2020) and boosting (Wang et al., 2020), 26 

to deep learning techniques such as deep neural networks (DNN) (Boswell et al., 2021; Wang et 27 

al., 2020). A limitation in most shallow learning methods for biomechanics is that they cannot 28 

accommodate time-varying variables as predictors and outcomes. To circumvent this limitation, 29 

researchers have opted to treat each value of a time-series as independent observations (Stetter et 30 

al., 2020), which ignores the inherent correlation in time-varying biomechanics data.   31 

At a minimum, the performance of the KinematicML approach should be less than the 32 

intrinsic measurement error of traditional inverse-dynamics (< 0.31 Nm/kg) (Wilken et al., 33 

2012). The predictive accuracy (root mean squared error [RMSE]) of the KinematicML approach 34 

ranged from 0.12 to 0.28 Nm/kg (Liu et al., 2009) and 0.26 to 1.13 Nm/kg using ANN (Stetter et 35 

al., 2020), and below 0.26 Nm/kg using either boosting or DNN (Wang et al., 2020). The biggest 36 

challenge associated with the KinematicML approach is the well-established issue that ML 37 

techniques are “data-hungry”. Current studies have used data from a very small cohort of 10 (Liu 38 

et al., 2009) to a larger cohort of 106 participants (Wang et al., 2020). However, even though a 39 

sample size of 100 participants is considered large clinically, it pales in comparison to non-40 

clinical ML research (e.g. millions of samples (Simonyan and Zisserman, 2015)). An issue when 41 

the sample size is small is that the ML model overfits and generalizes poorly for new 42 

observations.   43 

A novel ML method to manage the issue of small sample sizes is transfer learning, an 44 

extension of deep learning (Weiss et al., 2016).  Transfer learning takes advantage of 45 
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“knowledge” from existing large pre-trained ML models, with the collected biomechanical data 46 

used for fine-tuning (Johnson et al., 2019b). Pre-trained models exist for various neural network 47 

architectures, such as a pre-trained VGG network, which was trained on 1.3 million ImageNet 48 

images and 1000 object classes (Simonyan and Zisserman, 2015). During walking, transfer 49 

learning achieved a Pearson correlation of 0.94 to 0.97 (Johnson et al., 2019b), which was 50 

similar to the correlation of 0.96 when using DNN (Wang et al., 2020) for predicting knee 51 

abduction/addition moments. However, transfer learning was superior to the performance of 52 

using ANN which achieved a correlation of 0.71 (Stetter et al., 2020). This suboptimal 53 

performance could be due to ANN not being designed to accommodate time-varying variables.  54 

Given that previous ML models were trained on different participants, with different 55 

inputs and sample sizes, it is difficult to accurately benchmark the relative merits of different ML 56 

algorithms in joint moments prediction. The present study aimed to compare the predictive 57 

accuracy of three different ML techniques that can accommodate both time-varying variables as 58 

predictors and as an outcome (ML method – functional regression [𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠], a deep neural 59 

network built from scratch [𝑀𝐿𝐷𝑁𝑁], and transfer learning [𝑀𝐿𝑇𝐿]). A previous study reported 60 

superior performance in transfer learning compared to shallow learning, in predicting both the 61 

three-dimensional shear and rotational moment values of GRF (Johnson et al., 2019a). This 62 

suggests that transfer learning may be the best ML technique when the sample size is limited 63 

regardless of the type of biomechanical outcomes investigated. Hence, we hypothesized that the 64 

predictive accuracy will be greatest for 𝑀𝐿𝑇𝐿and least for 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠 across all nine lower-limb 65 

joint moment outcomes. 66 
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2 Methods 67 

Data for this analysis came from three sources – a publicly available running dataset 68 

(Fukuchi et al., 2017), and two datasets from the lead author’s research on load carriage running 69 

(Liew et al., 2016a; Liew et al., 2016b) (Figure. 1).  70 

*** Insert Figure 1*** 71 

2.1 Study (Fukuchi) (Fukuchi et al., 2017) 72 

Data for the current study came from a publicly available dataset on running (n = 28) in 73 

healthy adults (Fukuchi et al., 2017). Running assessment was performed using a dual-belt, 74 

force-instrumented treadmill (300 Hz; Bertec, USA), and the motion was captured with 12 75 

optoelectronic cameras (150Hz; Motion Analysis Corporation, USA) (Fukuchi et al., 2017). 76 

Participants performed shod running across three fixed speeds of 2.5 m/s, 3.5 m/s, and 4.5 m/s 77 

(Fukuchi et al., 2017). Marker trajectories and GRF were collected for 30 s and the data were 78 

low passed filtered at a matched frequency of 12 Hz (4th Order, zero-lag, Butterworth) 79 

(Kristianslund et al., 2012). Biomechanical modeling was performed in Visual 3D software (C-80 

motion Inc., Germantown, MD, USA). A force plate threshold of 50 N was used to determine 81 

gait events of initial contact and toe-off. A seven-segment lower limb inertial model was created 82 

(Fukuchi et al., 2017).  83 

2.2 Study one (Liew_study1) 84 

Data came from a previously published work investigating the effects of load carriage on 85 

running biomechanics (n = 31) (Liew et al., 2016b). The protocol involved participants running 86 

across a 20 m runway, embedded with force platforms (AMTI, Watertown, MA), while carrying 87 

three load conditions (0%, 10%, 20% body weight (BW)) across three velocities (3.0 m/s, 4.0 88 
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m/s, 5.0 m/s) – the order of which was randomized (Liew et al., 2016b).  Participants wore their 89 

running shoes and attire during the experiment. Each condition required five successful running 90 

attempts, which was defined as meeting the prescribed velocity within a ±10% variation, with no 91 

visible alteration to running gait (Liew et al., 2016b).   92 

Kinematic data were captured using an 18 camera motion capture system (Vicon T-93 

series, Oxford Metrics, UK) (250 Hz). GRF was measured using synchronized in-ground force 94 

plates (2000 Hz). Data processing was performed in Visual 3D. Marker trajectories and GRF 95 

were filtered at 18 Hz (4th order, zero-lag, Butterworth) (Robinson et al., 2014). A seven-segment 96 

lower limb inertial model was created (Liew et al., 2016b). A force plate threshold of 20 N was 97 

used to determine gait events of initial contact and toe-off.  98 

2.3 Studies two and three (Liew_study2pre & Liew_study2post) 99 

Data came from a project investigating the influence of strength training on load carriage 100 

on running biomechanics (n = 31) (Liew et al., 2016a). This dataset is independent from that 101 

reported in study one (above). Participants performed repeated overground running at a fixed 102 

velocity of 3.5 m/s (±10%) while carrying two load conditions (0%, 20% BW) (Liew et al., 103 

2016a). A run-up distance of 20 m was given before the first force plate, and a tail-off distance of 104 

10 m was given after the last force plate. Participants performed a minimum of five successful 105 

over-ground running trials at 3.5 m/s. Motion capture equipment, signal processing, and 106 

biomechanical modelling procedures were performed identical to Liew_study1.  107 

2.4 Common biomechanical processing 108 

For all studies, three-dimensional (3D joint angle, velocity, acceleration, and internal 109 

moment, of the bilateral ankle, knee, and hip joints were collected. The joint angle was 110 
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calculated using a Cardan flexion-abduction-rotation sequence (Cole et al., 1993). Joint velocity, 111 

acceleration, and moment were expressed in the proximal segment’s reference frame (Schache 112 

and Baker, 2007). All biomechanical variables were time normalized to 101 data points within 113 

the stance phase of each lower limb. The joint moment was normalized to body mass (N/kg). 114 

2.5 Machine learning 115 

All analyses were conducted in R software (version 4.0.2) and Python (version 3.6.12), 116 

with associated codes and result found online (https://bernard-liew.github.io/2020_fun_regress/ 117 

). The following packages were used: refund for functional regression (Goldsmith et al., 2020 ), 118 

reticulate which provides an R interface to Python (Ushey et al., 2021), imager for image 119 

preprocessing (Barthelme, 2020), keras (Allaire and Chollet, 2020) and TensorFlow (Allaire and 120 

Tang, 2020) for DNN. 121 

2.5.1 Pre-processing 122 

For all studies, multiple running steps within each subject-load-speed combination were 123 

averaged to produce one waveform per variable. There were 121 unique study-participant 124 

combinations (Fukuchi- 28 participants, Liew study 1 – 31 participants, Liew study 2 pre – 31 125 

participants, Liew study 2 post – 31 participants). The data was split whereby 80% of the 121 126 

study participants’ data were used for model training, and a separate 20% was used for testing of 127 

the model’s predictive performance. All predictors in the training set were demeaned and scaled 128 

to one standard deviation. All predictors in the test set were demeaned and scaled using the 129 

parameters from the training set.  130 

For 𝑀𝐿𝐷𝑁𝑁 and 𝑀𝐿𝑇𝐿, the 3D time-series predictors in the training set were originally 131 

organized into a 4-dimensional array (490 [observations] × 101 [gait cycle] × 9 [3 joints & 3 132 

https://bernard-liew.github.io/2020_fun_regress/


7 

 

variables] × 3 [axes]), whilst that of the testing set was organized similarly, apart from the 133 

number of observations different (120 ×  101 ×  9 ×  3). For each outcome, the data was 134 

organized into a 2-dimensional matrix for both the training (490 ×  101) and testing (120 ×  101) 135 

sets. To leverage pre-trained image models for fine-tuning, the study’s 3D kinematic predictors 136 

needed to be converted to a set of static color (Red, Green, Blue) images (Johnson et al., 2019b). 137 

This was achieved by mapping the 101 gait cycle points to the image height, the nine kinematic 138 

variables to the image width, and the axes of each kinematic variable to the image additive color 139 

model. The resultant 101 ×  9-pixel images were warped to 150 × 150 pixels using cubic spline 140 

interpolation, to suit the input dimension of the pre-trained image model used in the present 141 

study.  142 

2.5.2 Functional regression (𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠) 143 

A classical approach to deal with functional inputs (gait cycles) and functional outcomes 144 

(joint moments) is function-on-function regression (Scheipl et al., 2015). Initially motivated as a 145 

statistical regression technique, the approach is frequently used in machine learning (Liew et al., 146 

2019; Rügamer et al., 2018), in particular with the combination with boosting (Brockhaus et al., 147 

2020). We employed penalized function-on-function regression (pffr) by including the gait cycle 148 

of all 9 joint-variable combinations as a functional predictor and modeled each of the functional 149 

outputs (joint moments) using an individual model. Based on a cubic tensor product B-spline 150 

with marginal second differences penalties, the 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠 model estimated the relationship 151 

between predictors and output using a two-dimensional smooth nonlinear function.         152 

2.5.3 Deep neural network (𝑀𝐿𝐷𝑁𝑁) 153 

We designed a CNN with three convolution blocks followed by a network head that uses 154 

the features learned in the convolution to predict the 101-dimensional output (Table 1). Each 155 
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convolution block consists of a 2D-convolution (32, 64, and 128 filters, all with kernel sizes of 156 

3×3), a ReLU activation, batch normalization, a 2D-max pooling, and a dropout layer with a rate 157 

of 0.25. To generate the 101-dimensional output, an output layer with 101 units and linear 158 

activation was finally used. We trained the network using 200 epochs, a batch size of 16, 159 

“RMSprop” as the optimizer, and mean squared error (MSE) as the loss function between the 160 

observed and predicted outcomes.  161 

*** Insert Table 1*** 162 

2.5.4 Transfer learning (𝑀𝐿𝑇𝐿) 163 

In this study, we used the VGG-16 model (Visual Geometry Group, Oxford, UK) that 164 

was pre-trained on 1,000,000 images dataset from ImageNet and achieved state-of-the-art results 165 

in object recognition (Simonyan and Zisserman, 2015). The VGG-16 model contains 13 166 

convolutional layers and three fully connected layers. We added to the convolutional layers a 167 

series of fully connected, dropout, and batch normalization layers (Table 2). We froze the 168 

weights of the 13 convolutional layers of the VGG-16 model and only fine-tuned the weights of 169 

the added layers. We trained the network using 200 epochs, a batch size of 16, “RMSprop” as the 170 

optimizer, and mean squared error as the loss function.  171 

*** Insert Table 2*** 172 

2.6 Predictive accuracy 173 

Accuracy was quantified by comparing the nine joint moments in the test set, against 174 

their predicted values using one absolute index - both RMSE; and two relative indices - relative 175 

RMSE (relRMSE) expressed as a percentage (%) of the average peak-to-peak amplitude for the 176 
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outcomes  (Ren et al., 2008), and Pearson correlation coefficient (cor) (Johnson et al., 2019a; 177 

Johnson et al., 2019b). 178 

𝑅𝑀𝑆𝐸 =  √∫ [𝑢𝑜𝑏𝑠(𝑡)− 𝑢𝑝𝑟𝑒𝑑(𝑡)]2𝑑𝑡
𝑇

0

𝑇
 (1) 179 

𝑟𝑒𝑙𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

0.5[∑ (𝑚𝑎𝑥0<𝑡<𝑇(𝑢𝑖(𝑡))− 𝑚𝑖𝑛0<𝑡<𝑇(𝑢𝑖(𝑡)))2
𝑖=1 ]

 𝑥 100% (2) 180 

where 𝑇 represents the stance duration between initial contact and toe-off, 𝑢𝑜𝑏𝑠(𝑡) 181 

represents the value at the 𝑡𝑡ℎtime point of the observed outcome, 𝑢𝑝𝑟𝑒𝑑(𝑡) represents the value 182 

at the 𝑡𝑡ℎtime point of the predicted outcome, and 𝑖 represents either the observed or predicted 183 

outcomes. 184 

3 Results 185 

Basic descriptive characteristics of the cohort can be found in Table 3. The mean 186 

waveform plots of all kinematic and kinetic variables of the entire dataset can be found in the 187 

supplementary material (SM Fig. 1). The observed and predicted mean waveform for each of the 188 

nine outcomes are presented in Fig. 2. Prediction performance was generally the best using 189 

𝑀𝐿𝐷𝑁𝑁, and the worse using 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠(Table 4). The average RMSE (minimum to maximum) 190 

for 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠 was 0.31 Nm/kg (0.16-0.54 Nm/kg), 𝑀𝐿𝐷𝑁𝑁 was 0.14 Nm/kg (0.06-0.25 Nm/kg), 191 

and 𝑀𝐿𝑇𝐿 was 0.18 Nm/kg (0.07-0.31 Nm/kg) (Table 4). The average relRMSE (minimum and 192 

maximum) for 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠 was 27.4% (13.0-57.0%), 𝑀𝐿𝐷𝑁𝑁 was 15.1% (5.0-37.0%), and 𝑀𝐿𝑇𝐿 193 

was 18.6% (7.0-41.0%) (Table 4).  The average correlation (minimum and maximum) for 194 

𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠 was 0.82 (0.2-0.98), 𝑀𝐿𝐷𝑁𝑁 was 0.93 (0.64-1.00), and 𝑀𝐿𝑇𝐿 was 0.89 (0.52-0.99) 195 

(Table 4). 196 
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*** Insert Figure 2*** 197 

*** Insert Table 3*** 198 

*** Insert Table 4*** 199 

On average across all outcomes, 𝑀𝐿𝐷𝑁𝑁 improved RMSE, relRMSE, and correlation by 200 

0.16 Nm/kg, 12.3%, and 0.11, compared to 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠, respectively (Table 4). 𝑀𝐿𝐷𝑁𝑁 improved 201 

RMSE, relRMSE, and correlation by 0.04Nm/kg, 3.4%, and 0.04, compared to 𝑀𝐿𝑇𝐿, 202 

respectively (Table 4). 𝑀𝐿𝑇𝐿 improved RMSE, relRMSE, and correlation by 0.13 Nm/kg, 8.9%, 203 

and 0.07, compared to 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠, respectively (Table 4). 204 

4 Discussion 205 

In the present study, we compared three different ML techniques to predict lower-limb 206 

joint moments during running. Contrary to our hypothesis, 𝑀𝐿𝐷𝑁𝑁 was the best performing 207 

technique, 𝑀𝐿𝑇𝐿 came second, and 𝑀𝐿𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠 was the poorest performing technique.  208 

In the present study, the predictive performance of our 𝑀𝐿𝑇𝐿approach matched that of a 209 

previous study (Johnson et al., 2019b), despite differences in the predictors used (e.g. marker 210 

accelerations), and type of pre-trained model used for transfer learning. Johnson et al. (Johnson 211 

et al., 2019b) reported a relRMSE of 7.8-13.5% for flexion-extension, 25.3-31.7% for adduction-212 

abduction, and 24.3-27.3% for internal-external rotation knee moments. This was close to our 213 

prediction performance achieved using 𝑀𝐿𝑇𝐿, which was 8%, 31% and 19%, respectively for the 214 

knee moments (Table 2). A previous study reported that 𝑀𝐿𝑇𝐿outperformed a shallow learner 215 

(partial least square) in predicting GRF values (Johnson et al., 2019a), a finding replicated in the 216 

present study.  217 
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Surprisingly, a custom-designed DNN (𝑀𝐿𝐷𝑁𝑁) resulted in consistently superior 218 

predictive performance than 𝑀𝐿𝑇𝐿, despite the relatively small sample size of the present study. 219 

In the present 𝑀𝐿𝑇𝐿, we used a single pre-trained image model (VGG16) (Simonyan and 220 

Zisserman, 2015), rather than comparing different pre-trained models on prediction performance. 221 

The CaffeNet model used in previous studies (Johnson et al., 2019a; Johnson et al., 2019b) has 222 

only five convolutional layers but up to 60 million parameters (Krizhevsky et al., 2012), 223 

compared to the presently used VGG16 model (Simonyan and Zisserman, 2015), which has 13 224 

convolutional layers and up to 14 million parameters. In image classification studies, the 225 

advantage of deeper networks is that they can learn features at various levels of abstraction, 226 

making them ideal in generalizing their predictions to an external context. A study comparing 227 

𝑀𝐿𝑇𝐿using three pre-trained models (CaffeNet, AlexNet, and GooLeNet) to predict GRF,  228 

reported a difference in relRMSE between models of 3-5% (Johnson et al., 2019a). Given that 229 

the present study reported that relRMSE of 𝑀𝐿𝑇𝐿 was between 2% and 9% greater than that of 230 

𝑀𝐿𝐷𝑁𝑁, using a different pre-trained image model may enhance the predictive performance of 231 

transfer learning.  232 

Another reason that 𝑀𝐿𝐷𝑁𝑁was superior to𝑀𝐿𝑇𝐿, could be that the pre-trained image 233 

weights were adding noise to the model. This may not be surprising given that pre-trained image 234 

models have been trained on images of non-biomechanical objects (e.g. animals) (Simonyan and 235 

Zisserman, 2015). A previous study reported improvements in knee joint moments’ prediction 236 

when two levels of fine-tuning occurred (e,g. relRMSE of 29.5%) using two independent 237 

biomechanics datasets, rather than one level (e,g. relRMSE of 31.7%) (Johnson et al., 2019b). It 238 

may be that pre-trained weights should be derived from a model trained specifically on 239 

biomechanics data for transfer learning to leverage upon, during the fine-tuning process. Given 240 
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that open-access biomechanics datasets are increasingly common (Fukuchi et al., 2018; Fukuchi 241 

et al., 2017), these data could potentially be leveraged to build a preliminary biomechanics-242 

specific DNN model, before the actual fine-tuning using the experimental dataset. Future 243 

investigations are warranted to evaluate the differences in prediction performance using transfer 244 

learning using a non-biomechanics-specific, biomechanics-specific but on different movement 245 

tasks, and a biomechanics-specific and movement-specific pre-trained model. 246 

For any ML technique, pre-processing plays an influential role in determining its 247 

predictive performance. Presently, we encoded our 3D time-series predictors into static images 248 

using cubic spline interpolation (Johnson et al., 2019a; Johnson et al., 2019b). The purpose of 249 

interpolating our data was so that it fitted the input dimensions of the VGG16 image model used 250 

for transfer learning. By “stretching” the data to fit the required input dimension, noise could 251 

have been introduced into our predictors. It is anticipated that the greater the amount of 252 

“stretching” required, the greater the level of noise introduced into the data. In the present study, 253 

our 101 × 9-pixel image was warped to a dimension of 150 × 150, which could mean that the 254 

width of our image could have been significantly distorted by noise. Other methods of encoding 255 

time-series into images could include transforming time series into polar coordinates via 256 

Gramian Angular Field (GMAF) (Wang and Oates, 2015). A previous study that used GMAR to 257 

encode inertial measurement unit (IMU) time-series data into images for activity recognition, 258 

reported achieving an accuracy of more than 98% (Boukhennoufa et al., 2021). Future studies 259 

comparing different time-series pre-processing techniques should be performed in evaluating its 260 

impact on using DNN in predicting joint moments. 261 

It may be that because we investigated straight-line running, the signal-to-noise ratio of 262 

sagittal plane moments is higher than non-sagittal plane moments, making it easier to predict. 263 
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That was why we found that sagittal plane moments were generally predicted more accurately 264 

than non-sagittal plane moments. Whether the performance errors in any ML approaches are 265 

acceptable would be dependent on factors such as the joints, joint axes, direction of motion, and 266 

the intended usage of the outcome. Until there is an established magnitude of clinically 267 

significant errors in joint moment measurement, more accurate methods must be pursued in 268 

future studies.  269 

This study is not without limitations. First, we did not perform hyperparameter tuning. 270 

Given that functional regression has no intrinsic hyperparameters, we wanted to compare all 271 

three models using their “default” settings. Hence, our findings can be said to provide a more 272 

conservative estimate of the predictive performance of deep and transfer learning models. 273 

Second, we used predictors derived from optoelectronic systems, which can still be time-274 

consuming to use in the clinics. Wearable sensors or markerless motion capture represent the 275 

most clinically feasible methods of measuring body motions. Whether the performance of the 276 

KinematicML approach using these newer technologies would match that of traditional 277 

optoelectronic systems needs to be investigated.  278 

5 Conclusions 279 

DNN with or without transfer learning was superior in predicting joint moments 280 

compared to functional regression. A custom DNN model was superior to transfer learning, 281 

using an existing pre-trained image model. To leverage transfer learning in predicting 282 

biomechanical variables, a pre-trained biomechanics-specific image model may be needed. 283 

Synergising ML with kinematic inputs has the potential to allow an in-depth biomechanical 284 

analysis of movement data obtained in the field.   285 
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