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Editorial on the Research Topic

Brain-Computer Interfaces for Perception, Learning, and Motor Control

This special issue is aimed at offering the latest research outcomes in Brain-Computer Interfaces
(BCI) with special reference to perception, learning, and motor control. Perception refers to our
ability to sense and interpret the environment in form of a stimuli. Learning is a process to
memorize extracts of perceived information and/or their inter-relations, to develop our ability to
classify objects from their partial information (attributes) and/or to group (cluster) objects based
on a certain measure of their similarity. Motor control refers to our ability to control the motion-
related parameters, such as position, velocity, and acceleration of our voluntarily controllable
external organs and/or muscles (Pirondini et al., 2017). Although the above terminologies
apparently represent different fragments of cognition, they have a precedence relationship from
the points of view of their usage. For instance, without perception, learning is impossible. Further,
without learning, we cannot perform motor control (Elliott et al., 2011). It may be recalled that
children develop their skill of motor control by repeated trials of executing motor actions and their
successes and failures.

The motivation of this special issue is to explore the biological underpinnings of perception,
learning and motor control from the brain activations captured by electroencephalography (EEG),
functional Near-Infrared spectroscopy (f-NIRs), and implantable intra-cortical devices, connected
with human/animal brains in the settings of a Brain-Computer Interface (BCI). The special issue
includes 16 papers which are summarized below.

Xie, Peng et al. examined the scope of transcranial electrical stimulation on brain activity
during motor imagery (MI) activations. The most interesting finding of this research lies in the
phenomenon that transcranial current stimulation helps in regulatory brain activity and enhances
valid features during non-invasive MI-BCI processing.

Wang et al. proposed a new paradigm for long-term treatment therapy for motor dysfunction
caused by neurological injury in the brain. The important aspect of this paper lies in capturing the
changes in the brain connectivity caused by short-term neurofeedback. This is perhaps due to the
participation of new groups of neurons in the motor learning task with a tendency of rehabilitation
by the participating neurons.

Zaer et al. provided a detailed design of an experimental framework for real-time recording
and manipulation of neural circuits acquired from intra-cortical electrodes of freely moving
animals. The signal acquisition system includes a 64-channel intra-cortical electrode array with a
rechargeable battery implanted in the visual cortex to record and manipulate local field potentials.
The proposed scheme gives a local signature using a wireless connection to an external network for
long-term pre-clinical study of the visual neural circuit after irradiation exposure.
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Kim et al. presented an experimental setup to study the effect
of subjective emotional changes due to auditory stimuli on the
control performance of a P300 based BCI system developed to
control an electric light device. Four conditions on the auditory
stimuli, such as high valence, low valence, noise, and no sound
are used to influence the user to change her emotion, while the
user is engaged in controlling the electric light using the P300
based BCI. The paper ultimately arrives at the conclusion that the
external influence of emotional stimuli cannot influence the P300
based BCI control. The study thus emphasizes the robustness of
P300 based BCI control even when the subject is disturbed by
external stimuli.

Rosanne et al. proposed a novel technique of adaptive filtering
to improve EEG-based mental workload assessment of ambulant
users. The proposed adaptive filter relies on an accelerometer-
based referential signal when the subject is engaged in multi-
attribute decision-making tasks, while walking/jogging on a
treadmill. In presence of the proposed adaptive filter algorithm,
the authors obtained high classification accuracy of 95% using
a random forest-based 2-class mental workload classification,
when experimented on ambulant Users.

Li et al. proposed a self-organized graph neural network
(SOGNN) for cross-subject EEG-based emotion recognition. The
novelty in the proposed work lies in the dynamic construction
of the graph neural network by a self-organized module. The
performance analysis is undertaken by considering variations in
the graph construction techniques. Visualization of the graph
structure learned by the proposed model coincided with the
previous neuroscience research. This implicates the effectiveness
of the proposed model in the context of neuroscience.

Lau et al. examined the neuroplasticity changes in stroke
survivors due to the training of handmovements by a BCI-guided
robot arm. The study includes neural modulation in functional
connectivity and the clinical improvements immediately after
and 6 months after the training of the subjects by the assistive
BCI system. The experimental results indicate that neural activity
in sensory-motor and frontoparietal regions, which are highly
involved in BCI-guided training, show significant changes in
functional connectivity.

Derzsi examined the scope of spectral power density and
phase coherency features to detect Steady-State Visual Evoked
Potential (SSVEP) signals. It appears from the experiments that
phase coherency features are most sensitive in the detection of
weak signals such as SSVEP.

Khan and Hasan studied bimodal fusion of
electroencephalography (EEG) and functional Near-Infrared
spectroscopy (f-NIRs) signals to improve performance in motor-
task classification. Here, the authors proposed Multi-resolution
Singular Value Decomposition (MSVD) to achieve system- and
feature-based fusion. Finally, the authors employed tree and
k-nearest neighbors (k-NN) algorithm-based classification to
determine the efficacy of the bimodal fusion.

The tangent Space Mapping (TSM) algorithm is a well-
known technique to recognize multi-class motor imagery (MI).
However, the EEG features induced by MI mental activities
of the subjects being different, selection of subject-specific
discriminative EEG frequency components has an important role

in the recognition of multi-class MI. Wu et al. extended the
classical TSM algorithm by incorporating multi-scale filter banks
to recognize the tangent space features in each sub-band. Finally,
a Linear Support Vector Machine (LSVM) classifier is used to
classify the MI. The authors claim that the classification accuracy
of the extended algorithm is increased by 3.36% with respect to
the traditional TSM algorithm for MI classification.

Xie, Cao et al. made an interesting and unusual claim that
an introduction of moderate auditory noise enhances the
BCI performance in the visual modality. This is referred to
as cross-modal stochastic resonance (SR) theory. Although
cross-modal SR theory has been tested in different sensory
systems, its application in BCI is novel. Here, the authors
employed Fast Fourier Transform (FFT) and Canonical
Correlation Analysis (CCA) to evaluate the influence of noise
in the periodic components of the visual response. Directed
Transfer Function (DTF) was used to investigate the functional
connectivity patterns, and the flow-gain value is used to
measure the degree of activation of the specific brain regions
in the information transmission process. The flow-gain maps
demonstrated that moderate-intensity in audio noise activates
the brain area to a great extent. Further analysis by weighted
phase-lag index confirms that phase synchronization between
visual and auditory regions in presence of auditory noise is
significantly enhanced.

Simar et al. deals with an interesting problem on the detection
of festive or violent intent of subjects before execution of their
actions in interpersonal interactions. The authors here develop a
classifier based on covariance matrix and Riemannian geometry
that can effectively discriminate neutral, festive, and violent
mental states on the basis of non-invasive EEG signals in both
the actor and the observer participants. This research outcome
may serve as an important component for the next generation
of social interaction among people with portable EEG devices on
their heads. The observers in such interactions may get enough
time to keep themselves prepared to move away before the actual
execution of the violent action by the actor.

Liu et al. proposed a novel approach to design motor
imagery classifiers using Convolution Neural Network (CNN)
with parallel spatial and temporal self-attention modules. The
spatial self-attention module is designed to capture the spatial
dependencies between channels of motor imagery EEG signals.
It updates the features of each channel by considering the
weighted sum of the same feature of other channels. Such
updating keeps away the possibility of individual channel
features being severely affected by artifacts. The temporal self-
attention, on the other hand, is employed to encode the global
temporal information into features over each sampling time-
steps, to obtain high-level temporal features of the MI EEG
signals in the time-domain. The proposed CNN model is tested
in position control of drones using MI EEG signals of the
experimental subject.

Roy et al. proposed an interesting solution to the long-
standing inter-subject transfer learning problem in the MI-
based BCI. The primary bottleneck in transfer learning under
BCI settings is due to high inter-subject variability in brain
signals related to MI. Here, a Convolution Neural Net (CNN)
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based deep learning is proposed with provisions for inter-
subject continuous decoding of MI-related EEG signals using the
novel concept of Mega Blocks for adapting the network against
inter-subjects’ variability. The parameters of the Mega Blocks
are optimized using Bayesian hyper-parameter optimization.
The proposed CNN-based architecture would serve as an
important module in the development of the calibration-free
next-generation classifiers with the flexibility of inter-subject
continuous decoding of motor imageries.

Traditional MI-based BCI systems generally employ left hand,
right hand, and foot motor imageries as 3 basic commands in
the BCI design. However, to develop bigger BCI systems, we may
consider simultaneous activation of 2 or more basic commands,
and thus generate 8 possible commands including the rest
condition as well into account. The main limitation of the
multi-command BCI systems is the difficulty in decoding the
commands due to constraints to maintain adequate spacing
among the corresponding sources, and also due to stochastic
noise of the signal sources. Lindig-Leon et al. proposed a solution
to the above problem by transforming the 8-class problem into a
set of 3 binary problems to facilitate the use of proposed multi-
label Common Spatial Patterns (CSP) algorithms. Two different
realizations of multi-label CSP algorithms, called MC2CMI and
MC2SMI are proposed in the paper. Both the algorithms return
3 sets of features, one for the left hand, one for the right hand,

and the rest for foot MI. Finally, the 3 sets of features are merged
together into a vector to predict the user intention by employing
an 8-class Linear Discriminant Analysis (LDA) classifier.

Fathima and Kore in this special issue has dealt with another
interesting problem on feature selection and channel selection
in EEG-BCI systems using optimization algorithms. Here, the
authors demonstrate the formulation of a single objective, multi-
objective, and constrained optimization objective function for
different types of BCI applications, including control problem in
prosthetic arms, gaming, andmany others. The importance of the
paper lies in the thorough review of existing works along with
authors’ own contributions in the choice of suitable objective
functions for a given problem.

The editors strongly believe that this issue will be useful to
the BCI researchers, doctoral students, and BCI-developers, who
are curious to employ MI BCIs in different applications. The
editors are grateful to the authors for submitting their valuable
contributions to this special issue, and also to the publisher to
allow them to edit this interesting volume.
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Inter-subject transfer learning is a long-standing problem in brain-computer interfaces

(BCIs) and has not yet been fully realized due to high inter-subject variability in the

brain signals related to motor imagery (MI). The recent success of deep learning-based

algorithms in classifying different brain signals warrants further exploration to determine

whether it is feasible for the inter-subject continuous decoding of MI signals to provide

contingent neurofeedback which is important for neurorehabilitative BCI designs. In

this paper, we have shown how a convolutional neural network (CNN) based deep

learning framework can be used for inter-subject continuous decoding of MI related

electroencephalographic (EEG) signals using the novel concept of Mega Blocks for

adapting the network against inter-subject variabilities. These Mega Blocks have the

capacity to repeat a specific architectural block several times such as one or more

convolutional layers in a single Mega Block. The parameters of such Mega Blocks

can be optimized using Bayesian hyperparameter optimization. The results, obtained

on the publicly available BCI competition IV-2b dataset, yields an average inter-subject

continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two

different training methods such as adaptive moment estimation (Adam) and stochastic

gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the

first time that it is feasible to use CNN based architectures for inter-subject continuous

decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for

practical purposes.

Keywords: convolutional neural network (CNN), deep learning, motor imagery, brain-computer interface (BCI),

electroencephalography (EEG), adaptive learning, SGDM, ADAM

1. INTRODUCTION

The practical applications of brain-computer interfaces are often hindered by the need for
repeated calibration for each individual participant due to large inter-subject variability in the
EEG signal. Even when different sessions on the same participant are considered, BCI systems
need recalibration due to the non-stationary nature of the EEG signals leading to inter-session
inconsistency (Chowdhury et al., 2018b). BCIs are often used for neurorehabilitation and for
developing control and communication systems for patients suffering from various neurological
disorders. Often the problem is exacerbated due to the presence of varying brain lesions among
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users. Studies conducted on patient population alongside healthy
individuals have shown such patterns where the variation in BCI
performance was more in patient population than in healthy
population (Spüler et al., 2012; Chowdhury et al., 2019). With
regards to neurorehabilitation especially, the time-consuming
calibration process leads to user frustration and a lack of
motivation which can hinder the recovery process. This is evident
from the work of Morone and colleagues who found a significant
correlation between motivation and BCI performance (Morone
et al., 2015) which is further found to be strongly correlated
with motor recovery (Bundy et al., 2017). General sources of
intra- and inter-subject variability leading to the covariate shifts
in the dataset include different emotional and mental processes
happening in the background of the MI (Saha and Baumert,
2020). Other sources may include the neuroanatomy of the
brain for different subjects and the inter-subject difference in the
cognitive style of performing a motor-task over time (Seghier
and Price, 2018). The volume conduction may also play a major
role in covariate shifts in the EEG data (Chowdhury et al.,
2018b). Previous attempts to solve this problem involved (1)
attempting to discover globally relevant EEG features and (2) the
use of adaptive EEG classifiers (Lotte et al., 2018). Recent studies
also utilized some BCI performance Predictors to augment the
transfer learning process (Saha et al., 2018; Saha et al., 2019).

An extensive detail of transfer learning approaches for BCIs
has been given in Jayaram et al. (2016). Transfer learning is often
implemented by transferring stationary and/or discriminative
information invariant across the subjects (Wang et al., 2015; Gaur
et al., 2019a). Apart from globally relevant feature representation,
other approaches to transfer learning involve ensemble learning,
sparse subset of spatial filters, and classifiers (Fazli et al., 2009;
Tu and Sun, 2012; Raza et al., 2019), and domain adaptation
of classifiers (Vidaurre et al., 2011). A variant of the popularly
used common spatial pattern (CSP) based spatial filtering,
called composite CSP, proposed by Kang and colleagues, was
one of the earliest efforts of inter-subject transfer learning
using EEG signals (Kang et al., 2009). Regularized CSP filters
derived from other subjects also gave significant performance
improvement for inter-subject transfer learning (Devlaminck
et al., 2011; Lotte and Guan, 2011). Another popular method
of intra- and inter-subject transfer learning is covariate shift
adaptation by combining the unlabeled test data with the
labeled training data which corrects the covariate shifts arising
from the changes of marginal distribution between different
subjects/sessions (Li et al., 2010; Arvaneh et al., 2014). Some
different approaches are also proposed for inter-subject transfer
learning where event-related cortical sources are estimated from
subject independent EEG recordings (Saha et al., 2019) which
can compensate for the changes in head morphology and
electrode positioning (Wronkiewicz et al., 2015). In a recent
study, a Riemannian geometry-based approach is successfully
applied for cross-subject and cross-session transfer learning
which significantly improved BCI performance (Zanini et al.,
2018; Gaur et al., 2019a). Others have also used novel filtering
techniques using multivariate empirical mode decomposition
(MEMD) along with CSP features for subject independent
learning and have shown improved performance on BCI

Competition IV-2a dataset (Gaur et al., 2019a,b). Halme and
colleagues compared several different methods for cross-subject
decoding of MI and passive movements using both EEG and
MEG signals. They found better cross-subject accuracy in
MEG as compared to EEG for an MI task (70.6%) (Halme
and Parkkonen, 2018). Transfer learning was also realized
using a covariate shift adaptation technique for session-to-
session transfer, although their effect on inter-subject learning
is still uncertain (Chowdhury et al., 2018b). Other attempts of
suppressing subject-specific calibration include Kalman filter-
based decoder (Sussillo et al., 2016) and actor-critic based
reinforcement learning (Pohlmeyer et al., 2014; Prins et al., 2017).
So far the evidence of high performing inter-subject transfer
learning models is scarce and mostly concentrates on event-
related potentials (Jin et al., 2013; Kindermans et al., 2014). Of
late, the use of a Sparse Group Representation Model showed
promising results for inter-subject decoding which compensated
reduced recoding from the same subject by making use of
previously recorded data from other subjects (Jiao et al., 2019).

Conventional methods of inter-subject transfer learning
mentioned above are heavily dependant on feature engineering
techniques which limit their capacity to be applied on a large
variety of subjects. Recently, following the success of deep
learning-based algorithms in image processing applications,
inroads have been made in the field of biomedical engineering,
especially in the classification of brain signals where reliable and
stable performance is still a challenge aftermore than two decades
of research (Roy et al., 2019).

Lu and colleagues proposed a deep belief network
method using a restricted Boltzmann machine (RBM) for
MI classification (Lu et al., 2017). Different architectures of
deep convolutional neural networks (CNNs) have also been
explored for decoding EEG signals (Schirrmeister et al., 2017).
A CNN with stacked autoencoders (SAE) has been shown to
achieve better classification accuracy on BCI competition IV-2b
dataset than the traditional classification approaches (Tabar and
Halici, 2016; Zubarev et al., 2018; Roy et al., 2019a). Recently,
Bayesian extreme learning was also proposed for improving
the performance of MI-BCIs (Jin et al., 2020). However, none
of these deep learning-based decoders addressed the issue of
inter-subject transfer learning in BCI, except for some recent
studies (Lawhern et al., 2018; Fahimi et al., 2019; Kwon et al.,
2019). Even in these studies, the issue of continuous feedback
was not addressed while it is of utmost importance that a
BCI, especially for neurorehabilitation applications, should be
capable of providing continuous neurofeedback contingent to
task-dependent neural activity. The paper therefore proposes the
novel concept of Mega Blocks for adapting a CNN architecture
to tackle inter-subject variabilities, and validates for the first time
the feasibility of such a CNN-based architecture for inter-subject
continuous decoding of MI-related EEG signals. The study is
important as it paves the way for calibration-free BCI designs
based on CNN which can be used for vital practical purposes
such as providing neurofeedback in a rehabilitative BCI setting
reducing the user frustration related to the need to recalibrate.
Another important aspect of this study is that it utilizes publicly
available data for the validation which means that the work
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FIGURE 1 | Construction of STFT images by sliding window of size 2 s with a shift/hop of 200 ms is divided into 256 ms sub-windows (with 56 ms shift/hop) for

calculating STFT of the MI period within the trial.

can be reproducible and serve as a benchmark for further
development in a similar direction. The results of intra-subject
and single-trial classification accuracies using the same CNN
architectures are also provided for the sake of comparability.

2. MATERIALS AND METHODS

2.1. Dataset
BCI competition IV-2b is a well-known dataset and is used as
a benchmark for testing new algorithms in the area of MI-
based BCI (BCI-Competition, 2008). The dataset comprises of
EEG data recorded from 9 healthy participants. The data were
recorded in 5 sessions, where the first 3 sessions are for calibrating
an EEG decoder and the last 2 sessions are for evaluation
purposes. Three channels on the primary motor cortex, C3, Cz,
and C4 were used for the bipolar recording of EEG signals at
the sampling rate of 250 Hz. Signals were band-passed between
0.1 and 100 Hz with a notch filter at 50 Hz set at the time
of recording using signal acquisition hardware. Each session
consists of equally distributed trials of left and right hand MI
classes. The timing diagram (Figure 1) shows that each trial
started with a fixation cross for 3 s, after which a cue appears as
an arrow for 1.5 s instructing the participant to do left or right-
hand MI. After the MI period of 4 s, there was a short break of
a few seconds until the start of the next trial. The only difference
between the trials at the calibration and evaluation phase is that
for the evaluation phase a happy or sad smiley was shown during
theMI period as feedback. In our study, we have trained the CNN

classifier on the trials of the first 3 sessions’ data (total 420 trials)
and tested on the last 2 sessions’ data (total 320 trials).

2.2. Input Image Construction
The traditional approach of classifying EEG signals is based
on extracting time-frequency based features and training using
traditional classifiers such as linear discriminant analysis (LDA),
or support-vector-machine (SVM) (Chowdhury et al., 2018a).
A CNN typically takes the input as an image; it is well-known
that vital information is contained within the time-frequency
spectrogram of EEG signals popularly known as event-related
desynchronization/synchronization (ERD/ERS) in the context
of MI (Chowdhury et al., 2019). Hence, a similar approach
was followed for constructing input images for CNN, wherein
short time Fourier transform (STFT) was used for obtaining
the time-frequency spectra of the MI related changes in the
EEG signal. The STFT is evaluated on a time period of 2 s
within the MI period of a trial (i.e., between 3 and 7 s),
which is shifted by 200 ms, thereby generating 11 input images
per trial. In our previous study on the clinical effect of BCI
based continuous anthropomorphic multimodal neurofeedback
on stroke patients (Chowdhury et al., 2018a), the shift between
the two consecutive windows was set as 500 ms which was
sufficient but suffered from high latency. In order to reduce the
latency by making it closer to real-time, in the present study
we decreased the shift by 300 ms to set it as 200 ms. Although
some studies used latencies as low as 72 ms (Foldes et al., 2015),
we made a trade-off between the amount of overlap and latency
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FIGURE 2 | Example of input images for left and right MI. The input images are formed by combining the theta-alpha and beta band STFT images vertically. The three

EEG channels: C3, Cz, and C4, are stacked depthwise, the same as an RGB image. These images are then fed into the CNN for classification purposes.

to avoid reducing it further. The choice of the time window
motivated by the fact that, as we have considered frequencies
as low as 4 Hz, i.e., time period of 250 ms, we kept the size
of the time window sufficiently high (i.e., 2,000 ms) to allow 8
oscillations of the lowest frequency for proper bandpass filtering.
Thus the combination of a 2 s time window and 200 ms shift
makes 11 segments within the 5 s MI period producing 11 images
in a single trial. This design would be useful when it comes to
providing continuous neurofeedback in a more intuitive way and
for which having low latency is an essential criterion (Foldes
et al., 2015). But unlike these previous studies (Foldes et al.,
2015; Chowdhury et al., 2018a) which are primarily based
on within-subject learning, we have shown how continuous
feedback could be incorporated into a CNN based inter-subject
transfer learning setting which can then contribute to calibration-
free neurorehabilitative BCI designs without compromising the
richness of the neurofeedback. As the sampling frequency of the
EEG signal is 250 Hz, a 2 s signal is composed of 500 samples.
We have chosen a window size of 64 samples, with an overlap
of 50 samples between the consecutive windows. The number
of fast-Fourier-transform (FFT) points was 512. Thus the size
of the spectrogram was 257 × 32, where 257 was the number
of frequency components and 32 was the number of time
points. Event related desynchronization (ERD) and event-related
synchronization (ERS) phenomena typically occur over the
frequency ranges 8–13 and 13–32 Hz, respectively (Pfurtscheller
and da Silva, 1999). In one of the earlier works on CNNbasedMI-
BCI, Tabar and Halici (2016) have used the 6–13 Hz frequency
band for STFT plots with satisfactory accuracy. This shows a
partial inclusion of theta band (4–7Hz) along with the alpha (8–
13 Hz) band for generating STFT plots. Hence, in our approach,
we have combined the entire theta and alpha band (4–13 Hz)
along with the beta band (13–32 Hz) to capture all possible
neurodynamics related to the MI. From this spectrogram, we
first choose the theta-alpha-spectrogram for 4–13 Hz which
was of the size 20 × 32. Then we choose beta-spectrogram
for 13–32 Hz, which was of size 41 × 32. To match the sizes

of these two sub-spectrograms (by sub-spectrograms we mean
the theta-alpha-spectrogram and beta-spectrogram as they are
the subsets of the initial spectrogram of size 257 × 32 after
STFT) we used cubic interpolation on the beta-spectrogram and
reduced it to size 20 × 32 so that the effect of both the bands
remained the same on the final input to the CNN. A similar
approach can also be found in Tabar and Halici (2016) where
the same cubic interpolation was applied to match the sizes of
the two spectrograms. The theta-alpha-spectrogram and beta-
spectrogram are concatenated vertically to get a spectrogram of
size 40× 32. Thus the spectrograms of size 40× 32 are calculated
for each of the three EEG channels C3, Cz, and C4. The final
image is constructed by concatenating these three spectrograms
on a third dimension orthogonal to the time-frequency plane. So,
the size of the final image becomes 40 × 32 × 3, where Nf = 40,
Nt = 32, and Nch = 3. This construction process of the STFT
images is shown in Figure 1. An example of input images formed
out of the STFT images, for left and right-hand MI is shown in
Figure 2. The frequency ranges stacked on top of each other are
the 4–13Hz range (combining the theta and alpha bands) and the
13–32Hz range (the beta band). The colors in Figure 2 represents
the mixed intensity of three EEG channels C3, Cz, and C4 which
are stacked depthwise similar to RGB images. These input images
are then decoded by the CNN for generating the neurofeedback.

2.3. Architecture-1 for Intra-Subject
Learning
The Architecture-1 is defined with 16 filters of size 3 × 3
with a stride of 1 for the first convolutional layer. An input
image of 40×32×3 was used as an input to this convolutional
layer. After the first convolutional layer, batch normalization and
maxpooling were performed using a filter of 3× 3 and a stride of
2. Again, for the next convolutional layer, 32 filters were used of
size 3× 3 and similarly, maxpooling was performed with a factor
of 3 and a stride 2. After that, another convolutional layer was
added with 64 filters of 3× 3 size and a stride of 1. Finally, a fully
connected layer average pooling was performed with a factor of
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TABLE 1 | Parameters for Architecture-1 for intra-subject learning.

Layers Filters Size Options

Descriptions of the design parameters for Architecture-1

Image input [40, 32, 3]

layers

Convolution 16 [3, 3] Stride = [1,1]

2D layer

Batch norm 10−5

ReLU layer

Maxpooling 2D [3, 3] Stride = [2,2]

layer

Convolution 32 [3, 3] Stride = [1, 1]

2D layer

Batch norm 10−5

ReLU layer

Maxpooling 2D [3, 3] Stride = [2, 2]

layer

Convolution 64 [3, 3] Stride = [1, 1]

layer

Batch norm 10−5

ReLU layer

Average pooling [8, 8] Stride = [1, 1]

layer

Fully connected 192

layerlayer Softmax layer

Classification Loss =

output layer cross entropyex

8 and a stride of 1. For learning the parameters of the CNN two
different training methods used are stochastic gradient descent
method (SGDM) and adaptive moment estimation (Adam).

The k-th feature map at a given layer can be represented as:

hkij = f (a) = f ((wk × x)ij + bk) (1)

where x is the input image, wk is the weight matrix and bk is the
bias value for k = (1, 2, ..., 30). The output function f is selected
as rectified linear unit (ReLu) function and it is approximated as
softplus function defined as,

fa = ReLU(a) = ln(1+ ea) (2)

The Gradient descent method attempts to minimize an objective
function J(θ) which is parameterized by a model’s parameter
(where θ ∈ R

d) by updating the parameters in the steepest
descent direction from the gradient of the objective function
∇θ J(θ). The learning rate is defined by the size of steps considered
to reach a local minimum. However, at each step, gradient
descent requires evaluation of n derivatives, which is expensive. A
popular modification is SGD (Johnson and Zhang, 2013), where
at each iteration (t = 1, 2,...) wt is defined as follows:

wt = w(t−1) − η∇ψ(w(t−1)) (3)

where η is the learning rate andψ represents the loss function. In
a simpler way, learning of the model parameters can be expressed
as Equation (4), where parameters perform an update for each
training example x(i) and label y(i).

θ = θ − η.∇θ J(θ; x
(i); y(i)) (4)

The advantage of SGDM is that computation time is 1/n of
standard gradient descent as every step depends upon a single
derivative ∇ψi(·). The Momentum (Qian, 1999) method helps
SGD to accelerate in applicable direction by damping oscillations
through the addition of the fraction µ of the update vector to
the current update vector. As shown in Equation (5), µ can be
considered as a momentum decay coefficient where µ ∈ [0, 1),
which controls the rate at which old gradients are discarded.

vt+1 = µ.vt − η.∇l(θ) (5)

θt+1 = θt + vt+1 (6)

Architecture-1 has a convolutional 2D layer with l2
regularization of 0.0014 and ReLU-activation. The details
of the parameters are shown in Table 1. Batch normalization
was done and the model was trained for 55 epochs with a batch
size of 40. For validation, 500 samples were randomly used.
The learning rate for the model was 6.7929e−04 and the initial
momentum was 0.9799. The dropout rate was 0.1 and the drop
period was 20. The loss function was cross-entropy which was
expressed as Loss =

∑N
i=1

∑K
j=1 tij ln yij. The hyperparameters

are chosen using Bayesian optimization. Apart from SGDM
we have also used Adam as an optimizer on the same CNN
architecture (Architecture-1) for tuning the hyperparameters.
This is because for some participants (participants 2 and 3) the
data were particularly noisy which made the convergence of
SGDM very slow. Hence, the experimentation was also done
using Adam as an optimizer for faster convergence using a large
learning rate. It is to be noted that aside from the change in the
optimizer (i.e., from SGDM to Adam) the layers of the CNN
Architecture-1 were exactly the same as described in Table 1.
The corresponding architecture diagram is shown in Figure 3.

Adam can be understood as a combination of SGDM
with momentum and Root Mean Square Error Propagation
(RMSprop). It is an adaptive learning rate method, where the
learning rate is computed from different parameters. Adam keeps
exponentially decaying the average of past gradientsmt similarly
to momentum.

Adam uses an exponentially moving average which is
computed on the current mini-batch gradient:

mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)g
2
t (8)

where mt and vt are an estimation of the mean and uncentered
variance of gradient (g) and β1 and β2 are new hyperparameters.
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FIGURE 3 | Visualization of Architecture-1 for intra-subject classification. Lines represent the connection between the feature maps. The network starts with 3D input

to the convolution which is represented as (image height, image width, and number of channels), i.e., 40 × 32 × 3, and afterward 2D convolution is performed with

parameters shown in Table 1.

The update rule for Adam is

θt+1 = θt −
η

√

v̂t + ε
m̂t (9)

where θ is themodel parameter, θ ∈R
d, and η is the learning rate.

The proposed default values are 0.9 for β1, 0.999 for β2, and
10−8 for ǫ (Kingma and Ba, 2014). It was shown empirically that
Adam is effective in practice and quite popular as compared to
other adaptive learning-method algorithms. For Adam, the initial
learning rate was 0.01 using a batch size of 50 and the model was
trained for 15 epochs.

The Bayesian optimization method was used for selecting the
best hyperparameters for the model. The range of parameters
for the convolutional layer was set from 1 to 5, the learning
rate ranged from e−06 to e−02, the momentum in the case of
SGDM was from 0.6 to 0.98, and the L2 regularization was from
e−10 to e−02 for a total of 30 different objective functions to
evaluate. The Bayesian optimization method tries to minimize
the scalar objective function f (x) for x in a bounded set. The
deterministic or stochastic function can obtain similar/different
results for evaluation of the same point x. There are several steps
to minimize, which include Gaussian process model of f (x), and
acquisition function a(x) based on the model of f (x) which is
maximized for the next point x for evaluation. The acquisition
functions evaluate the “goodness” of a point x based on the
posterior distribution function Q (Gelbart et al., 2014). Bayesian
optimization estimates the smallest feasible mean of posterior
distribution by sampling several thousand points within variable
bounds and improving them using local search.

Expected improvement (EI) of acquisition function evaluates
the acquisition function, ignoring values responsible for the
increase in the objective. EI can be expressed as:

EI(x,Q) = EQ[max(0,µQ(xb)− f (x)] (10)

where xb is the location of the lowest posterior mean and µQ(xb)
is the lowest value of posterior mean.

The Probability of improvement (PI) optimization function
calculates the probability of a better objective function value by
a new point x which is modified by a margin parameter m. PI is
given as,

PI(x,Q) = PQ(f (x) < µQ(xb)−m) (11)

where m is considered as the estimated noise standard deviation
and the probability is evaluated as,

PI = 8(vQ(x)) (12)

Here8(.) is the unit normal Cumulative Density Function and

vQ(x) =
µQ(xbest)−m− µQ(x)

σQ(x)
(13)

where σQ is the posterior standard deviation of the Gaussian
process at x.

2.4. Architecture-2 for Inter-subject
Transfer Learning
In the case of transfer learning, the dataset was huge as
the classifier needed to learn from all 8 subjects over 5
sessions. Since we have a mixed dataset it was important to
account for variability over the sessions and over subjects. For
performing transfer learning, huge networks are often used such
as ResNet50 (He et al., 2016), AlexNet (Krizhevsky et al., 2012)
in the case of image classification. But in the domain of BCI,
data collection is a slow process and hence limited in size.
Therefore, we needed to design an adaptive system to account
for the noise and non-stationarity arising across various sessions
and subjects. Thus, we designed Mega Blocks which has the
capacity to repeat the specific architecture block over time. For
example, in oneMega Block, we can put one or more convolution
layers, the parameters of which are exactly the same as the
corresponding Mega Block in the number of filters, filter size,
activation function, and L2 regularization. The fixed parameters
can be replicated for every convolution block inside Mega Block,
which ranges from 1 to 5 in our case, and can be extended further.
It is advised to add one or more Mega Blocks instead of adding
more than 5 convolutional layers inside a Mega Block as the
addition of more convolutional layers inside a Mega Block will
increase the training parameters significantly. Also, the addition
of more Mega Blocks will help in learning more micro-features.
After everyMega Block, there can bemaxpooling/averagepooling
layer whose output is given as the input to the next Mega Block.
The parameters of a Mega Block are optimized using Bayesian
hyperparameter optimization, which includes, the number of
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TABLE 2 | Design Parameters for Architecture-2 for inter-subject transfer learning.

Layers Filters Size Activation Options

Image input

layer

[40, 32, 3]

Mega Block 1 9 [5,5] relu Stride = [1,1]

bnm = 10−5

Maxpooling

layer

[3,3] Stride = [2,2]

Mega Block 2 18 [3,3] relu Stride = [1,1]

bnm = 10−5

Maxpooling

layer

[3,3] Stride = [2,2]

Mega Block 3 36 [3,3] relu Stride = [1,1]

bnm = 10−5

Average

pooling layer

[8,8] Stride = [1,1]

Fully

connected

layer

108

Softmax layer

Classification

output layer

2 Loss =

cross

entropyex

convolution layers, learning rate, momentum, and regularization.
Using this methodology we have observed that the trained
model is less vulnerable to noisy subjects’ data considering
the amount of good data is significantly higher. The model
can be further modified by introducing skip layers much like
ResNet50 inside Mega Blocks. One Mega Block can extend itself
from 1 convolution block to 5 convolution blocks with similar
properties. Each convolution block has a convolutional layer
connected with a batch normalization layer and a ReLU layer.
After every Mega Block, a maxpooling layer was added whose
output was fed to the next Mega Block input. Finally, the average
pooling layer is connected with a fully connected layer, softmax
layer and classification. The loss for training was set to cross-
entropy. The design parameters of Architecture-2 are shown
in Table 2.

It is to be noted that similar to Architecture-1, Architecture-2
was also trained using both the optimizers: SGDM and Adam.
Table 3 shows the number of convolution blocks used inside
Mega Blocks 1, 2, and 3 in the case of training methods as SGDM
and Adam. The number of maximum epochs for training was 50
andmini-batch size was 64. The learning rate drop rate factor was
0.1 and the drop period was 40. A general overview of the CNN
architecture used here is shown in Figure 4 which evolves into
Architecture-1 (for intra-subject learning) or Architecture-2 (for
inter-subject learning) depending upon the choice of parameters
given in Tables 1, 2, respectively.

2.5. Training and Continuous Decoding
CNN was evaluated for continuous decoding of MI meaning
that rather than making a decoding once within a trial, we are

TABLE 3 | Number of convolutional layers for each subject used in Architecture-2

for inter-subject transfer learning purpose (MB = Maga Block).

Subjects
No. of conv. blocks (SGDM) No. of conv. blocks (Adam)

MB 1 MB 2 MB 3 MB 1 MB 2 MB 3

S01 1 1 1 1 1 1

S02 3 3 3 1 1 1

S03 1 1 1 1 1 1

S04 3 3 3 5 5 5

S05 3 3 3 3 3 3

S06 1 1 1 1 1 1

S07 1 1 1 1 1 1

S08 2 2 2 4 4 4

S09 1 1 1 1 1 1

decoding multiple times. To facilitate this we divided the trial
into multiple windows of size 2 s, which were shifted by 200 ms
(i.e., 1,800 ms of overlap). Thus every trial was divided into 11
segments and the decoding was done by the CNN based classifier
for each of the segments. To keep parity in the signal processing
of the training and feedback stages, similar segmentation was
also performed for training data also. All the 11 segments of a
particular training trial were assigned the same class-label while
feeding into the CNN. One advantage of such segmentation
is that we can increase the training instances for CNN, as we
know that the deep learning classifiers require a larger training
data set. Thus rather than having 420 training examples for
420 trials, we had 420 × 11 = 4,620 training examples. In this
way, the CNN classifier can generate decodings every 200 ms
interval within a trial and can provide continuous feedback to
the participant accordingly.

The performance of the CNN architectures is evaluated
by calculating the classification accuracies in three different
manners, gross classification accuracy (CAgross), single-
trial classification accuracy (CAST), and optimal time-point
classification accuracy (CAopt). The CAgross is defined as the
percentage of correctly classified feedback instances among all
the available feedback instances (i.e., 320 × 11 = 3,520, the
number of all feedback instances, where 320 is the number
of feedback trials across two sessions and 11 is the number
of segments into which a single-trial was divided). Next,
CAST is calculated as follows. To consider a single-trial to
be classified correctly, we counted how many segments out
of the 11 segments of a single-trial were classified correctly.
If the number is 6 or more (i.e., half of the total number of
segments are correct) then the feedback trial is considered to
be classified correctly. Following this rule, CAST is defined as
the percentage of correctly classified feedback trials among all
the available feedback trials.The rationale behind the choice
of such a CAST calculation lies in the fact that here we have
compared the accuracies of continuous decoding (CAgross) with
the single-trial decoding (CAST) and this comparison would
be inconsistent if we define two different time windows for
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FIGURE 4 | Visualization of Architecture-2 for inter-subject classification. Lines represent the connection between the feature maps. The Mega Block is the

combination of 5 convolution blocks of the same size and number of filters. The number of convolution blocks required is learned through Bayesian optimization. The

network can extend itself from 3 convolution layers to 15 or more convolution layers, depending on the amount of data and noise level. The optimization works by

defining the objective function and finding its minimum observed value. The network designed is useful for representing the input data in small dimensional

representation to avoid noise.

calculating CAgross and CAST . Therefore, we needed to come up
with a solution for calculating the CAST while making use of
the same segmentation as in the case of continuous decoding.
It is to be noted that the CAST and CAgross measurements are
designed in such a way so that they should not be a redundant
evaluation of performance. This is because CAgross deals with all
the segments from all trials and does not consider an individual
trial separately, which means that it is trial agnostic. On the other
hand, CAST weighs how many segments (out of 11) within a trial
decoded to be a particular class in majority and thereby takes
the decision as to how to label that trial. So, it does not consider
how many segments across all the trials are classified but how
the individual trials are classified. Finally, for CAopt we have
considered only the time segment of maximum accuracy out of
the 11-time segments. This means we calculated the accuracy
taking one time-segment at a time and assigned the maximum
as CAopt for a particular participant. The reason we presented
the performance of the inter-subject transfer learning based
on three different accuracy measures CAgross (for continuous
neurofeedback), CAST (for single-trial neurofeedback), and
CAopt (for neurofeedback at optimum time point) is that we
wanted to validate its feasibility across different BCI paradigms.
Some BCI paradigms use continuous neurofeedback, for
example in hand rehabilitation where a gradual change in grasp
aperture is used (Chowdhury et al., 2018a). To the best of
the authors’ knowledge, an inter-subject continuous feedback
approach based on CNN based transfer learning using the
novel concept of Mega Blocks is presented for the first time
in this paper. Moreover, it is also worth mentioning that the
proposed methodology is also feasible for real-time decoding as
the time required for calculation of STFT, image construction,
and classification requires approximately 9.32 ms. The optimum
time-point for single trial-based decoding is also calculated so
that the proposed methodology can be feasible for triggered
feedback (Chowdhury et al., 2018b; Chowdhury et al., 2019). The

number of trainable parameters in Architecture-1 is 23,269 and
for Architecture-2 is between 7,578 and 40,914 depending on
the number of convolutional layers inside a Mega Block, which
are much smaller than the DeepConvNet architecture (trainable
parameters = 152,219,104) (Schirrmeister et al., 2017), Subject-
Independent CNN (Kwon et al., 2019) (trainable parameters =
72,264,076) and comparable to the ShallowConvNet architecture
(trainable parameters = 40,644) (Schirrmeister et al., 2017). The
training time for Architecture-1 (intra-subject) is 794 s which
is less than (Tabar and Halici, 2016) where the training time is
1,157 s. The training time for Architecture-2 (inter-subject) is
1934 s which is also less than other inter-subject architecture
such as Kwon et al. (2019) where the training time is 12 min.
The single-trial decoding time in Tabar and Halici (2016) was
400 ms and in Kwon et al. (2019) it was 150 ms, whereas in
the current study the single-trial decoding time is 102.52 ms
which is much smaller than others. Thus, it shows that the
computational complexity of the proposed CNN architectures
is less or comparable to other competitive architectures given
in previous studies. It is to be noted that for intra-subject
classification the classifier was trained on session 1, 2, and 3 and
tested on session 4 and 5 for individual subjects. Additionally,
while calculating the accuracy for a particular subject in inter-
subject transfer learning case, we have trained the CNN using
the session 1 to 5 data from the rest of the subjects. For example,
CNN for subject 1 is trained using the data from subject 2
to subject 9. The chance level of these binary classification
problems is 50% as there are equal numbers of left and right
hand MI trials.

3. RESULTS

The performance of the deep learning-based architecture for
mental task decoding using EEG is evaluated by calculating the
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TABLE 4 | Performance of intra-subject learning for continuous decoding.

ID

CAgross

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 67.57 0.35 68.31 0.37

2 55.83 0.12 55.10 0.10

3 51.88 0.04 54.61 0.09

4 90.82 0.82 91.14 0.82

5 80.65 0.61 80.17 0.60

6 71.78 0.44 72.23 0.44

7 68.28 0.37 67.79 0.36

8 87.77 0.76 88.65 0.77

9 79.12 0.58 80.23 0.60

Mean 72.63 0.45 73.13 0.46

Std 13.35 0.27 14.82 0.26

TABLE 5 | Performance of inter-subject learning for continuous decoding.

ID

CAgross

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 68.23 0.36 68.02 0.36

2 55.41 0.10 54.33 0.09

3 54.20 0.08 54.15 0.08

4 81.42 0.64 80.75 0.61

5 65.40 0.28 64.62 0.29

6 71.59 0.38 68.88 0.38

7 68.53 0.37 67.98 0.36

8 72.13 0.48 72.50 0.45

9 73.13 0.47 73.14 0.46

Mean 67.78 0.35 67.15 0.34

Std 8.60 0.18 8.62 0.17

accuracy and the kappa value both for intra- and inter-subject
settings. As mentioned in section 2.5, the classification accuracies
are calculated in three categories CAgross, CAST , and CAopt ,
the results are also presented separately for each one of these.
The CAgross for intra-subject learning is shown in Table 4. The
average CAgross across the trial for Adam was 72.63% ± 13.35.
The maximum CAgross was observed for participant 4 (90.82%),
while the minimum observed was 51.88% for participant 3.
Indeed, 5 out of 9 participants crossed the BCI performance
threshold of 70% (Blankertz and Vidaurre, 2009) in this case.
The performance of SGDM for this category resulted in an
average classification accuracy of 73.13% ± 14.82, while the
maximum accuracy was observed for participant 4 (91.14%)
and the minimum observed for participant 3 (54.61%). There
was no statistically significant difference (Wilcoxon signed-rank
test) between Adam and SGDM performance (CAgross) for intra-
subject learning.

FIGURE 5 | Variation of model loss with the number of epochs for

participant 4.

The CAgross for inter-subject transfer learning is shown in
Table 5. Interestingly, although the average CAgross in the case
of Adam (67.78% ± 8.60) is only slightly higher than average
CAgross in the case of SGDM (67.15% ± 8.62), the difference
between these two methods (Adam and SGDM) was statistically
significant (p <0.05, Wilcoxon signed-rank test). The maximum
CAgross for inter-subject learning was observed for participant 4
for both the methods: 81.42% for Adam and 80.75% for SGDM.
The minimum CAgross was 54.20% in Adam and 54.15% in
SGDM; both for participant 3. It is to be noted that the number
of participants crossing the BCI performance threshold (70%)
for inter-subject learning is 4 in Adam and 3 in SGDM, which
is less than what is observed for intra-subject learning. Figure 5
displays the loss vs. epoch for the participant 4. To analyse
number of epochs and learning rate for all the participants, data
of participant 4, session 1, 2, and 3 were trained, keeping 33%
of the cumulative data as validation set. The plot clearly shows
that the model does not overfit or underfit as the test errors are
converging. For this specific subject a divergence of validation
loss be seen at nearly 50 epochs. However, the plot clearly
indicates fluctuation which may be due to the low amount of data
to train and validate. It is noteworthy that overfitting preventive
measures such as batch normalization and dropouts are duly
taken while designing the CNN architectures as described in
sections 2.3 and 2.4.

The performance of the intra- and inter-subject learning
for CAST is shown in Tables 6, 7, respectively. The average
CAST and kappa in SGDM for intra-subject learning are found
to be 77.31% ± 14.90 and 0.55 ± 0.30, respectively. The
maximum performance using SGDM was observed in subject 4
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TABLE 6 | Performance of intra-subject learning for single-trial decoding.

ID

CAST

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 74.92 0.50 72.73 0.45

2 57.04 0.14 54.15 0.08

3 54.42 0.09 55.83 0.11

4 94.65 0.89 95.60 0.91

5 87.50 0.75 85.94 0.72

6 76.90 0.54 77.98 0.56

7 72.84 0.46 73.80 0.48

8 93.23 0.86 92.90 0.86

9 85.63 0.71 86.88 0.74

Mean 77.46 0.55 77.31 0.55

Std 14.52 0.29 14.90 0.30

(CAST = 95.60%, κ = 0.91), while the minimum was observed
in subject 2 (CAST = 54.15%, κ = 0.08). In this case, 7 out
of 9 participants qualified for the BCI literacy threshold. The
average CAST and kappa for inter-subject learning with Adam
was 77.46% ± 14.52 and 0.55 ± 0.29, respectively. The best and
worst performance for Adam in inter-subject learning was found
in participant 4 (CAST = 94.65%, κ = 0.89) and participant
3 (CAST = 54.42%, κ = 0.09), respectively. The BCI literacy
threshold was crossed by 7 out of 9 participants in this case.
Inter-subject transfer learning performance on the basis of CAST

resulted in an average accuracy of 70.94% ± 9.89 with kappa 0.42
± 0.20 for Adam and the average 70.22% ± 9.45 with kappa
0.40 ± 0.19 for SGDM. The maximum accuracy occurred in
the case of participant 4 in both the methods with 86.26% (κ =

0.73) for Adam and 83.95% (κ = 0.68) for SGDM. There was
no statistically significant difference (Wilcoxon signed-rank test)
betweenAdam and SGDMon the basis ofCAST and in both cases,
6 out of 9 participants qualified for the BCI literacy threshold.

Tables 8, 9 represent the performance of intra- and inter-
subject learning accordingly based on CAopt . The classification
accuracy of all the participants for all the 11 time instants (5
to 7 s with an interval of 0.2 s) is shown column-wise. The
maximum accuracy occurring out of these 11 time instants is
the CAopt for individual participants. For example, in Table 8

the first row represents accuracies achieved for participant 1
for all the 11-time instants out of which the accuracy at 5.8 s
was the highest (71.16%). So, the CAopt for participant 1 is
71.16% observed at 5.8 s. Thus we can see that CAopt for intra-
subject learning was found between 5.2 s and 5.8 s across all
the participants, with an average of 76.37% ± 13.91 observed at
5.8 s. A maximum CAopt of 95.91% was found in participant 4 at
5.6 s, while a minimum CAopt (55.83%) was found in participant
3 at 5.6 s. Thus, on the basis of CAopt , 7 out of 9 participants
performed beyond the BCI literacy threshold. Again, for inter-
subject learning the average CAopt was found to be 69.69% ±

9.23 at 5.4 s, which was significantly (p < 0.05, Wilcoxon signed-
rank test) lower than average CAopt for intra-subject learning,

TABLE 7 | Performance of inter-subject learning for single-trial decoding.

ID

CAST

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 73.30 0.47 72.04 0.44

2 57.54 0.15 55.18 0.10

3 55.00 0.10 55.76 0.12

4 86.26 0.73 83.95 0.68

5 66.25 0.33 68.74 0.38

6 74.62 0.49 73.54 0.47

7 71.59 0.43 70.18 0.40

8 76.73 0.53 75.78 0.52

9 77.19 0.54 76.77 0.54

Mean 70.94 0.42 70.22 0.40

Std 9.89 0.20 9.45 0.19

although very close to the BCI literacy threshold. The maximum
performance was found in participant 4 (CAopt = 86.80% at
5.6 s), while the minimum performance was found in participant
2 (CAopt = 56.80% at 5 s). Again, 6 out of 9 participants crossed
the BCI performance threshold of 70% in this case. The accuracy
of decoding throughout different time instants within the trial
is also shown in Figure 6 for intra- and inter-subject learning,
which shows that the performance was significantly higher (p <
0.05, Wilcoxon signed-rank test) in the case of intra-subject
than in inter-subject learning, while the CAopt occurred earlier
in the inter-subject case than in intra-subject. Interestingly, the
accuracy curves in both the cases peaked in the middle and
gradually reduced at the end of the trial. It is to be noted that
the optimum time point of feedback for CNN based inter-subject
transfer learning for the dataset used is 5.4 s (i.e., +2.4 s after cue),
yielding an average accuracy (CAopt) close to 69.69% (Table 9).
This observation is also according to the ERD pattern of the
MI-datasets (Tangermann et al., 2012) where the bandpower
of sensorimotor rhythm reaches its bottom and stabilizes until
the MI is stopped. This indirectly shows the neurophysiological
relevance of the features generated by the CNN.

A typical example of features generated at different layers
of CNN has been shown in Figure 7. The features for left
and right hand MI are shown one on top of the other for
successive layers of convolutional and ReLU layers. Although
such representations of the activations are not relatable
directly with the neurophysiological interpretation due to
several transformations on the original image, these are better
interpretable by the trained CNNmodel.

4. DISCUSSION

This paper establishes the feasibility of CNN based architectures
in inter-subject continuous decoding of MI-related EEG
signals while adapting CNN architecture against inter-subject
variabilities using a novel concept called Mega Blocks. So far, the
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TABLE 8 | Performance of intra-subject learning for CAopt (highlighted in bold for each subject id).

Accuracy (%) at different time instants within a trial

ID 5s 5.2s 5.4s 5.6s 5.8s 6s 6.2s 6.4s 6.6s 6.8s 7s

1 68.03 67.71 67.40 68.65 71.16 68.03 67.71 68.03 68.65 68.03 68.03

2 56.68 55.96 56.32 55.60 58.48 53.07 51.62 57.76 51.99 52.71 55.96

3 56.54 56.18 56.18 55.83 56.18 55.12 53.36 53.71 51.94 50.88 54.77

4 91.19 93.40 95.28 95.91 95.60 94.65 92.14 88.05 88.99 85.22 82.08

5 78.13 79.69 77.50 83.75 84.06 82.50 81.56 79.06 79.38 77.81 78.44

6 74.01 75.09 73.29 74.01 73.65 71.84 72.20 71.12 70.40 69.68 69.31

7 67.73 69.01 71.57 71.57 70.93 64.86 66.77 70.61 64.86 66.77 61.02

8 89.03 92.26 92.58 92.58 92.26 91.61 88.71 87.42 84.84 81.29 82.58

9 74.69 78.44 80.31 86.25 85.00 84.06 80.31 80.31 78.44 77.50 77.19

Mean 72.89 74.19 74.49 76.02 76.37 73.97 72.71 72.90 71.05 69.99 69.93

Std 12.29 13.55 13.82 14.74 13.91 15.12 14.36 12.06 13.27 12.02 10.85

The bold values represent the maximum value in the respective rows of the table, which means at what time point the maximum accuracy is reached for a particular subject.

TABLE 9 | Performance of inter-subject learning for CAopt (highlighted in bold for each subject id).

Accuracy (%) at different time instants within a trial

ID 5s 5.2s 5.4s 5.6s 5.8s 6s 6.2s 6.4s 6.6s 6.8s 7s

1 67.04 71.21 69.82 70.51 68.98 67.73 67.45 65.51 66.34 67.59 66.06

2 56.80 54.73 55.77 53.11 55.18 54.73 53.85 51.92 54.59 52.37 54.59

3 55.30 56.21 57.42 55.45 55.30 53.48 54.09 52.88 52.88 51.52 51.06

4 81.63 84.76 85.31 86.80 84.76 83.13 78.91 78.37 75.51 74.42 74.69

5 63.76 66.11 66.11 66.67 66.67 65.28 66.11 64.45 61.83 61.13 62.66

6 69.08 70.77 69.08 72.00 69.08 68.92 68.46 66.77 67.69 68.62 67.23

7 73.00 73.98 72.15 71.17 68.21 66.24 67.37 65.68 64.56 63.99 61.46

8 75.10 76.60 75.51 75.78 73.33 73.33 73.61 72.24 69.39 66.39 66.26

9 71.63 72.74 76.08 74.83 74.69 73.85 73.99 73.71 73.30 70.38 69.40

Mean 68.15 69.68 69.69 69.59 68.47 67.41 67.09 65.73 65.12 64.05 63.71

Std 8.52 9.51 9.23 10.32 9.23 9.26 8.49 8.83 7.69 7.82 7.30

The bold values represent the maximum value in the respective rows of the table, which means at what time point the maximum accuracy is reached for a particular subject.

issue of inter-subject transfer learning has not been addressed
with regards to continuous neurofeedback as the previous studies
have mostly concentrated on single-trial classification. Here, we
have shown inter-subject transfer learning performance of CNN
based architectures for continuous decoding on the standard
EEG dataset of BCI Competition-IV using two popular methods:
Adam and SGDM. Earlier attempts at classifying MI signals
using CNN were limited to intra-subject learning (Tabar and
Halici, 2016), while our study deals with inter-subject transfer
learning. The significance of designing an inter-subject transfer
learning paradigm over intra-subject learning is that we can
save the calibration time by making use of the data recorded
in previous sessions. Some recent papers have reported inter-
subject classification using CNN (Lawhern et al., 2018; Zubarev
et al., 2019). Lawhern et al. (2018) in their EEGNet model argued
that a single CNN can perform over multiple EEG paradigms
such as P300, ERN, MRCP, and SMR, although EEGNet did not
perform significantly better than conventional FBCSP approach.
Additionally, DeepConvNet (Lawhern et al., 2018) is shown
to have performed significantly lower than FBCSP whereas

in our case the Mega Block based deep learning architecture
(Architectre-2) performed as good as FBCSP (Raza et al., 2016)
and further showed validity for inter-subject learning. Moreover,
the performance of EEGNet was shown based on cross-validation
over the training data, whereas the performance of Architecture-
2 is shown on the test data. However, the work in Zubarev
et al. (2019) was focused on inter-subject learning in MEG,
and showed significantly better performance than other CNN
based classification techniques in BCI, although the performance
was not reported on EEG. An advantage of the proposed CNN
model is that it can be applied for continuous decoding within
a trial, while the models in Lawhern et al. (2018) and Zubarev
et al. (2019) are shown to have performed well for a single-trial
decoding. Most importantly, these studies have not shown how
CNN can be used for continuous decoding, an area that is vital for
contingent neurofeedback for restorative BCI applications, while
the proposed technique provides a complete solution for CNN
based MI-BCI combining inter-subject transfer learning with
continuous decoding. Another aspect of our model is automatic
parameter optimization during training using the implemented
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FIGURE 6 | The average accuracy across the subjects for each time instants

are shown for intra- and inter-subject learning. The vertical lines show the

time-point where is accuracy is maximum for intra- and inter-subject learning,

i.e., the average CAopt.

Bayesian optimization. The training time (approx. 1,796 s) of
Architecture-2 is comparable to a shallowConvNet, although
unlike shallowConvNet here the number of trainable parameters
doesn’t increase with the number of channels used. The average
kappa value for intra-subject classification reported by Gandhi
et al. (2015) on BCI competition IV 2b dataset was 0.54 and
0.51 on the evaluation set 04E and 05E, respectively although
they used a recurrent quantum neural network (RQNN). In our
case, the average kappa for intra-subject classification is 0.55
(see Table 6) for both Adam and SGDM. However, we know
that the poor outcome in the case of subject 2 and subject 3
is mostly due to the poor quality of the data as evident by
the BCI competition results (BCI-Competition, 2008), wherein
these two subjects performed worst in all top 6 submissions.
Hence, if we remove these two subjects from the calculation
then average kappa for intra-subject classification turns out to
be 0.67 for both Adam and SGDM, while the same in Gandhi
et al. (2015) is 0.55 (excluding subject 2 and 3) for combined
evaluation set 04E and 05E. Thus we can see that the performance
of CNN for intra-subject learning is far better than RQNN and
also the difference is statistically significant (p < 0.05, Wilcoxon
signrank test). More importantly, it should be noted that our
paper is focused on giving an acceptable solution for inter-subject
transfer learning in MI task in which case the proposed method
gives a satisfactory average kappa value of 0.42 (including all 9
subjects, see Table 7) and 0.50 (ignoring subject 2 and subject 3).
It is to be noted that in Gandhi et al. (2015) there was neither
evaluation for inter-subject transfer learning performance nor for
continuous decoding.

The classification accuracy results highlight an important
finding that it is the tuning of the hyperparameters of CNN,
which is more effective than the choice of the adaptive training
method. This is revealed from the fact that there were no

significant (p < 0.05) differences between the performance of
Adam and SGDM, except in the case of CAgross in inter-subject
learning wherein the average difference in average accuracy is
only 0.62%. A probable reason for this can be found from the
comments made by Wilson et al. (2017), which states that the
choice of the adaptivemethod (such as Adam and SGDM), makes
a difference in optimization-free iterative search procedures
(such as GANs and Q-learning). This indicates that as we have
used an optimization dependent learning architecture such as
CNN, the hyperparameter tuning plays a more vital role in the
performance of the classifier.

The inter-subject transfer learning performance was also
compared against the intra-subject classification to determine
howmuch compromise is needed in terms of accuracy in order to
avoid subject-specific calibration and whether this compromise is
worthwhile. The performance of inter-subject transfer learning
is found to be significantly lower (p < 0.05) than the intra-
subject learning both in terms of continuous decoding (CAgross)
and single-trial decoding (CAST) irrespective of the adaptive
training methods (Adam or SGDM) used. A possible reason for
the lower performance could be the use of a large amount of
pooled data from the rest of the 8 participants in the leave-
one-out method while some participants (especially participant
2 and 3) had poor quality of data which may have impacted
the trained models. However, the average inter-subject transfer
learning accuracy for CAST was found to be higher than 70%, the
BCI performance threshold. Single-trial decoding is sufficient for
issuing triggered neurofeedback, which is a widely used paradigm
for the rehabilitation of motor functionality (Buch et al., 2008;
Ramos-Murguialday et al., 2013; Ono et al., 2014). Thus we
can say that the proposed transfer learning architecture can
be incorporated into motor rehabilitation paradigms without
compromising on an acceptable performance criterion. Another
important point to be noted is that the worst-performing subjects
(subject 2 and subject 3), and the best performing subject
(subject 4) are consistent across intra- or inter-subject learning
conditions, which may indicate poor quality of the data and
not the strength of the algorithm which negatively affected the
average accuracy of inter-subject transfer learning. Hence, if we
ignore subject 2 and 3, the performance of inter-subject transfer
learning increases further both in terms of CAgross (Adam:
70.84% and SGDM: 71.49%), and CAST (Adam: 75.13% and
SGDM: 74.43%).

Previous literature on inter-subject transfer learning using
CSP yielded the best average accuracy of 79% on BCI
Competition III, dataset IVa, where the number of subjects was
5 (Devlaminck et al., 2011). Tangent space features drawn from
the Riemannian geometry framework were used for transfer
learning using BCI competition IV, dataset 2a, which achieved
an average leave-one-subject-out-cross-validation accuracy of
75.52% (Gaur et al., 2019a). In a recent study, Halme and
Parkkonen reported inter-subject transfer learning accuracy in
EEG of 67.7% on their own experimental data using CSP with
logistic regression (Halme and Parkkonen, 2018). Although a
direct comparison is not possible here as the datasets used
in Gaur et al. (2019a), Halme and Parkkonen (2018), and
Devlaminck et al. (2011) were different but the average of 7
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FIGURE 7 | Left hand MI (Top panel) and right hand MI (Bottom panel) features generated at different layers of CNN, (A) Convolutional Layer 1, (B) ReLU Layer 1, (C)

Convolutional Layer 2, (D) ReLU Layer 2, (E) Convolutional Layer 3, (F) ReLU Layer 3.

out of 9 subjects [ignoring subject 2 and subject 3 due to
poor data quality as revealed by BCI competition results (BCI-
Competition, 2008)] in our case achieved an average single-
trial classification accuracy close to 75% (Adam: 75.13% and
SGDM: 74.43%). It is noteworthy that previous studies on inter-
subject transfer learning mentioned above did not deal with
continuous decoding and used traditional approaches rather than
deep learning. The work also shows that inter-subject transfer
learning in MI with CNN based architecture is more sensitive to
the tuning of hyperparameters rather than the choice of adaptive
training methods as both Adam and SGDM performed equally
well in this case.

Potential applications where the obtained results can be
useful include primarily the neurorehabilitative BCI systems
where continuous and meaningful neurofeedback is essential
for motor recovery (Chowdhury et al., 2018a). Apart from
that, the asynchronous BCI uses for activities of daily
living (ADL) by the completely locked-in patients can also
make use of such techniques for controlling assistive robotic

devices (Bhattacharyya et al., 2017; Tariq et al., 2018).
Another important application could be the telepresence robot
control by the motor-disabled patients towardz enhanced
independence (Carlson et al., 2013) which needs continuous
decoding with minimal calibration overhead.

One of the limitations of this study is that we combined
the EEG channels depthwise similar to RGB images which
could cause problems in very high dimensional datasets
such as in magnetoencephalography (MEG) or very high
dimensional EEG recordings. Possible future work to avoid
such a problem is to use dimensionality reduction techniques
such as ReliefF (RF) or Infinite Latent Feature Selection
(ILFS) (Roy et al., 2019b) before input image generation. Also,
to increase the number of training examples to feed into the
CNN, Generalized Adversarial Networks (GAN) (Goodfellow
et al., 2014) could be used rather than the segmentation
of trials for creating training examples. Another limitation
of using CNN based architectures is that the generated
features are not relatable directly with the neurophysiology.
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Therefore, we need better visualization techniques to enhance
the interpretability of activations found in different layers
which could have some neurophysiological significance. Other
future works may involve making deep learning models more
explainable to address the generalizability of inter-subject
decoding. Another important challenge is to make them
usable for large-scale real-world deployment for complex BCI
problems (Zhang et al., 2019).

5. CONCLUSION

This paper presents the feasibility of inter-subject continuous
decoding utilizing CNN based deep learning frameworks using a
novel concept calledMega Blocks whichmakes it adaptive against
inter-subject variabilities in the EEG data. The study addresses
the long-standing issue of making an MI-BCI calibration-free
as well as suitable for continuous decoding, which so far has
not been addressed using a CNN-based learning approach.
This could spawn the next generation of MI-BCI systems,
especially in the domain of neurorehabilitation, where reducing
the calibration needs and providing continuous feedback play
a vital role in enhancing user-experience and thus leverage
rehabilitative potential.
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Motor imagery (MI) allows the design of self-paced brain–computer interfaces (BCIs),

which can potentially afford an intuitive and continuous interaction. However, the

implementation of non-invasive MI-based BCIs with more than three commands is still

a difficult task. First, the number of MIs for decoding different actions is limited by the

constraint of maintaining an adequate spacing among the corresponding sources, since

the electroencephalography (EEG) activity from near regions may add up. Second, EEG

generates a rather noisy image of brain activity, which results in a poor classification

performance. Here, we propose a solution to address the limitation of identifiable motor

activities by using combined MIs (i.e., MIs involving 2 or more body parts at the

same time). And we propose two new multilabel uses of the Common Spatial Pattern

(CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI

approaches. We recorded EEG signals from seven healthy subjects during an 8-class

EEG experiment including the rest condition and all possible combinations using the

left hand, right hand, and feet. The proposed multilabel approaches convert the original

8-class problem into a set of three binary problems to facilitate the use of the CSP

algorithm. In the case of the MC2CMI method, each binary problem groups together in

one class all the MIs engaging one of the three selected body parts, while the rest of MIs

that do not engage the same body part are grouped together in the second class. In this

way, for each binary problem, the CSP algorithm produces features to determine if the

specific body part is engaged in the task or not. Finally, three sets of features are merged

together to predict the user intention by applying an 8-class linear discriminant analysis.

The MC2SMI method is quite similar, the only difference is that any of the combined

MIs is considered during the training phase, which drastically accelerates the calibration

time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher

accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results

show that, when brain activity is properly modulated, multilabel approaches represent

a very interesting solution to increase the number of commands, and thus to provide a

better interaction.

Keywords: brain-computer interface (BCI), combined motor imageries, multilabel classification, common spatial

pattern (CSP), electroencephalography (EEG)
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1. INTRODUCTION

Motor imagery (MI) is a mental process during which
subjects imagine themselves performing a movement without
executing it, specifically by activating the haptic sensations
(i.e., tactile, proprioceptive, and kinesthetic) felt during a real
movement (Jeannerod, 1995; Guillot et al., 2009). Considering
that MI consists of evoking a motor action, such a mental process
activates the primary motor cortex and the additional motor
areas in the same way as a real movement (Hétu et al., 2013).
This activity can be analyzed by using electroencephalography
(EEG) recordings, where rhythmic macroscopic oscillations
with spectral peaks over the post-central somatosensory cortex
around 10 Hz and over the precentral motor cortex at 20
Hz are observed (Jasper, 1936; Hari and Salmelin, 1997).
These oscillations produce specific patterns of event-related
desynchronization (ERD; i.e., a reduction of the oscillatory
activity with respect to a resting period) and event-related
synchronization (ERS; i.e., an increase in the oscillatory activity)
within the mu/alpha (7–13 Hz) and beta (15–35 Hz) bands
over the region associated with the body part engaged in
the task (Pfurtscheller and Aranibar, 1979; Pfurtscheller and
Neuper, 2001). More precisely, before and during an MI, ERD
patterns appear gradually in the mu/alpha and beta bands
Pfurtscheller and Lopes da Silva (1999), whereas at the end
of the MI, ERS patterns are typically observed in the beta
band (Pfurtscheller, 2001), and occasionally, in the mu band
(Lindig-Leon et al., 2015).

For discriminating MIs involving different body parts, there
are two particular considerations: (i) the lateralization during the
activation of the motor cortex and (ii) the focal ERD/surround
ERS effect. The mentioned lateralization implies that MIs
executed by one side of the body activate the opposite side of
the motor cortex. Thus, an MI of the right hand induces ERD
patterns in the left side of the sensorimotor cortex, while anMI of
the left hand appears in the right side (Pfurtscheller and Neuper,
1997, 2001; Neuper and Pfurtscheller, 2001; Neuper et al., 2009).
In this way, the recognition of anMI is based on the location over
the motor cortex of the ERD patterns associated with the body
part that is engaged in the task (Pfurtscheller, 2001; Blankertz
et al., 2006; Blankertz et al., 2008b; Lotte et al., 2007; Müller-
Putz et al., 2016). In addition, the focal ERD/surround ERS effect,

which consists of the ERS patterns that are simultaneously found
in the ipsilateral side of the motor cortex, also provide an insight

into the body part that is engaged in the task (Suffczynski et al.,

1999; Pfurtscheller, 2003; Jäncke et al., 2006). One hypothesis
suggests that the focal ERD/surround ERS is a response to
the selective attention given to a particular body part during a
single MI (i.e., only one body part engaged in the motor task).
For instance, an MI of the right hand elicits an ERD over the
contralateral side (electrode C3), while inducing an ERS over the
ipsilateral and central parts of the motor cortex (electrodes Cz
and C4, which correspond to regions associated with the feet
and left hand) (Pfurtscheller et al., 1993; Pfurtscheller, 2003). In
the case of combined MIs (i.e., two or more body parts engaged
at the same time), the focal ERD/surround ERS represents an
interesting and still open question, considering that multiple

body parts may be simultaneously engaged in the motor task and
the associated ERD patterns might cancel out the ERS elicited by
other sources.

Given that no stimulation is required to produce MIs,
such a paradigm allows designing self-paced brain–computer
interfaces (BCIs), which provides users with the freedom to
send commands on demand (Mason et al., 2006). Consequently,
and in contrast to other BCI paradigms that are restricted to
a predefined time frame, MI-based BCIs can potentially afford
an intuitive and continuous interaction (Wolpaw and Wolpaw,
2012). Therefore, MI represents an interesting solution to control
neuroprostheses. However, considering the difficulty to afford
multiple commands for EEG-based BCIs, a full interaction is
still a challenge. Over the past decade, impressive improvements
have been made for decoding complex motor activities from
intracranial electrodes (Wodlinger et al., 2014; Yin et al., 2014;
Tyson et al., 2015), with which it is possible to extract multiple
mental states (i.e., control commands). Yet, despite the benefits
of such a framework, complex EEG-based MIs have not been
extensively studied and very little is known about their suitability
for this purpose. In the present study, we investigate the use
of combined MIs (Royer et al., 2013; Yi et al., 2013), which
in contrast to the standard paradigm considerably increases
the number of classes while using the same number of body
parts (2n compared to n, where n is the number of body
parts, and when all possible combinations are considered). In
general, the activity sources are chosen to cover a relatively
large area over the sensorimotor cortex, while maintaining an
adequate spacing among them to avoid mixing up specific
activity. Consequently, given the distribution of sources along
the sensorimotor cortex most of the MI-based BCIs are designed
to identify ERD/ERS patterns generated by the left hand, right
hand, and/or feet. Under a single label approach, using the three
aforementioned activity sources allows designing a BCI with
only three commands for interaction, which remains limited for
designing efficient systems. On the contrary, with a multilabel
approach we have designed a paradigm including the single
and combined use of the left hand, right hand, and both
feet together which, in addition to the rest condition, provide
eight different classes (rest, left hand, feet, left hand and feet,
right hand, both hands, right hand and feet, and both hands
and feet).

In the present work, we propose a solution to address
the limited number of identifiable activity sources, and we
provide two new multilabel uses of the Common Spatial Pattern
(CSP) algorithm. The CSP algorithm is very convenient, since
it can be applied to any MI-based BCI while favoring high
classification performances, it is also easy to implement and
computationally efficient. However, given its formulation, CSP
is constrained to binary problems. Consequently, the most
common way to extend CSP to the multiclass case consists
of solving a set of binary subproblems, either in a pair-wise
(PW) or a one-vs.-all (OVA) approach. The main drawback
to this solution is that the number of classifiers increases
significantly with the number of classes, given that for a k-class
problem the PW and OVA approaches require k(k − 1)/2, and k
classifiers, respectively.
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Here, we address the question of whether the EEG activity
elicited during combined MIs can be analyzed independently
over the sources related to each one of the body parts included
in the paradigm to subsequently predict the class label from
the combination of the extracted information. In this way, one
can transform the original 8-class problem into three binary
problems (i.e., one problem associated with each body part).
In other words, one can convert a 2n-problem into n binary
problems, where n is the number of body parts. Importantly, this
transformation allows to apply the CSP algorithm to each one of
the three binary problems and to obtain signals that are optimally
discriminative with respect to variance. The obtained results
show that this simplification is convenient, and they confirm
that characterizing a multilabel task as the superposition of the
involved sources represents a plausible model. In particular, for
subjects that were able to modulate their brain activity very
efficiently, we could verify neurophysiological plausibility. In
such cases, a multilabel approach represents a very interesting
solution to control more robust systems.

The main novelty in our study is the development of
an 8-class multilabel paradigm, and its simplification based
on the separation of sources. In the following, we describe
the experimental paradigm of an 8-class multilabel paradigm
combining right hand, left hand, and feet MIs. In section 3, we
first present the theoretical framework for the feature extraction
based on the CSP algorithm and we introduce the two new
multilabel approaches. The first one of these methods, namely
MC2CMI, generates three binary problems in which all MIs
engaging one of the three selected body parts are grouped
together in one class, and all MIs that do not engage the same
body part are grouped together in the second class. In this way,
for each binary problem the CSP algorithm produces features
for determining if the given body part is engaged in the task or
not. The second method, namely MC2SMI, operates in a very
similar way, with the only difference that any of the combined
MIs is considered during the training phase, which drastically

accelerates the calibration time. In addition, we describe the
classic multiclass methods named PW and OVA. In section
4, we show that both multilabel approaches outperform the
classic solutions.

2. MATERIALS

2.1. Participants
Seven right-handed healthy subjects (2 females, aged 31.8
± 8.7 years) were recruited for this study. Subjects had
no medical history that could have influenced the task (i.e.,
diabetes, antidepressant treatment, or neurological disorders).
The experiment followed the statements of theWMA declaration
of Helsinki on ethical principles for medical research involving
human subjects World Medical Association (2002) and has been
approved by the local ethical committee of Inria (COERLE,
approval number: 2016-011/01) as it satisfied the ethical rules and
principles of the institute.

2.2. Experimental Paradigm
Subjects were seated in a comfortable chair with the arms at their
sides in front of a screen showing the task cue to be performed,
which consisted of one of the eight mental states that it is possible
to generate with all the combinations including the right hand,
left hand, and both feet together, i.e., rest, left hand, feet, left
hand and feet, right hand, both hands, right hand and feet, and
both hands and feet (see Figure 1A). Subjects were instructed
to imagine the opening/closing of their hands (with special
attention over the thumbs due to the long distance between the
feet and opposite thumb motor regions), and to imagine a fast
up/down movement of their feet.

The whole session consisted of four runs, containing each
one 10 trials per task for a total of 40 trials per class (320 trials
considering the eight classes). For stimulus presentation, we used
three panels that were simultaneously displayed on the screen,
each of which was associated from left to right, to the left hand,

FIGURE 1 | Experimental setup. (A) Task cue for each motor task. (B) Time scheme. Each trials lasts 12 s, the task cue is shown during the first 6 s, followed by a

pause period of 6 s. (C) Distribution of the 26 considered electrodes mainly over the motor cortex.
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feet, and right hand (see Figure 1B). Each trial was randomly
presented and lasted for 12 s, starting at second “0” with a cross at
the center of each panel and an overlaid arrow indicating for the
next 6 s the motor task to be performed: an arrow pointing to the
left side on the left panel for left hand, an arrow pointing down on
the central panel for feet, an arrow pointing to the right side on
the right panel for right hand, and the simultaneous presentation
of these arrows for the corresponding combined MIs. The rest
condition was indicated by the absence of arrows. After second 6,
the task cue disappeared and the crosses were remaining for the
next 6 s indicating the pause period before the next trial started.

2.3. EEG Recording
EEG signals were recorded at 256 Hz using a commercial
amplifier Refa developed by TMS InternationalTM. Both the signal
acquisition and the stimulation process were implemented on
the OpenViBE platform1 (Renard et al., 2010). The EEG cap was
fitted with 26 electrodes, namely, Fp1, Fpz, Fp2, Fz, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, and Pz, re-referenced with respect to
the common average reference across all channels and located
over the extended international 10–20 system positions to cover
the primary sensorimotor cortex (see Figure 1C). Signals were
band-pass filtered within the frequency range (8–30 Hz) using a
fifth-order Butterworth filter.

3. METHODS

In our experiment, we have focused on the activity generated
by the left hand, right hand, and feet MIs. Thus, subjects
activity is expected to be observed over three main regions.
For the left hand, the corresponding source is located on the
right hemisphere around electrode C4, whereas the right hand
activates regions in the opposite side around electrode C3. In the
case of the feet, both the left and right foot meet over central
regions located around electrode Cz (see Figure 1). The following
subsections present our framework for feature extraction based
on the characterization of the brain activity over each one of
these regions.

3.1. Feature Extraction
As a result of the volume conduction, EEG signals generate
a rather noisy image of brain activity, which results in a
poor classification performance that worsens as the number of
classes increases. In consequence, spatial filters are particularly
effective to recover the significant information that is dispersed
over different channels, and thus to generate discriminative
features. This kind of filters can be fixed beforehand considering
the sensor geometry and neurophysiological insights (e.g.,
Laplacians, bipolar) (Wolpaw and McFarland, 2004), or they can
be optimized by using subject-specific training data (Guger et al.,
2000; Blankertz et al., 2007, 2008a). Such is the case of the CSP
method, a very popular algorithm in BCI research (Koles et al.,
1990; Blankertz et al., 2008b; Lotte, 2014).

1http://openvibe.inria.fr

3.1.1. Spatial Filtering: CSP Algorithm
The CSP algorithm is one of the most popular and efficient
approaches for analyzing oscillatory activity (Koles et al., 1990;
Blankertz et al., 2008b). Basically, the CSP algorithm generates
a series of spatial filters that decompose multidimensional
data into a set of uncorrelated components. These filters
aim at extracting elements that simultaneously maximize the
variance of one class, while minimizing the variance of the
other one (Ramoser et al., 2001). Since the variance of band-
pass filtered signals corresponds to band-power, this approach
produces band power features with values that are maximally
different between classes. This way the CSP algorithm achieves
an efficient discrimination of mental states that are introduced
by ERD/ERS activity (Pfurtscheller and Lopes da Silva, 1999).

Let us consider the mean of the normalized covariance
matrices 6k of the N successive training trials for each class k as:

6k =
1

N

N
∑

i=1

Ek,iE
⊤
k,i

trace(Ek,iE
⊤
k,i
)
, (1)

where Ek,i ∈ R
C×T , k ∈ {1, 2} denotes the ith EEG trial belonging

to class k recorded over C channels and T samples, with ⊤

representing the transpose operator. The spatial filters W can
be obtained by solving the generalized eigenvalue decomposition
problem that simultaneously diagonalize the mean covariance
matrices of both classes

61W = 362W, (2)

where 3 represents the diagonal matrix of eigenvalues for 61.
The spatial filtered signal Yk,i can be obtained from the EEG trials
Ek,i as:

Yk,i = W⊤Ek,i. (3)

There are as many CSP filters as channels in the EEG signal,
and each one of them is represented by a column vector of
W. These filters are paired and not all of them are relevant for
discrimination. Thus, after sorting all λ values, only the first m
and the lastm columns ofW are selected. In the present work, for
all methods and subjects m = 3 pairs of filters were considered
(Blankertz et al., 2008b).

3.1.2. Features
The selected feature vectors vi generate the spatial filters
coefficient matrix ˜W, from which the m pairs of CSP features of
the ith trial for the band-pass filtered EEG measurements can be
computed as

vi = log

(

diag(˜W⊤EiE
⊤
i

˜W)

trace(˜W⊤EiE
⊤
i

˜W)

)

. (4)

3.2. Multilabel Approaches
3.2.1. MC2CMI
The 8-class classifier trained on multilabel CSP features obtained
from combined MIs (MC2CMI) method, as illustrated in
Figure 2, simplifies the original 8-class problem by transforming
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it into a set of 3 binary problems, each one concerning one of
the activity sources associated with the body parts included in
the paradigm (i.e., left hand, right hand, and feet), to determine
whether they are engaged in an MI or not. During the training,
the band-pass filtered EEG trials of the training data set are
separated by grouping together all MIs including one specific
body part in one class (hereinafter referred to as class 1), and all
MIs that do not include it in the second class (class 2). Thus, the
2 classes are arranged for each binary problem as follows:

(i) Left hand:

– Class 1: left hand, left hand and feet, both hands, and both
hands and feet;

– Class 2: rest, feet, right hand, right hand, and feet.

(ii) Feet:

– Class 1: feet, left hand and feet, right hand and feet, and
both hands and feet;

– Class 2: rest, left hand, right hand, both hands.

(iii) Right hand:

– Class 1: right hand, both hands, right hand and feet, and
both hands and feet;

– Class 2: rest, left hand, feet, left hand, and feet.

In this way, the CSP method can be applied directly to each one

of the binary problems (see section 3.1.1). As mentioned, only

three pairs of CSP filters are considered, and thus each binary

problem generates features within a 6-dimensional space. All
these features are subsequently concatenated together to generate
the final feature vectors defined in an 18-dimensional space,
where an 8-class linear discriminant analysis (LDA) model is

trained over the eight classes. Finally, during the validation
phase, the band-pass filtered EEG trials of the testing data set
are mapped into the classification space in order to predict the
corresponding class labels.

3.2.2. MC2SMI
One simple question that we address is whether it is possible to
train the classification model by using training data only from
single MIs, which would considerably reduce the calibration time
of the system. Contrarily to the classic multiclass extensions, the
multilabels approaches allow to infer the features for combined
MIs from the superposition of features extracted independently
over each source during single MIs. In the case of combined
MIs, the feature vectors can be generated by adding the features
obtained from the rest condition over sources that are not
engaged in the motor task, and by adding the features obtained
from single MIs of the body part(s) that is/are engaged in the
task. In this way, we have evaluated a second version in which
only single MIs are considered during the training phase, namely
8-class classifier trained on multilabel CSP features obtained from
single MIs (MC2SI) approach (see Figure 3). To this end, we
make the assumption that combined MIs can be modeled as
the superposition of the activity generated by each one of the
involved body parts. Thus, during the training phase, the two
classes in each one of the three binary problems are rearranged
as follows:

(i) Left hand:

– Class 1: left hand;
– Class 2: rest.

(ii) Feet:

FIGURE 2 | Architecture of the MC2CMI algorithm for the training and evaluation phases. The band-pass filtered EEG trials within the training data set are used to

generate the three sets of Common Spatial Pattern (CSP) filters and the linear discriminant analysis (LDA) model of the MC2CMI method, both of which are

subsequently applied to the testing data set.
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FIGURE 3 | Architecture of the MC2SMI algorithm for the training and evaluation phases. The band-pass filtered EEG trials within the training data set are used to

generate the three sets of Common Spatial Pattern (CSP) filters and the linear discriminant analysis (LDA) model of the MC2SMI method, both of which are

subsequently applied to the testing data set.

– Class 1: feet;
– Class 2: rest.

(iii) Right hand:

– Class 1: right hand;
– Class 2: rest.

As before, we consider the three most discriminant pairs of
CSP filters by applying Equation (4), which produces features
over six dimensions for each one of the three binary problems.
In the same way, these features are subsequently concatenated
into vectors over 18 dimensions to train an 8-class LDA model.
Finally, the band-pass filtered EEG trials of the testing data set
are mapped into the classification space in order to predict the
corresponding class labels.

3.3. Classical Multiclass Methods
In order to compare the performance of the MC2CMI method to
classic solutions, we also include the results obtained by the PW
and OVA approaches.

3.3.1. PW Approach
This approach consists of training K(K − 1)/2 binary classifiers
for a K-multiclass problem. Each one of these binary classifiers
is trained over the data points from a pair of classes in the
original training set, and must learn to separate the two classes.
For label prediction, all the K(K − 1)/2 classifiers are applied to
the unknown data point, and the label is assigned by following
a voting scheme where the class that got the highest number of
predictions is selected (Bishop, 2006).

Considering the eight different MIs included in the paradigm,
the PW approach requires 8*7/2 = 28 binary classifiers, each of
which is trained over features defined in a 6-dimensional space
corresponding to the projection of the first three pairs of CSP
filters obtained by the discrimination of two different MIs.

3.3.2. OVA Approach
This strategy involves training K binary classifiers for a K-
multiclass problem. Each binary classifier is trained over all data
points in the original training set, with the samples of the Ki

class as positive samples and all other samples as negatives. This
approach requires allK binary classifiers to generate a real-valued
confidence score to make a decision, rather than just a class label,
considering that class labels alone can lead to ambiguities, where
multiple classes are predicted for a single data point. Even though
this strategy is popular, it suffers from several problems. First,
the scale of the confidence values may differ between the binary
classifiers. Second, even if the class distribution is balanced in
the training set, the binary classification learners see unbalanced
distributions because typically the set of negatives they see is
much larger than the set of positives (Bishop, 2006).

Considering the eight different MIs included in the paradigm,
the OVA approach requires eight binary classifiers, each of
which is trained over features defined in a 6-dimensional space
corresponding to the projection of the first three pairs of CSP
filters obtained by the discrimination of 1 MI against all the
remaining ones.

3.4. Classification
After feature extraction, we have applied for all methods an
LDA model fitted on the feature vectors and the corresponding
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training labels. The model assumes that the feature vectors
present a Gaussian mixture distribution and that all classes have
the same covariance matrix. The predicted label is then assigned
according to the class that generates the minimum expected
classification cost. We have applied a Box’s M test to verify for
equality of the covariance matrices, and even though it failed in
some cases, we obtained better results than when using quadratic
discriminant analysis (QDA), which allows the variation of the
class covariance matrices. In this regard, QDA requires more
parameters than LDA, i.e., the covariance matrices of all classes,
which considerably increases the method variance. On the other
hand, the assumption that all classes in our problem share a
common covariance matrix does not cause an important bias.

TheMC2CMI andMC2SMImethods concatenate the features
that are generated by each one of the CSP modules, which allows
using a single multiclass classification model. In contrast, the PW
and OVA approaches use an LDA model for each one of the
binary problems that are generated to solve the 8-class problem,
i.e., 28 in the case of the PWmethod, and 8 for theOVA approach.
In both cases, after evaluating all the binary classifications, the
predicted label is assigned according to a vote scheme where the
class summing the highest score is selected.

There are many classification techniques that can be applied in
combination with the proposed methods. However, considering
that both the MC2CMI and MC2SMI approaches consist of
feature extraction methods for EEG combined MIs, we selected a
simple classification model to evaluate the discriminative power
of the generated features. In this way, the overall performance
does not rely on the selection of multiple parameters when using
more sophisticated classification techniques, which is out of the
scope of this work.

4. RESULTS

In our study, we investigated the possibility of decoding EEG
signals recorded during motor tasks combining three body parts,
i.e., left hand, right hand, and feet. We recorded seven subjects
in a series of trials during which they had to generate the
eight possible different mental states considering the imagined
movement of these three body parts, i.e., rest, left hand, feet,
left hand and feet, right hand, both hands, right hand and
feet, and both hands and feet (see section 2.2). The research
question in our study is to determine whether the ERD patterns
in the EEG signals associated with one particular region remain
consistent regardless the activation of other sources. To this end,
we generated three binary problems in which the EEG signals
were grouped into two classes: (i) all MIs including 1 of the 3
body parts in one class, and all the MIs that do not include it
in the other class, for the CM2CMI method, and (ii) a single
MI in one class, and the resting state in the other class, for the
CM2SMI method.

4.1. ERD/ERS Modulations
Figure 4 shows a schematic view of these arrangements (on the
right side) and the resulting ERD/ERS% fluctuations over the
main sources associated with each body part (on the left side)
(see Supplementary Figure 1 for a complete topographic view

FIGURE 4 | Modulations over the three main sources for subject 2. Each plot

presents the mean ERS/ERD% patterns of the band-pass filtered EEG trials

grouped within classes 1 and 2 for each one of the three modules in the

CM2CMI method (solid lines). The shaded regions represent the standard

errors of the mean, and the blue box within (0.5–3.5 s) indicates the time

window that was considered for classification. (A) ERS/ERD% patterns in

electrode C4 for class 1, i.e., motor imageries (MIs) including the left hand

(orange line), and for class 2, i.e., MIs that do not include the left hand (gray

line). (B) ERS/ERD% patterns in electrode Cz for class 1, i.e., MIs including the

feet (orange line), and for class 2, i.e., MIs that do not include the feet (gray

line). (C) ERS/ERD% patterns in electrode C3 for class 1, i.e., MIs including

the right hand (orange line), and for class 2, i.e., MIs that do not include the

right hand (gray line).

across all subjects). In all cases, we observe the well-known ERD
pattern over controlateral sources during an MI of the associated
body part (orange lines). Furthermore, the variation caused by
the activation of other sources during combined MIs remains
low. In contrast, the modulations associated with MIs excluding
the same body part (gray lines) present much higher values (ERS
modulation). And as expected, considering that the elements
within these groups are different combinations of MIs without a
consistent pattern, the variations among the mean values are also
stronger (see Supplementary Figures 2, 7 for other subjects).

From analyzing Figure 4, we found that a 3-s window starting
0.5 s after the cue was a convenient choice to find accentuated
ERD patterns for all subjects. Therefore, we selected this period
to train the CSP modules applied by the MC2CMI and the
MC2SMI methods. Considering that the CSP filters generate
subject-specific patterns, each method was trained independently
for each subject. The mean covariance matrices 61 and 62

in Equation (2) are computed, respectively, by averaging the
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covariance matrices of classes 1 and 2 for each one of the three
CSP modules, i.e., RH (right hand), FEET (feet), and LH (left
hand). Figure 5 presents an example of the CSP analysis for
each one of the three CSP modules of the MC2CMI method
applied on data from subject 1. The topographic maps on top
show the interpolation across all electrodes of the ERD/ERS%
mean values for both classes. The smallest values shown in
blue emerge again over the expected regions. Accordingly, we
find correspondence of such neurophysiological insights when
visualizing the CSP filter coefficients and their associated patterns
(topographies below). In each case, we present two pairs of
vectors (wj, aj) corresponding to the largest and the smallest
eigenvalues, where wj and aj represent the jth columns of W
and A = W−1, respectively (see section 3.1.1). On the other
hand, the corresponding patterns show how the activity from
different sources is projected onto the scalp, which can be used
to verify the neurophysiological plausibility when finding strong
weights over the corresponding motor cortex areas, as stated in
the literature (Pfurtscheller and Neuper, 2001).

The CSP filters project the band-passed filtered EEG data in
order to generate signals that are optimally discriminative with
respect to their variance. The effect of the CSP filters over the
band-passed filtered EEG data of subject 2 when applying the
MC2CMI method is shown in Figure 6. Here, we can observe
the CSP projections using the largest and the smallest eigenvalues
generated by each one of the three CSP modules of the MC2CMI
method over a segment during which the subject performed
each one of the eight MIs consecutively. In each module, there
is a strong contrast in the variance among segments during
which the corresponding body part is engaged in the motor task,
and segments during which it is not engaged. Those intervals
during which the specific body part is engaged in the task are

shaded orange and present smaller variance along the last filter,
whereas when using the same filter in segments where the same
body part is not active (shaded gray), the variance is larger.
Furthermore, in projections using the first filter we observe the
opposite behavior, i.e., the variance is smaller along segments
during which the specific body part is not used, and larger when
the same body part is engaged. These changes in variance are
optimal for discriminating mental states that are introduced by
ERD/ERS activity. To verify the discriminative power of these
projections, we have analyzed the power spectra of both classes
in the frequency domain (see Figure 7), where we found spectral
peaks around 12 Hz revealing a strong discriminative power.

4.2. Spectral Analysis
The changes in variance among the two classes characterize the
ERD/ERSmodulation observed duringmotor tasks, which can be
used to generate effective features for discrimination. To quantify
the discriminative power of the projected signals, we can analyze
the two classes in the frequency domain. In Figure 7, we present a
comparison between the spectra of the first CSP filter projections
of both classes for each one of the three CSP modules in the
MC2CMI method for subject 2. The difference in amplitude
showingmuch lower values over those signals including a specific
body part (orange lines), from those that do not include it (gray
lines), demonstrates the discriminative power of the CSP filtering
effect, which can bemeasured in terms of the r2 value (green color
bars shown below).

Figure 8 shows an example of the features generated by each
one of the three CSP modules in the MC2CMI method after
applying Equation (4) using the first pair of CSP filters over data
from subject 2. For visualization purposes, we show the results
of using only the first pair of CSP filters, considering that, as

FIGURE 5 | Common Spatial Pattern (CSP) modules in the MC2CMI method for subject 1. (A) The top topographies show the ERD/ERS% mean values over the

selected time window of 0.5–3.5 s for classes 1 (including the right hand) and 2 (not including the right hand). The topographies in the bottom show the first and last

filters of the CSP matrix trained over both classes, and the corresponding patterns. The same illustration is presented (B) for the MIs excluding/including the feet, and

(C) for the MIs excluding/including the left hand.
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FIGURE 6 | Effect of spatial Common Spatial Pattern (CSP) filtering. The graph shows continuous band-pass filtered EEG after applying the CSP filters. Those

intervals during which a specific body part is engaged in the task are shaded orange and present smaller variance for the last CSP filter, whereas when using the same

filter in segments where the same body part is not active (shaded gray), the variance is larger. We observe the opposite behavior for the first CSP filter. The regions

shaded white represent the inactive periods during pauses.

FIGURE 7 | Spectra over the first Common Spatial Pattern (CSP) filter projection. (A) Problem associated with the left hand. (B) Problem associated with the feet. (C)

Problem associated with the right hand. All plots are generated from the same dataset over the selected time window of 0.5–3.5 s but using different spatial filters.

The discrimination between the two conditions is quantified by the r2-value.

mentioned in section 3.2.1, we used three pairs of filters to extract
the CSP features in each module, so that each feature vector
was defined within an 18-dimensional space after concatenating
all components from all three binary problems. Note that the
separability between both classes in the classification space is
significant, specially for the problems associated with the left
hand (Figure 8A) and the right hand (Figure 8C).

We used a 10-fold cross-validation scheme to evaluate
the performance of each method. During each one of the
10 evaluations, four trials per class were randomly selected
(without replacement) to build the testing set (32 trials in
total), whereas the 36 remaining trials were used to generate

the training set (288 trials in total). We used the same data
partition to evaluate all methods to provide a fair comparison.
The reached mean accuracy across subjects together with the
standard error of the mean is presented in Table 1. In order
to compare the performance of the MC2CMI and MC2SMI
methods to the classic solutions, we also include the results
obtained by the PW and OVA approaches. All methods
were applied over the same band-pass filtered EEG data to
provide a fair comparison. In addition to LDA, we have also
applied support vector machines (SVMs) and decision trees for
classification. Results using the MC2CMI method are superior
than when using the classic approaches, however they do not
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FIGURE 8 | Features generated by each one of the three Common Spatial Pattern (CSP) modules in the MC2CMI method for subject 2. (A) Features from the RH

module. (B) Features from the FEET module. (C) Features from the LH module. All plots are generated from the same dataset over the selected time window of

0.5–3.5 s but using different spatial filters.

TABLE 1 | Classification accuracies.

Subject MC2CMI MC2SMI PW OVA

1 51.25 45.83 41.67 33.75

2 82.81 75.31 78.75 67.5

3 47.81 51.88 45.94 46.56

4 34.06 39.38 30.94 31.88

5 47.81 43.44 37.81 35.94

6 55.63 52.19 55.31 49.38

7 65.63 63.44 61.56 58.75

AVG 55 ± 5.86% 53.06 ± 4.72% 50.28 ± 6.14% 46.25 ± 5.09%

Performance across all subjects after applying a 10-fold cross-validation procedure to

assess the MC2CMI, together with the fast training version denoted as MC2SMI that

was considered to optimize calibration times by training only over single MIs. We also

present the results generated by the PW and the OVA approaches. All methods were

applied over the same band-pass filtered EEG data to provide a fair comparison. The

mean average across subjects is presented together with the standard error of the mean.

For each subject, the best result is indicated by bold characters.

outperform the accuracy reached by LDA classification, and in
both cases further parameter optimization must be investigated.
The results of using SVMs with linear kernel, and the results
of using decision trees to evaluate all methods are shown in
Supplementary Tables 1, 2, respectively.

Table 2 shows the p-values generated after applying a
Wilcoxon rank sum test to verify that the results generated by
each one of the presented methods are significantly different. As
expected, in the case of the MC2CMI and MC2SMI approaches
we do not find a significant difference, considering that the
MC2SMI approach is only a simplification of the MC2CMI
method. On the contrary, we found a strong evidence supporting
thatMC2CMImethod is significantly different with respect to the
PW andOVA approaches. In order to confirm that this difference
represents an improvement on the classification task, we present
the mean receiver operating characteristic (ROC) curves across
subjects for each one of the eight classes generated after applying
each method (see Figure 9). Note that, for multiclass problems,
this analysis can be performed using a pairwise comparison, i.e.,
one class vs. all other classes (Hand and Till, 2001). Again for

TABLE 2 | p-Values after applying a Wilcoxon rank sum test to verify differences

between independent groups.

MC2CMI MC2SMI PW OVA

MC2CMI p = 0.23 p = 0.003 p = 3.05e−8

MC2SMI p = 0.07 p = 1.35e−5

PW p = 0.011

all classes, the MC2CMI and MC2SMI generate a larger area
under the curve (AUC), which reveals a better performance in
comparison to the classic approaches (see Table 3).

The MC2CMI method performed very efficiently and it
reached an accuracy of 82.81% for subject 2. Furthermore, it
outperforms both the PW and OVA methods by around 5 and
9%, respectively, achieving a higher accuracy for all subjects (see
Table 1). In the same way, the CM2SMI method outperforms the
PW and OVAmethods for all subjects, which is of special interest
considering that it does not require patterns of combined MIs to
train the multiclass classifier.

These results are quite promising considering that most of
the classifications scores are significant and higher than the
chance level. According to Müller-Putz et al. (2008), Combrisson
and Jerbi (2015), and Jeunet et al. (2018), and considering that
we have eight different classes each comprising 40 trials, the
chance level would be to 22.5%. Finally, it is worth mentioning
that for our classification problem, the MC2CMI and MC2SMI
approaches require only three feature extraction modules, in
comparison to the 28 and eight modules required by the PW and
OVA methods, respectively. In this regard, the proposed method
not only outperforms the classic solutions, but also optimizes the
classification process and reduces the calibration time.

5. DISCUSSION

In this study, we have investigated the use of combined MIs to
provide EEG-based BCI interaction with an extended number
of commands. Indeed, despite the benefits of such a framework,
combined MIs have not been extensively studied and very little is
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FIGURE 9 | Mean across subjects of the receiver operating characteristic (ROC) curves for all classes and models. Each plot shows the ROC curves of one of the

eight classes for the predictions generated by the MC2CMI, MC2SMI, PW, and OVA approaches.

TABLE 3 | Area under the curve (AUC).

MC2CMI MC2SMI PW OVA

AUC 87.12± 2.34 87.67 ± 2.28 85.37± 2.99 81.8± 3.4

Average of the AUCs across the eight different classes and subjects with the

corresponding error of the mean. The best result is indicated by bold characters.

known about their suitability for this purpose. To address this
gap, we have designed a paradigm including of the left hand,
right hand, and feet, which together with the rest condition
provide eight different mental states, i.e., rest, left hand, feet, left
hand and feet, right hand, both hands, right hand and feet, and
all MIs. We have argued that the EEG activity elicited during
combined MIs can be analyzed independently over the sources
related to each one of the body parts included in the paradigm
to subsequently predict the class label from the combination of
the extracted information. With this idea, we have contributed
with two new feature extraction approaches, namely MC2CMI
and MC2SMI methods, which to our best knowledge have not
been considered before.

5.1. Neurophysiological Specificities of
Combined Motor Imageries
Analyzing the EEG activity elicited by each one of the body
parts separately presents a very important advantage, considering
that this simplifies the problem and reduces it into a set of
binary decisions, which allows to apply the CSP algorithm for
feature extraction. We have demonstrated that this approach is

plausible in a series of analyses in both the frequency and time
domains. First, we have inspected the ERD/ERS modulations
from the two classes considered by each one of the binary
problems formulated by the MCM2CMI method (see Figure 4,
and Supplementary Figures 2–7 for all subjects). In all cases,
there is a strong contrast between both classes given that the
class grouping all mental states using one of the body parts
produces oscillations with an increased desynchronization over
the associated activity source. Crucially, this behavior remains
relatively consistent among all MIs within each class, regardless
the activity generated by other active sources during combined
MIs. The topographic maps showing ERD/ERS values in Figure 5
(top) (Supplementary Figures 8–13 for more subjects) provide
a complete view across all electrodes. Here, we can see how the
brain activity is distributed over the region associated with the
body part considered by each one of the three modules. This
region appears in blue colors indicating small values (ERD%)
for the class grouping all MIs using one of the body parts,
and it appears in red colors indicating high values (ERS%) for
the other class grouping all MIs that do not include the same
body part. Accordingly, the CSP patterns associated with the
largest eigenvalue presented below activate the same region in
the brain. This provides evidence to verify neurophysiological
plausibility, and it confirms that grouping all mental states
within these two classes represents an effective solution.
Considering that the strongest discriminative components
correspond with the common source among combined MIs
for one class, and a combination of the other two sources for
the second class, as shown by the patterns associated with the
smallest eigenvalue.
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Interestingly, it was possible to train the system only with
data from single MIs without a significant loss of performance.
This not only reduces the calibration time and subjects’ fatigue,
but it also provides evidence to support our multilabel model,
where the activity generated by a combined MI corresponds to
the superposition of the activity generated by each one of the
involved sources.

5.2. Difficulties to Produce (Combined) MIs
The question of whether the use of combinedmotor imageries is a
suitable solution for EEG-based BCIs does not have a categorical
answer, and this is because it totally depends on the subjects and
their ability to modulate their brain waves during the different
mental states. First of all, we have to consider that this task might
be too complex to perform. In fact, there is evidence showing that
even a single MI is generally difficult to achieve (Guillot et al.,
2009; McAvinue and Robertson, 2009). Such complexity leads
to highly variable MI-based BCI performances (Dickhaus et al.,
2009; Vidaurre and Blankertz, 2010; Ahn et al., 2018; Thompson,
2019), and in some cases the control of this kind of systems
is completely ineffective. In particular, the combination of MIs
considerably increases the difficulty of the task, since it requires
higher coordination and concentration (Jeunet et al., 2016). The
results presented in Table 1 show that some subjects (i.e., subject
4) had difficulties in producing suitable patterns for the different
MIs. Conversely, when subjects manage to effectively modulate
their brain activity (i.e., subject 4), complex solutions are highly
recommended to gain control over multiple commands. In any
case, multiclass paradigm represents a challenge that becomes
more difficult as the number of classes increases. In this sense,
it is important to design intuitive systems where the link between
the mental commands and their associated label is not difficult
to establish.

Interaction conditions, such as the usability of the BCI,
feedback, and so on influence the performance of users, in
particular by reducing their mental load (Grangeon et al., 2011;
Di Rienzo et al., 2012; Talukdar et al., 2019). Subjects training
becomes essential to improve the execution of combined MIs,
and thus to achieve a good performance (Jeunet et al., 2016).
An appropriate long-term training with efficient instruction
and gradual difficulty (Lotte, 2012) is a promising way to
improve multiclass BCI control. In addition, the emotional state
can have a strong influence on EEG patterns. For instance,
during the recording period subject 2 used to practice yoga
and relaxation regularly. These activities have shown to improve
BCI control (Cassady et al., 2014; Rimbert et al., 2019), which
could have a greater impact on the classification performance
than any other processing technique. Thus, if subjects achieve to
modulate their brain oscillations and generate suitable patterns
for classification, the multilabel approach represents a very
appropriate solution to gain control over multiple commands.

5.3. Limitations and Future Work
In this study, we have validated all approaches using a database of
seven healthy subjects, which represents a small sample size for
rigorously evaluating the robustness of the presented methods.
Moreover, even though two subjects reached an accuracy above

65%, the mean accuracy was rather poor, so it is still an open
question whether this paradigm represents an effective solution
to provide online control for a significant population. Therefore,
a vast database of healthy subjects including a significant number
of individuals that practice yoga and/or relaxation regularly must
be investigated in future works.

6. CONCLUSION

This study contributes to enriching the limited knowledge of
combined MIs to provide users with multiple commands for
BCI interaction (Devlaminck et al., 2010; Meng et al., 2016).
This approach has the advantage of considerably increasing the
number of different brain states while using the same number of
body parts (in order of 2k compared to k, where k is the number of
body parts and when all possible combinations are considered).
The most common approaches have focused on the left hand,
right hand, and both hands (LaFleur et al., 2013; Lindig-León
and Bougrain, 2015a,b). Here, we include a third source (i.e.,
feet), with which it is possible to obtain eight different mental
states (i.e., rest, left hand, feet, left hand and feet, right hand, both
hands, right hand and feet, and both hands and feet). In a similar
study (Yi et al., 2013), the paradigm included the same three body
parts. However, each foot was used separately together with the
opposite hand during combined MIs, and the class involving all
MIs (i.e., left hand, right hand, and feet) was not included.

The novelty in our study is also the analysis for feature
extraction, which is carried out separately over each activity
source related to the three body parts included in the paradigm.
With this simplification, we have contributed with two new
methods, namely MC2CMI and MC2SMI. Both approaches are
multiclass uses of the CSP algorithm for multilabel problems.
Both methods outperform the classic PW and OVA approaches.
Moreover, in comparison to the 28 [i.e., 2n(2n − 1)/2, where
n is the number of body parts], and 8 (i.e., 2n) classifiers
required by the PW and OVA approaches, respectively, the
multilabel methods require only 3 (i.e., n) feature extraction
modules. Additionally, the MC2SMI is trained using data from
only single MIs without a significant loss of performance, which
considerably reduces the calibration time.

In general, subjects performance was low and only in a few
cases results were satisfactory. In this regard, the inefficiency
cannot be attributed to the feature extraction and/or classification
methods. In fact, most of the subjects were not able to properly
modulate their brain signals during the different motor tasks,
so that features were not well-separated in the classification
space. This problem requires special attention, considering that
the plausibility of multilabel approaches might depend on the
development of training strategies that are efficient in guiding
subjects to generate suitable patterns for classification. If this
modulation is appropriate and subjects generate discriminative
signals, multilabel approaches represent a very interesting
solution for designing systems with multiple commands to afford
an intuitive and continuous interaction, such as for a full 3D
control, which is of particular interest for the implementation of
prosthetic devices.
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Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple

commands in a highly reliable manner by alleviating the drawbacks associated with

single modality. In the present work, a hybrid EEG-fNIRS BCI system—achieved

through a fusion of concurrently recorded electroencephalography (EEG) and functional

near-infrared spectroscopy (fNIRS) signals—is used to overcome the limitations of

uni-modality and to achieve higher tasks classification. Although the hybrid approach

enhances the performance of the system, the improvements are still modest due to the

lack of availability of computational approaches to fuse the two modalities. To overcome

this, a novel approach is proposed using Multi-resolution singular value decomposition

(MSVD) to achieve system- and feature-based fusion. The two approaches based up

different features set are compared using the KNN and Tree classifiers. The results

obtained through multiple datasets show that the proposed approach can effectively

fuse both modalities with improvement in the classification accuracy.

Keywords: hybrid BCI, fNIRS, EEG, multi-resolution singular value decomposition, multi-modal fusion, channel

selection, classification

1. INTRODUCTION

The brain-computer interface (BCI) provides an interlink between the brain and external
devices (Vidal, 1973; Wolpaw et al., 2002). The information received from the brain in the form
of physiological/magnetic/metabolic signals is decoded and interpreted to determine the user
intentions, and is later utilized for various purposes, such as rehabilitation (Do et al., 2013; Khan
R. A. et al., 2018); control of robots (Doud et al., 2011; Bozinovski, 2016; Khan A. H. et al., 2018;
Rosca et al., 2018; Duan et al., 2019) and of prosthetics (Buch et al., 2018; Yanagisawa et al., 2019);
and neurogaming (Paszkiel, 2016, 2020; Vasiljevic and de Miranda, 2020). Among the existing
non-invasive acquisition methods, arguably EEG (Wolpaw et al., 2002; Pfurtscheller et al., 2006;
Choi, 2013; Abiri et al., 2019) and fNIRS (Ferrari et al., 1985; Delpy et al., 1988; Coyle et al.,
2004, 2007; Fazli et al., 2012; Naseer and Keum-Shik, 2015; Yin et al., 2015) are considered the
most explored. EEG is the physiological method, with low spatial and high temporal resolution,
that measures the brain activity in the form of electrical impulses (volts) using the electrodes
placed at specific positions on the scalp. On the other hand, fNIRS, based upon metabolic signals,
measures the level of oxygenation and de-oxygenation in the blood with high spatial and low
temporal resolution. Due to low temporal resolution, fNIRSmay require several seconds tomonitor
the blood levels (Khan and Hong, 2017). The time involved in monitoring causes a delay in
generating execution commands. For the fNIRS, this duration is almost 9 times that of EEG (Khan
and Hong, 2017). Additionally, in comparison to EEG, fNIRS is considered more robust against
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electromyogram artifacts and electrical noises (Blankertz et al.,
2010; Ahn and Jun, 2015, 2017). The limitations of both
modalities led to a multi-modal system, known as the hybrid
EEG-fNIRS BCI, that has the ability to overcome the drawbacks
of uni-modal systems and to improve the performance.

The hybrid EEG-fNIRS BCI has attracted the attention of
many researchers due to its mobility, cost-effectiveness, and
enhanced information content (compared to the uni-modal).
Since the EEG obtains information from the physiological
signals, and fNIRS uses metabolic signals to detect the
hemodynamic, there is no significant interference between the
two modalities. This further helps to obtain an enhanced BCI
performance. The first notable study that concurrently recorded
EEG-fNIRS data to perform motor imagery tasks was done
by Fazli et al. (2012). The authors reported an improvement in
the classification accuracy by 5% on average when compared to
the single modality. After the promising results obtained by Fazli
et al. (2012), more researchers tried to utilize the hybrid BCI,
either to increase the classification accuracy and/or to generate
more control commands (Khan et al., 2014; Koo et al., 2015;
Aghajani et al., 2017; Ge et al., 2017; Shin et al., 2018a). The most
explored areas where the hybrid BCI is utilized include mental
stress (Al-Shargie et al., 2016; Aghajani et al., 2017) and gait
rehabilitation (Berger et al., 2019), among many others (Putze
et al., 2014; Zama et al., 2019). Though the hybrid EEG-fNIRS
BCI has been able to upheld its supremacy against single modality
both in terms of accuracy and stability, there are still some
challenges related to the integration of both modalities.

Data-fusion in multi-modality is a challenging problem since
the brain imaging data is different in nature, thus making the
analysis more difficult. Most of the previous studies focused
on feature-based fusion through concatenating EEG and fNIRS
features (Putze et al., 2014; Hong et al., 2018; Shin et al., 2018a),
and by providing them the support of other power tools. Joint
independent component analysis (jICA), which was previously
used for integrating EEG and fMRI (Calhoun and Adali, 2008),
was used to perform the fusion of EEG and fNIRS features (Al-
Shargie et al., 2016). Some researchers also used deep learning-
based feature fusion approaches, such as tensor fusion and
pth-order polynomial fusion (Chiarelli et al., 2018; Sun et al.,
2020). These multi-modal fusion approaches have been able to
improve the accuracy, but at the cost of increasing computational
complexity and decreasing stability. In Yin et al. (2015), the
authors introduced a features combination and optimization
approach using joint mutual information (JMI), and the study
decoded the motor imagery of the force and speed of hand
clenching. The feature optimization method, JMI, was developed
with the intention to remove unessential information that may
reduce classification accuracy. The authors reported achieving an
improved performance of up to 5% when compared to previous
studies. In 2017, Al-Shargie et al. (2017) proposed a canonical
correlation analysis (CCA) to perform feature-based fusion. The
aim was to investigate the effects of mental stress on prefrontal
cortex (PFC) based upon simultaneously recorded EEG and
fNIRS signals. CCA is a statistical method that maximizes the
correlation between the features of brain signals recorded by each
modality EEG-fNIRS.

Though the improvements achieved by jICA, JMI, and CCA
were satisfactory, the fusion was applied on the feature level,
where the two modalities were processed separately. Therefore,
a true system-level fusion is needed in order to capture the
maximum benefits of the hybrid BCI, maximize the correlation
between each modality, and reduce the computational
complexity. In this study, we propose a novel hybrid BCI fusion
approach using Multi-resolution singular value decomposition
(MSVD) to perform a feature-based and system-based fusion for
both EEG and fNIRS by employing selected channels from each
hemisphere. The MSVD has previously been utilized primarily
for image analysis, fusion (Kakarala and Ogunbona, 2001; Ashin
et al., 2005; Naidu, 2011) and pattern recognition (Lung, 2002).
To our knowledge, the present study is the first attempt to
perform a hybrid EEG-fNIRS BCI fusion at the system level
using MSVD. This approach not only helps to improve the
classification accuracy, but also to reduce the dimensionality and
the computational complexity. To evaluate the performance,
the proposed approach is tested for two datasets: Buccino
dataset (Buccino et al., 2016) and dataset from Technical
University Berlin (TU Berlin) (Shin et al., 2018b).

2. MATERIALS AND METHODS

2.1. Datasource and Experimental
Paradigm
The proposed approach has the tendency to work with datasets
of different nature. To prove its effectiveness, it is tested on two
simultaneously recorded EEG-fNIRS data for motor execution
and cognitive tasks. Both datasets have been widely used by the
research community in the recent past as they can be openly
accessed (Congedo et al., 2017; Saadati et al., 2020).

2.1.1. Buccino dataset
The publicly available dataset obtained from an online repository
(http://dx.doi.org/10.6084/m9.figshare.1619640 and http://dx.
doi.org/10.6084/m9.figshare.1619641) was provided by Buccino
et al. (2016). The raw data from EEG and fNIRS was concurrently
recorded for four motor execution tasks– right and left arm;
right and left hand–against the rest. Fifteen healthy subjects, aged
between 23 and 54, were involved in the experiments that lasted
an hour. A screen was installed nearly 100 cm away from the
subjects on which visual instructions were displayed; the subjects
were asked to follow the instructions without any intentional
delay. The total duration of each experiment was segmented into
rest and activity periods; each trial started with a rest for 6 s
followed by another 6 s of movements.

2.1.2. TU Berlin Dataset
The second open-access dataset considered in this study was
from TU Berlin (Shin et al., 2018b), where 26 healthy persons
participated in the experiment ranging between 17 and 33
years of age. A 24in LCD monitor was placed in front of the
participants, approximately at a distance of 1.2 m. They were
instructed to place their middle and index fingers on the numeric
keypad attached to the armrest of the chair. The EEG and
NIRS signals were recorded simultaneously for three cognitive
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tasks over a period of approx. 3.5 h: n-back (0-, 2-, and 3-
back), discrimination/selection response task (DSR), and word
generation (WG). In this study, we considered only the n-back
tasks where a series of nine tasks were performed by each
participant. At the start of each series, a type of task is displayed
on the screen for 2 s, followed by the actual task period of 40
s, and then 20 s rest period. The participants responded to the
screen instructions by either pressing the target key (number
7) or non-target key (number 8) with their right index finger
and right middle finger. More details about the dataset can be
obtained from Shin et al. (2018b) and (http://doc.ml.tu-berlin.de/
simultaneous_EEG_NIRS/).

2.2. Data Acquisition
2.2.1. Buccino Dataset
The EEG system (microEEG, BioSignal Group, US) was used
to record the signals through twenty-one channels, sampled at
a rate of 250 Hz. The fNIRS system, NIRScout 8-16 (NIRx
Medizintechnik GmbH, Berlin, Germany) equipped with 12
sources and 12 electrodes on 34 channels was used to acquire
signals at a sampling frequency of 10.42 Hz. The EEG electrodes
and fNIRS probes were mounted on an extended EEG cap
(actiCAP 128, Brain Products GmbH, Germany) according to the
international 10-20 system.

2.2.2. TU Berlin Dataset
A multi-channel BrainAmp EEG amplifier (Brain Products
GmbH, Gilching, Germany) working at a sampling rate of 1,000
Hz was used to store the raw EEG data. The fNIRS system,
NIRScout (NIRx Medizintechnik GmbH, Berlin, Germany),
combined with thirty-six channels was used to record data
at a sampling rate of 10.4 Hz. Thirty EEG electrodes, and
sixteen pairs of NIRS sources and detectors, were mounted on
a cap (EASYCAP GmbH, Herrsching am Ammersee, Germany)
according to the international 10-5 system.

2.3. Data Pre-processing
2.3.1. Buccino Dataset
The initial trial was segmented out prior to the motor execution
tasks. The raw fNIRS data obtained at a sampling frequency of
10.42 Hz was decomposed into Oxy-haemoglobin and Deoxy-
haemoglobin concentration changes (HbO and HbR) through
the Modified Beer-Lambert law (Cope et al., 1988; Baker et al.,
2014). Later, the concentration signals were filtered with a 4th
order IIR Butterworth filter between 0.01 and 0.2 Hz. The EEG
signals were also filtered with a 4th order IIR Butterworth filter
between 1 and 50 Hz to remove artifacts.

2.3.2. TU Berlin Dataset
The raw NIRS data were transformed to HbO and HbR using the
Modified Beer-Lambert law, and down-sampled to 10 Hz. The
obtained data was filtered (6th order zero-phase Butterworth)
with 0.2 Hz cut-off frequency to remove systemic physiological
noises. The raw EEG data were down-sampled to 200 Hz
and band-pass filtered (6th order zero-phase Butterworth)
between 1 and 40 Hz. Additionally, the second-order blind

identification method was applied to the filtered data to eliminate
ocular artifacts.

The filtered EEG and fNIRS data were baseline-corrected by
subtracting the mean and dividing by the standard deviation.
For both datasets, the EEG data were downsized through an
average moving window of 1 s to ascertain consistency and
synchronization. Additionally, we selected HbO as the main
feature for the fNIRS signal as the concentration change is
more observable in HbO and can produce higher accuracy when
compared to HbR and total haemoglobin (HbT) (Aihara et al.,
2012; Morioka et al., 2014; Buccino et al., 2016).

2.4. Channel Selection
The criteria of channel selection is based upon the correlation
coefficient, ρ, determined between the filtered data of each
modality. Some researchers have investigated the utilization of
the Pearson correlation coefficient to solve practical problems in
medical industry (Yildiz and BERGIL, 2015; Akoglu, 2018). Our
previous study in this context (Hasan et al., 2020) demonstrated
that this approach can be effectively utilized to select optimal
channels for EEG and fNIRS.

2.5. Feature Extraction
2.5.1. Discrete Wavelet Transform (DWT)
The DWT of a signal X[n], as shown in Figure 1, is obtained
through a series of low- and high-pass filter pairs, named as
quadrature mirror filters. As the frequency bandwidth is reduced
to half, the filtered signal can be down-sampled by two according
to the Nyquist’s rule. The reduced output from the low- and
high-pass filter branches are regarded as approximation (Ai)
and detail (Di) coefficients, where i represents the level of
the transform. The same procedure can be repeated multiple
times to improve the frequency resolution by considering the
coefficients from the previous level as an input. The tree structure
is also known as a filter bank. After each decomposition, the
time resolution is halved through down-sampling, whereas the
frequency resolution is doubled through filtering. Based upon the
work of Subasi (2007), the authors in Li et al. (2017) reported that
the approximation coefficient from the output of the last DWT
layer is the main carrier of the signal’s power. They suggested
the use of a 4-layer “Symlet” wavelet network to obtain higher
classification accuracy.
Decomposition Level

For DWT, the mother wavelet transform directly impacts the
calculation of the approximation and detail coefficients (Mallat,
1989), thereby affecting overall accuracy. The most commonly
used families are biorthogonal, reverse biorthogonal, daubechies,
symlets, coiflets, discrete meyer, and haar (Faust et al., 2015). In
this study, from the family of symelts, sym4 is selected having a
filter size of eight as a mother wavelet.

The number of decomposition levels of DWT is associated
with the input signal and mother wavelet. With more depth
of decomposition, a detailed description of the signal can be
obtained, but it may produce features redundancy leading to
the lower accuracy and higher computational cost. The highest

level L of the decomposition is determined as floor
(

log2

(

N
F−1

))

,
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FIGURE 1 | A four-level filter bank; h[n] is the high pass filter, g[n] is the low pass filter.

whereN is the size of the input signal and F is the mother wavelet
filter size (eight in our case) (Wu et al., 2000). Chen et al. (2017)
reported that beyond a certain level, not much improvement can
be observed in the accuracy. Even in some cases, the accuracy
even dropped with the increase in the decomposition level.
Hence, more levels of decomposition do not necessarily mean
improved accuracy, but definitely adding to the computational
cost. For our case, we obtained the maximum accuracy with four
levels of decomposition.

2.5.2. Statistical Features
In addition to DWT, six different statistical features are extracted
using spatial averaging of selected channels. The considered
features set are: mean (M), peak (P), skewness (SK), kurtosis
(KR), standard deviation (SD), and variance (VAR). The selection
of these features is based upon the existing literature, where
there is also a comparison between the performance of individual
features and their combinations (Hong et al., 2017; Khan R. A.
et al., 2018; Hasan et al., 2020). The extracted features set are
re-scaled between 0 and 1, using:

Xnew =
Xi −min (Xi)

max (Xi) −min (Xi)
(1)

After processing the extracted features using Equation (1), the
normalized feature vectors are obtained as Mnew, Pnew, SKnew,
KRnew, SDnew, and VARnew. To avoid ambiguity and for the sake
of easiness, the normalized features are still represented using the
same variables, but without the subscript.

3. DATA-FUSION

3.1. Multi-Resolution Singular Value
Decomposition (MSVD)
The motivation behind the proposed approach is to build a
framework for multi-modal fusion using MSVD. Similar to
DWT, an input signal is processed through high- and low-pass
finite impulse response (FIR) filters at the first stage, followed
by down-sampling. In the following stage, the approximation
coefficient from the previous level is bifurcated to achieve
decomposition (Naidu, 2011). The same procedure is repeated to
obtain d level decomposition, where the FIR filters are replaced
with the MSVD.

Let X ∈ R
n′×m′

contains the statistical features of the input
signal or the fused signal, where

(

n′,m′
)

are constrained as an
even number due to the decomposition process.

By introducing new variables (n,m) as
(

n′

2 ,
m′

2

)

, the data matrix,

A ∈ R4×nm, is built upon the matrix X as:

A =
[

V1 V2 · · · Vm

]

(2)

where each Vi contains two adjacent columns of X, and is defined
as follows:

Vi =
[

υ1 υ2 . . . υn
]

(3)
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FIGURE 2 | A three-level multi-resolution decomposition structure.

Each individual vector υi contains a feature set of four elements
of X, and is formulated as:

υi =
[

υUL
i υUR

i υLL
i υLR

i

]T
(4)

where UL, UR, LL, and LR represents upper-left, upper-right,
lower-left, and lower-right elements, respectively.
Afterwards, the singular value decomposition is applied on the
generated data matrix A as:

A = USVT (5)

where the columns of U contain left singular vectors, S holds
singular values as diagonal entries, and rows of VT have the right
singular vectors. The singular vectors are chosen to satisfy:

UTA = SVT (6)

A scatter matrix, T ∈ R4×nm, is defined using Equation (6) as:

T = UTA (7)

The vectors
{

Et1,Et2,Et3,Et4
}

specify the rows of T, where each Eti ∈
R
1×nm. These vectors are reshaped to generate corresponding

matrices {Ŵ1,Ŵ2,Ŵ3,Ŵ4}, where each Ŵi ∈ R
n×m. A split matrix

ϕ ∈ R
n′×m′

is introduced as:

ϕ =

[

ϕUL ϕUR

ϕLL ϕLR

]

=

[

Ŵ1 Ŵ2

Ŵ3 Ŵ4

]

(8)

Figure 2 shows the structure of the split matrix with three
decomposition levels. In case of a multiple input signals, a
split matrix using MSVD is obtained for an individual input.

For instance, two input signals S1 and S2, having the same
dimensions, are decomposed into L (l =1,2,..., L) levels using
MSVD (Figure 3). After the generation of the split matrix, fusion
has to be performed. To do so, it is necessary to store detail

component vectors ϕ
{UR,LL,LR}
l

and singular-vector matrix Ul for
l =1,2,..., L, whereas it is sufficient to store the approximation

component vector only at the coarest level L i.e., ϕ
{UL}
L . The fusion

rules mentioned in Figure 3 are used to fuse the signals from
multi-sources. At each decomposition level l, the largest absolute
detail component vector is selected since it assumed to carry the
main power of the signals. Similarly, the average of the singular-
vector matrix is computed at each level. At the coarest level (l =
L), the average of the approximation coefficients is calculated.

It can be observed that based upon the information from the
split matrix, a decision is made. Once the fusion rules are applied
in order to merge all the information into a single modality, an
inverse process is applied to obtain the fused matrix.

The scatter matrix T is reconstructed based upon the
information from the split matrix since the steps are reversible.
The sub-matrices of the split matrix ϕ are reshaped from
R
n×m → R

1×nm to redefine scatter matrix T:

T =









Et1
Et2
Et3
Et4









(9)

Using Equation (9), a data matrix A is obtained as:

A = UT (10)

The structure of the data matrix is defined as:

Each column vector ai contains four elements and is used to
define a fused feature matrix X as:

X =















a1 am+1 . . . am(n−2)+1 am(n−1)+1

a2 am+2 . . . am(n−2)+2 am(n−1)+2

...
...

. . .
...

...
am−1 a2m−1 . . . am(n−1)−1 amn−1

am a2m . . . am(n−1) amn















(11)

where

ai =

[

a (1, i) a (2, i)
a (3, i) a (4, i)

]

(12)

3.2. Feature-Based Fusion
EEG-fNIRS correlation analysis helped to reveal the intrinsic
relationship between both modalities. To maximize the accuracy
and to increase the number of the generated commands,
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FIGURE 3 | MSVD fusion scheme.

statistical and optimization-based feature extraction methods
are among the most commonly used. However, most of the
previous studies focused on the feature-based level fusion by
simply concatenating EEG and fNIRS features

[

fEEG : fFNIRS
]

.
In this paper, we proposed the utilization of the MSVD to
perform EEG-fNIRS feature-based fusion. For the given datasets,
the details about the pre-processing steps, such as filtering
and windowing are provided in section 2.3. Based upon the
correlation coefficient, six optimal channels are selected from
both modalities. Six statistical features from the fNIRS and six
normalizedDWT features (one from each channel) from the EEG
are extracted (Figure 4A). Afterwards, MSVD decomposes the
features set into sub-bands through filtering, and the output of
each filter is dismantled by a factor of two to complete the first
level of decomposition. Afterwards, the fusion rulesmentioned in
Figure 3 are applied, followed by the classification to determine
the specific tasks.

3.3. System-Based Fusion
Figure 4B is a schematic representation of the proposed system-
based fusion using MSVD for a hybrid BCI system. To our
knowledge, none of the previous studies have so far applied
fusion at the system-level, mainly due to the complexity and
lack of computational approaches. The pre-processed signals
(filtered, down-sampled) are used to extract the desirable number
of channels using the correlation coefficient (Hasan et al., 2020).
Six channels are selected from both modalities and processed
using MSVD to perform system-based fusion. Multiple features
are extracted from the fused signal: DWT, statistical, and a
combination of DWT and statistical. Later, the extracted features
are fed to the classifier to determine the specific tasks.

4. RESULTS

This section mainly evaluates the performance of the two fusion
schemes, feature- and system-based fusion, by utilizing Buccino
and TU Berlin datasets. To reduce the computational complexity,
a reduced number of channels of both modalities are utilized for
the classification. On Buccino dataset, the computational time,

recorded as the temporal distance between the filtration and
feature extraction, is highlighted in Table 1 for EEG and fNIRS
based upon all channels and the reduced number of channels.
The analysis made is based upon the sampled data of 1 s, obtained
through both modalities. The response time is reduced by 40 and
50% for EEG and fNIRS, respectively.

4.1. Classification
For EEG and fNIRS, the classification accuracies using the KNN
and Tree classifiers are evaluated for four different motor tasks
against the rest based upon Buccino dataset; whereas, hybrid
EEG-fNIRS analysis is made for both Buccino and TU Berlin
datasets, using the same classifiers. The KNN classifier proximate
the nearest observation points from the training data into a
single class. It is preferred due to its simplicity, easiness to
implement and high classification performance (Bablani et al.,
2018). The Tree classifier constructs the decision tree with
branches and node(s) based on the extracted features. At each
node, either a single feature or several features contribute
to minimizing the entropy label of the class (Aydemir and
Kayikcioglu, 2014). To evaluate the classifiers’ performance, a 10-
fold cross-validation scheme is applied to the feature vectors of
EEG, fNIRS, and EEG-fNIRS.

4.2. EEG
The average classification accuracies in Table 2 are obtained
using the KNN and Tree classifiers for the eight selected subjects
based upon Buccino dataset. The four approximation coefficients
obtained using four-level DWT are defined as the EEG features. It
is noted that the Tree classifier, when compared to KNN, has only
been able to producemoderate results. The classification accuracy
of more than 80% is achieved using the last approximation
coefficient A4, when processed through KNN. This phenomenon
is observed as DWT helps decompose the EEG signals into
four layers, and the last approximation coefficient is assumed
to hold the most effective event-related potential (ERP) of the
brain activity. The DWT decomposition also helped to reduce the
dimensionality of the system.
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FIGURE 4 | Hybrid BCI system using (A) Feature-based fusion. (B) System-based fusion.

4.3. fNIRS
Table 3 shows the KNN and Tree classification results obtained
for the eight subjects (Buccino dataset) using fNIRS-only
features. A feature set, consisting of fifteen feature vectors, is
developed from a combination of the six statistical features. In
this study, it is revealed that the combination of mean and
skewness produces the highest average classification accuracies
for both KNN and Tree. It is concluded that, similar to EEG,
fNIRS has not been able to produce any satisfactory results.

4.4. Hybrid EEG-fNIRS
The performance of the hybrid EEG-fNIRS based upon feature-
and system-based fusion is evaluated using accuracy, specificity,
and area under curve (AUC). The most commonly used
performance measures, such as precision, recall, and F1-score are
not useful for the multi-classification, as they produces the same
results. Hence, for the purpose, AUC is employed, its value ranges
between 0 and 100%. The closer the value is to 100%, the better is
the classification performance of the model.

4.4.1. Feature-Based Fusion
For feature-based fusion, based upon the selected channels from
both modalities, the six statistical features from the fNIRS, and

TABLE 1 | Impact of channels selection on the computational time for both EEG

and fNIRS.

Number of channels EEG (s) fNIRS (s)

All channels 0.1639 0.1405

6 channels 0.0935 0.0724

DWT’s last layer approximation coefficients from the EEG are
used as the main features. The number of selected channels
from both modalities is kept the same. A combined feature set
of EEG-fNIRS is processed through MSVD. Table 4 illustrates
the classification performance measures obtained for the eight
subjects using feature-based fusion.
Buccino Dataset

The proposed method delivered promising performance for the
motor execution tasks. Table 4 shows consistent accuracy above
85% across all subjects using the KNN. Considering all the
subjects, the average classification accuracies of 90.25 and 74.98%
are obtained through the KNN and Tree classifiers, respectively.
It can be observed that the KNN has been able to outperform
the Tree classifier for feature-based fusion. It is also noticeable
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TABLE 2 | Average classification accuracies for the eight subjects using the EEG.

Features set
EEG

KNN (%) Tree (%)

A1 44.45 50.62

A2 59.96 53.10

A3 70.83 60.55

A4 82.36 71.32

TABLE 3 | Average classification accuracies for the eight subjects using the fNIRS.

Features set fNIRS

KNN (%) Tree (%)

M, P 64.80 69.82

M, SK 70.97 73.63

M, KR 68.85 71.81

M, SD 69.62 71.66

M, VAR 68.08 71.66

P, SK 70.36 73.27

P, KR 66.42 71.32

P, SD 67.58 71.13

P, VAR 67.28 71.10

SK, KR 56.66 64.52

SK, SD 65.00 69.16

SK, VAR 64.11 69.13

KR, SD 63.81 68.36

KR, VAR 62.98 68.38

SD, VAR 46.91 56.61

that there is a variation among individual subject’s performance,
causing a direct effect on the overall accuracy. There can be many
possible reasons for this phenomenon: it could be due to the
subject’s experiencing such tasks first hand or loss of interest at
some stage during the process. This can be corrected by properly
training the subjects before performing the experiments, as well
as by shortening the duration of the experiments. Regarding the
individual’s performance, the best performing subjects are S5
and S7, who achieved the highest accuracies of 97.0 and 95.8%
through KNN.
TU Berlin Dataset

The n-back tasks classification results using the KNN and Tree
classifiers are presented in Table 4. For all the subjects, highest
classification accuracy is achieved by the KNN. The highest
accuracies (%) attained for the eight subjects are 94.4, 72.4,
92.1, 91.0, 95.5, 76.4, 79.9, and 81.9. The average classification
accuracies obtained using the KNN and Tree classifiers are
85.45 and 77.91%, respectively. It is re-observed that due to the
individual’s performance, there has been a significant drop in the
overall accuracy, despite the fact that four subjects have been able
to achieve an accuracy of 91% or above (KNN). Although, the
results are reported for a single feature set (DWT-statistical), the
proposed method can be further tested with other combinations
to yield the highest accuracies.

4.4.2. System-Based Fusion
System-based fusion presents many advantages as compared
to feature-based fusion; it is less time-consuming since we are
analyzing the fused signals instead of processing each signal
separately, and then fusing them. It is also more robust toward
cross-data set variations of the components, which can be used
for generating group-level inferences in different ways. The
processed EEG-fNIRS data obtained from the selected channels
is fused using MSVD system-based Fusion.
Buccino dataset

Table 5 summarizes the classification accuracies obtained using
a combined features set (DWT, statistical, DWT-statistical)
through the KNN and Tree classifiers for the eight subjects.
Among three features set, DWT is able to produce the highest
accuracy of 98.9% (KNN) followed by DWT-statistical which
attained 94.43% (Tree) at most. Moreover, consistent best
accuracies (%) were 97.0, 98.9, 98.9, 98.6, 93.6, 98.3, 98.2, 98.9
for eight subjects, respectively, as obtained using the KNN. Based
upon the performance, S2, S3 and, S8 can be considered as the
best-performing subjects.
TU Berlin Dataset

In Table 5, performance measures based upon the classification
results are shown. The highest and the lowest accuracies of
99.7 and 40.9% are obtained using DWT and the six statistical
features, respectively. The huge difference between the best-
performing and worst-performing subjects causes the significant
drop in the overall accuracy. Therefore, extreme caution must
be taken to exclude the non-favorable features and subjects. For
eight subjects, KNN in comparison to Tree has been able to
produce the highest accuracies (%) of 99.5, 99.7, 99.5, 80.1, 96.6,
99.4, 99.3, and 99.3.

5. DISCUSSION AND CONCLUSION

A hybrid EEG-fNIRS BCI enables the assessment of brain
activities from different perspectives; hence, a broader range
of information is obtained. Additionally, it also compensates
for the weaknesses of individual modalities. The performance
of the hybrid EEG-fNIRS is compared against EEG-only and
fNIRS-only for the eight subjects. The results supported the
argument that the hybrid EEG-fNIRS should be preferred over
the individual modalities. The obtained classification accuracy
for the hybrid system is higher than EEG-only and fNIRS-only
for all subjects. The reduced number of channels from both
modalities are utilized to obtain the results. The selected channels
are based upon the ranking of the correlation coefficient; the
six highest ranked channels of both modalities are selected. As
shown in Table 1, the response time is improved by 40% for both
modalities without affecting the accuracy.

In this study, we presented an MSVD approach for bi-
modalities data-fusion. The proposed approach is investigated
for both feature- and system-based fusion of EEG-fNIRS, with
the intention to improve the system’s performance and to reduce
dimensionality. TheMSVD-based data-fusion works on the same
principle as DWT; at each level, the signals are filtered and
dismantled by a factor of two to decompose the data into their
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TABLE 4 | Classification performance of the hybrid EEG-fNIRS for the eight subjects using the (Tree,KNN), based upon feature-based fusion.

S1/S2/S3/S4 S5/S6/S7/S8

Accuracy (%) Specificity (%) AUC (%) Accuracy (%) Specificity (%) AUC (%)

Buccino (72.1,93.6) (80.0,93.6) (81.0,94.0) (78.9,97.0) (93.4,97.0) (86.0,97.0)

TU Berlin (87.4,94.4) (88.8,94.7) (90.0,95.0) (83.4,95.5) (91.7,97.0) (93.0,98.0)

Buccino (73.2,85.7) (81.0,85.0) (82.0,89.0) (70.9,85.0) (78.0,87.3) (85.0,89.0)

TU Berlin (71.0,72.4) (77.5,74.0) (81.0,76.0) (68.6,76.4) (76.1,79.0) (80.0,83.0)

Buccino (79.1,92.4) (81.3,92.0) (83.0,92.0) (77.7,95.8) (81.0,98.0) (88.0,98.0)

TU Berlin (84.8,92.1) (86.8,93.2) (91.0,94.0) (72.4,79.9) (78.4,83.5) (87.0,86.0)

Buccino (77.1,86.1) (85.3,89.0) (87.0,91.0) (70.9,86.4) (72.1,85.0) (74.0,85.0)

TU Berlin (77.0,91.0) (81.3,91.9) (87.0,93.0) (78.7,81.9) (82.5,84.7) (91.0,90.0)

TABLE 5 | Classification performance of the hybrid EEG-fNIRS for the eight subjects using the (Tree,KNN), based upon system-based fusion.

S1/S2/S3/S4 S5/S6/S7/S8

Features set Accuracy (%) Specificity (%) AUC (%) Accuracy (%) Specificity (%) AUC (%)

Buccino Six Statistical and DWT (81.1,65.1) (94.1,89.6) (93.0,80.0) (82.1,63.5) (92.0,69.0) (94.0,72.0)

Six Statistical (50.1,41.6) (85.7,83.7) (57.0,52.0) (53.0,44.3) (58.3,52.1) (61.0,59.0)

DWT (83.1,97.0) (94.7,99.0) (93.0,97.0) (83.8,93.6) (88.2,98.1) (94.0,99.0)

TU Berlin Six Statistical and DWT (95.6,83.4) (95.7,84.6) (96.0,81.0) (96.1,79.5) (98.5,82.0) (99.0,89.0)

Six Statistical (62.4,59.7) (66.0,71.3) (68.0,60.0) (46.1,45.5) (62.0,60.0) (66.0,63.0)

DWT (96.7,99.5) (96.7,99.9) (97.0,100) (96.5,96.6) (98.7,99.0) (99.0,100)

Buccino Six Statistical and DWT (93.8,90.6) (98.0,96.9) (95.0,92.0) (91.7,79.6) (96.3,81.2) (98.0,82.0)

Six Statistical (59.8,53.0) (61.0,54.2) (71.0,65.0) (54.5,51.7) (62.0,59.2) (62.0,61.0)

DWT (94.3,98.9) (95.1,99.0) (95.0,99.0) (92.4,98.3) (98.0,99.0) (98.0,99.0)

TU Berlin Six Statistical and DWT (94.6,80.7) (94.9,83.9) (95.0,84.0) (95.6,82.6) (97.0,88.0) (98.0,89.0)

Six Statistical (51.3,50.2) (61.2,58.0) (63.0,59.0) (54.6,56.0) (65.0,56.0) (67.0,73.0)

DWT (95.9,99.7) (96.9,99.8) (97.0,100) (95.9,99.4) (97.7,99.8) (98.0,100)

Buccino Six Statistical and DWT (94.4,87.4) (95.9,90.9) (94.0,84.0) (91.8,77.1) (93.9,79.0) (94.0,86.0)

Six Statistical (73.8,71.2) (81.5,79.8) (58.0,54.0) (54.9,47.4) (60.0,55.0) (61.0,56.0)

DWT (95.0,98.9) (96.3,99.2) (95.0,99.0) (92.4,98.2) (95.0,98.0) (95.0,98.0)

TU Berlin Six Statistical and DWT (96.2,81.8) (97.8,84.0) (98.0,86.0) (93.4,84.7) (98.0,88.0) (98.0,90.0)

Six Statistical (56.4,54.5) (59.0,62.0) (70.0,65.0) (59.1,56.8) (75.0,60.0) (79.0,71.0)

DWT (96.0,99.5) (97.0,99.0) (98.0,100) (96.9,99.3) (98.8,99.9) (99.0,100)

Buccino Six Statistical and DWT (89.3,85.0) (94.9,90.0) (94.0,91.0) (91.2,78.1) (94.7,79.0) (95.0,86.0)

Six Statistical (56.3,52.6) (62.0,56.0) (63.0,57.0) (55.2,50.7) (62.0,55.9) (63.0,56.0)

DWT (92.0,98.6) (96.2,99.0) (96.0,99.0) (91.9,98.9) (96.0,99.0) (96.0,100)

TU Berlin Six Statistical and DWT (77.7,79.5) (85.0,83.0) (87.0,84.0) (94.0,76.8) (96.5,76.0) (97.0,83.0)

Six Statistical (63.3,63.5) (66.4,64.0) (76.0,71.0) (40.9,40.9) (59.0,52.0) (61.0,57.0)

DWT (79.6,80.1) (85.0,81.0) (88.0,82.0) (95.5,99.3) (97.0,99.6) (98.0,100)

latent components. From the classification performance results in
Tables 4, 5, it is apparent that the system-based fusion dominated
the feature-based fusion for the all the subjects from both datasets
using the Tree classifier. Contrarily, KNN has performed better
for the feature-based fusion rather than the system-based fusion
in most cases. Overall, the results show that MSVD is a powerful
tool that naturally allows for the analysis and fusion of multiple

data sets. Being quite simple from the computational perspective,
it could be well-suited for real-time applications as well.

The analysis and results are obtained from offline data, but
the proposed approach is implementable for a real-time setup.
Instead of processing all the channels from both modalities,
only the most optimized channels using a correlation coefficient
can be applied for feature extraction. It is shown in Hasan
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et al. (2020) that it helps to reduce the computational burden
while maintaining the classification accuracy. The selection
of channels for the individual subjects can be added as an
initialization step. The computation of SVD for a large matrix
can be time-consuming; hence, limits the real-time application.
For a rectangular matrix, instead of computing the SVD
of a matrix A as in Equation (5), we can form a square
matrix i.e., ATA for a thin matrix, and AAT for a fat matrix
to compute the SVD. The computation of SVD for these
square matrices is considered efficient; therefore, suitable for
online systems.

The features selection does have direct impact on the
classification accuracy; thus, care must be taken in this regard.
It is desirable that those features must be extracted, who truly
represent the data and are as compact as possible. In Table 5,
three different feature sets–DWT features, six statistical features,
and a combination of DWT-statistical–are extracted to evaluate
the performance of the system-based fusion for a hybrid EEG-
fNIRS. In contrast to the feature-based fusion approach, the
features are extracted from the fused EEG-fNIRS signal in the
system-based fusion. Thus, for both fusion schemes, different
behaviors can be expected. On Buccino dataset, the results show
that the features set pertaining to the DWT-statistical, statistical,
and DWT, in case of the KNN (Tree) classifiers, have 78.3%
(89.4%), 51.6% (57.2%), and 97.8% (90.61%) average accuracies
for all the subjects, respectively. On TU Berlin dataset, the
average accuracies obtained for all the subjects, using the KNN
(Tree) classifiers, for features set related to DWT-statistical,
statistical, and DWT are 81.12% (92.9%), 53.38% (54.26%), and
96.67% (94.12%), respectively. These numbers reveal that by
using the last layer’s approximation coefficient of DWT, the
highest accuracy is achieved; whereas, the lowest accuracy is
obtained using the six statistical features. For DWT-statistical
and statistical features, Tree classifier yielded the highest average
accuracies; whereas, KNN achieved the highest accuracy for
DWT features.

System-based fusion using MSVD enables the processing of
fused EEG-fNIRS signals, rather than processing each modality
separately for feature extraction and fusing them later. One of
the concerns of this study, when it comes to system-based fusion,
is the requirement of the same number of channels for both
modalities, thus making channel selection compulsory. As such,
future work will explore the possibility of system-based fusion
when there is a mismatch between the number of channels for
both modalities.

The second limitation of our study is the manual selection
of features for the classification. The manual extraction of the
features is a cumbersome process and has a direct impact on
the classification accuracy. With the selection of optimal features,
effective pre-processing, and various classification techniques,
this accuracy can be improved (Khan R. A. et al., 2018; Hasan

et al., 2020). However, it is not guaranteed that the optimal
feature for one task will be able to produce desirable results for
the other tasks. Therefore, this process has to be repeated for
individual tasks, and this consumes a lot of time. Recently, deep

learning techniques, such as convolution neural network (CNN)
and recurrent neural network (RNN) have been utilized for
automatic feature extraction, pre-processing, and classification
(Zhang et al., 2017; Yang et al., 2018; Tayeb et al., 2019). The
obtained results have been promising when compared to the
conventional classifiers (Trakoolwilaiwan et al., 2017; Chiarelli
et al., 2018; Kumar et al., 2019; Asgher et al., 2020; Ghonchi et al.,
2020). Considering the improvement in accuracy obtained using
deep learning techniques, even in light of the limited amount of
data and fewer pre-processing requirements, this improvement
motivates us to work upon the combination of such techniques
with MSVD in the future.

In conclusion, the present work proposed a novel hybrid
EEG-fNIRS fusion approach for the classification. The primary
goal is to improve the classification accuracy and to reduce
the computational complexity of the hybrid EEG-fNIRS BCI.
In order to achieve this, an MSVD approach is proposed for
feature-based fusion and system-based fusion. To validate the
effectiveness of the proposed approach, eight different subjects
were considered and multiple trials were performed. As is
evident from the results, our hybrid system significantly reduces
the computational burden while achieving higher classification
accuracy. The authors anticipate and hope that the proposed
fusion approach will lead to more effective applications of BCI.
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Motor imagery (MI) electroencephalography (EEG) classification is an important part of the

brain-computer interface (BCI), allowing people with mobility problems to communicate

with the outside world via assistive devices. However, EEG decoding is a challenging task

because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an

end-to-end framework that fully extracts the high-level features of EEG signals remains

a challenge. In this study, we present a parallel spatial–temporal self-attention-based

convolutional neural network for four-class MI EEG signal classification. This study

is the first to define a new spatial-temporal representation of raw EEG signals that

uses the self-attention mechanism to extract distinguishable spatial–temporal features.

Specifically, we use the spatial self-attention module to capture the spatial dependencies

between the channels of MI EEG signals. This module updates each channel by

aggregating features over all channels with a weighted summation, thus improving

the classification accuracy and eliminating the artifacts caused by manual channel

selection. Furthermore, the temporal self-attention module encodes the global temporal

information into features for each sampling time step, so that the high-level temporal

features of the MI EEG signals can be extracted in the time domain. Quantitative

analysis shows that our method outperforms state-of-the-art methods for intra-subject

and inter-subject classification, demonstrating its robustness and effectiveness. In terms

of qualitative analysis, we perform a visual inspection of the new spatial–temporal

representation estimated from the learned architecture. Finally, the proposed method

is employed to realize control of drones based on EEG signal, verifying its feasibility in

real-time applications.

Keywords: motor imagery, EEG, BCI, spatial-temporal self-attention, deep learning

1. INTRODUCTION

Electroencephalography (EEG) has been widely used in many noninvasive brain–computer
interface (BCI) studies because it is simple, safe, and inexpensive (Kübler and Birbaumer, 2008;
Lotte et al., 2018). Among the different types of EEG signals, motor imagery (MI) is most commonly
used. When people imagine or execute a movement with their hands, both feet, or tongue, the
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power of the mu (8–12 Hz) and beta (16–26 Hz) rhythms
are suppressed or promoted in the sensorimotor region of the
contralateral and ipsilateral hemispheres (Pfurtscheller et al.,
1997; Pfurtscheller and Da Silva, 1999; Neuper and Pfurtscheller,
2001). Our goal is to classify these MI EEG associated brain
activities accurately to allow people with mobility problems to
communicate with the outside world via assistive devices.

Numerous studies have examined the classification of MI
EEG signals. These studies can be divided into two categories:
traditional methods and deep learning-based methods. Among
the traditional methods, the common spatial pattern (CSP)
algorithm (Müller-Gerking et al., 1999; Ramoser et al., 2000) and
its variants are widely used to extract the spatial distribution
of features from multi-channel EEG data. The fundamental
principle of CSP is to find a set of optimal spatial filters through
the diagonalization of a matrix, so as to maximize the difference
between the variance values of the two types of signals, and
thereby obtain a feature vector with higher discrimination. Filter
bank common spatial pattern (FBCSP; Ang et al., 2008) is
a variant of CSP that improves the classification accuracy by
performing autonomous selection of the discriminative subject
frequency range for bandpass filtering of the EEGmeasurements.
Jin et al. (2019) used Pearson’s correlation coefficient to
manually select the channel that contained the most correlated
information, and then employed the regularized common spatial
pattern (RCSP) to extract effective features and a support vector
machine (SVM) as a classifier. However, the feature selection
is heavily reliant on handcrafted features. In addition, because
MI EEG signals have limited spatial resolution, a low signal-to-
noise ratio (SNR), and highly dynamic characteristics, traditional
methods are unable to achieve high decoding accuracy.

Currently, deep learning (DL) exhibits excellent performance
in a variety of medical applications (Kumar A. et al., 2016;
De et al., 2017; Ma et al., 2017, 2018), and an increasing
number of BCI researchers are investigating the use of DL
models in MI classification tasks (Schirrmeister et al., 2017). The
majority of studies use either feature-based input networks or
original signal-based input networks. In the former case, the EEG
signals are first transformed from 1D feature vectors into 2D
manually specified feature maps by combining spatial, spectral,
and temporal information using conventional feature-extraction
methods (such as spectrograms and wavelets). The extracted
features are then fed into a classification network (Lu et al., 2016;
Tabar and Halici, 2016; Zhu et al., 2019). Kumar S. et al. (2016)
used CSP to extract features, which were fed into a multilayer
perceptron (MLP). Sakhavi et al. (2018) proposed a new feature
representation method that combined FBCSP and the Hilbert
transform to extract spatial and temporal features. Subsequently,
a 5-layer convolutional neural network (CNN) architecture was
used for classification. The work (Vaswani et al., 2017) is the
first to propose the self-attention mechanism to draw global
dependencies of inputs and applies it in machine translation,
attention modules are increasingly applied in many flied (Lin
et al., 2017; Shen et al., 2018; Fu et al., 2019). However, feature
information about the MI signals will be lost when a manually
specified feature extraction method is used, which has a negative
effect on performance.

Input networks based on the original signal, i.e., the
C (channel) × T (time point) matrices, obtain high-level
implicit representations from raw EEG signals without manual
feature selection. In such networks, the feature extraction and
classification steps are combined in a single end-to-end model
with (or without) minimal preprocessing. EEGNet (Lawhern
et al., 2018) is a successful network that uses relatively few
parameters to achieve good performance on various EEG
classification tasks. Azab et al. (2019) proposed a novel weighted
transfer learning approach that improves the accuracy of MI
classification in BCI systems. Song et al. (2019) improved
the classification performance with limited EEG data by
combining the representation module, classification module, and
reconstruction module into an end-to-end framework. Sakhavi
et al. (2018) introduced a new data representation using a
spatial–temporal DL model architecture that is designed to
learn temporal information from the original input signals.
Amin et al. (2019) used a multilayer CNN model that fuses
different characteristics of the raw EEG data from the spatial
and temporal domains. Zhao et al. (2019) developed a new
3D representation of EEG, a multibranch 3D CNN, and a
corresponding classification strategy. Their approach achieved
good performance and significantly improved the classification
accuracy for different subjects.

Although DL has made remarkable progress in MI
classification, it still faces many challenges. First, previous
methods mainly select signal channels in motor regions such as
C3, Cz, and C4, but MI for different body parts may activate
different functional regions of the brain (Ehrsson et al., 2003;
Gong et al., 2018). All brain functional areas will have certain
effects on the different MI tasks, not only the motor regions.
Because the strength of the MI EEG signals varies from person
to person, it is impossible to determine exactly which brain
regions are most associated with MI (Ma et al., 2020). Second,
MI signals are temporally continuous with low SNR and are
susceptible to a variety of biological affects (e.g., eye blinks
and muscle activity) or environmental artifacts (e.g., noise).
Dynamic changes to the EEG signal in the time domain often
contain valuable information about the raw MI EEG signals,
although these are often neglected by traditional methods,
making feature extraction more complicated. The combination
of these factors means that previous methods have a limited
ability to extract general representations and suffer from low
classification accuracy.

To overcome these problems, we propose an end-to-end
parallel spatial–temporal self-attention-based CNN for four-
class MI EEG signal classification based on the raw MI
EEG signals. The proposed method assumes that motor-
dependent channels and sampling time steps should be assigned
higher weight values than motor-independent channels and
sampling time steps during brain activity. The weight values are
calculated based on the proposed parallel spatial–temporal self-
attention mechanism, which captures high-level distinguishable
spatial–temporal features and defines a more accurate compact
representation in the space and time domains of the rawMI EEG
signal data. Our CNN is capable of modeling high-level, robust,
and salient feature representations hidden in the raw EEG signal
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streams, and can capture complex relationships within data via
the stacking of multiple layers of information processingmodules
in a hierarchical architecture. The major contributions of this
study can be summarized as follows:

• In the spatial domain, each channel is recorded from each
electrode in various brain areas. We use the spatial self-
attention module to capture the potential spatial links between
any two channels of the MI EEG signals. The features in a
certain channel are updated by aggregating the features over
all channels with a weighted summation, where the weights are
automatically learned by the feature similarities between the
corresponding channels. This module defines a new learned
spatial representation of the raw MI EEG data that choose
the best channels by automatically assigning higher values
to motor-dependent channels and lower values to motor-
independent channels. This verifies our assumption that when
people think about an action, any channel with similar motor-
dependent characteristics can promote mutual improvement,
regardless of its spatial location in the brain. As a result, this
module improves the classification accuracy and eliminates the
artifacts caused by the manual selection of signal channels.

• In the temporal domain, we know that MI EEG signals are
continuous with low SNR, which means that there must
be a correlation between each time step. Therefore, we use
the temporal self-attention module to capture the temporal
dependencies between any two sampling time steps, and
update each sampling time step using a weighted sum of all
sampling time steps. This module defines a new temporal
representation of the raw MI EEG data that enhances the
temporal representation by encoding the relevant continuous
dynamic changes into the global temporal features of each
sampling step in the time domain. This is superior to a
single-valued representation. In other words, instead of a
single sampling value, a new automatically learned temporal
representation of the signal is used to extract high-level
temporal features from theMI EEG signals in the time domain.
Through this module, we assign more weight to the sampling
points related to MI and reduce the weight of sampling points
that are not related to MI. It is generally believed that there is
little useful information in the artifacts, so the temporal self-
attention module effectively reduces the interference caused
by artifacts.

• The proposed model is evaluated on two challenging
datasets to validate its robustness against data variations.
The corresponding results demonstrate that our method
outperforms several traditional methods (11.09% better on
average) and DL-based methods (4.14% better on average)
for four-class MI EEG classification by combining spatial and
temporal features via the proposed parallel spatial–temporal
self-attention architecture. To intuitively verify the rationality
of the self-attention mechanism from physiological signals,
we plot topographic maps of MI EEG data to illustrate that
MI not only activates channels C3, C4, and Cz, but also
affects different signal channels. In addition, a BCI application
experiment is performed in which we train a model using the
data collected in our laboratory and apply it to a drone’s online

control system based on AirSim (Shah et al., 2018), which is an
open source simulator developed by Microsoft.

The remainder of this paper is organized as follows. Section 2
describes the datasets and discusses the details of our method.
Experimental results are then presented and use EEG MI to
control a drone in section 3. In section 4, we discuss the
experimental results from the EEG topographic map. Finally,
section 5 presents our conclusions and provides some suggestions
for future work.

2. MATERIALS AND METHODS

2.1. Overview
In this study, we employed two widely used public EEG MI
datasets for evaluation. The main differences between them are
the number of channels, trials, subjects, tasks, and sampling rates.

The first dataset is the BCI Competition IV dataset 2a
(BCIIV2a) (Tangermann et al., 2012), which recorded a four-
class MI task (left hand, right hand, both feet, and tongue)
performed by nine subjects across 25 channels (22 EEG and 3
electrooculogram) with a 250 Hz sampling rate. Each channel
was preprocessed with a bandpass filter of 0.5–100 Hz. For
each subject, two sessions were recorded on different days. Each
session comprised six runs separated by short breaks. One run
consisted of 48 trials (12 for each of the four possible classes),
yielding a total of 288 trials per session. We used one session as
the training set, with the other session used to test the classifier
and evaluate the performance. Thus, the training set consisted of
the 288 trials from the first session and the test set consisted of
the 288 trials from the second session. In addition, each trial was
extracted using the same time window of [−0.5, 4s] on the MI
phase of the signals over all 22 EEG channels. Hence, the input
signal of our method consists of time series from 22 channels
containing 1, 125 sampling points (22× 1, 125).

The second dataset is the high gamma dataset (HGD)
(Schirrmeister et al., 2017), recorded during a four-class MI task
across 44 EEG channel signals by 14 healthy subjects performing
4-s trials of certainmovements, with 13 runs per subject. The four
classes of movements involved the left hand, the right hand, both
feet, and rest (no movement). For each subject, the training set
consisted of approximately 880 trials (all runs except the last two
runs), and the test set consisted of approximately 160 trials (the
last two runs). The sampling rate for HGD was 500 Hz. For a fair
comparison with BCIIV2a, HGD was resampled to 250 Hz and
used the same 4.5-s time window, so that 44× 1, 125 data points
were obtained for each trial.

We performed basic preprocessing of the MI EEG data, such
as frequency filtering and normalization. A low-pass filter of 38
Hz and a high-pass filter of 0 Hz were applied to BCIIV2a, and
a low-pass filter of 38 Hz and a high-pass filter of 4 Hz to HGD
(Schirrmeister et al., 2017). We performed exponential moving
standardization to compute the exponential moving means and
variances for each channel, and used these to standardize the
continuous data.

The network architecture, as illustrated in Figure 1,
consists of two phases: a feature extraction layer and a

Frontiers in Neuroscience | www.frontiersin.org 3 December 2020 | Volume 14 | Article 58752052

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Self-Attention CNN for Motor Imagery

FIGURE 1 | Schematic illustration of the proposed method. The orange, blue, and green cuboids are feature maps in different modules; their corresponding sizes are

indicated in the annotation. The convolution and pooling operations are indicated by the arrow lines. (A) Parallel spatial–temporal self-attention architecture-based

feature extraction phase. The spatial and temporal self-attention modules are denoted by orange and blue rectangles, respectively. (B) Feature classification phase. F

is the number of feature maps, and H and W are the height and width of the input signal, respectively, which means 22 sampling channels with 1, 125 time steps.

feature classification layer. We first describe the feature
extraction layer, which contains a parallel spatial–temporal
self-attention architecture that extracts distinguishable
features in the space and time domains. We then describe
how to concatenate the extracted spatial–temporal features
for the classification of the MI task and its corresponding
training strategy. The code for our model is available in
https://github.com/Shenyonglong/Spatial-Temporal-attention-.

2.2. Construction of Self-Attention Module
2.2.1. Spatial Self-Attention Module
Traditional approaches usually select EEG channels manually,
or assume that each channel plays an equal role. However,
the active brain regions for the same MI action are different
for different people, which means that the strength of the MI

signal varies from subject to subject, as well as for different
trials by the same subject. This variation results in low
classification accuracy. Therefore, to automatically select the
most useful signal channel for extracting discriminant feature
representations for subjects and eliminate the artifacts caused
by manual selection of signal channels, we propose a spatial
self-attention module.

Consider the orange rectangle in Figure 1 and its network
parameters in Table 1. Let M ∈ R

H×W be the raw data of
height (H) 22 and width (W) 1,125. We first feed these data
into two convolution layers (Conv11 and Conv12) to generate
feature maps s11 and s12, where s11 and s12 belong to R

F×H×W

and F = 8 denotes the number of feature maps. Then, s11 and
s12 are reshaped (R11 and R12) to R

H×(F×W) and R
(F×W)×H ,

respectively, to enable matrix multiplication between them.
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TABLE 1 | Detailed architecture of the proposed spatial self-attention module.

Spatial-attention module

Input M(22, 1125) M(22, 1125) s11(8, 22, 1125) s12(8, 22, 1125) s21, s22 s3,M s4,M, λ1

Layer Conv11 Conv12 R11 R12 MMN MM ES

Output s11(8, 22, 1125) s12(8, 22, 1125) s21(22, 9000) s22(9000, 22) s3(22, 22) s4(22, 1125) S(22, 1125)

Feature maps 8 8 1 1 1 1 1

Kernel (1, 1) (1, 1) – – – – –

Stride (1, 1) (1, 1) – – – – –

MMN, Matrix multiplication + Normalization + Softmax; MM, matrix multiplication; ES, element-wise sum.

Finally, a softmax function is applied to obtain the spatial self-
attention weight map s3 ∈ R

H×H as:

s
ij
3 =

Func(si21, s
j
22)

∑H
j=1 Func(s

i
21, s

j
22)

(1)

where Func is the similarity function, which uses matrix dot

multiplication to calculate the similarity. s
ij
3 denotes the similarity

between the ith and jth channels, and ranges from 0 to 1 (with 0
indicating no similarity and 1 indicating complete similarity).

Matrix multiplication between s3 and MH×W is performed to
obtain the spatial predicted signal s4 ∈ R

H×W . Signal s4 is a
spatial predicted signal in which each channel is a weighted sum
of other channels from the raw data in the space domain. This
task automatically learns similar weights between channels and
updates each channel by adaptively aggregating spatial signal data
across all channels with the weighted summation. In addition, we
perform a residual block by multiplying a learnable parameter
λ1 by s4 and perform an element-wise sum operation with the
raw signal to obtain the final spatial feature signal (S ∈ R

H×W)
as follows:

S = λ1 × s4 +M (2)

where λ1 is initialized as 0 and is gradually updated to assign
more appropriate weights during the training of the whole
DL system (Zhang et al., 2019). S enhances the representative
capability of the inter-subject classification. This means that
when people think about an action, any channel with similar
characteristics promotes mutual improvement, regardless of its
spatial location in the brain.

2.2.2. Temporal Self-Attention Module
MI EEG signals are temporally continuous with a low SNR.
Therefore, we constructed a temporal self-attentionmodule (blue
rectangle in Figure 1) to generate a temporal predicted signal
that is the same size as the raw input data and model the
interdependencies between time steps so as to eliminate the
artifacts caused by subject and environmental artifacts. The
corresponding network parameters are listed in Table 2.

The largest difference between this module and the spatial self-
attention module is that we reshaped t11 and t12 (R13 and R14)
to R

W×(F×H) and R
(F×H)×W to enable matrix multiplication

between them. A softmax function is applied to obtain the
temporal self-attention weight map t3 ∈ R

W×W by:

t
pq
3 =

Func(t
p
21, t

q
22)

∑W
q=1 Func(t

p
21, t

q
22)

(3)

where Func is the similarity function, which uses matrix
dot multiplication to calculate the similarity. t

pq
3 denotes the

similarity between the pth and qth sampling time steps, and
ranges from 0 to 1 (with 0 indicating no similarity and 1
indicating complete similarity). Furthermore, we performmatrix
multiplication between the raw signal MH×W and t3 to obtain
the temporal predicted signal t4 ∈ R

H×W , which captures the
temporal dependencies between any two time steps and updates
each time step with a weighted sum of all time steps in the
time domain. Finally, a residual block is given by multiplying a
learnable parameter λ2 by t4 and performing an element-wise
sum operation with the raw signal MH×W to obtain the final
temporal feature signal (T ∈ R

H×W) by:

T = λ2 × t4 + R (4)

where T encodes the global temporal information into the
features of each time step, thus enhancing the representative
capability. Therefore, we can extract high-level temporal features
of the MI signal in the time domain, thus weakening the artifacts.

2.3. Feature Classification
In this section, we describe the concatenation of spatial and
temporal feature signals (S and T) from the raw MI data into the
spatial–temporal continuous feature (C1 ∈ R

(3×22×1125)) as:

C1 = {M, S,T} (5)

A convolution (Conv2) with kernel size 1 × 25 is implemented
in the time domain, and then C1 is fed into the classification
network (part b in Figure 1, Table 3). The shape of the
output (C2) is transformed from (3, 22, 1125) to (40, 22, 1101).
Furthermore, a convolution (Conv3) with kernel size 22 × 1
is applied to the extracted features (C2) in the space domain.
The corresponding shape of output C3 is (40,1,1101). Third, the
average pooling operation (AvgPooling) with kernel size 1 × 75
and stride 1 × 15 is applied over C3 to generate a coarser feature
representation, with the output dimension reduced to (40,1,69).
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TABLE 2 | Detailed architecture of the proposed temporal self-attention module.

Temporal-attention module

Input M(22, 1125) M(22, 1125) t11(8, 22, 1125) t12(8, 22, 1125) t21, t22 M, t3 t4,M, λ2

Layer Conv13 Conv14 R13 R14 MMN MM ES

Output t11(8, 22, 1125) t12(8, 22, 1125) t21 (1125, 176) t22(176, 1125) t3 (1125, 1125) t4 (22, 1125) S(22, 1125)

Feature maps 8 8 1 1 1 1 1

Kernel (1,1) (1,1) – – – – –

Stride (1,1) (1,1) – – – – –

MMN, Matrix multiplication + Normalization + Softmax; MM, matrix multiplication; ES, element-wise sum.

TABLE 3 | Detailed architecture of the proposed temporal self-attention module.

Feature classification module

Input M,S,T C1(3, 22, 1125) C2(40, 22, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C4(40, 1, 69) C4(40, 1, 69) (4,1,1)

Layer Concatenate Conv2 Conv3 Batch normalization Square AvgPooling Log Conv4 LogSoftmax

Output C1(3, 22, 1125) C2(40, 22, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C4(40, 1, 69) C4(40, 1, 69) (4,1,1) (4,1,1)

Feature maps 3 40 40 40 40 40 40 40 4

Kernel – (1,25) (22,1) – – (1,75) – (1,69) –

Stride – (1,1) (1,1) – – (1,15) – (1,1) –

Additionally, the square nonlinear activation is used before the
AvgPooling operation and the log nonlinear activation is applied
to the output of the AvgPooling operation. All feature maps of
C4 are fed into the final convolution layer (Conv4), whose output
C5 has dimensions of (4, 1, 1). Finally, the LogSoftmax function
is used to perform multi-classification by converting C5 to the
conditional probability of the four labels.

2.4. Training Strategy
For the four-class MI classification, the NLLoss function in
Pytorch was defined as the loss function (Zhu et al., 2018).
All parameters in the network were initialized using the Xavier
algorithm (Glorot and Bengio, 2010). Adam (Sharma et al.,
2017) was employed for the optimization. The learning rate
was 0.0001 for the BCIIV2a dataset and 0.001 for HGD. The
batch size was 32. Because BCIIV2a and HGD have clearly
divided training and test datasets, the training datasets were
randomly divided into training (80%) and validation (20%) sets;
all test data were selected for the testing stage. This enables us
to use the early stopping strategy, developed in the computer
vision field, whereby the training set is split into training and
validation datasets and the first phase of training stops when the
validation accuracy does not improve for a predefined number
of epochs. Training then continues on the combined training
and validation datasets using the parameter values that led to the
best accuracy on the validation dataset. Training ends when the
loss function on the validation dataset drops to the same value
as that on the training dataset at the end of the first training
phase (Schirrmeister et al., 2017). The hyperparameter in the
dropout layer and the constant and weight decay rate in the batch
normalization layer were set to 0.5, 10−5, and 0.1, respectively. All
experiments were conducted in Ubuntu 16.04 on a 64-bit system
with a Core i9-9900k CPU and 128 GB RAM. Nvidia RTX 2080Ti

GPU was utilized for training and testing our model, which was
coded using Pytorch and MNE-Python (Gramfort et al., 2014).

2.5. Evaluation Metrics
The proposed method was evaluated on two public datasets,
BCIIV2a and HGD. The accuracy was used as the evaluation
metrics. The accuracy was calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (6)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.

3. RESULTS

To verify the performance and feasibility of our proposed model,
we conducted a series of experiments for MI classification on
two datasets. The intra-subject classification experiment was
intended to verify the performance of the proposed network for
an individual subject. The inter-subject transfer experiment was
conducted to verify the transfer ability of the proposed method.
In this experiment, EEG recordings from other subjects were
used to train amodel in advance. Next, thismodel was transferred
as the initial weight to further train the individual model.

3.1. Quantitative Evaluation of BCIIV2a for
Intra-Subject Classification
To confirm the effectiveness and accuracy of the proposed
method, we first conducted intra-subject classification using
BCIIV2a and compared the accuracy of our method with that
given by state-of-the-art DL-based methods [EEGNet (Lawhern
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TABLE 4 | Accuracy on BCIIV2a for intra-subject classification: comparison between proposed method and other state-of-the-art methods.

Accuracy (%)

Subject FBCSP DeepCNN M3DCNN LTICNN DMTLCNN MCCNN WTL EEGNet Proposed

1 76.00 76.50 77.39 87.50 83.50 90.21 90.00 71.88 82.99

2 56.50 50.60 60.14 65.28 49.00 63.40 55.00 51.04 56.25

3 81.25 85.00 82.92 90.28 92.70 89.35 93.00 79.17 93.06

4 61.00 67.60 72.28 66.67 74.90 71.16 60.00 57.99 84.03

5 55.00 72.40 75.83 62.50 71.30 62.82 68.00 64.58 68.75

6 42.25 55.10 68.98 45.49 63.70 47.66 60.00 51.04 58.34

7 82.75 71.70 76.03 89.58 80.08 90.86 73.00 66.32 88.20

8 81.25 74.40 76.85 83.33 80.00 83.72 98.00 74.31 88.20

9 70.75 79.20 84.66 79.51 81.70 82.32 83.00 72.57 86.81

AVG 67.42 70.28 75.01 74.46 75.21 75.72 75.56 65.43 78.51

Bold font indicates the best scores.

FIGURE 2 | Confusion matrices for the motor imagery (MI) task: (A) intra-subject classification of BCIIV2a, (B) inter-subject classification of BCIIV2a, and (C)

intra-subject classification of high gamma dataset (HGD).

et al., 2018), DeepCNN (Schirrmeister et al., 2017), M3DCNN
(Zhao et al., 2019), LTICNN (Sakhavi et al., 2018), DMTLCNN
(Song et al., 2019), MCCNN (Amin et al., 2019), WTL (Azab
et al., 2019)]; traditional FBCSP (Ang et al., 2012) was used as
a baseline method to recognize MI EEG data, and an SVM was
used as the classifier.

Table 4 lists the accuracy of the various methods for each
subject and the corresponding average accuracy for the BCIIV2a
dataset. Our method clearly outperforms the state-of-the-art DL-
based methods, obtaining an average accuracy of 78.51% for
the intra-subject classification. Furthermore, confusion matrices
for the MI task and the experimental results on the test sets
are given in Figure 2A. Although FBCSP provides the best
performance for MI signal classification, its average accuracy
over all subjects is only 67.42%, which is nearly 11.09% lower
than that of the proposed method. Thus, the proposed method
yields superior results compared with the traditional machine
learning method.

The DeepCNN model, which is widely used in MI
classification algorithms, contains four convolution–pooling
block modules. However, because this model is easily overfitted
when there are few labeled data for training, the average accuracy

of DeepCNN is 70.28%, which is far lower (by 8.23%) than that
of our method.

The other DL-based methods compared here are state-of-
the-art techniques with excellent representation and accuracy.
In this task, their average accuracy values range from 74.46
to 75.72%. LTICNN employs FBCSP as a data preparation
method and uses a CNN to extract features. However, because
of the need to change the parameters for different subjects, it
readily becomes overfitted, and thus achieves worse performance
than the proposed method, i.e., 4.05% lower on average. The
M3DCNN model combines a new 3D representation of EEG,
a multibranch 3D CNN, and a corresponding classification
strategy to enhance its resistance to overfitting on different
subjects. This model achieves the best results for two subjects
(5 and 6) and demonstrates better performance than LTICNN.
The greatest contribution of M3DCNN is to demonstrate that
a deeper and more complex representation of EEG can help
improve the performance. However, its accuracy of 75.01%
is 3.50% lower than that of our method. DMTLCNN and
WTL employ transfer learning techniques to yield a remarkable
increase in classification accuracy, reaching 75.21 and 75.56%,
respectively. Compared with this performance, our model is
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TABLE 5 | Intra-subject classification of 10-fold cross-validation results on the BCIIV2a.

Accuracy (%)

Subjects 1 2 3 4 5 6 7 8 9 AVG

Accuracy 93.93 75.33 97.74 86.46 89.94 78.32 99.14 94.43 96.02 90.15

TABLE 6 | Results of inter-subject transfer learning classification using the BCIIV2a dataset.

Accuracy (%)

Subjects 1 2 3 4 5 6 7 8 9 AVG

MCCNN 62.07 42.44 63.12 52.09 49.96 37.16 62.54 59.32 69.43 55.34

DeepCNN 78.80 51.80 86.80 71.60 68.70 64.60 82.30 80.90 75.40 73.40

DMTLCNN 80.30 50.30 85.50 70.60 66.20 60.60 83.00 82.80 78.4 73.10

Proposed 82.99 45.84 94.10 67.37 54.84 75.72 85.07 87.85 73.27 74.07

Bold font indicates the best scores.

3.30 and 2.95% more accurate, respectively. The MCCNN model
first fuses different CNN modules to prove that the spatial and
temporal features can improve the classification over handcrafted
features. Previously, MCCNN has achieved the highest accuracy,
reaching 75.72%. However, this model focuses on the spatially
invariant features of MI EEG signals, and does not consider
the interrelationship between the temporal features and spatial
features in depth. This interrelationship is the focus of this study.
Compared with MCCNN, our average accuracy is 2.79% higher.
In addition to the average accuracy, we achieved the best results
for three of the nine subjects (3, 4, and 9).

The above results show that the proposed method
outperforms all traditional (11.09% better on average)
and DL-based methods (4.14% better on average) for
four-class MI EEG classification by combining spatial and
temporal features via the proposed parallel spatial–temporal
self-attention architecture.

For the evaluations using 10-fold cross-validation, we
combined the training and testing set of BCIIV2a, and then
randomly divided into 10 equal parts. In each run, nine subsets
were used as training set and 1 subset was used as the testing
set. That means there are 518 trials for training, 58 trials for
testing. The final accuracy was obtained by averaging the best
values of the 10-fold. Compared with the 288 trials we used
for training and 288 trials for testing before, the 10-fold cross-
validation significantly increases the amount of the training set,
so it can achieve better accuracy (90.15% on average) in Table 5.

3.2. Quantitative Evaluation of BCIIV2a for
Inter-Subject Transfer Learning
Classification
One of the main contributions of the proposed method is to
improve the accuracy of inter-subject classification through the
parallel spatial–temporal self-attention architecture. This is the
first time the attention mechanism has been used to study the
relationship between channels. Here, by using transfer learning
techniques, we utilize the other subjects’ EEG data to train a
model on the BCIIV2a dataset, and then apply this model as the
initial weight of the network and load data from a new subject for

TABLE 7 | Intra-subject classification results using high gamma dataset (HGD).

Accuracy (%)

FBCSP DeepCNN MCCNN CPMixedNet MSFBCNN Proposed

90.90 91.40 95.40 93.70 94.40 97.68

Bold font indicates the best scores.

further training. In this way, we can consider the trained model
to integrate the information of other subjects, thus making it
more robust.

Table 6 presents the corresponding classification results for
each subject. Because of the large differences between subjects,
the results in Table 6 are not better than the intra-subject
results (listed in Table 4). Figure 2B shows the confusion
matrices for the BCIIV2a dataset inter-subject classification
results. Compared with other state-of-the-art DL-based methods
(MCCNN, DeepCNN, and DMTLCNN, which provided the
inter-subject comparison results), the proposed method obtains
the best average accuracy of 74.07%, with particularly good
results for five of the nine subjects (1, 3, 6, 7, and 8). The results
show that our method not only weakens the artifacts caused
by manually selecting a signal channel, but also automatically
provides a more robust and generic feature representation with
higher classification accuracy of MI EEG signals.

3.3. Quantitative Evaluation of HGD for
Intra-Subject Classification
To further verify the adaptability of the proposed method, we
conducted intra-subject classification evaluations on another
challenging dataset (HGD). In Schirrmeister et al. (2017), we set
the low cut-off frequency of HGD to 4 Hz. Because some state-
of-the-art methods only report average accuracy values for HGD,
we only list the average accuracy in Table 7.

Recall that the tasks used to construct HGD and BCIIV2a
are different. The tasks performed for BCIIV2a involve the left
hand, right hand, both feet, and tongue, which are different
from the four categories of HGD. Additionally, HGD contains
much more data than BCIIV2a. As we know, the amount
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FIGURE 3 | Live setup for real-time electroencephalography (EEG) signal decoding and unmanned aerial vehicle (UAV) control. PC–1 is a computer used to display

the paradigm. The subjects only looked at PC–1 during the experiment. PC–2 is a computer used to classify and control the UAV. The classification model was trained

in advance.

of data is an important factor affecting the performance of
DL. Thus, these data allow the proposed method to attain
evaluation results that are even more encouraging, with a
significant improvement over the other methods. The proposed
method reaches 97.68% accuracy, while the second-best method
(MSFBCNN; Wu et al., 2019) can attain 94.40% accuracy. The
final classification accuracy of MSFBCNN is lower than that of
our method because it focuses on multi-scale convolution in the
temporal domain, and ignores the spatial relationship between
channels. CPMixedNet (Li et al., 2019) also analyzes the time
domain, using regular and dilated convolution to extract the
temporal EEG information. The classification accuracy is 93.70%
after amplitude-perturbation data augmentation. However, there
is no analysis of the spatial distribution of EEG information,
so the accuracy is 3.98% lower than that of our method. These
experimental results demonstrate the capability of the proposed
network with data augmentation forMI EEG signal classification.
In Figure 2C, we show the accuracy for each class of HGD in the
form of confusion matrices.

3.4. Control of the Drone Based on EEG
Signal
We further tested and validated the real-time capability of the
proposed model through the online decoding of MI movements
from streamed EEG signals for virtual drone control. We used
a Greal 32-channel EEG amplifier developed by Neuroscan to
collect the MI EEG data. First, the subjects were asked to imagine
writing a Chinese character with their left or right hand according
to the paradigm of Qiu et al. (2017). At the beginning of a
trial (t = 0 s), a fixation cross appeared on the black screen.
At t = 2 s, the fixation cross was replaced by a picture of the
forearm and a Chinese character. Each subject had 6 s to perform
the MI task, in which hand movements followed the strokes of
the Chinese character on the screen. Subjects then had a short
break of 2 s. Second, a band-pass filter of 4–38 Hz was applied
to the EEG signals. Third, the preprocessed data were sent to
the trained network for classification. Finally, the AirSim-based
virtual unmanned aerial vehicle (UAV or drone) was directed to

move either left or right according to the decoded movement
from the EEG signals.

Figure 3 shows the whole process of how we used the data
collected in the laboratory to control the flight of the virtual
UAV. When the subjects imagined writing with their left hand,
the virtual UAV would fly to the left. Similarly, when the subjects
imagined writing with their right hand, the UAV would fly to
the right. A video of a successful live demo is available in the
Supplementary Materials.

4. DISCUSSION

This study has investigated the design and training of an
end-to-end neural network using raw EEG signals. This is
the first time that a new spatial–temporal representation of
raw EEG signals has been defined using the self-attention
mechanism for extracting the distinguishable spatial–temporal
features. Through intra- and inter-subject transfer learning
experiments on the BCIIV2a dataset and HGD, we demonstrated
that the proposed method outperforms several state-of-the-
art methods in terms of the classification accuracy. At the
same time, we visualized topographic maps of MI EEG
data to explain the rationality of our temporal and spatial
attention mechanism from the perspective of physiological EEG
characteristics. Finally, as reported later in this section, we
applied this method to control the flight of a UAV using MI
EEG data.

In Figure 4, we present a brain active correlation map
corresponding to our classification results for each subject
using four-class MI EEG signals from the BCIIV2a dataset.
As we know, when people imagine or execute movements
of their left or right hand, both feet, and tongue, the
power of the mu (8–12 Hz) and beta (16–26 Hz) rhythms
can decrease or increase in the sensorimotor region of the
contralateral and ipsilateral hemispheres. The red color indicates
a positive correlation, i.e., event-related synchronization
(ERS), with a deeper color denoting a stronger positive
correlation. In contrast, the blue color indicates a negative
correlation, i.e., event-related desynchronization (ERD), with
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FIGURE 4 | Brain active correlation map corresponding to our classification results for each subject using four-class motor imagery (MI) unmanned aerial vehicle (EEG)

signals from the BCIIV2a dataset. Twenty-two Ag/AgCl electrodes were used to record the EEG. (A–D) The MI of the left hand, right hand, both feet, and tongue for

each line in the picture. The electrode Cz is located on the center of the head. C3 and C4 are located on the left and right sides, respectively. These electrodes are

positioned directly over the motor cortex areas. Red indicates a positive correlation, i.e., increasing amplitude values (ERS), whereas blue indicates a negative

correlation, i.e., decreasing values (ERD).

a deeper color denoting a stronger negative correlation.
For example, the first row in Figure 4 shows the brain
activation pattern for MI data corresponding to left-hand
motion. Our classification results are for the MI EEG signals
of left-hand motion, and the corresponding brain active
correlation map shows the ERS and ERD in the left and
right hemispheres.

In addition, the evaluation results shown in Figure 4 prove
the validity of our assumption that when people think about an
action, any channel with similar motor-dependent characteristics
can promote mutual improvement, regardless of its spatial
location in the brain. Taking the left-hand MI as an example,
the traditional method often manually chooses C3, C4, and Cz as
inputs. However, as shown by the brain active correlationmap for
the left-hand MI of subject 1 in Figure 4, in neurophysiological
terms, channels FC3, FCz, FC2, C5, Cz, CP1, and CP4 all exhibit
the same ERS trend as channel C3, which is located in the motor
cortex area. Similarly, channels Fz, FC4, C2, CPz, and Pz exhibit
the same ERD trend as channel C4. This proves that our initial
hypothesis is correct.

Therefore, different from the traditional method, we use the
spatial self-attention module to capture the potential spatial
links between any two channels of the MI EEG signals. The
features within a certain channel are updated by aggregating the
features across all channels with a weighted summation, where
the weights are automatically learned according to the feature
similarities between the corresponding channels. This module
defines a new learned spatial representation of the raw MI EEG
data that chooses the best channels by automatically assigning
higher values to motor-dependent channels and lower values to
motor-independent channels. The evaluation results show that
our method effectively improves the accuracy of classification.

5. CONCLUSION

This paper has described a parallel spatial–temporal self-
attention CNN-based architecture for four-class MI EEG
classification. The self-attention mechanism is first introduced
for capturing robust and generic feature dependencies in the
spatial and temporal dimensions. As a result, we can extract
distinguishable spatial–temporal features of MI signals. The
experimental results on two public datasets show that the
proposed model outperforms several state-of-the-art methods.
Furthermore, successful real-time control of a virtual UAV was
achieved using the trained model. In the future, we plan to
explore the multi-task analysis of MI EEG signals.
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Interactions between two brains constitute the essence of social communication. Daily
movements are commonly executed during social interactions and are determined
by different mental states that may express different positive or negative behavioral
intent. In this context, the effective recognition of festive or violent intent before the
action execution remains crucial for survival. Here, we hypothesize that the EEG signals
contain the distinctive features characterizing movement intent already expressed before
movement execution and that such distinctive information can be identified by state-of-
the-art classification algorithms based on Riemannian geometry. We demonstrated for
the first time that a classifier based on covariance matrices and Riemannian geometry
can effectively discriminate between neutral, festive, and violent mental states only on
the basis of non-invasive EEG signals in both the actor and observer participants. These
results pave the way for new electrophysiological discrimination of mental states based
on non-invasive EEG recordings and cutting-edge machine learning techniques.

Keywords: EEG, mental state, classification, machine learning, Riemannian geometry

INTRODUCTION

Hyperscanning refers to the technique of simultaneous scanning, initially performed using fMRI,
of participants’ brains who mutually interact in a controlled setting (Montague et al., 2002). The
underlying neural basis is a consistent dynamical relationship between the interacting brains,
which constitutes the essence of social interaction. Despite fMRI allowing high spatial resolution,
this imaging technique cannot be employed during regular movements executed during social
interaction in daily life. Hyperscanning EEG offers direct access to global electrical neural activity
with an excellent temporal resolution that is necessary for assessing the brain dynamics of the
interacting participants (Babiloni et al., 2006; Dumas et al., 2010; Barraza et al., 2019; Balconi et al.,
2020). Moreover, EEG may characterize brain functions and states (Buzsáki and Draguhn, 2004).
Hyperscanning EEG has been used in four specific domains of social interactions, joint action,
shared attention, decision making, and affective communication (Liu et al., 2018). Although what
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is perceived as violent varies among societies and throughout
human history (Elias, 1997), the effective recognition of festive or
violent intent before the action execution remains advantageous
for survival. When a violent intent emerges, individuals
cognitively mobilize a particular mental state. In order to trace
neural signals related to this mental state, we designed an
experiment during which individuals perform the same kind of
gesture—tossing a ball—but in a festive way and in a violent way.

Here, we present an experimental design in which two persons
(one acting and the other observing) facing each other execute
and observe, respectively, real movements with either festive,
neutral, and violent intent. Both participants’ EEG, kinematics,
and electromyographic signals were simultaneously recorded.
Hyperscanning EEG during an actor-observer in a real face-
to-face paradigm of social interaction coupled with kinematics
has been previously introduced and investigated (Ménoret et al.,
2014), showing that modulation of beta EEG oscillations in
brain motor areas depended on the context (interaction vs.
observation) and the role assignment (actor vs. observer). Also,
EEG temporal dynamics have provided preliminary evidence
of the ability to distinguish between the perception of kind,
hostile, and non-interactive social intent inferred through visual
scenarios on TV (Decety and Cacioppo, 2012; Wang et al.,
2015) supporting that intentionality is the first input to moral
computations (Decety and Cacioppo, 2012). In the last decade,
new classification methods have been developed and applied
mostly on brain-derived signals such as EEG (Wu et al., 2017;
Lotte et al., 2018) and MEG (Fatima and Kamboh, 2017). The
major area of interest was related to BCI application and less
often to behavioral states identification, although previous work
studied mental states directly linked to emotions (Kim et al., 2013;
Schindler and Bublatzky, 2020) and social interactions (Kinreich
et al., 2017; Liu et al., 2018; Czeszumski et al., 2020).

In this work, we used a classification algorithm on raw
EEG trials of 10 couples of participants performing a repetition
of festive, neutral, and violent throws. We hypothesized that
EEG signals contain the distinctive information characterizing
movement intent already before movement execution and that
such distinctive information can be identified by state-of-
the-art classification algorithms, among them one based on
Riemannian geometry. Riemannian geometry classifiers have
received growing attention in the last few years (Lotte et al.,
2018), particularly due to their performance in international
Brain–Computer Interface (BCI) competitions.

Here, we first illustrated the face-to-face hyperscanning
condition before and during the execution of movement. Then,
we justified the reason why the classification pipelines were
applied on EEG periods occurring 1 s before the onset of
movement. Then, we introduced the preprocessing algorithms
and classification pipelines as well as the advantages of using
Riemannian metrics when manipulating covariance matrices.
The final classification results were then illustrated using a
boxplot summarizing the performances of the classification
pipelines applied on the EEG data from each of the 10 couples
(actors and observers separately). We demonstrated that state-
of-the-art classification pipelines can effectively discriminate
between neutral, festive, and violent mental states using EEG

signals from both the actors and observers. These results pave the
way for new electrophysiological discrimination of mental states
based on non-invasive EEG recordings.

MATERIALS AND METHODS

Participants
The data were collected from 20 healthy right-handed
[determined by the Handedness inventory (Oldfield, 1971)]
male volunteers (24.5 ± 4.5 years old). Each participant gave
informed consent to the experimental procedures, all of which
were in accordance with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards.

Experimental Design
This study has been inspired by the paradigm of Chartier
et al. (2017) concerning the performance and perception of
transitions from festive to violent gestures between two persons.
The experiments were performed in the Jacques Lecoq theater
school in Paris (Prof. Jos Huben). The gesture that was chosen
was the simulation of the throwing of a ball to a partner. In
this previous study, the actor’s gestures were analyzed when the
throw was made in a neutral, festive, and progressively more
and more violent mode. In these conditions, the main kinematic
characteristics of the three categories of gestures were measured.
In addition, from the recorded movie pictures of the throws,
it was demonstrated that the intent behind actor’s gestures can
be recognized by an observer even with morphing of the face
taking away any possibility to recognize the emotional valence
by the face expression. It has also been well demonstrated that
bodily expression of emotions are well perceived without facial
expression (de Gelder, 2016).

Here, we present a modification of this initial paradigm. In this
new experimental protocol, two persons (one acting, the “actor,”
and the other observing the “observer”) facing each other execute
and observe, respectively, real movements with either festive,
neutral, and violent intent.

Each couple of participants stood in an upright position facing
each other and being separated by a distance of 4 m. The arms
were at their sides. The actor held a foam ball (7 cm diameter)
with the right hand. A LED light was fixed on the forehead of
the observer. The verbal instructions to the actors were given in
French to perform the following four tasks: resting, festive ball
throw, violent ball throw, and neutral ball throw. The turn-on
of the LED light placed on the observer’s forehead was the “go”
signal administered in the four kinds of tasks:

• In the resting task, both participants remained standing at
rest facing each other for 5 s during which the LED light
on the observer’s forehead was turned on. This task was
repeated 10 times.
• In the festive ball throw task, the actor was asked to perform

30 festive ball throws with the right upper limb aiming the
LED light when it turned on and with increasing intensity of
festivity following the indications of “execute a festive ball
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throw (10 times), a more festive ball throw (10 times) and
an even more festive ball throw (10 times).”
• In the violent ball throw task, the actor was asked to

perform 30 violent ball throws aiming the LED light when
it turned on with increasing intensity of violence following
the indications of “execute a violent ball throw (10 times), a
more violent ball throw (10 times) and an even more violent
ball throw (10 times).”
• In the neutral ball throw task, the actor was asked to

perform 30 ball throws at slow (10 times), rapid (10 times),
and as fast as possible (10 times) velocities and aiming the
LED light when it turned on without any specific intent.
This task was included in order to care about a possible
velocity effect in the previous conditions.

The festive and violent increasing gradation used was inspired
by Gregory Bateson’s analyses (Bateson, 1955). The actor was
asked to keep the same “type” of movement during the different
trials and tasks (Figure 1). He tried all the tasks for familiarization
before starting recordings. The observer was asked to not react
to the foam ball throws in any condition. In order to facilitate
the establishment of the different mental states, blocks of a same
movement type were performed instead of intermixing trials of
the different conditions.

During this procedure, the mental states of both participants
were modified. For each of the three tasks, an instruction was
given to the actor (neutral, festive, violent gesture) but the
observer could hear the instruction and was, therefore aware of
the mental state of the actor. Then, the successive repetitions
of the same type of action reinforced, on one hand, the actor’s
mental state related to his action by a modification of the motor

networks from frontal and prefrontal cortex to supplementary
motor (Scangos et al., 2013) and sensory-motor areas and more
subcortical structures involvement, and, on the other hand, by
the emergence of a “perceptual resonance” (Schütz-Bosbach and
Prinz, 2007). For the observer, the repetition of the actor’s gesture
induced, on one hand, an activation of the motor simulation
(or “motor resonance”) networks involving the “mirror system”
(Rizzolatti and Sinigaglia, 2007; Rizzolatti et al., 2014) and, on the
other hand, an activation of the perceptual and motor imagery
networks (Thirioux et al., 2010). Furthermore, a possible fatigue
effect was avoided by the introduction of pauses between the
different conditions.

EEG Recordings
Both participants’ EEG, kinematics, and electromyographic
signals were simultaneously recorded.

EEG data of the actors were recorded with 128 channels (ANT
neuro system) at a sampling frequency of 2,048 Hz and with
a resolution of 71.5 nV per bit. An active-shield cap using 128
Ag/AgCl sintered ring electrodes and shielded co-axial cables (5–
10 electrode system placements) was comfortably adjusted to the
participant’s head. In addition, electro-oculograms (EOG) (for
horizontal and vertical eye movements) were recorded. EEG data
of the observers were recorded with 32 channels (Brain Products
Brainamp DC with actiCAP) with a resolution of 0.1 µV per bit
at a sampling rate of 1,000 Hz. Common average reference was
used for both recording systems.

Kinematics recordings were performed simultaneously
(Figure 2) on both participants with VICON Motion Capture
System with 10 cameras at 100 Hz sampling frequency. Passive
infrared reflective markers were placed on the skin over nasion,

FIGURE 1 | Actor’s stick diagram and 3D trajectory of the right head of ulna marker represented by the X (left and right), Y (forward and backward), and Z (up and
down) coordinate components during the first ball throws of the neutral, festive, and violent tasks. All upper trace deviations correspond to the left, forward, and up
directions, respectively. The observer stood facing the actor.
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FIGURE 2 | Simultaneously recorded biological signals for a representative
couple during the first ball throw of the neutral task. The raw EEG signals of
the electrodes selected for the classification are illustrated for both the actor
(upper) and the observer (bottom). The position of the right head of ulna and
the related raw EMG signals (from top to bottom: the anterior and posterior
deltoids, posterior descending part of upper trapezius, short biceps,
brachio-radial, pronator-teres, extensor carpi ulnaris, long head triceps brachii)
are illustrated for the actor. Note that the rectangles colored in red
contain the EEG signals’ epoch (of 1,000 ms preceding the LED light
stimulus onset) provided to the classifier. The head of ulna 3D positions
are represented by their X, Y, and Z coordinate components as
in Figure 1.

tragus, acromion, lateral epicondyle of the right and left elbow,
along an imaginary line between acromion and epicondyle on
the right and left arms, over the head of right and left ulna,
along an imaginary line between epicondyle and head of ulna on
the right and left forearms, over the third metacarpal head on the
right and left hands, right and left anterior superior iliac spines,
right and left greater trochanter, right and left lateral epicondyle
of the knees, along an imaginary line between greater trochanter
and epicondyle of the knee on the right and left shanks, lateral
malleolus, along an imaginary line between epicondyle of the
knee and lateral malleolus over right and left legs, and over the
second right and left metatarsal heads.

Electromyography (EMG) was also simultaneously recorded
(Figure 2) with a sampling frequency rate of 1,000 Hz (Delsys
Trigno Wireless System) on both participants with surface
electrodes over the belly of the anterior and posterior deltoids,
posterior descending part of upper trapezius, short biceps,
brachio-radial, pronator-teres, extensor carpi ulnaris, and long
head triceps brachii.

The four recording systems (ANT neuro systems, Brain
Products, Vicon Motion Capture, and Delsys Trigno Wireless
system) were synchronized with a common external TTL square
signal delivered by an external signal generator to each recording
system. This signal presented three rising and three falling edges
at 1 Hz delivered at the beginning and the end of every task.

EEG Data Treatment
The first offline data treatment consisted in eliminating the
respective data portions recorded before the corresponding
system received the first rectangular pulse of the
synchronization signal.

Offline EEG data treatment was performed using the EEGLAB
software (Delorme and Makeig, 2004). Initially, a 200 Hz low-
pass filter, a 512 Hz resampling, and a 3 Hz high-pass filter
were applied. Synchronous or partially synchronous artifactual
activity (mostly blinks) was detected and rejected by independent
component analysis (ICA). Baseline-corrected epochs were
extracted from−1 to 3 s of the LED light turning on, i.e., the “go”
signal. The signal-to-noise ratio (SNR) was computed on each
electrode following Möcks et al. (1984), Turetsky et al. (1988), and
Cheron et al. (2014). Formally, let M be the number of trials, N
be the number of samples in a trial, and X̄ denote the averaged
signal over all trials; the total noise power σ2

noise and the total
signal power σ2

sig can be defined as:

σ2
noise =

1
N (M − 1)

M∑
m=1

( N∑
n=1

(
Xm (n)− X̄ (n)

)2
)

(1)

σ2
sig =

1
N

N∑
n=1

X̄2 (n)−
1
M

σ2
noise (2)

and the SNR can eventually be estimated by:

SNR =
σ2

sig

σ2
noise

(3)
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For the following classification methodology, from all the
biological signals of the actors and the observers, we selected
epochs of EEG signals from −1 s to 0 s before the “go”
indication and thus before movement preparation and execution
(the selected epoch of a representative trial was represented by a
red rectangle on the actor and observer’s EEG data in Figure 2).

Classification Methodology
In order to verify that the classification was not based on the
introduction of additional artifactual noise in one condition with
respect to the others, we first built a naive classifier (Logistic
Regression) solely based on SNR features.

Subsequently, in order to validate the possibility of effectively
discriminating between different mental states, we applied two
different state-of-the-art classification approaches. The first one
used the Common Spatial Pattern algorithm (CSP) (Koles, 1991)
improved with the robust estimation of covariance matrices
manipulated with Riemannian geometry (Barachant et al.,
2010a). For a binary classification task, the CSP algorithm
optimizes spatial filters in a supervised way in order to maximize
the variance of the filtered signals for one class and minimize
their variance for the other class. Formally, let E ∈ N be the
number of electrodes, N ∈ N be the number of time samples,
J ∈ N be the number of spatial filters, W ∈ RE×J be the spatial
filtering matrix used by the CSP algorithm, Xy ∈ RE×N be the
matrix representation of an epoch from class y, 6(y) ∈ RE×E be
the mean covariance matrix of class y, and WTXy be the spatially
filtered signal from class y. Given a binary classification task, the
CSP algorithm first determines discriminative spatial filters W by
the joint diagonalization of the two covariance matrices6(1) and
6(2) as follows (Blankertz et al., 2008; Barachant et al., 2010a):

WT6(1)W = D1

WT6(2)W = D2

D1
+ D2

= I
(4)

Subsequently, the n most discriminative spatial filters (n being a
parameter of the algorithm) determined on the training set are
applied on EEG signals, and the variance of the resulting signal
is then estimated. Since the variance of a signal band-pass filtered
between the cutoff frequencies fL and fH is equal to the power of
that signal in the [fL − fH] frequency range, the CSP algorithm
actually optimizes spatial filters in order to produce maximal
power difference between the two classes. The output vector of
the CSP algorithm is composed of the n variance estimations
and will constitute the input of a classification algorithm such as
a Logistic Regression. The multiclass generalization of the CSP
algorithm is given by Grosse-Wentrup and Buss (2008).

The second approach using covariance matrices manipulated
with Riemannian geometry have notably received growing
attention in the last few years (Lotte et al., 2018), particularly due
to their first-class performance in international BCI competitions
(Congedo et al., 2017). In the present study, we used Riemannian
geometry to manipulate covariance matrices of the filtered
EEG signal, which is hypothesized to contain a simplified
but discriminative representation of a mental state. Covariance
matrices are symmetric positive definite (SPD) and do not lie in

a vector space but in a convex cone (Moakher, 2005) called the
Riemannian manifold. Thus, Riemannian metrics, i.e., distance
and mean, should be preferred in order to manipulate these
matrices accurately.

The Riemannian distance and mean are defined by Eqs (5)
and (6), respectively:

δR (61, 62) =‖ log(6−1/2
1 626

−1/2
1 ) ‖F (5)

ζ (61, . . . , 6I) = argmin
6εP(n)

I∑
i=1

δ2
R (6,6i) (6)

where δR, 6 ∈ RE×E, ‖ . ‖F , and P(n) denote the Riemannian
distance, a covariance matrix estimated from E electrodes, the
Frobenius norm, and the variety of symmetric positive definite
matrices, respectively.

Additionally, for each point of the manifold, there is an
associated tangent space where a scalar product is defined, and
Barachant et al. (2013) showed that the Euclidean distance in
the tangent space is a good approximation of the Riemannian
distance on the manifold itself. This important finding means that
tools and classification algorithms based on Euclidean geometry
can be directly used in the tangent space without substantial
loss in performance.

The projection operator from the Riemannian manifold to the
tangent space at a reference point6ref is defined by Eq. (7):

φ (6) = Log6ref
(6) = 6

1/2
ref logm

(
6
−1/2
ref 66

−1/2
ref

)
6

1/2
ref (7)

where Log6ref
(6) denotes the logarithmic map (Barachant et al.,

2013) of 6 with respect to 6ref and logm denotes the logarithm
of a matrix. A good choice of6ref is proposed by Barachant et al.
(2013) to be the geometric mean of the whole set of covariance
matrices and motivated by the observation from Tuzel et al.
(2008) that the geometric mean is the point where the mapping
on the tangent space leads to the best local approximation
of the manifold.

Classification Pipeline
High-density EEG typically records brain activity from at least
64 electrodes. However, from our own finding, manipulating
covariance matrices estimated from a large number of electrodes
might induce numerical errors that break their SPD property.
Moreover, by using such large covariance matrices, the
dimensionality of the feature space becomes significantly higher
than the number of training data and thus increases overfitting
and reduces the generalization accuracy of the classification
algorithm (i.e., the curse of dimensionality). In such a situation,
a common practice is a features selection procedure to reduce
the number of features (in this case, the number of electrodes)
in order to improve classification performances. In order to avoid
biasing the classification results, the electrode selection procedure
was applied using separate EEG recordings performed during
the training period of the first couple preceding the effective
hyperscanning performance during which the subjects executed
a series of 30 throws in each condition. The same subsets of
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electrodes related to the actors and observers were subsequently
used for the classification tasks of all 10 couples.

Firstly, we used separate data from the training period
to empirically select electrodes that maximized the distance
between class-conditional mean covariance matrices using a
backward elimination method introduced in Barachant and
Bonnet (2011). For this, we computed the average cross-validated
binary classification accuracy with respect to the number of
electrodes using the training data filtered with an IIR bandpass
filter with cutoff frequencies at 1 and 20 Hz. This feature
selection procedure resulted in a physiologically plausible choice
of electrodes, namely, a common occipito-parietal subset (O1,
O2, Pz, P3, and P4) for both the actors and observers and two
different subsets, a centro-parietal subset (CP1, Cpz, CP3, PO3,
and PO5) for the actors and a centro-frontal subset (C3, C4, F3,
F4, and Fz), for the observers. Visual inspection of the selected
electrode signals confirmed that no EMG contamination was
present. We acknowledge that such feature selection procedure
based on distances between class-conditional covariance matrices
may slightly favor classification pipelines based on covariance
matrices. Nevertheless, this potential bias is limited since the
selected electrodes were well representative of the behavioral
context linked to the task for both the actors and the observers.
Moreover, such possible bias did not impact the main objective of
this work, i.e., to demonstrate that state-of-the-art classification
algorithm can effectively discriminate between neutral, festive,
and violent mental states.

Subsequent to the electrodes selection procedure described
here above, the EEG data files from the 10 couples were imported
using the MNE 0.17 Python library (Gramfort et al., 2014).
A zero-phase IIR bandpass filter with cutoff frequencies at 1 and
20 Hz was applied and epochs from −1,000 to 0 ms (0 ms being
the “go” signal indicated by the LED lighting up) were extracted.
In order to verify that the throw movement was not initiated
before this “go” signal, the kinematic recording of the acting arm
was visually inspected. At this stage, the dataset of each couple
was composed of 180 matrices (30 for each class and for each role)
of shape: 10 electrodes × 512 samples. The covariance matrix
from each epoch is then estimated using the well-conditioned
Ledoit-Wolf estimator (Ledoit and Wolf, 2004).

The following classification pipelines were then applied using
the same subsets of electrodes:

• SNR with logistic regression: the SNR with logistic
regression (SNR-LR) pipeline first estimates the SNR
defined by Eq. (3) on each electrode. A logistic regression
(LR) classifier is subsequently trained on the SNR values.
• Power spectrum density with logistic regression: the

power spectrum density with logistic regression (PSD-
LR) pipeline represents a simplistic approach that does
just capture a part of the problem complexity and is
not expected to yield state-of-the-art results. Nevertheless,
this approach will serve as a robust baseline from which
to evaluate more complex models. The power spectrum
density (PSD) computes the log 10 of the average power
in specific frequency bands (delta, theta, alpha, beta,
and low-gamma) estimated using Welch’s method (Welch,

1967) on the epoch of EEG signal. The combined binned
spectrograms from each electrode are flattened into a one-
dimensional array of size 5 frequency bands × electrodes
that represents an input to a LR classification algorithm.
• Common Spatial Pattern with logistic regression: the

Common Spatial Pattern with logistic regression (CSP-LR)
pipeline first applies the CSP algorithm on the raw EEG
signals in order to optimize n spatial filters (in this work,
we used n = 4). The covariance matrices used internally by
the CSP algorithm are estimated using the well-conditioned
Ledoit-Wolf estimator (Ledoit and Wolf, 2004). A LR
classifier is subsequently trained on the resulting features
of the CSP algorithm.
• Covariance matrices with Minimum Distance to Mean:

the covariance matrices with Minimum Distance to Mean
(MDM) pipeline first estimates, for each epoch of EEG
signal the corresponding covariance matrix using the
well-conditioned Ledoit-Wolf estimator (Ledoit and Wolf,
2004). Subsequently, the Minimum Distance to Mean
algorithm classifies covariance matrices directly on the
Riemannian manifold.
• Geodesic filtering and covariance matrices with Minimum

Distance to Mean: the geodesic filtering and covariance
matrices with Minimum Distance to Mean (MDM-
GF) pipeline first applies a geodesic filtering (Barachant
et al., 2010b) in order to reduce the negative impact of
noise on the distances between two covariance matrices.
Subsequently, the MDM pipeline is applied on the output
of the geodesic filtering.
• Projection on the tangent space and logistic regression:

the projection on the tangent space and logistic regression
(PTS-LR) pipeline first estimates, for each epoch of EEG
signal, the corresponding covariance matrix using the
well-conditioned Ledoit-Wolf estimator (Ledoit and Wolf,
2004). Then, each covariance matrix is projected on the
tangent space of the Riemannian manifold using the
projection operator defined by Eq. (7) and a LR classifier is
subsequently trained on the projected covariance matrices.

The classification pipelines were implemented in the Python
3.6 programming language and use the NumPy (van der Walt
et al., 2011), SciPy (Jones et al., 2001), scikit-learn (Pedregosa
et al., 2012), and pyRiemann (Barachant and King, 2015)
Python libraries.

RESULTS

First and foremost, it is important to highlight the fact
that the classification pipelines were only applied on EEG
signals occurring 1 s before the movement onset (see the red
rectangle in Figure 2) in order to avoid the contamination
of the EEG signals by muscular artifacts that would bias the
classification performances.

SNR Analysis
As a preliminary result, we verified that any specific changes
in electrical potential (µV) was not obvious by simple visual
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inspection in any condition. For the 10 couples of subjects, the
30 trials of every condition (neutral, festive and violent) were
plotted side by side separately for actor and observer. Figure 3
illustrates, for one representative couple, that the variation of
electrical potential (µV) for every single EEG trial corresponding
to every single epoch (1 s before the LED light turned on)
before the throws for one representative electrode (CP3) cannot
be visually discriminated. This first visual impression was then
confirmed by a classifier based on SNR features that was not able
to discriminate between the different mental states above chance
level (see Figure 4).

On the basis of the unsuccessful results of SNR classification,
we turned to state-of-the-art classification pipelines (Figure 5)
using CSP filtering and covariance matrices with Riemannian
geometry.

Benefits of Applying Riemannian Metrics
In order to graphically illustrate the benefits of using Riemannian
metrics and the projection on the tangent space when
manipulating covariance matrices (estimated from the 10 selected
EEG electrodes), we applied one procedure using the EEG
data of one representative participant (the actor of the first
couple). This procedure, called “distance to mean,” initially

FIGURE 3 | Variations of potential (µV) on CP3 channel during the selected
epoch of 1,000 ms (preceding the LED light stimulus onset) provided to the
classifier for the actor and the observer and for all the trials (30 throws per
condition) of the neutral, festive, and violent conditions in one representative
couple. Note that at first glance, there is not any consistent variation of
potential for a condition.

computed the mean covariance matrix of each class and
subsequently represented the covariance matrix of an epoch on
a graph by a single point whose coordinates corresponded to
the distances between that covariance matrix and each mean
covariance matrix. Figure 6 illustrates the benefits of using
the Riemannian metrics to compute the distances between
covariance matrices corresponding to the violent and festive
EEG data set recorded from the actor of the first couple. In
the Euclidean space, the experimental points associated with
the two classes are overlapping (Figures 6A,C). In contrast, in
the Riemannian space, the violent and festive data are better
separable (Figures 6B,D).

Classification Results
The boxplots of Figure 4 summarize the comparative analysis
of all classification pipelines with respect to the mental state
combinations. The datasets of all mental states and participants
are perfectly balanced and the classification results for all
pipelines were computed using a 10-fold cross-validation.
We observed that statistically significant differences with a
p-value < 0.05 computed using the Wilcoxon signed-rank test
were found between the SNR-LR and all the other classification
pipelines, regardless of the mental states or the conditions. This
result combined with the SNR-LR classification accuracy under
chance level confirmed our first impression that SNR features
do not contain enough information to effectively discriminate
between different mental states.

The PSD-LR results were also significantly lower than all the
other classification pipelines in the Actor condition regardless of
the mental states. In the Observer condition, the PSD-LR results
were significantly lower than all the other pipelines except for
the MDM in the Festive vs. Violent mental state (Figure 4B)
and for the MDM and the CSP-LR pipelines in the Festive vs.
Neutral mental state (Figure 4D). Even though there are few
statistically significant differences between the CSP-LR and the
Riemannian classification pipelines (MDM, MDM-GF, and TS-
LR), the mean accuracies of the latter are slightly higher than the
ones of the CSP-LR.

DISCUSSION

Understanding action intent of others involves matching the
observed action to the internal representation of such an
action built on one’s own multi-sensory-motor experience
(Rizzolatti and Sinigaglia, 2007). Previously, hemodynamic-
based neuroimaging brain studies have shown that the activated
brain areas are different when understanding and judging
a negative intent, which included the right amygdala, the
temporoparietal junction, and hypothalamus (Sinke et al.,
2010), compared to a positive intent, which included the right
temporoparietal junction and the right dorsolateral prefrontal
cortex (Yoder and Decety, 2014). In addition, fMRI (Vuilleumier
and Pourtois, 2007; Bachmann et al., 2018; Engelen et al.,
2018; Schönfeld and Wojtecki, 2019) and TMS (Borgomaneri
et al., 2015; Engelen et al., 2015, 2018) studies demonstrated
the existence of dynamical interactions between the amygdala,
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FIGURE 4 | Boxplots illustrating the binary/multi-class classification accuracy (True Positives vs. All) of the SNR-LR, PSD-LR, CSP-LR, MDM, MDM-GF, and PTS-LR
classification pipelines for the Festive vs. Violent, Festive vs. Neutral, Violent vs. Neutral, and Violent vs. Festive vs. Neutral mental states with regard to the
participant conditions [Actor (A,C,E,G) and Observer (B,D,F,H)]. The horizontal dashed lines indicate the chance level. The blue hexagons indicate the mean
classification accuracy values. Statistically significant differences between pairwise performances of two classification pipelines are represented using one or two
asterisks when the p-value of the Wilcoxon signed-rank test is strictly below 0.05 or 0.01, respectively.
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FIGURE 5 | Illustrative summary of the classification pipelines. Each path from “EEG dataset” to “Mental state identification” represents a single and independent
classification pipeline.

the inferior parietal lobule, and the ventral premotor cortex
involved in the perception of emotions and the preparation of
an action. The functional dynamical mechanisms underlying
communication between brain areas have been approached with
EEG, which, in this case, is particularly appropriate because
it captures electrical brain oscillations that assess direct brain
function with a millisecond precision. EEG recordings, while
observing an intent inference task displayed on a screen, have
shown that moral cognition processes occur as soon as at 200 ms
where kind intent featured larger peak N2 amplitude component
supported by left cingulate gyrus activity. Hostile intent featured
later a larger peak P3 amplitude component supported by the left
anterior cingulate cortex activity (Wang et al., 2015).

In this work, we propose a more realistic protocol where
both the observer and the actor (of the violent, festive, and
neutral ball throws) are real persons standing up and facing
each other. This protocol allows access to the synchronized EEG
dynamics, kinematics, and electromyographic activity of both
participants. Although further investigation will be needed with
a larger population to understand and characterize such EEG
dynamics, kinematics, and muscular activity before, during, and
after the movement, we demonstrated here that even without
knowing the underlying dynamical mechanisms, classification
algorithms can effectively discriminate between neutral, festive,
and violent mental states. These successful classification results
were obtained in both the actors’ and observers’ EEG signals of
10 couples during 1 s before the action, suggesting that festive and
violent intent can be detected before the action. These results pave
the way for new electrophysiological discrimination of mental
states based on non-invasive EEG recordings.

Design Considerations
The terms “festive” and “violent” can be understood differently
depending on the context and interpretational meaning. The
debate on whether and how linguistic data are a part of a complex
interpretational structure and how they can be implemented in

the mind of the participants remain largely unknown (Hagoort,
2020; Martin and Baggio, 2020). In this perspective, we propose a
protocol inspired by Gregory Bateson’s analysis of double framing
(Bateson, 1955). Bateson studied monkeys who were play-
fighting and observed that this situation relied on two frames:
the frame of the battle and the frame of the play. In the present
design, the two participants are in the second frame of meta-
communication since both the actor and the observer are aware
of the general state imposed by the experimenter. This means that
not only the posture and the gesture of the participant but also the
imposed meta-cognitive communication may greatly contribute
to the establishment of the required mental state. The fact that
significant classification performances were obtained for the 10
couples of participants may indicate that the interpretational
meaning of the “festive” vs. “violent” vs. “neutral” conditions were
relatively well understood by all participants.

One of the major difficulties was to establish an experimental
design able to provide a clear relationship between the intentional
context, the mental states, and the behavioral output (Isoda,
2016). For this, we have approached the mental state by means of
high-density EEG and the motor output by means of kinematics
and EMG recordings. As it was reported that movement and
EMG contamination of the EEG remain not satisfactorily solved
(Castermans et al., 2014), we have focused the present mental
state identification only during the epoch of 1 s before movement
identification. During this preparatory period, the EMG artifact
contaminations were not visible on the FFT spectrum and not
identified with a classifier based on the SNR. In addition, no
specific changes in electrical potential was detected by simple
visual inspection. We may thus conclude that the present mental
state classification was not based on EMG contamination.

The Different Classification Methods and
the Advantages of the Present One
The use of Riemannian geometry may at first be considered
a mere mathematical sophistication. However, we here
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FIGURE 6 | Distance to mean representation of the EEG data from the actor of the same representative couple as in Figure 3 using Euclidean (A) and Riemannian
(B) distances and from the same representative observer using Euclidean (C) and Riemannian (D) distances. The Riemannian distance δR is defined in Eq. 5 and the
Euclidean distance δE is defined as the Frobenius norm of the difference between the two covariance matrices. The horizontal (vertical) axis represents the distance
δ
(
6i, 6

F) (δ
(
6i, 6

V)) between a covariance matrix 6i and the mean covariance matrix of the festive (violent) class 6F (6V). The straight dashed line represents the
function δ

(
6i, 6

F)
= δ

(
6i, 6

V). Unlike Euclidean metrics, Riemannian metrics were able to convincingly separate the violent and festive classes.

demonstrated that it has a profound impact on class separability
and thus classification accuracy. This result strengthens evidence
of the Riemannian geometry efficiency already reported
in different scientific fields such as radar signal processing
(Arnaudon et al., 2013), image classification (Tuzel et al., 2008),
thermodynamics (Mausbach et al., 2018), morphogenesis (Hu
et al., 2018), graph theory (Bakker et al., 2018) and BCI (Mayaud
et al., 2016; Han et al., 2019; Rodrigues et al., 2019).

In order to verify our working hypothesis that the EEG signals
characterized distinctively the festive, violent, and neutral mental
states, we have systematically compared different classification
methods currently used in the field and appropriate to the first
explorative experiment carried out on a pair of synchronized
EEG recordings of 10 observers and 10 actors. Our results
demonstrate that state-of-the-art classification algorithms based
on Riemannian geometry (MDM, MDM-GF, and PTS-LR)
or Common Spatial Pattern (CSP-LR) are able to effectively

discriminate between mental states (reaching a cross-validated
classification accuracy of 0.88 for the Festive vs. Violent states)
and provide significantly better performance with respect to
classifiers based only on SNR or PSD. We showed that the
use of the variance–covariance alone was unable to effectively
discriminate between the three mental states, which indicates
that the Riemannian geometry is crucial for neural signal
discrimination based on covariance matrices. Although classifiers
based on the CSP algorithm perform slightly worse than
the Riemannian methods in international BCI competitions
(Lotte et al., 2018), the CSP-based classifier has here produced
comparable performances. It is also interesting to mention that,
in spite of the fact that both participants are aware of the Festive
or Violent required condition, EEG classification performances
were better for the Actor, which may indicate that the motor-
action preparatory processes propagate to the EEG signals and
thus play a role in the identification of the mental state.
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The assumption that the EEG signal observed prior to the
action is necessarily a sign of intent must be met with some
caution, as there could be other equally plausible explanations,
such as the prediction of an incoming “known” stimulus, which
cannot be excluded in the absence of “blinding.” Further studies
could potentially provide further evidence for or against the
specific mechanism proposed in this work.

Interestingly, state-of-the-art classifiers used in this study
were able to achieve significant discriminability using a limited
number of trials. Such desirable characteristics is paramount
to avoiding side effects such as fatigue, habituation, or loss of
awareness induced by too much repetition of the same behavior
and related mental state induction. Nevertheless, these results
are also relevant for future BCI applications where limited
signal acquisition is a major constraint to train a functional
classification algorithm.
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Noise has been proven to have a beneficial role in non-linear systems, including the
human brain, based on the stochastic resonance (SR) theory. Several studies have been
implemented on single-modal SR. Cross-modal SR phenomenon has been confirmed
in different human sensory systems. In our study, a cross-modal SR enhanced brain–
computer interface (BCI) was proposed by applying auditory noise to visual stimuli. Fast
Fourier transform and canonical correlation analysis methods were used to evaluate the
influence of noise, results of which indicated that a moderate amount of auditory noise
could enhance periodic components in visual responses. Directed transfer function was
applied to investigate the functional connectivity patterns, and the flow gain value was
used to measure the degree of activation of specific brain regions in the information
transmission process. The results of flow gain maps showed that moderate intensity of
auditory noise activated the brain area to a greater extent. Further analysis by weighted
phase-lag index (wPLI) revealed that the phase synchronization between visual and
auditory regions under auditory noise was significantly enhanced. Our study confirms
the existence of cross-modal SR between visual and auditory regions and achieves a
higher accuracy for recognition, along with shorter time window length. Such findings
can be used to improve the performance of visual BCIs to a certain extent.

Keywords: brain–computer interface (BCI), steady-state motion visual evoked potential (SSMVEP), auditory noise,
cross-modal stochastic resonance, functional connectivity, phase synchronization

INTRODUCTION

Brain–computer interface (BCI) is a device which enables users to control a computer or a
computer-connected device using brain activity and has shown prospects of broad application
(Wolpaw et al., 2000). However, BCI performance has long been limited by the non-linear
characteristic of human brain, as well as the weak detectability of electroencephalogram (EEG)
signals. Many studies have been conducted and plenty of new paradigms and methods have been
presented to solve this problem. Stochastic resonance (SR) theory (Benzi et al., 1981; Collins et al.,
1996; Gammaitoni et al., 1998), is one of these methods. Stochastic resonance theory claims that
random fluctuation can enhance weak signal input to improve signal transmission and sensitivity to
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environmental changes in a non-linear system, leading to an
improvement in system performance. Such SR effects have
been also demonstrated in the neuronal systems, such as the
human muscle spindle (Cordo et al., 1996), rat cutaneous
mechanoreceptor (Collins et al., 1996), and human tactile
sensation perception (Collins et al., 1997).

In the field of BCI, several studies investigating SR have been
conducted. Srebro and Malladi (1999) applied two-dimensional
spatial temporal noise to traditional visual stimuli which was
used to elicit visual evoked potential (VEP). Results indicated
that VEP could be enhanced by presenting visual noise. In
fact, the power of the second harmonic of the VEP could
increase as high as 4.2-fold under conditions of noise, peaking
at 30% noise contrast. The power of the fourth VEP harmonic
also increased 1.3-fold, peaking at 20% noise contrast. In
our previous study, a BCI technology based on pure visual
modality SR was proposed (Xie et al., 2012). In the study,
subjects were exposed to visual stimuli and visual noise at the
same time, which led to an enhancement of nervous system
excitability. In 2019, we further evaluated the performance of
visual noise imposed on two different BCI paradigms, i.e.,
motion-reversing simple ring and complex checkerboard (Xie
et al., 2019). Additionally, Nakamura et al. (2017) applied
auditory noise to auditory steady-state response (ASSR) based
BCI and achieved a better performance compared to traditional
paradigm, which confirms the existence of a SR effect in the
human auditory system.

The studies mentioned above have mainly focused on single-
modal SR, that is to say, stimulation and noise belong to
the same sensory mode and enter the same sensory channel
of the human brain. Besides single-modal SR, cross-modal
SR in the human nervous system has also been reviewed
(Krauss et al., 2018). Douglass et al. (1993) found that by
applying periodic stimulation and environmental noise to the
mechanical receptors of crayfish, the periodicity of spike intervals
generated by neurons was enhanced. Ross et al. (2006) showed
that an appropriate amount of auditory noise is conducive to
understanding audiovisual speech and information detection.
Kayser et al. (2005) tested changes in the blood oxygen level
dependent (BOLD) response of the primate auditory cortex of
monkeys to sound stimulation, tactile stimulation, as well as
a combination of sound and tactile stimulation, respectively.
This study further confirmed that the auditory cortex, including
the primary auditory cortex, has integrates auditory and tactile
information, and that such integration occurs in early sensory
areas. In 2018, Krauss et al. (2018) reviewed these cross-modal
enhancement phenomena and speculated that SR in one sensory
modality driven by input from another modality may be a
general principle, namely multisensory integration causing SR
like cross-modal enhancement. However, such cross-modal SR
phenomena have not been utilized in the field of BCI yet.
Therefore, whether cross-modal SR phenomena can be used to
promote BCI performance, like single-modal SR that used in BCI
application, remains unclear.

In this study, we applied auditory noise to a steady-state
motion visual evoked potential (SSMVEP) (Xie et al., 2012)
based BCI paradigm with an oscillating checkerboard stimulation

to investigate whether the external auditory noise can lead
to an enhancement of SSMVEP responses and improve BCI
performance. Gaussian white noise with an intensity of −30,
−10, 10, and 30 dBW was selected as auditory noise. The effect
of auditory noise on visual responses was verified by both the
fast Fourier transform (FFT) spectrum and canonical correlation
analysis (CCA) results. We found that BCI performance
progressively improved and then decreased with the increment
of noise intensities, i.e., a relationship between BCI performance
and the moderate increase of noise level. Directed transfer
function (DTF) method was applied to investigate the functional
connectivity pattern of activated brain regions under different
noise levels, which verified the theoretical research, as well as
the practical application value, of the proposed BCI paradigm.
Furthermore, weighted phase-lag index (wPLI) method was
used to analyze the phase synchronization between visual and
auditory regions which demonstrated a significant enhancement
under moderate auditory noise level. Finally, the analysis on
channel combinations and accuracy rate further confirmed the
enhancement effect of auditory noise. Our study illustrates
the existence of cross-modal SR in the human brain and the
enhancement effect of auditory noise, which can be used to
enhance visual BCI performance.

MATERIALS AND METHODS

Subjects
Ten subjects from Xi’an Jiaotong University participated in the
experiment. Seven were males and three were females (aged
25± 3 years old). All subjects had normal or corrected-to-normal
hearing and eyesight and had prior experience with SSVEP-
BCIs. All subjects had no history of visual or auditory disorders
and were not paid for their participation. The experiment was
undertaken in accordance with the recommendations of the
Declaration of Helsinki. Written informed consent was obtained
from each participant, which followed the guidelines approved by
the institutional review board of Xi’an Jiaotong University.

EEG Recordings
According to the International 10–20 electrodes position system,
16-channel EEG signals were recorded from the occipital,
parietal, and temporal areas of POz, Oz, PO3, O1, PO4, O2, T7,
TP7, T8, TP8, P5, P7, PO7, P6, P8, and PO8 sites at a sampling
rate of 1200 Hz using the g.USBamp system (g.tec, Graz, Austria)
(Figure 1). EEG signals were referenced to a unilateral earlobe
and grounded over site Fpz. The impedance was kept below 5 K
ohm. After application of the analog filter, the EEG signals were
filtered between 0.1 and 100 Hz by an 8th-order Butterworth
band-pass filter. A notch filter was implemented to remove the
power line interference between 48 and 52 Hz with a 4th-order
Butterworth band-stop filter. Further analysis was performed in
Matlab environment.1

1http://www.mathworks.com
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FIGURE 1 | The EEG recording positions. EEG responses were recorded from
16 channels of POz, Oz, PO3, O1, PO4, O2, T7, TP7, T8, TP8, P5, P7, PO7,
P6, P8, and PO8 as illustrated in circles in red.

Stimulation Design
The motion-reversal visual stimulation, i.e., an oscillating
checkerboard, programed by Psychophysics Toolbox2 (Brainard,
1997; Pelli, 1997), was introduced as a spatial selective steady-
state BCI paradigm. A 27-inch ASUS liquid crystal display (LCD)
monitor with a resolution of 1920 × 1080 pixels and a screen
refresh rate of 144 Hz was used for the presentation of the visual
stimulation. The static image of the oscillating checkerboard was
made up of 10 concentric rings (Figure 2). The outer and inner
diameters of the motion checkerboard were set to 120 pixels
and 12 pixels, respectively. A black spot with radius of 3 pixels
was set at the center to keep subjects focused on it during the
experiment. Each ring was divided into 24 alternate gray and
black blocks. The areas of the bright and dark regions in each
ring were equal. The bright color was gray (120, 120, 120) and
the dark grids was black (0, 0, 0). The width of each block was set
to 10 pixels and subtended a horizontal and vertical visual angle
of approximately 4.8◦ when viewed by the subjects from a fixed
distance of approximately 80 cm, in accordance with prior studies
which have shown that a stimulation size over 3.8◦ would saturate
brain responses (Ng et al., 2012). The expansion - contraction of
the checkerboard constitutes the motion process modulated by
a sinusoid function. When the phase of the sinusoidal function
shifts from 0 to π, the motion ring contracts with an amplitude
of 10 pixels and then expands as the phase shifts from π to
0. Therefore, the direction of motion changes twice in one
cycle. This motion direction changing rate is defined as motion-
reversal frequency, which is two times the cycle frequency.
Since SSMVEP mainly comes from brain activities which are

2http://psychtoolbox.org/

FIGURE 2 | Distribution of four stimulus targets on the computer screen. The
distance from the center of the monitor to that of each target is 270 pixels
(7.2◦ visual angle in the case of approximately 80 cm distance between the
subject and the monitor).

triggered by directional changes, we adopted this motion-reversal
frequency as the fundamental frequency of visual stimulation.

Four stimuli were arranged in the corners of a rhombus layout.
The distance from each stimulus target to that of the center of
monitor is at a 7.2◦ visual angle (i.e., 270 pixels). Each stimulus
target had distinct motion-reversal frequencies. According to a
previous report, the low (4–13 Hz), medium (13–30 Hz) and high
frequency range (>30 Hz) are the three main frequency ranges
to elicit an SSVEP (Regan, 1989). In general, the low frequency
range could elicit larger amplitude SSVEP responses than the
medium and high frequency ranges. In this study, the frequencies
of 7, 9, 11, and 13 Hz were assigned to the left, right, upper,
and lower stimulus target, respectively. The four stimuli were
simultaneously presented to subjects and the distance between
each subject and LCD monitor was set to approximately 80 cm
at eye level (Wu and Lakany, 2013). When the subject gazed
at the stimulation, auditory noise (i.e., Gauss white noise) was
played in both ears of the subject. Due to our previous test, the
maximal auditory noise level our subjects can accept is around
30 dBW, and −30 dBW is barely audible. After determining the
maximal and minimal level, auditory noise level was graded by
equal division of the noise range into four levels by noise power
of −30, −10, 10, and 30 dBW, using 1 watt as a baseline. In
addition, an experiment was conducted without auditory noise,
which constituted the control group. For power calculations, it
is assumed that there is a load of 1 Ohm and measure for the
output is in Volts. Noise was generated and played using Matlab
and presented through a pair of kernel earphones (Sennheiser
IE 80s, Germany).

The experimental procedure is shown in Figure 3 and
the overall BCI system setup is depicted in Figure 4. For
each subject, four experiments were conducted for oscillating
checkerboard SSMVEP BCI, which corresponded to the target
stimuli frequencies of 7, 9, 11, and 13 Hz, respectively. Each
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FIGURE 3 | Experimental procedure. Four experiments corresponding to the target stimuli frequencies of 7, 9, 11, and 13 Hz were conducted. Each experiment is
consisted of five pseudo-random sequences with different noise intensities.

experiment contained five runs, which consisted of five pseudo-
random sequences of all four auditory noise intensities as well
as the non-noise condition. For different target frequencies and
different noise levels, the sequences were performed randomly to
avoid adaptation and habituation of long-term stimulation that
could potentially affect assessment of SR effect (Bergholz et al.,
2008). Each run consisted of 20 trials, with each trial lasting
5 s. Between two trials there was a 2-s inter-trial interval (ITI).
Additionally, after every two runs, there was a break of 2 min.
The whole experiment for each subject lasted approximately
50 min. During each trial, there were four stimuli that were
simultaneously presented. The subjects were instructed to only
pay attention to one stimulus designated by the operator at each
single run; meanwhile auditory noise was presented in both ears.
The stimulus target and noise intensity remain unchanged in each
single run. During the experiment, the subjects were asked to sit
on an armchair in a dim and quiet room. They were not allowed
to move their bodies during the experiment and were asked to
fixate on the center of screen during the ITI periods.

DTF and Flow Gain
Directed transfer function, a method that is based on
multivariable autoregressive model (MVAR), was used to
estimate the brain functional connectivity driven by SSMVEP

responses under different noise levels. The EEG data X can be
described in the following form:

X = [x1 (t) , x2 (t) , . . . xn (t)]T (1)

where t refers to time and n refers to the number of channels.
Through the use of MVAR, EEG data set X can be expressed as
the following autoregressive process (Bartels and Zeki, 2004):

p∑
k=0

A
(
k
)

X
(
t − k

)
= U (t) A (0) = 1 (2)

where p is the model order chosen with the Akaike information
criteria (AIC; Kamiński et al., 2001), i.e., a widely used criteria
for AR model order determination. A

(
k
)

represents the N by N
matrix of model coefficients, and U (t) is a white noise process
with zero mean and non-singular covariance matrix.

In order to investigate the spectral features of the examined
process, Eq 2 is transformed to the frequency domain:

A
(
f
)

X
(
f
)
= U

(
f
)

(3)

where

A
(
f
)
=

p∑
k=0

A
(
k
)

e−j2πf 1tk (4)
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FIGURE 4 | The overall BCI system diagram. During the experiment, the subjects were instructed to only pay attention to one of the stimuli at each single run;
meanwhile auditory noise was presented in both ears. EEG signals were recorded in both occipital and temporal brain areas.

Hence, Eq 3 can be rewritten as

X
(
f
)
= A

(
f
)−1 U

(
f
)
= H

(
f
)

U
(
f
)

(5)

H
(
f
)

is the transfer matrix of the system, in which the
element Hij represents a connection between the jth input and
the ith output of the system (Bassett and Bullmore, 2006).
Using these definitions, the causal influence of the cortical
waveform estimated in the jth channel on that estimated
in the ith channel, i.e., the DTF Hij, can be defined as
(Kaminski and Blinowska, 1991):

θ2
ij
(
f
)
=
∣∣Hij

(
f
)∣∣2 (6)

The normalization of DTF matrix constructed above is as
follows (He et al., 2011):

γ2
ij
(
f
)
=

|Hij(f )|2∑N
m=1|Him(f )|2

(7)

γij
(
f
)

represents the ratio of influence of the cortical
waveform estimated in the jth channel on the cortical waveform

estimated on the ith channel, with respect to the influence of all
estimated cortical waveforms. Normalized DTF values are in the
interval [0,1] when the normalization condition of

N∑
n=1

γ2
in
(
f
)
= 1 (8)

is applied.
The inflow and outflow of the information transmission

process in the brain can be defined as
N∑

j=1
γ2

mj and
N∑

i=1
γ2

im,

respectively. The inflow indicates the magnitude of all the
incoming links from the other channels. This information depicts
each channel as the target of functional connections from the
other channels. On the contrary, the outflow, depicting each
channel as the source, indicates the magnitude of the considered
channel linking out toward the others (Yan and Gao, 2011).

Hence, flow gain value was defined as the ratio of outflow to
inflow. For channel m:

ρm =
∑N

i=1 γ2
im∑N

j=1 γ2
mj

(9)
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The value of ρm represents the contribution that channel m
plays during information transmission process, and a higher
value represents more contribution of information output during
the transmission process.

CCA Method
Canonical correlation analysis is one of the most commonly used
algorithms to measure the maximum correlation between two
sets of multidimensional variables in multi-channel SSVEP-based
BCIs (Lin et al., 2006; Xie et al., 2012). In this case, we used CCA
algorithm to compare actual EEG signals with reference signals
to identify their correlation coefficients. The reference signals are
defined as a set of cosine and sine signals with the fundamental
frequency and harmonics as follows:

Yi =



cos
(
2π · fi · t

)
sin
(
2π · fi · t

)
·

·

·

cos
(
2π ·Hfi · t

)
sin
(
2π ·Hfi · t

)


, t = 1

Fs
, . . . , S

Fs
(10)

where Fs refers to the sampling rate, H is the number of
harmonics, fi is the stimulus frequency, t is the discrete time series
of predefined time-window length, and S is sampling numbers.
The set of EEG signals are defined as follows:

X =


x1(t)
·

·

·

xn(t)

 , t = 1
Fs

, . . . , S
Fs

(11)

where x refers to EEG signals recorded from each single channel
and n refers to the channel number.

Given the multivariable matrices of X and Yi, CCA first
projects them into one dimension by the two weight vectors Wx
and Wyi , and then calculates their correlation coefficients in one-
dimensional space. CCA seeks the weight vectors Wx and Wyi to
maximize their linear correlation ρx,yi :

x = XTWx
yi = YT

i Wyi

ρx,yi =
cov(x,yi)

√
D(x)
√

D(yi)

(12)

where ρx,yi indicates the canonical correlation between X and
Yi, and the stimulus frequency fi (i = 1, . . ., K) can be recognized
based on maximum of ρ fi .

With the corresponding correlation coefficient ρfi , CCA can be
performed on each stimulus frequency fi (i = 1, . . ., K) separately.
Then the target ftarget can be recognized as:

ftarget = max
i=1,,K

ρfi (13)

Here, the stimulus frequency fi (i = 1, . . .,4) is set to the
frequency of each oscillating checkerboard, the number of C
channels was set to 16, and the harmonics of H was set to 1.

wPLI Method
The wPLI method (Vinck et al., 2011) analyzes phase
synchronization between two time series x(t) and y(t). Weighted
phase-lag index uses only the imaginary component of the cross-
spectrum and is immune to both volume conductor effect and
measurement noise. At the same time, wPLI exhibits increased
sensitivity to phase interactions between signals (Vindiola et al.,
2014). The instantaneous phase lag and magnitude is acquired
through cross power density spectrums:

C
(
f
)
=
+∞

∫
−∞

X
(
f
)
· Y
(
t − f

)
· dt (14)

where X
(
f
)

and Y
(
f
)

are finite Fourier transform of signal x (t)
and y (t).

Then wPLI index is calculated as follow:

wPLI =
|E { {C}}|
E {| {C}|}

(15)

where {C} is the imaginary component of the cross-spectrum
C
(
f
)
.

The value of wPLI index is limited between 0 and 1, with a
higher value representing stronger phase synchronization.

Statistical Analyses
The values of each individual subject across the non-noise
and auditory noise integrated BCI conditions were analyzed
using the one-way analysis of variance (ANOVA) statistic. The
level of statistical significance was set to p < 0.05. Bonferroni
correction was employed for multiple comparisons. The results
were expressed as mean± standard deviation (SD).

RESULTS

The Influence of Auditory Noise on Visual
Responses
In order to examine the influence of auditory noise on visual
responses, EEG responses acquired from the temporal-parietal
but not the occipital area were used to analyze the response
amplitude changes under different auditory noise levels. Fast
Fourier transform was performed on the EEG data obtained from
T7, P7, TP7, T8, P8, and TP8 channels in this study. Inter-subject
normalization was attained by dividing amplitude estimates by
the average computed from all amplitude values of both non-
noise and auditory noise integrated conditions, but separately
for each subject (Xie et al., 2017). There is a resonance between
normalized FFT values and the intensities of auditory noise,
i.e., moderate auditory noise enhanced the FFT value while too
much noise weakened it (Figure 5). For target frequency of 7 Hz,
normalized SSMVEP spectral amplitudes significantly increased
by 25.97% at auditory noise level of −10 dBW, when compared
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FIGURE 5 | Comparison of normalized SSMVEP spectral amplitudes with a change of noise levels across subjects. All statistics were assessed using one-way
ANOVA, *p < 0.05 represent significance among non-noise and auditory noise integrated BCI tasks, ***p < 0.001 among non-noise and auditory noise integrated
BCI tasks.

to the non-noise condition and other noise intensities (−10 dBW:
1.1277 ± 0.4977, non-noise condition: 0.8952 ± 0.3974, one-
way ANOVA: F = 2.4005, p = 0.0498). For target frequency
of 9 Hz, normalized SSMVEP spectral amplitudes significantly
increased by 32.30% at noise level of −10 dBW in comparison
to the non-noise condition and other noise intensities (−10
dBW: 1.0265 ± 0.4890, non-noise condition: 0.7759 ± 0.4796,
F = 2.4210, p = 0.0498). For target frequency of 11 Hz, normalized
SSMVEP spectral amplitudes significantly increased by 18.58% at
noise level of−10 dBW in comparison to the non-noise condition
and other noise intensities (−10 dBW: 0.9676 ± 0.4507, non-
noise condition: 0.8160 ± 0.4561, F = 2.8344, p = 0.0248).
For target frequency of 13 Hz, normalized SSMVEP spectral
amplitudes also significantly increased by 40.75% at noise level of
−10 dBW compared with non-noise condition and other noise
intensities (−10 dBW: 1.0632 ± 0.5971, non-noise condition:
0.7554 ± 0.4046, F = 2.5683, p = 0.0387). The average value
for all four frequencies at noise level of −10 dBW is 1.0510
(SD = 0.5090), which is 28.16% higher than that of non-noise
condition and other noise intensities (F = 9.0782, p < 0.001).

Auditory Noise Promoted Visual BCI
Recognition Accuracy
Figure 6 shows the recognition accuracy of all subjects under
visual stimulus frequencies of 7, 9, 11, and 13 Hz. Recognition
accuracy, obtained using the CCA recognition algorithm, is
defined as the number of correct selections divided by total
number of trials. All 16 channels that involve visual and auditory
brain areas were selected for analysis. Considering the fact that
long time window would possibly lead to high accuracy values
even in multi-choice SSVEP BCI (i.e., the ceiling effect), which
would make it difficult to inspect the impact of auditory noise on
visual BCI performance, the 5-s single-trial data was truncated
into 0.25 s and was consequently analyzed. Consistent with

the phenomena observed in the normalized SSMVEP spectra
of visual responses, a resonance is reached between the BCI
accuracy and the noise intensity (Figure 6). Additionally, for
Subject S1, S2, S3, S5, S6, S7, S8, S9, and S10, moderate
auditory noise at the resonance points significantly improved BCI
accuracies (F = 6.3667, p < 0.001 for Subject S1; F = 2.6921,
p = 0.0316 for Subject S2; F = 4.2652, p = 0.0023 for Subject S3;
F = 2.6689, p = 0.0328 for Subject S5; F = 2.8481, p = 0.0249 for
Subject S6; F = 3.2148, p = 0.0132 for Subject S7; F = 3.8410,
p = 0.0046 for Subject S8; F = 3.2224, p = 0.0137 for Subject
S9; F = 2.9871, p = 0.0204 for Subject S10). However, it was
not significant for Subject S4 (F = 2.3666, p = 0.0524). For
grand accuracies across subjects, the accuracy rates of all auditory
noise levels (i.e., −30, −10, 10 dBW as well as 10 dBW) were
significantly higher than that of non-noise condition (F = 9.8923,
p < 0.001). Such results indicate that there exist optimal noise
intensities that can improve the BCI performance using cross-
modal SR effect.

Auditory Noise Optimized the Trade-off
Between Time-Window Length and
Performance in Accuracy
In order to further investigate the effect of auditory noise on the
trade-off between time-window length, performance in accuracy,
and stability of auditory noise integrated BCI paradigm, EEG
data was truncated to different time-window lengths within
the 5-s single-trial duration. As the time window increased
gradually in steps of 0.25 s from 0.75 to 2.5 s, the changes
in mean accuracy rates and corresponding standard deviations
obtained across all target frequencies and all subjects, using the
CCA method, are shown in Figure 7. Brain–computer interface
accuracies showed sustainable improvement with increasing
time-window lengths for both non-noise and auditory noise
integrated BCI tasks. Overall, the accuracies of auditory noise
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FIGURE 6 | Recognition accuracy rates under different auditory noise levels when subjects gazed at a target stimulus of 7 Hz. All statistics were assessed by
one-way ANOVA, *p < 0.05 represent significance among non-noise and auditory noise integrated BCI tasks, **p < 0.01 among non-noise and auditory noise
integrated BCI tasks, ***p < 0.001 among non-noise and auditory noise integrated BCI tasks.

FIGURE 7 | Average recognition accuracies and corresponding standard deviations obtained across all target frequencies, noise levels and subjects by CCA
method with different time-window lengths. (A) Average recognition accuracies with different time-window lengths. (B) Standard deviations of accuracies with
different time-window lengths.

integrated tasks under noise levels of −30, 10, and 30 dBW
were higher than that of non-noise task as time-window length
increases from 1.25 to 5 s (F = 6.5139, p < 0.001). For auditory
noise level of 10 dBW, the average accuracy exceeded 90%
for a time window of 1.25 s, and 95% for a time window of
1.5 s, indicating that the auditory noise integrated paradigm can
achieve a high performance in a short time window (Figure 7A).
Comparisons of standard deviations between non-noise and
auditory noise integrated paradigms are depicted in Figure 7B.
Compared to the non-noise condition, the standard deviations

of accuracies of auditory noise integrated tasks under noise
levels of −30, 10, and 30 dBW drop sharply as time-window
length increases from 1.25 to 5 s (F = 5.6619, p < 0.001). In
particular, for a time-window length of 1.5–2.5 s, the standard
deviations of accuracies of noise level 10 dBW were almost
one-half to one-third of the standard deviations under non-
noise condition. The comparatively lower standard deviations
related to the auditory noise integrated tasks suggest that auditory
noise integrated BCI can achieve a more stable performance in
accuracy compared to the ordinary non-noise paradigm. Taken
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together, the optimal auditory noise level of 10 dBW concurrently
achieved both higher accuracy and lower standard deviations.
This indicates that when compared with non-noise condition,
it took less time to achieve a higher recognition accuracy and
more stable BCI performance when adding moderate auditory
noise to subjects in visual BCI application. Thus, the trade-off
between time-window length and performance in accuracy, a
common problem in BCI, can be optimized through the cross-
modal SR effect.

Illustration of the Functional Connectivity
Under Different Auditory Noise Levels via
Flow Gain Maps
Although the method of analysis in frequency domain such as
FFT can analyze the influence of auditory noise on visual BCI
responses, the functional connection between different regions
caused by auditory noise in the brain, such as connectivity
between occipital lobe and temporal lobe, remains unclear. For
different auditory noise intensities, the eConnectome toolbox
(He et al., 2011), based on the DTF, was applied to analyze the
direct interconnections of different brain regions. Flow gain value
was defined as the ratio of outflow to inflow of information
in a certain channel in order to measure the contribution a
channel plays in the information transmission process. As a
ratio of outflow to inflow, flow gain value integrates input and
output information simultaneously, so that the results shown
by flow gain are more direct and clearer. A higher flow gain
value indicates that the region makes more contributions to other
regions. The topographic distributions of the flow gain values
form the corresponding flow gain map. Figure 8 shows the
averaged flow gain maps of SSMVEP responses under different
auditory noise intensities. The results were an average of all ten
subjects and all four stimulus frequencies. As expected, it can be
seen on the flow gain maps that under the non-noise condition,
the EEG responses were mainly involved in the occipital region.
Then with increments of auditory noise levels, the EEG responses
started to gradually expand outward from the occipital region
to bilateral temporal cortices, which represented a wider region
of activation in the brain. Additionally, when the auditory noise
level reached to 30 dBW, the connectivity between occipital lobe
and temporal lobe lessened. In this study, the flow gain values
between temporal region (T7 and T8 sites) and occipital region
(O1 and O2 sites) were compared. For non-noise condition,
statistical results showed that the flow gain values of temporal
region are comparable with that of occipital region with no
statistical significance (F = 0.0273, p = 0.8694). With the increase
of the noise intensity, the flow gain values of temporal region are
significantly higher than that of occipital region under noise level
of −30 and −10 dBW (F = 4.3677, p = 0.0407 for −30 dBW;
F = 4.1331, p = 0.0463 for −10 dBW). When further increasing
the noise level, no statistical significant flow gain difference can
be found between temporal and occipital regions (F = 2.7200,
p = 0.1042 for 10 dBW; F = 2.1168, p = 0.1507 for 30 dBW). From
the flow gain maps and corresponding statistical analysis, we can
conclude that moderate noise can activate wider area of brain,
while too much inhibits it. This result qualitatively evaluated the

functional connectivity between visual and auditory areas of the
brain under different auditory noise levels.

The Phase Synchronization Between
Temporal Region and Occipital Region
For further quantitative evaluation of neural interactions between
the temporal and occipital region under different noise levels,
we implemented a more sophisticated analysis using wPLI to
quantify the phase synchronization between these two regions.
The wPLI between T7-O1 sites, as well as T8-O2 sites, of
all ten subjects are calculated. The values of wPLI across
all ten subjects for stimulus frequencies of 7, 9, 11, 13 Hz
exhibited an enhancement by moderately increasing the noise
intensity (Figure 9). Statistical analysis indicated that, for
the total results of the four frequencies, wPLIs under −10
and 10 dBW are significantly higher than that under the
non-noise condition (F = 4.3340, p = 0.0017) (Figure 9E).
Additionally, wPLI values increased from 0.1172± 0.0997 (range:
0.0175–0.2169) under non-noise condition to a maximum of
0.1258 ± 0.1130 (range: 0.0128–0.2388) under noise level of
−10 BW condition. Specifically, at stimulus frequency of 7 Hz,
wPLIs significantly increased by 12.0% from 0.1099 ± 0.0901
(range: 0.0198–0.2000) under non-noise condition to a maximum
of 0.1231 ± 0.1187 (range: 0.0044–0.2418) under noise level of
−10 dBW (F = 3.2071, p = 0.0122) (Figure 9A). At stimulus
frequency of 9 Hz, wPLIs significantly increased by 11.9%
from 0.1096 ± 0.0947 (range: 0.0149–0.2043) under non-noise
condition to a maximum of 0.1226 ± 0.0984 (range: 0.0242–
0.2210) under noise level of 10 dBW (F = 5.9517, p < 0.001)
(Figure 9B). At 11 Hz, wPLIs significantly increased by 14.2%
from 0.1147 ± 0.0873 (range: 0.0274–0.2020) under non-noise
condition to a maximum of 0.1310 ± 0.1205 (range: 0.0105–
0.2515) under noise level of −30 dBW (F = 3.4980, p = 0.0074)
(Figure 9C). Lastly, at 13 Hz, wPLIs significantly increased
by 29.3% from 0.1168 ± 0.0905 (range: 0.0263–0.2073) under
non-noise condition to a maximum of 0.1510 ± 0.1313 (range:
0.0197–0.2823) under noise level of −10 dBW (F = 14.85,
p < 0.001) (Figure 9D). All these results indicate that the
neural interaction between visual and auditory brain areas were
quantitatively enhanced by the cross-modal SR effect with the
combination of visual stimulation and auditory noise.

Optimal Noise Activates More Channels
In order to study the resonance effect of auditory noise on
activation of different EEG sites, we calculated BCI accuracy
in different EEG recording channel combinations (Figure 10).
EEG channels were divided into four different combinations. The
first was the single Oz-channel condition, the second was the
O1-Oz-O2 three-channel combination, the third encompassed
the channels from occipital-temporal region (Oz, O1, O2,
PO3, PO4, POz, T7, P7, TP7, T8, P8, TP8) condition and
fourth was the all 16-channel combination. For the non-noise
task, the accuracy rate decreased as more channels became
involved but without any statistical significance. However, for
an auditory noise integrated task, the results were surprisingly
different. Under the noise level of −30 dBW, the accuracy
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FIGURE 8 | The average flow gain maps under different auditory noise levels. (A) Non-noise condition. (B) Noise level of −30 dBW condition. (C) Noise level of
−10 dBW condition. (D) Noise level of 10 dBW condition. (E) Noise level of 30 dBW condition.

rate at a channel combination condition of occipital-temporal
region was higher compared to the single Oz condition
(F = 3.1018, p = 0.0301). Additionally, for noise level of
−10 and 10 dBW conditions, the accuracy rates at channel
combination of occipital-temporal region, as well as all 16-
channel combination, were significantly higher compared to that
of single Oz condition (F = 3.7910, p = 0.0127 and F = 4.6986,
p = 0.0040, respectively). However, for the 30 dBW noise level
condition, while the trend was similar to noise level of−30 dBW
condition, no statistical significance was found (F = 1.9126,
p = 0.1324). These results indicate a small amount of noise
can enhance occipital EEG responses, demonstrated by the
increased accuracy in the channel combination of occipital-
temporal region on noise level of −30 dBW. With further

increments of auditory noise intensity such as −10 and 10 dBW,
such effect spread to a wider region, including the temporal
region, which is demonstrated by the increased accuracy in
occipital-temporal channel combination on noise level of 10
dBW. Furthermore, when the noise level was too high, e.g.,
at 30 dBW, such enhancement effect would attenuate and the
accuracy rate decreased.

DISCUSSION

While noise can often be a harmful component, for dynamic and
non-linear system such as human brain, noise can help improve
system performance, as explained by the SR theory. Several
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FIGURE 9 | Mean and standard deviation of wPLI values under different auditory noise levels, *p < 0.05 represent significance among non-noise and auditory noise
integrated BCI tasks, **p < 0.01 among non-noise and auditory noise integrated BCI tasks, ***p < 0.001 among non-noise and auditory noise integrated BCI tasks.
(A) 7 Hz condition. (B) 9 Hz condition. (C) 11 Hz condition. (D) 13 Hz condition. (E) Total of four frequency condition.

studies that have explored both single-modality SR and cross-
modality SR phenomena, have proven this theory (Srebro and
Malladi, 1999; Xie et al., 2012; Nakamura et al., 2017; Krauss et al.,
2018). In this study, we applied Gaussian white auditory noise
with intensities of −30, −10, 10, and 30 dBW during SSMVEP-
BCI experiment to explore the cross-modal SR effect between
human visual and auditory modality.

In this study, FFT analysis revealed that, when compared
to non-noise conditions, additional auditory noise did raise
peak FFT value at a target frequency, proving that SSMVEP
response could be enhanced using auditory noise. The BCI

accuracy rate obtained using the CCA method further revealed
this phenomenon. As noise intensity moderately increases, the
correct rate of BCI recognition performance first increased and
then decreased. This finding is consistent with previous studies
in single-modality BCIs, which demonstrate that moderate noise
can enhance BCI performance (Srebro and Malladi, 1999; Xie
et al., 2014; Nakamura et al., 2017). In this study, we showed
that the proposed cross-modal BCI leads to a similar conclusion.
However, it should be noted that the participant variability has
a distinct impact on the experimental results. The optimal noise
level varies with different subjects and stimulus frequencies. For
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FIGURE 10 | BCI accuracy rates in different channel combination conditions.
The mark above each curve indicates that the value of corresponding point is
significantly higher than that of the single Oz channel, *p < 0.05 represent
significance among different channel combinations, **p < 0.01 among
different channel combinations.

some subjects, certain noise can cause a sudden drop on peak
FFT value, such as Subject S2 at noise level of −30 dBW, and
Subject S4 and S5 at noise level of 10 dBW. This may be due to
high variability of sensory thresholds and internal noise sources
of humans, leading to different sensitivities of neurons in the
visual cortex (Srebro and Malladi, 1999). To reduce the impact
of participant variability, there will be a larger participant sample
in our future work.

From the perspective of time window, we found that
it took less time to achieve a higher recognition accuracy
when we added moderate auditory noise. In other words,
under additional auditory noise, our brain tends to be more
sensitive to steady-state visual stimuli, and the response time
of the BCI system is shortened. This is especially true in
the time-window length of 0.75–1.25 s, in which optimal
auditory noise benefits much higher accuracy rate compared
to non-noise condition. Interestingly, such phenomenon is in
accordance with Harper’s finding (Harper, 1979) in 1979, which
is much earlier than the first time the SR theory was defined
(Benzi et al., 1981). Here, the accuracy rate was obtained
through CCA method, which is one of the most commonly
used algorithms in SSVEP-BCI recognition. Furthermore, we
believe that, with more powerful algorithms, better performance
can be achieved in future work. Since accuracy rate of the
proposed BCI paradigm has to be improved to a larger
extent, and the response speed can also be accelerated via the
usage of the proposed cross-modal modality, this proposed
BCI paradigm can help potentially build high speed SSVEP-
BCI systems.

In this analysis, we also drew flow gain maps to further
investigate the role that auditory noise plays in the interaction
between different brain regions. Under noise levels of −30,
−10, and 10 dBW, EEG responses may spread to more
brain regions compared to the non-noise condition. However,
for the noise level of 30 dBW, this effect may attenuate.
Considering the results of the FFT response and accuracy rate
obtained by CCA method, such results can be anticipated.

For single-modal SR, such as in the pure visual or auditory
sensory pathway, SR effect can be explained as additive noise
that turns neurons from subthreshold to superthreshold (Xie
et al., 2014; Tanaka et al., 2015). However, in the current
study, the underlying mechanism is more complicated since
auditory noise and visual stimulation belong to two different
sensory pathways.

The wPLI results are helpful when it comes to understanding
the underlying mechanism. As the noise intensity increases, the
wPLI values first increase and then decrease, just as observed
in FFT value and BCI accuracy. Although the absolute value
is not high, statistical analysis indicates that this conclusion
is robust. On one hand, low absolute value indicates that the
normal neural interaction between auditory and visual regions
is relatively weak. On the other hand, the relationship between
wPLI values and auditory noise levels implies that the auditory
noise enhances synchronization between temporal and occipital
regions, and such enhancement is consistent with enhancement
of brain responses and BCI performance, as characterized by
the SR effect. At stimulus frequencies of 11 and 13 Hz, the BCI
performance elevation under optimal noise condition, compared
to the non-noise condition, could be as high as 24 and 43%,
respectively. Furthermore, from the analysis of different channel
combinations, we can see how such effect changes with increases
in noise level. When applied to a noise intensity of −30 dBW,
SR effect concentrates on the visual region and combination of
other channels even weakens the efficiency of target recognition.
At noise level of −10 and 10 dBW tasks, there is no significant
accuracy differences between O1-Oz-O2 combination condition
and the single Oz-channel condition. Once the auditory region
related EEG channels were included, the BCI accuracy rate
significantly increased.

Based on these findings, we can extrapolate that cross-modal
SR may involve integration of different sensory processing
regions. In fact, in sensory processing, cross-modal interactions
are quite common and many studies have further confirmed
this phenomenon. For example, it has been proven that the
dorsal cochlear nucleus, the earliest processing stage in the
auditory pathway, receives not only input from the cochlea,
but also from the somatosensory system that process tactile
information (Ryugo et al., 2003; Shore and Zhou, 2006;
Dehmel et al., 2012; Zeng et al., 2012). Furthermore, Huang
et al. (2017) found that electro-tactile stimulation applied
to the index finger significantly improves speech perception
thresholds. As for audio-visual integration, it is well-known
that sometimes hearing can be misled by vision input, which
is well-known as the McGurk effect (McGurk and MacDonald,
1976). Additionally, Caclin et al. (2011) found that visual
perception can be enhanced by auditory stimulation, and
even subthreshold visual stimuli may be perceived through
spatially converging audio-visual inputs (Bolognini et al., 2005).
For these cross-modal improvement phenomena, Krauss et al.
(2018) speculated that SR in one sensory modality driven
by input from another modality may be a general principle,
namely multisensory integration, which would cause SR-like
cross-modal enhancement. Our findings in this study support
this speculation.
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CONCLUSION

In this study, we propose an auditory-noise-enhanced visual
SSMVEP-BCI paradigm with application of cross-modal SR
mechanism. The results indicate that moderate auditory
noise can increase BCI recognition accuracy and reduce
response time, which provides a novel method to improve
BCI performance. The combination of flow gain maps and
wPLI values both qualitatively and quantitatively revealed that
the existence of auditory noise may spread EEG responses
to a wider brain area. Furthermore, this phenomenon could
be caused by enhancing neural interaction between auditory
and visual pathways via the cross-modal auditory-noise-
induced SR mechanism. Such findings reveal the principle
of cross-modal SR of the brain and provide a potentially
novel approach for designing more effective audiovisual
hybrid BCI systems.
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Hand function improvement in stroke survivors in the chronic stage usually plateaus

by 6 months. Brain-computer interface (BCI)-guided robot-assisted training has been

shown to be effective for facilitating upper-limb motor function recovery in chronic

stroke. However, the underlying neuroplasticity change is not well understood. This

study aimed to investigate the whole-brain neuroplasticity changes after 20-session

BCI-guided robot hand training, and whether the changes could be maintained

at the 6-month follow-up. Therefore, the clinical improvement and the neurological

changes before, immediately after, and 6 months after training were explored in

14 chronic stroke subjects. The upper-limb motor function was assessed by Action

Research Arm Test (ARAT) and Fugl-Meyer Assessment for Upper-Limb (FMA), and

the neurological changes were assessed using resting-state functional magnetic

resonance imaging. Repeated-measure ANOVAs indicated that long-term motor

improvement was found by both FMA (F[2,26] = 6.367, p = 0.006) and ARAT

(F[2,26] = 7.230, p = 0.003). Seed-based functional connectivity analysis exhibited

that significantly modulated FC was observed between ipsilesional motor regions

(primary motor cortex and supplementary motor area) and contralesional areas

(supplementary motor area, premotor cortex, and superior parietal lobule), and the

effects were sustained after 6 months. The fALFF analysis showed that local neuronal
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activities significantly increased in central, frontal and parietal regions, and the effects

were also sustained after 6 months. Consistent results in FC and fALFF analyses

demonstrated the increase of neural activities in sensorimotor and fronto-parietal regions,

which were highly involved in the BCI-guided training.

Clinical Trial Registration: This study has been registered at ClinicalTrials.gov with

clinical trial registration number NCT02323061.

Keywords: stroke, rehabilatation robotics, functional magnet resonance imaging, brain-computer interface,

fractional amplitude low-frequency fluctuations

INTRODUCTION

Stroke survivors require high demand in rehabilitation and long-
term care services, especially for upper extremity motor function
(Norouzi-Gheidari et al., 2012). Fortunately, the existence of
neuroplasticity, which characterizes the potential of modifying
the size of cortical receptive field or motor output modules in
response to altered synaptic input (Seitz et al., 1995), makes the
development of various stroke rehabilitation methods possible.

Brain-computer interface (BCI)-guided training therapy
has been promoted as a post-stroke motor rehabilitation
training tool. It is designed to enhance motor recovery by
modulating sensorimotor activity through repetitive practice
with corresponding feedback or reward, thereby modifying the
neuronal activity (Biasiucci et al., 2018; Remsik et al., 2019).
In practice, BCI has been developed to translate brain activities
into control signals of corresponding external execution devices
such as robots, orthosis, and functional electrical stimulation
(FES) (Soekadar et al., 2015; Cho et al., 2019; Mrachacz-
Kersting et al., 2019; Mane et al., 2020). Therefore, combining
the BCI system with a unilateral robotic hand technology
makes it possible for stroke subjects to control the robotic
hand with his/her brain signals, in order to restore the paretic
hand function by promoting neuroplasticity and facilitating
motor relearning (Frolov et al., 2017; Carino-Escobar et al.,
2019). Clinical evidence showed that BCI-guided training elicits
clinically significant and long-lasting motor recovery in chronic
stroke survivors (Biasiucci et al., 2018; Ramos-Murguialday et al.,
2019). A meta-analysis also suggested that BCI technology could
be a more effective intervention for post-stroke upper-limb
rehabilitation than other conventional therapies (Cervera et al.,
2018). Despite the promising findings achieved, the underlying
neurophysiological mechanisms induced by BCI-guided training
for chronic stroke have not been thoroughly investigated. Besides,
most existing BCI-guided robot-assist training studies adopted
proximal joint upper limb training strategy (e.g., reaching and
retrieving), such as in (Várkuti et al., 2012; Ramos-Murguialday
et al., 2013), while our study applied robot hand on the distal
joint of the upper-limb. Recently, studies comparing distal and
proximal robot-assisted training therapies showed that distal
training exhibited better performance than proximal training in
the whole upper-limb (Hsieh et al., 2018; Qian et al., 2019).

The functional magnetic resonance imaging (fMRI) could
be an essential tool to understand the effects of rehabilitation
therapies on neuroplasticity. It is one of the most commonly

used neuroimaging tools for assessing the cortical modulations
in stroke (Kimberley et al., 2008). Resting-state fMRI (rs-fMRI)
measures the blood oxygen level-dependent (BOLD) signal at
the resting-state, which maps the functional organization of
the brain (Van Essen et al., 2012). Functional connectivity
(FC) calculates the temporal dependency of neuronal activation
patterns in anatomically separated brain regions, and it is the
most commonly used index in rs-fMRI studies (Van Den Heuvel
and Hulshoff Pol, 2010). FC gives valuable information in the
network-wide effects of stroke by providing great insight into
network dysfunction and functional reorganization (Carter et al.,
2012). It is suitable to investigate multiple distributed networks
that were damaged by stroke and how connectivity patterns
may be reorganized after recovery (Grefkes and Fink, 2014). In
addition to provide a way to quantify neural activities across
the whole brain, the fractional amplitude of low-frequency
fluctuations (fALFF) reflects a different aspect of the BOLD
signal, measuring the power of low-frequency fluctuations (Zuo
et al., 2010). Lower frequency fluctuations allow us to study the
amplitude of regional neuronal activity, which is an indication
of local metabolic changes associated with the BOLD signal
across the whole brain (Chen et al., 2015). fALFF analysis has
been used to study post-stroke depression (Egorova et al., 2017)
and motor recovery (Wang et al., 2020). However, few studies
have combined FC and fALFF in investigating neuroplasticity
changes induced by motor rehabilitation after stroke. These two
measurements might provide complementary information as
well as further validation for each other, which would make the
evaluationmore comprehensive. A comprehensive exploration in
the whole-brain level is needed to fill the gap.

The hemispheric changes of resting-state functional
connectivity and activation pattern shift during motor task
after BCI-guided robot hand training have been demonstrated
by our previous studies (Khan et al., 2020; Yuan et al., 2020). In
this study, we aim at exploring the whole-brain neuroplasticity
changes using rs-fMRI. Motor imagery studies have consistently
disclosed activity in cortical and subcortical motor areas, which
substantially overlap the neural substrates of motor execution
(Hanakawa et al., 2008). Besides, motor imagery also involves
some distinctive regions in the frontal and parietal regions
which are not involved in motor execution (Hanakawa et al.,
2008; Sharma et al., 2009). Therefore, we hypothesize that
BCI-guided training could boost beneficial functional activity
dependent plasticity to attain clinically important outcomes,
through the contingency between suitable motor-related cortical
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activity and the afferent feedback. We believe that there should
be functional reorganization within the sensorimotor and
frontoparietal regions involved in the BCI-guided upper-limb
training, which might account for the clinical improvement in
the upper-limb function. We also expect the FC and the fALFF
to show complementary results and to validate each other, since
they represent different aspects of the fMRI data. Furthermore,
we also tried to explore the neuroplasticity changes in a 6-month
follow-up session to investigate whether the neuroplasticity
changes could be maintained.

MATERIALS AND METHODS

Subjects
Fourteen chronic stroke survivors (13 males, mean age = 54
± 8 years) with right (n = 9) or left (n = 5) hemisphere
impairment were recruited from the local community. The
inclusion criteria were (1) first-ever stroke, (2) onset of stroke
diagnose more than 6 months, (3) a single unilateral brain lesion,
(4) sufficient cognition and comprehensive ability to understand
and perform corresponding tasks assessed byMontreal Cognitive
Assessment (MoCA) with a score of >21, (5) moderate to severe
motor dysfunctions for the paretic upper extremity (Fugl-Meyer
Assessment for upper-extremity score < 47) (Woodbury et al.,
2013) and (6) no additional rehabilitation therapies applied to
the subject during the intervention. Subjects with (1) aphasia,
neglect, and apraxia, history of alcohol, drug abuse, or epilepsy,
(2) severe hand spasticity, (3) hand deformity and wound, (4)
bilateral infracts, uncontrolled medical problems, and (5) serious
cognitive deficits were excluded. The study was approved by
the Joint Chinese University of Hong Kong-New Territories
East Cluster Clinical Research Ethics Committee and all subjects
signed written consent before any experiments started. This study
has been registered at https://clinicaltrials.gov with clinical trial
registration number NCT02323061.

Fugl-Meyer Assessment for upper-extremity (FMA) (Fugl-
Meyer et al., 1975) and Action Research Arm Test (ARAT) (Lyle,
1981) were used to assess the motor function of the paretic upper
limbs for all stroke subjects before (Pre), immediately after (Post)
and 6 months after the intervention (Post6month) respectively.
ARAT measures the affected upper limb’s ability to reach, grasp,
manipulate, and release objects which are regularly encountered
during activities of daily living, with a maximum score of 57.
FMAmeasures the motor function of the whole upper limb, with
a maximum score of 66. Both assessments are widely used in
upper-extremity rehabilitation.

Training System and Intervention Protocols
During the training, subjects were asked to imagine the action
of either grasping or releasing a cup following the instruction
(generated by Psychophysics Toolbox 3.0, http://psychtoolbox.
org/) displayed on the monitor. The task of motor imagery
of opening and grasping the paretic hand is frequently used
in our daily life, however, it is very challenging for stroke
survivors. Through this task, the alpha suppression is detectable
in the motor regions, according to previous studies (Neuper
et al., 2009). This task is also widely adopted in other

motor imagery studies (Neuper et al., 2009; Pichiorri et al.,
2015). Each subject’s electroencephalography (EEG) signals were
acquired using a portable signal acquisition system (g.LADYbird,
g.Tec Medical Engineering, GmbH, Austria) with 16 electrodes
covering the motor-related regions in both ipsilesional and
contralesional hemispheres (located at C1, C2, C3, C4, C5,
C6, Cz, FC1, FC2, FC3, FC4, FCz, CP1, CP2, CP3, and CP4
according to the international 10–20 system). Impedances of
electrodes were kept below 5 k�. EEG signals were referenced
to the unilateral earlobe, the ground at Fpz, and sampled
at 256Hz. To remove artifacts and power line noise, a 2–
60Hz bandpass filter and 48–52Hz notch filer were utilized
in the real-time. All the channels were used to generate the
dynamic potential topography of the whole brain for the
trainer to inspect the state of each subject. An exoskeleton
robot hand (Tong et al., 2013) was used to assist the paretic
hand to grasp and open. From the fully extended position
to the fully flexed position, the fingers assembly provided
55 degrees and 65 degrees range of motion (ROM) for the
metacarpophalangeal (MCP) and proximal interphalangeal (PIP)
finger joints, respectively. The robot hand assisted the subjects to
open and grasp their paretic hand, which was very challenging by
themselves. The biofeedback was easily sensible and functionally
meaningful, resulting in providing rich sensory inputs via
the natural afferent pathways in the real-time. We kept the
robot hand’s power assistance consistent throughout the 20-
session training.

The sequence of the training paradigm is illustrated in
Figure 1A. During each trial, the subject was asked to relax for
2 s followed by a white cross for 2 s to remind them to get ready.
A text cue of “hand grasp” or “hand open” was then displayed
for 2 s to instruct the subject to imagine the corresponding
action as if performed by his/her affected hand. After that, a
video clip with a duration of 6 s showing either the action of
grasping or releasing a cup was displayed simultaneously for
guidance. The trigger to the robot hand was then sent based
on the α suppression (8–13Hz) of the EEG signal during the
motor imagery. In the following 3 s, the robot hand assisted the
subject in completing the grasping/opening task. Afterwards, the
α suppression score as a feedback was displayed on the screen
for 2 s to motivate the subject to achieve a higher score in the
subsequent trials. Finally, a 2 s rest was given to the subject
before the next trial started. The text cue of “hand grasp” and
“hand open” appeared alternately. To compute the α suppression
score, the EEG signal from either the C3 or C4 channel
was chosen, according to the lesion side, and transformed to
the frequency domain through fast Fourier transform with a
Hanning window. The mean power was calculated in the α band
(8–13Hz) and compared with the baseline before motor imagery.
Specifically, the α suppression score (αS) was calculated as follows
(Ono et al., 2014):

αS = −
PMI − Prest

Prest
× 100%

where PMI represented the mean power of α band during motor
imagery and Prest stood for the mean α power during resting
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FIGURE 1 | The intervention. (A) The sequence of the training paradigm. (B) The average success rate of all training trials across 20 sessions for all subjects. Error

bars stand for standard errors. The dark black line stands for the chance level. (C) The average α suppression score of all training trials across 20 sessions for all

subjects. Error bars stand for standard errors.

state. In our study, we predefined that the robot hand would
apply a mechanical force to assist the subject in completing
the hand opening or grasping tasks if the suppression score
αS exceeded 20% based on the previous study (Perry and
Bentin, 2009). The success rate was defined as the percentage
of correctly detected trials at each session. All subjects received
a 20-session BCI robot hand training with an intensity of 3–5
sessions per week and completed the whole process within 5–
7 weeks. During each training session, the subject was required
to perform 100 repetitive hand opening/grasping tasks and
the intermittent breaks were given at every 10 repetitions to
avoid fatigue.

Data Acquisition
MRI scans were acquired for all the 14 subjects at Pre and
Post sessions. Ten subjects had a Post6month session scan,
while four subjects did not attend the Post6month session. A
3T Philips MR scanner (Achieva TX, Philips Medical System,
Best, Netherlands) with an 8-channel head coil was used to
acquire high resolution T1-weighted anatomical images (TR/TE
= 7.47/3.45ms, flip angle = 8, 308 slices, voxel size = 0.6 ×

1.042 × 1.042 mm3) using a T1-TFE sequence (ultrafast spoiled
gradient echo pulse sequence), and BOLD fMRI images (TR/TE
= 2,000/30ms, flip angle = 70◦, 37 slices/volume, voxel size =

2.8 × 2.8 × 3.5 mm3) using a FEEPI sequence (gradient-echo
echo-planar-imaging sequence). The sequences were displayed
using EPrime 2.0 (Psychology Software Tools, PA USA). During
the acquisition of rs-fMRI data, subjects were presented with a
white cross in a black background and instructed to rest while
focusing on the fixation cross. One rs-fMRI block lasted for
8 min.

Assessment Score and Training
Performance Analysis
Repeated measure analysis of variance (ANOVA) at time level
(Pre, Post, and Post6month) were applied to examine whether
the FMA and ARAT scores improved after the intervention.
Paired t-tests were used as post-hoc tests to examine significant
changes in different combinations of three time-points for the
FMA and ARAT scores. Normality of the data was checked
using Kolmogorov-Smirnov tests and the results showed the
data were normally distributed. Bonferroni corrections were
used to adjust for multiple comparisons. Statistical analyses were
performed using SPSS 25.0 (IBM SPSS Statistics, NY, US) with the
significance level set at corrected p< 0.05.Moreover, theminimal
clinically important difference (MCID) was also calculated to
reflect the clinical significance by setting minimal changes in
clinical assessments. The MCID of FMA is 4.25 (Page et al.,
2012) and the MCID of ARAT is 5.7 in chronic stroke (Van
Der Lee et al., 2001). Mean success rate and suppression score
of training trials across 20 sessions for all the subjects were
calculated, respectively.

fMRI Analysis Preprocessing
The rs-fMRI data were preprocessed using DPARSF toolbox. The
first 10 volumes were discarded to assure the remaining volumes
of fMRI data were at magnetization steady state. The remaining
volumes were corrected with slice timing and realigned for head
motion correction. Nuisance variables were then regressed out,
including white matter, cerebrospinal fluid (CSF), global mean
signal, and Friston 24 head motion parameters (Friston et al.,
1996). To further control for head motion, the scrubbing process
was performed for the volumes with framewise displacement
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(FD) value exceeding 0.3 (Power et al., 2012). If over 25% of all
the volumes exceed the FD threshold, the data for this subject
would be discarded, and no subject was discarded in the rs-
fMRI analysis. Then the functional dataset was aligned to the
anatomical dataset. Detrending and temporal band-pass filtering
(0.01–0.1Hz) (Zuo et al., 2010) were performed to remove higher
frequency physiological noise and lower frequency scanner drift.
Subsequently, the functional images were spatially normalized to
the Montreal Neurological Institute (MNI) template, resliced to
2× 2× 2mm3 voxels, and smoothed with a Gaussian kernel with
a full-width at half-maximum (FWHM) of 6mm. To perform
group statistical analysis later, subjects with left-hemispheric
lesions were flipped along the midsagittal plane using MRIcron
(www.mccauslandcenter.sc.edu/mricro/mricron), so that the
lesions of all subjects were in the right hemisphere. For the
preprocessing steps for the fALFF analysis, the bandpass filter was
not applied.

Seed-Based FC Analysis
We did a seed-based whole-brain analysis with the seed at
the ipsilesional primary motor cortex (iM1) and supplementary
motor area (iSMA), and the seed locations were (38,−22, 56) and
(8, −8, 57) in MNI space, respectively. The seeds were defined
as spherical balls with a radius of 5mm in MNI standard space.
The average time course of the BOLD signals within the seeds
was used to calculate the FC with every other voxel in the brain,
producing maps of FC with the seeds. A paired t-test was carried
out between each pair of sessions for all the seed-based FC maps.
Multiple comparisons were corrected using Gaussian random
field theory at the cluster level (minimum z > 2.7; cluster-wise
significance: p < 0.05, corrected) (Chen et al., 2018). All the
analyses for seed-based FC and paired t-test were carried out in
DPARSF toolbox (Yan et al., 2016).

fALFF Analysis
The fALFF values were computed on preprocessed data using the
DPARSF software (Yan et al., 2016). DPARSF has in-built fast
Fourier transform functions to convert time series data to the
frequency domain and calculate the power spectrum. Briefly, on
a voxel-by-voxel basis, the time course was converted into the
frequency domain using a Fast Fourier Transform, the square
root of the power spectrum was computed, and the average of
the amplitudes in the range of 0.01–0.1Hz was then calculated
to obtain the ALFF (Zou et al., 2008; Zuo et al., 2010). Dividing
each voxel’s ALFF value by the amplitudes of the entire detectable
frequency range (0–0.55Hz) yields the fALFF (Zou et al., 2008).
All analyses were performed at the whole-brain level. A paired t-
test was carried out between each pair of sessions for results from
fALFF analysis.

RESULTS

Assessment Scores and Training
Performance
Subject demographic and assessment scores are shown inTable 1.
The repeated measure ANOVA on FMA scores with time (Pre,
Post, and Post6month) as within-subject factor indicated that

a significant effect of time (F[2,26] = 6.367, p = 0.006) was
observed. Post-hoc tests indicated that there were significant
increases in FMA scores between Pre and Post (p = 0.017,
Bonferroni corrected) as well as between Pre and Post6month
(p = 0.034, Bonferroni corrected). No significant change was
found between Post and Post6month (p = 1.00, Bonferroni
corrected). The repeated measure ANOVA on ARAT scores
with time (Pre, Post, and Post6month) as within-subject factor
indicated that a significant effect of time (F[2,26] = 7.230, p =

0.003) was observed. Post-hoc tests indicated that there were
significant increases in ARAT scores between Pre and Post (p
= 0.015, Bonferroni corrected), marginally significant between
Pre and Post6month (p = 0.055, Bonferroni corrected). No
significant change was found between Post and Post6month (p
= 0.879, Bonferroni corrected). The result indicated that the
BCI robot hand training was able to promote motor recovery
with a long-term effect. For FMA scores, 43% of the subjects
achieved the MCID at Post and 36% of the subjects achieved
the MCID at Post6month. For ARAT scores, 36% of the subjects
achieved the MCID at Post and 29% of the subjects achieved the
MCID at Post6month. For suppression score at the ipsilesional
motor area (Figure 1C), a slightly increasing trend from the
beginning to the end of all the sessions could be observed,
with the average of 28.19% for the first five sessions to 28.85%
for the last five sessions. For the success rate of training trials
(Figure 1B), an increasing trend was observed, with the average
of 73.01% for the first five sessions to 76.78% for the last five
sessions. The chance level was 58% (Müller-Putz et al., 2008).
The results on the performances of motor imagery tasks showed
that the subjects were improving with the increased number of
training sessions.

Seed-Based FC Analysis
Seed-based whole-brain FC was explored between each pair
of sessions with the seed set at iM1 and iSMA. The FC
map in the Pre session with the iM1 seed was shown in the
left panel of Figure 2A. Significant increased FC was found
between iM1, and the contralesional premotor cortex as well
as part of SMA (Figure 2A), when comparing Post and Pre
sessions; significant increased FC was found between iM1 and
contralesional SMA (Figure 2A) when comparing Post6month
and Pre sessions. The FC map in the Pre session with the
iSMA seed was shown in the left panel of Figure 2B. Significant
increased FC was found between iSMA with bilateral superior
parietal lobe (SPL) when comparing Post and Post6month to Pre
session (Figure 2B).

fALFF Analysis
Significantly increased fALFF was observed in the ipsilesional
precentral area and superior parietal lobule (Figure 3A) when
comparing Post and Pre sessions; significantly increased
fALFF was observed in the contralesional precentral area and
ipsilesional superior frontal area (Figure 3B) when comparing
Post6month and Pre sessions; significantly increased fALFF was
observed in bilateral SMA and paracentral lobule (Figure 3C)
when comparing Post6month and Post sessions.
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TABLE 1 | Demographic and assessment scores. Fourteen chronic stroke subjects participated in this study.

ARAT (max. score: 57) FMA (max. score: 66)

Subjects Age

range

Gender Lesion Locations Stroke Onset

Time (years)

Stroke

Type

Pre Post Post

6month

Pre Post Post

6month

1# 45–49 M R MFG, SFG, precentral

supramarginal, SMA

1 I 3 21 19 19 34 28

2 65–69 M L insula, putamen, IFG, temporal pole 8 H 10 21 15 22 27 32

3 65–69 M R insula, ITG, IOG, putamen 1 H 8 15 26 13 16 27

4 60–64 M R insula, putamen, IFG, rolandic

operculum

3 I 4 6 8 16 14 18

5 45–49 M R ITG, MTG, STG, MOG, angular,

supramarginal

0.7 H 16 17 17 17 25 25

6 60–64 M L PLIC, putamen,

insula,postcentral,SFG

11 I 15 14 11 22 24 24

7 55–59 M R insula, IFG, rolandic operculum 6 I 12 21 20 13 23 20

8 40–44 M R insula, rolandic operculum, IFG,

STG, putamen, temporal pole

5 H 9 14 10 15 17 16

9# 50–54 F L insula, rolandic operculum,

putamen

3 H 19 23 22 34 34 37

10 40–44 M R insula, MTG, STG, temporal pole,

putamen, rolandic operculum

3 H 11 14 13 17 20 20

11# 55–59 M L insula, IFG, putamen 5 H 10 12 8 28 33 24

12# 50–54 M L putamen, caudate nucleus 1 I 15 13 16 24 22 22

13 55–59 M R putamen,temporal pole, IFG, insula,

rolandic operculum

7 I 14 19 17 20 25 21

14 45–49 M R insula, putamen 1 H 12 33 18 34 37 35

Mean ±

Std

11.3 ±

4.3

17.3

± 6.2*

15.7 ±

5.1

21.0

± 6.7

25.1

± 7.0*

25.0 ±

6.1*

#Subjects that did not have Post6month MRI scan.

*Significant increase compared with the Pre (p < 0.05).

ARAT, Action Research Arm Test; F, female; FMA, Fugel-Meyer Assessment for upper limb; H, hemorrhage stroke; I, ischemic stroke; IFG, Inferior frontal gyrus; IOG, Inferior occipital

gyrus; ITG, Inferior temporal gyrus; L, left; M, male; MFG, Middle frontal gyrus; MOG, Middle occipital gyrus; MTG, Middle temporal gyrus; PLIC, Posterior limb of the internal capsule;

R, right; SFG, superior frontal gyrus; SMA, Supplementary motor area; STG, Superior temporal gyrus.

DISCUSSION

This study explored the effects of BCI-guided robot hand training
on the paretic hand in chronic stroke survivors by providing
repetitive exercise with integrated sensorimotor feedback. The
subjects showed upper-limb motor function improvement, as
reflected by the FMA and the ARAT scores, after the 20-
session training and these improvements were sustained 6
months after the intervention. Moreover, this study also revealed
the neuroplasticity changes after the intervention. The FC
between iM1 and contralesional premotor cortex and SMA
significantly increased immediately after the 20-session training;
The FC between iSMA and bilateral SPL also significantly
increased immediately after the 20-session training. Besides, the
fALFF analysis showed that local neuronal activities significantly
increased in central, frontal, and parietal regions. Our study
demonstrated the modulated neuroplasticity changes introduced
by the BCI-guided robot hand training immediately and 6
months after the intervention.

Stroke survivors experience spontaneous recovery within
the first few months after stroke onset and they then become
clinically stable with hand weakness (Tombari et al., 2004;

Kwakkel et al., 2006). BCI-guided robot therapy has shown the
potential to restore motor function and to improve rehabilitation
outcomes after stroke or spinal cord injury (Frolov et al.,
2017). The feedback facilitates the appraisal of performance
by enforcing the sensory aspect in the sensorimotor loop and
thereby restoring the action-perception coupling (Daly and
Wolpaw, 2008; Van Dokkum et al., 2015). The feedback in this
study is the hand opening and grasping movement assisted
by the robot hand, which is easily sensible and functionally
meaningful. It provides rich sensory inputs through the natural
afferent pathways in real-time. Studies have reported that
BCI-guided training helps promote upper-limb motor function
more than conventional therapies, as well as induces functional
reorganization in the brain (Ramos-Murguialday et al., 2013;
Biasiucci et al., 2018). According to these studies, no significant
improvement was found in upper-limb FMA scores in the
groups who received random functional electrical stimulation
(FES) (Biasiucci et al., 2018) or received random robotic
orthosis feedback (Ramos-Murguialday et al., 2013). Our results
further validate the potential of BCI-guided intervention
in promoting hand function recovery for persons with
chronic stroke.
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FIGURE 2 | Seed-based whole-brain analysis results. (A) The left panel showed the FC map in the Pre session when the seed was set at iM1. Voxels with z > 2.7

were shown. The iM1 seed was denoted as a green sphere in the figure. The color-coded area illustrates the significant clusters found in Post (contralesional premotor

area) and Post6month (contralesional SMA). The white numbers beside the images represent the coordinate in MNI space. (B) The left panel showed the FC map in

the Pre session when the seed was set at iSMA. Voxels with z > 2.7 were shown. The iSMA seed was denoted as a green sphere in the figure. The color-coded area

illustrates the significant clusters found in Post (bilateral SPL) and Post6month (bilateral SPL). The white numbers beside the images represent the coordinate in MNI

space.

In our study, the seed-based whole-brain analysis showed that
the FC between iM1 and contralesional premotor cortex and
SMA was significantly increased after the 20-session training.
Studies have suggested that premotor cortex and M1 play a
crucial role during motor-imagery as well as during motor
execution tasks (Bajaj et al., 2015). The crucial role of the SMA
in motor recovery has already been demonstrated in previous
fMRI studies (Loubinoux et al., 2003; Tombari et al., 2004).
A longitudinal fMRI study indicated that the connectivity of
the iM1 with the contralesional regions including SMA at
the early stage of stroke was positively correlated with motor
improvement (Park et al., 2011). A concurrent TMS-fMRI
study indicated that the contralesional premotor area might
support the residual motor function following stroke and have
an increasing influence on the survived sensorimotor cortex in
the ipsilesional hemisphere on subjects with more impairment
(Bestmann et al., 2010), which may be the potential reason
for the increased FC between the iM1 and premotor area after
training. Besides, the FC between iSMA and bilateral SPL also
increased, according to the current study. During both motor
imagery and motor execution, SPL is activated (Guillot et al.,
2012), although not exactly overlapping with each other. TheMI-
based BCI training in our study decoded the sensorimotor EEG
signals to trigger the robotic hand, offering rich afferent neural
feedback. The whole training process involved these modulated
brain regions and hence, promoting motor relearning during
the training.

Investigating different dimensions of resting-state BOLD
activity is important, as differences may lie not only in the
patterns of connectivity but also the power of local neuronal
activity. Apart from the FC, we also investigate the changes in

fALFF. While FC measures the temporal correlation between
the activations at two given regions, the fALFF measures the
power of low-frequency fluctuations, which allows us to study the
amplitude of regional neuronal activity. As different frequency
bands originate from different neural sources, they could relate
to different aspects of brain processing.With the oscillation in the
range that is most closely related to gray matter signal, it shows
the most extensive change after stroke (Zhu et al., 2015; Wang
et al., 2020). A longitudinal study on stroke subjects showed
that stroke survivors exhibited lower amplitude of oscillations
in comparison to healthy controls in the subacute stage, and
those same subjects showed a recovery of the oscillations,
reaching near equivalence to the healthy controls (La et al.,
2016). Another recent study on chronic stroke subjects suggested
that motor imagery training plus conventional rehabilitation
therapy-induced increased fALFF in the ipsilesional inferior
parietal lobule, which is positively correlated with upper-limb
motor function improvement (Wang et al., 2020). We found that
the fALFF significantly increased in the ipsilesional precentral
area and superior parietal lobule (SPL) immediately after the
intervention, moreover, increases in the contralesional precentral
area and ipsilesional superior frontal area were observed 6
months after the intervention. Interestingly, the significantly
modulated regions in the fALFF analysis were quite consistent
with the results from the FC analysis, which further validated
each other. Other studies have also reported that brain regions
in the fronto-parietal network were highly related to motor
imagery BCI training (Cincotti et al., 2012), and correlated with
the performance of MI-BCI (Zhang et al., 2016). Pichiorri et al.
indicated that the BCI-supported MI training group showed
more significantly increased connections over the MI-only group
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FIGURE 3 | fALFF analyses results. (A) Significant increased clusters were observed in the ipsilesional precentral area and contralesional superior parietal lobule when

comparing Post and Pre sessions. (B) Significantly increased clusters were observed in the contralesional precentral area and ipsilesional superior frontal area when

comparing Post6month and Pre sessions. (C) Significantly increased clusters were observed in bilateral SMA and paracentral lobule when comparing Post6month

and Post sessions.

between ipsilesional motor area and contralesional frontal and
parietal areas in the beta band of resting-state EEG data, which
were speculated as related to training effects (Pichiorri et al.,
2015). In our study, significant modulated neural activities
were observed not only in central regions but also in frontal
and parietal regions, which were highly specific to BCI-guided
robot hand training. These findings might suggest that the
intervention couldmodulate the brain activities not limited to the
sensorimotor network, but also in other regions associated with
motor imagery and robot hand training.

This pilot study has shown the potential of the intervention
for promoting hand function recovery and its long-term effect
in chronic stroke survivors. fMRI might be able to provide
insights into neural mechanisms underlying the recovery of
motor function and reorganization of brain networks. Our
findings provide some insights into the effects on neuroplasticity
changes induced by the BCI-guided upper-limb training. Several
limitations need to be stated in this study. First of all, the current
study lacks a control condition. In order to differentiate the
effects brought by volitional BCI based training and pure robot
hand training, a control condition is needed. Second, the sample

size is relatively small whichmight limit the generalization power.
More subjects should be recruited to validate and extend the
findings of this study.
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Electroencephalogram (EEG) is one of the common modalities of monitoring the

mental activities. Owing to the non-invasive availability of this system, its applicability

has seen remarkable developments beyond medical use-cases. One such use

case is brain-computer interfaces (BCI). Such systems require the usage of high

resolution-based multi-channel EEG devices so that the data collection spans multiple

locations of the brain like the occipital, frontal, temporal, and so on. This results in huge

data (with high sampling rates) and with multiple EEG channels with inherent artifacts.

Several challenges exist in analyzing data of this nature, for instance, selecting the

optimal number of EEG channels or deciding what best features to rely on for achieving

better performance. The selection of these variables is complicated and requires a lot

of domain knowledge and non-invasive EEG monitoring, which is not feasible always.

Hence, optimization serves to be an easy to access tool in deriving such parameters.

Considerable efforts in formulating these issues as an optimization problem have been

laid. As a result, various multi-objective and constrained optimization functions have

been developed in BCI that has achieved reliable outcomes in device control like

neuro-prosthetic arms, application control, gaming, and so on. This paper makes an

attempt to study the usage of optimization techniques in formulating the issues in BCI.

The outcomes, challenges, and major observations of these approaches are discussed

in detail.

Keywords: electroencephalogram, brain-computer interface, optimization, evolutionary algorithms, review of EEG

1. INTRODUCTION

Brain computer interfaces (BCI) are an important application of electrocephalogram (EEG) signals
(Navalyal and Gavas, 2014). The usage of EEG signals in such an application other thanmedical use
cases is due to the availability of affordable EEG devices. Also, the effectiveness of the algorithms
used in the conventional BCI pipelines play a major role in this regard. In general, BCI system’s
pipeline consists of the following blocks: pre-processing of the EEG data, event-related potential
(ERP) analysis, extraction of features, and classification of data (Sinha et al., 2015b), and so on.
The effectiveness of these blocks can be measured as a function of time complexity, computational
resources required, and the accuracy of the algorithms. With respect to enhancing the accuracy of
the algorithms, various attempts have been laid in making them robust by finding optimal tuning
parameters for them. This is however, not a straight forward task as designing of effective objective
functions and the choice of optimization problems is a very challenging task. Hence, there is a rich
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source of EEG and BCI literature that mainly focuses on using
optimization techniques and their enhanced variants in the BCI
pipelines. This paper aims at studying the usage of optimization
from the view point of the application in BCI, i.e., with respect to
the standard BCI pipelines.

Optimization schemes play a major role in most of the
engineering problems where direct understanding of the system
is not feasible. In case of EEG analysis, it is difficult to ascertain
the exact locations of the neuronal firings owing to volume
conduction. Invasive EEG can aid in this regard but cannot
be applied in day-to-day scenarios for all the participants. In
such cases, the domain knowledge can be of great help but in
the lack of this knowledge for novel BCI systems, arriving at
proper tuning parameters of BCI is very difficult. The system
needs to be tested over a large set of parameters available by
repeating the experiments for multiple times, which again is not
a practical solution. This has motivated the BCI community to
adopt optimization schemes in their pipelines.

The usage of optimization techniques in BCI applications
requires the proper understanding of the objectives and the
domain knowledge plays a vital role here. For instance, in the
EEG channel selection problem, the domain knowledge would
make the analyst to select the channels which are relevant to
the task type. However, it can be seen that optimization tools
would recommend some other channels but would enhance
the accuracy of the BCI much more than what the domain
knowledge-based channel selection might have done. But this
set of channels might not be consistent across participants.
Hence, it is necessary to have well-defined objective functions
while using the optimization algorithms. This study summarizes
the BCI applications that have used optimization and also
the parameters of BCI are reviewed in detail. This would
aid the reader in appreciating the essence of optimization in
BCI-based applications.

The rest of the paper is organized as follows. Section 2 of the
paper reviews the existing literature that uses optimization in
various BCI pipelines. Section 3 discusses the challenges involved
in adopting optimization schemes in BCI. Section 4 summarizes
the paper and also the possible medical use cases of optimization
in EEG analysis. The paper concludes in section 5 with pointers
to the guidelines in using optimization techniques in BCI.

2. FORMULATION OF OPTIMIZATION
PROBLEMS IN BCI

Optimization is a technique that is performed by comparing
different solutions to find an optimal solution. Such algorithms
aim to maximize or minimize an error function (usually
termed as an objective function). The objective function is a
representative of the model’s tuning parameters. Optimization
has seen tremendous applications in various branches of science
and engineering. Optimization techniques helps to arrive at
optimal parameters in the lack of domain knowledge or when
it is not feasible to test the system directly. For instance, in
case of EEG feature selection for a novel stimulus, the physical

interpretations of most of the non-linear, time/frequency features
is not possible with respect to the task.

The underlying mechanisms of converging toward an optimal
solution in case of optimization is very well correlated to
various naturally occurring phenomena. Hence, over the past
few decades, researches have been motivated from nature
in designing such algorithms. Such algorithms are termed
as evolutionary algorithms which is a form of stochastic
optimization. Most widely used evolutionary algorithms are
Particles Swarm Optimization (PSO), Genetic Algorithm (GA),
Differential evolution (DE), Ant Colony Optimization (ACO),
Artificial Bee Colony (ABC), and so on. We noticed that most
of the BCI-based applications have made use of evolutionary
algorithms in deriving the optimal tuning parameters for various
BCI pipelines.

The following section reviews the formulation of optimization
problems around building efficient BCI pipelines. It is to be
noted that during this review, we came across various datasets
like motor imagery (MI), emotion recognition, visual evoked
potential (VEP), sleep apnea detection, mental, or cognitive
tasks, ERP analysis, and so on. We also found that the task of
EEG classification is mostly carried out using standard machine
learning classifiers (having inbuilt optimization mechanisms)
and hence, the explicit usage of optimization (by the researchers)
is missing in these cases. Hence, we have excluded the EEG
classification block in this review.

2.1. Optimization of EEG Pre-processing
Noisy signals occurring due to multiple factors during EEG data
collection contaminates the signal. The noises inherent in EEG
can be classified as follows (Zhang et al., 2016):

(i) Technical artifacts

1. Electrode related artifacts: The noise related to electrodes can
be due to improper placement, electrode slippage, varying
impedance, poor condition of the sensors, and so on. Usually
the wet electrodes, if not cleaned properly, gets rusted, and
deteriorates the signal.

2. Sweating: The sweating on the scalp can vary the impedance
of the electrodes and lead to unwanted artifacts in the signal.

3. Power line interference: strong signals resulting from A/C
supplies contaminates the signal which basically adds a sharp
peak at around 50/60 Hz.

(ii) Physiological Artifacts

1. Electrooculargram (EOG) artifacts: These are mainly caused
due to eye blinks or eye movements which adds up as a high
amplitude signal upon the EEG signal. This artifact mainly
affects the frontal channels due to their vicinity from the eyes
(Sinha et al., 2015a). Most of these artifacts falls below 4–5 Hz
range (Gavas et al., 2020).

2. Electrocardiogram (ECG) artifacts: This mostly occur on the
electrodes placed near to the blood vessels, thereby resulting
in an unwanted signal centered around 1.2 Hz due to the
contraction and the expansion of the vessels.

3. Electromyographic (EMG) artifacts: These artifacts are a
result of various muscle movements from face and neck and
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get accumulated on all the EEG channels. The frequency
bandwidth of these signals is very large and mostly falls in the
frequencies above 30 Hz.

The process of removing these noises from EEG is referred to
as the pre-processing stage. Various studies to remove these
noise exists, however, the number of studies using optimization
schemes in this process is limited. This can be attributed to the
nature of solving the EEG pre-processing problem.We pick some
of the studies which have used optimization algorithms in this
direction and the summary is presented in Table 1. The table
summarizes the task type i.e., the type of artifact removal and the
optimization algorithm used for that task.

The objective functions involved in optimization based EEG
noise cleaning can be any of the following:

• Minimizing the error between the desired and actual EEG
(Pereira et al., 2016).

• For obtaining optimal tuning parameter weights for the filtering
algorithms used. These weights in turn are derived using the
objective of minimizing the error as discussed above. For
instance, Alyasseri et al. (2017) used optimization to obtain
optimal wavelet parameters for signal denoising. The studies
in Priyadharsini and Rajan (2014) and Suja Priyadharsini
et al. (2016) showed the usage of optimization algorithms
to enhance the capabilities of adaptive network-based fuzzy
inference systems in denoising the EEG signals. Similarly,
the authors in Quazi and Kahalekar (2017) used Firefly +
Levenberg Marquardt optimization algorithms for tuning the
neural networks to adaptively filter the artifacts from EEG.

• Minimizing the mutual information (MI) between the actual
EEG and the corrupted EEG. The works of Gupta and
Palaniappan (2011) showed the reduction in power spectral
density of eye blink artifacts using genetic algorithms to
minimize the MI between the corrupted and the desired
EEG signal.

2.2. Optimization of ERP Extraction
Event related potential detection in EEG is an important part in
the analysis of various mental activities. ERP is a special case of
EEG analysis which is indicative of the direct effects of motor,
sensory, or cognitive functions. The estimation of ERP is done
by averaging the measurements over an ensemble of trials. This
approach requires many trials in order to suppress the underlying
noise in EEG. Filtering can solve the issue of noise removal to
some extent but the filter parameters needs to be tuned based
on the statistical properties of the signal. If the parameters are
not tuned properly, it may then result in suppressing the ERPs
in the EEG. Hence, optimization plays a very important role in
this case. Adaptive filtering serves to be beneficial in this regard
as noise cancelers (Ahirwal et al., 2012, 2013, 2014). The authors
in Ahirwal et al. (2014) show that through ABC optimization, the
performance of adaptive filtering can be enhanced as compared
to the conventional LMS and RLS filtering. The objective function
defined in Ahirwal et al. (2014) is the minimization of the mean
squared error by selecting optimal weights in the adaptive filter.

2.3. Optimizing the Problem of Feature
Selection
Feature vectors usually comprise of high dimensions and
this makes the feature selection an important tool for the
classification problems. The idea of feature selection can be
categorized into three types (Liu et al., 2010), namely,

• Filter method: deals with selection of subset of features
by analysing the data characteristics without involving the
learning algorithm in the process. As a result, the advantage
of these methods is that they do not have any bias
toward the learning models. Examples of filter methods are
Relief, Correlation-based Feature Selection, Consistency, C4.5,
minimum redundancy–maximum relevance (mRmR) (Ramos
et al., 2016) and so on.

• Wrapper method: selects the subset of features based on the
performance of the features on the learning algorithm during
the evaluation step. Examples involve using optimization
techniques like GA with the objective of maximizing the cross
validation accuracy (Bhattacharyya et al., 2014; Pal et al., 2014;
Xu et al., 2014; Ramos et al., 2016; Baig et al., 2017; Liu
et al., 2017; Ramos and Vellasco, 2018; Ghosh et al., 2019),
classification error (Wang and Veluvolu, 2017), unsupervised
classification (Kimovski et al., 2015), similarity score and
clustering validity index (Bhattacharyya et al., 2013; Rakshit
et al., 2013), or classifier parsimony Cîmpanu et al. (2017).

• Embedded method: feature selection is incorporated as a part
of the model’s training process. The relevance of the features
is found by evaluating their utility for optimizing the learning
algorithm’s objective function. The authors in Yin et al. (2017)
used the maximization of geometric distance (margin between
the targets) in the learning algorithm.

The design of filter methods is simple, i.e., they are either based
on forward selection or backward elimination and feature testing
criterion which is based on a certain criterion. Hence, they are
easy to understand and to implement and thus they are fast in
execution. Since, the wrapper and embedded methods are linked
to the learning process, their accuracy is higher in comparison
to the filter method. Embedded methods are basically a fusion
of filter and wrapper methods. Wrappers typically use cross-
validation kind of mechanisms for accuracy computation that
prevents overfitting. This makes them slower and leads to lack
of generality. However, most of the works are found to use
the wrapper approach as it is easier to formulate the objective
function as a wrapper when compared to a filter and also the
accuracy provided by wrappers are higher. The works of Ramos
et al. (2016) showed that wrapper methods are better over filters.
These feature selection algorithms either return a subset of
features or the weights that signify the relevance of the features.
Hence, based on the output, the feature selection algorithms can
be classified into subset selection or feature weighting.

The feature extraction stage of EEG analysis deals with
extracting frequency and time domain features which can be used
as the compact representation of the EEG data. This is then fed as
an input to various machine learning-based classification blocks.
The features extracted have high dimensionality (Kimovski et al.,
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TABLE 1 | Summary of optimization schemes in EEG artifact removal studies.

References Task EEG data Optimization algorithm

Ahirwal et al. (2012) Adaptive filtering Simulated EEG and real VEP PSO

Ahirwal et al. (2013) Adaptive noise cancellation Simulated VEP, real VEP, real sensorimotor

evoked potential

PSO, ABC and Cuckoo search

Ahirwal et al. (2014) Adaptive noise cancellation MI Bounded Range ABC

Priyadharsini and Rajan (2014) ECG component removal from EEG Simulated data Variants of memetic algorithm and GA

Wang et al. (2010) Trial pruning by removing artifacts MI GA

Gupta and Palaniappan (2011) Eye blink artifact removal BCI MI Variant of GA

Alyasseri et al. (2017) Power line and EMG noise removal Various mental tasks Hybrid β-Hill climbing

Suja Priyadharsini et al. (2016) EOG and ECG artifacts removal Simulated data Artificial immune system algorithm

Pereira et al. (2016) EOG and EMG artifacts removal Simulated data Variant of GA

Quazi and Kahalekar (2017) EMG, EOG and ECG artifacts removal EEG added with sleep apnea ECG and EOG Firefly + Levenberg Marquardt algorithm

TABLE 2 | Summary of optimization in EEG-based feature selection studies.

References Algorithm Task Accuracy Number of classes

Rakshit et al. (2013) Artificial bee colony MI 64.29 2

Kimovski et al. (2015) Parallel multi-objective optimization MI 100 2, 3

Xu et al. (2014) Particle swarm optimization MI 78 2

Bhattacharyya et al. (2014) DE MI 99.41, 87.99 2

Pal et al. (2014) Bacterial foraging algorithm MI 80.29 2

Bhattacharyya et al. (2013) DE variant MI 94 3

Yin et al. (2017) Transfer recursive feature elimination Emotion classification 75+ 2

Cîmpanu et al. (2017) Single and multi-objective Genetic algorithm Memory load detection <14% (Error rate) 2

Liu et al. (2017) Firefly algorithm and learning automata MI 70.2 4

Eslahi et al. (2019) Genetic algorithm MI 84 (max) 4

Fernandez-Fraga et al. (2018) Ant colony optimization SSVEP BCI 82.76 –

Wang and Veluvolu (2017) Evolutionary algorithm MI 83 4

Ramos et al. (2016) Genetic algorithm MI 93.71 2

Baig et al. (2017) Differential evolution MI 95 3

Ghosh et al. (2019) Grey wolf optimization Silent speech classification 65 5

Ramos and Vellasco (2018) Quantum- inspired evolutionary algorithm MI 96.86 2

Selim et al. (2018) hybrid bio-inspired algorithms MI 78.55, 86.6,85 4,3,4

2015) that can increase the processing time and can result in the
inclusion of outliers as features because of poor signal-to-noise
ratio of EEG (Tacchino et al., 2020). These factors culminates
in reduced accuracy of the BCI system. Hence, selection of
appropriate subset of features is a vital step in the analysis of
EEG data. In this stage, the features with enhanced discriminative
power are used to carry out the further steps. It is to be noted that
most of the times, the conventional feature selection algorithms
aim to select features with high variances. This at times does
not improve the overall accuracy of the system. The major
reason could be the presence of redundant features. However, this
problem is not a straight-forward task to solve. Many standard
feature selection tools are available (Giorgio, 2020) to solve these
issues. In the interest of the current paper’s scope, the ones
using optimization techniques in case of EEG are summarized
in Table 2.

2.4. Optimization of EEG Channel Selection
For any EEG-based application, the selection of channels that is
physiologically significant to the system in hand, is of paramount
importance. The EEG data acquired is multichannel in nature.
It is advisable to work on a subset of the channels instead
of considering the whole. This is because, setting up the EEG
system on a participant with many channels is cumbersome
and time consuming. It also leads to the inconvenience of the
participant which might reflect in lack of attention or distraction
during the actual data collection. Apart from these subject-
specific issues, this also adds to the increased computational
complexity of the overall EEG application. Channel reduction is
of great interest in designing portable EEG devices for detecting
the onset of epileptic seizures hours before they prevail in order
to provide early interventions. Such portable systems would
need algorithms which are fast and the hardware smaller in
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size. This makes the usage of channel selection a important
research problem in the EEG community. The main objectives
of EEG channel selection are: (i) Reduction in dimensionality
and providing faster processing, (ii) improving the performance
of the model created, and (iii) identification and localization
of the brain regions that are responsible for the given activity.
Many efforts have been laid toward this direction of achieving an
optimal subset of channels. It was realized in the EEG research
community that these optimal channel sets can be achieved more
easily using optimization tools and this benefited more than
considering the EEG channels that are known to be responsible
for the task. For instance, the brain region corresponding to
motor functions is located in the central region. Hence, it is
more appealing to consider the central EEG channels for motor
imagery-based analysis. However, due to volume conduction, the
locations in the vicinity of central channels would also carry
some information regarding the motor imagery. The overlap in
information among these channels depends on several factors
like the subjective nature of the skull shape, the type, and the
sensitivity of the EEG used, and so on. Hence, instead of directly
selecting the central channels for motor tasks, the selection
of channels has to be personalized which can be done using
optimization tools. Table 3 surveys some of the most relevant
works in this regard. The accuracy obtained for each of these
approaches are also provided. Since, each of these studies used
different EEG devices/datasets and subjects, we also report the
improvement in accuracy over the state-of-the-art techniques
(provided in brackets).

The optimal solution to EEG channel selection refers to
a subset of channels that has highest relevance for the given
stimulus/experiment. Innovative ways of looking at this problem
can be formulated as a multi-objective function as follows,

• Number of channels: an obvious expectation is to have the
minimum number of selected channels.

• Region of interest (ROI)-based: obtaining the candidate
channels in the vicinity of the regions in brain that are known
to produce the neurophysiological activations

• Classification accuracy-based: searching for channels that
contributes in obtaining high accuracy of task classification.
This can also be related to the case of having minimum error
rate for the test set data.

It is important to note that for channel reduction/selection
problems, the reduction of raw data plays a vital role in reducing
the time and space consumption of the system. Downsampling
allows the reduction of computational cost while retaining the
vital information in the time-series data. As most relevant EEG
activity lies in the range of 0.1–50 Hz, downsampling the signal
from higher frequencies to 100 Hz is usually carried out in
most of the studies like (Hasan and Gan, 2009; Hasan et al.,
2010; He et al., 2013; Gonzalez et al., 2014; Shenoy and Vinod,
2014; Kee et al., 2015; Shan et al., 2015; Zhang and Wei, 2019;
Arican and Polat, 2020). Though downsampling seems to be a
straightforward approach, some studies reduced the data size
by first extracting the features (as features are a compact way
of looking at the data) and then the features were subjected
to principal component analysis (PCA) to further reduce the

dimension. The studies mentioned in Table 3 that used this
approach are Ghaemi et al. (2017), Hasan and Gan (2009), Jin
et al. (2008), and Kim et al. (2013). Few other studies like the
ones in Hasan and Gan (2009), Hasan et al. (2010), used both
the techniques to reduce the data size. The works by Yang et al.
(2012) used time and frequency based feature analysis to reduce
the dimension of the data.

2.5. EEG Mode Decomposition and
Optimization
Mode decomposition of time series signals refers to decomposing
a given signal into several realizations which differs in terms of
morphological characteristics like frequency response from each
other. The summation of all these realizations reproduces the
original signal. The realizations are termed as intrinsic mode
functions (IMFs). EEG signal mode decomposition becomes
important to reconstruct or separate out various neuronal
activities (Soler et al., 2020), source localization (Khosropanah
et al., 2018), artifact removal (Wang et al., 2015), detection of
seizures (Bajaj and Pachori, 2011), and so on.

Various studies have used signal decomposition algorithms
like empirical mode decomposition (EMD), ensemble EMD
(EEMD), variational mode decomposition (VMD), and so on
to decompose physiological signals. Out of these, the VMD
algorithm is based on solving an optimization function which in
turn makes it robust against the existing mode decomposition
algorithms (Gavas and et al., 2018). VMD basically looks at the
problem of signal decomposition as an optimization problem
by decomposing a 1-dimensional time series into K number
of modes uk(t) as, x(t) =

∑K
k=1 uk(t), with the criterion that

the signal gets reconstructed ideally fully by summing up the
K number of modes while the sum of bandwidths of all modes
is kept minimum (Dragomiretskiy and Zosso, 2013). Every
mode is compact along the mean frequency wk. The method
solves a constrained variational function to find optimal wk and
uk given by,

min
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∑

k

uk = x (1)

The reader is requested to get the detailed explanation of the
VMD algorithm from Dragomiretskiy and Zosso (2013). The
number of IMFs extracted from the decomposing algorithms is
mainly application dependent and is often restricted to a certain
number by empirical analysis of the central frequencies of the
IMFs.We summarize few of the applications wherein VMD or its
variants were used (Table 4). Note the number of IMFs extracted
in each of the case is different.
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TABLE 3 | Summary of optimization in EEG-based channel selection studies.

References Algorithm Task Accuracy

(improvement)

Numberof

classes

Datareduction

Jin et al. (2008) Discreet particle swarm Directional

moving

77.54 (7.38) 4 Yes

Hasan and Gan (2009) Multi-objective PSO MI 57 (NA) 3 Yes

Hasan et al. (2010) Multi-objective evolutionary

algorithm based on

decomposition

MI 58 (NA) 3 Yes

Handiru and Prasad (2016) Iterative multi-objective

optimization

MI 80 (7) 2 No

Yang et al. (2012) Genetic neural mathematic

method

MI 80, 86, 82 (NA) 2 Yes

Yang et al. (2013) Time-spatial optimization MI 78 (NA) 2 No

Shan et al. (2015) A novel algorithm based on

Relief

MI 85.2 (31.7), 94.1

(8), 83.2 (19.7)

2 and 4 Yes

Arican and Polat (2020) Binary particle swarm

optimization

Speller

systems

90, 89.8(NA) 4 Yes

Lv and Liu (2008) Common spatial pattern +

Particle swarm optimization

MI 83,92(NA) 2 Yes

Kim et al. (2013) Binary particle swarm

optimization and GA

MI 78 (mean) and 67

(mean)

2 Yes

Kee et al. (2015) Multi-objective genetic

algorithm

P300 and MI 85+(5.25–8.60) 2 Yes

He et al. (2013) Rayleigh coefficient

maximization based genetic

algorithm

MI 80+(NA) 2 Yes

Joseph and Govindaraju

(2019)

Glow swarm optimization MI 92.59 (6.31, 5.48) 2 No

Zhang and Wei (2019) PSO MI 91.94 2 Yes

Ghaemi et al. (2017) Improved binary gravitation

search

MI 76.24 (mean) 80

(max)

4 Yes

Shenoy and Vinod (2014) Iterative optimization

technique

MI 90.77 and 81.21 3 and 4 Yes

Arvaneh et al. (2011) Sparse common spatial

pattern

MI 80+(10) 2 and 2 No

Gonzalez et al. (2014) Multi-objective hybrid

real-binary particle swarm

optimization

Auditory ERP 95 (6) 2 Yes

Jin et al. (2019) Regularized common spatial

pattern

MI 81.6 (25.2) 87.4

(10.9) 91.9 (6.8)

2,3,2 Yes

3. CHALLENGES INVOLVED IN
OPTIMIZATION OF BCI PIPELINES

The main issue faced in any EEG-based artifact removal
studies, particularly when it comes to the removal of other
physiological effects like ECG, EOG from EEG is the absence
of exact ground truth (Gavas et al., 2020). Usage of simulated
data becomes a straightforward approach of validating the
designed noise removal algorithms in such cases. Figure 1

shows a typical approach of generating an EEG signal
with an EOG artifact (Pereira et al., 2016). The simulated
data can provide the exact start and stop events of the
physiological artifact like blink and also the exact morphology
of the artifact embedded onto the raw signal. The test

cases involving the simulated data performs better with the
designed algorithms but the results degrade when it comes
to real data. In such cases, the usage of conventional
signal processing tools or even optimization-based data driven
methods perform somewhat similar, as setting up the proper
basis functions is difficult in such cases. However, mode
decomposition algorithms are seen to be a better alternatives
in such cases (Gavas et al., 2020) involving simulated or real
EEG data.

Owing to the higher sampling rates and the increased
number of channels in EEG, the amount of processing time
and resources required for the EEG data is huge. For instance,
decomposing a multi-channel EEG data with a high sampling
rate using the MVMD (Rehman and Aftab, 2019) can be very
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TABLE 4 | Summary of papers using VMD in EEG signal analysis.

References Task No. of EEG channels VMD type No. of IMFs

Rehman and Aftab (2019) Separation of alpha rhythms 4 Multivariate VMD 5

Gavas et al. (2020) Blink artifact removal 4 and 57 Multivariate VMD 10

Zhang et al. (2017) Feature extraction for Seizure detection Single Univariate VMD 15

Taran and Bajaj (2018) Identification of focal EEG Single Clustering-VMD (univariate) 2

Bhattacharjee et al. (2018) Sleep Apnea detection Single Univariate VMD 5

Dora and Biswal (2020a) ECG artifact correction from EEG Single modified VMD (univariate) 12

Taran and Bajaj (2019) Emotion recognition 10 out of 24 used Univariate VMD –

Dora and Biswal (2020b) Ocular artifact suppression 5 Univariate VMD 12

Saini et al. (2019) Ocular artifact removal Single Extended Univariate VMD 2 and 3

Saini et al. (2020) Muscle artifact supression Single Univariate VMD 2

Yücelbaş et al. (2018) Detection of K-complexes 2 Univariate VMD –

FIGURE 1 | Sample embedding of EEG signal with EOG artifact (adapted from Pereira et al., 2016).

slow, computationally very complex and requires huge amount
of memory.

To visualize, this, we ran the MATLAB implementation of the
MVMD algorithm on a 4 GB RAM, core i5 processor machine

by simulating a 4-channel EEG data of various small duration.
The execution time is as seen in Figure 2. It is to be noted that
the execution time increases drastically as the signal duration
and the number of IMFs increases. The number of channels also
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FIGURE 2 | Execution time of MVMD algorithm for different signal duration and different number of IMFs.

plays a major role in determining the run time of the algorithm.
For higher number of channels and signal duration, the required
system memory and time is very large and cannot run on low
configuration devices. Same is the case when dealing with such
data using evolutionary algorithms which require atleast a good
number of iterations (usually more than 100) to converge to a
good solution. Also, the fear of converging lately or getting stuck
in local minima can always be a major set back in using such
optimization schemes in real time BCI.

EEG signal mode decomposition is seen to be beneficial
for various applications in BCI. However, as seen in Table 4,
the number of IMFs extracted is not constant across studies
even for the same BCI task. This inconsistency is commonly
addressed as arising due to the nature of the application
but the actual fact lies in the nature or the stochasticity of
the EEG signal. If EEG signals were deterministic, then the
frequency components across the same IMFs across different
EEG data would be similar. This would have helped building
new applications that make use of mode decomposition without
investing much efforts on experimenting on the optimal number
of IMF generation.

Consider the problem of EEG channel selection for MI tasks.
By domain knowledge it is known that the central channels
like C2, CZ, and C3 are well-suited for motor imagery related
activities. However, due to the effect of volume conduction, the
idea of relying on only the central channels is questionable.
Owing to the subjective aspects like the skull size and the
nature of EEG sensor, the channels picking up the motor
imagery data faithfully, might vary from person to person.
In such cases, the usage of personalized channel selection
using optimization schemes seems to be an attractive idea
(Shireen Fathima, 2019). The major challenge foreseen in this
case is the design of the objective function to select the optimal
channels. Even if this problem is tackled, the next major

issue lies in the selection of optimization algorithm and also
initializing the tuning parameters of the algorithm. Researchers
have mainly used meta-heuristic algorithms in such cases. As
EEG signals are highly stochastic and non-linear in nature,
different optimization algorithms can lead to the selection of
different EEG channels, for the same participant and for the
same task.

Even the consistency of channel selection across participants
for a given optimization algorithm is not possible. For instance,
we used the channel selection method (Khushaba et al., 2011) on
a motor imagery BCI as mentioned in Shireen Fathima (2019) on
a 22-channel EEG data. The resulting histogram of the selected
channels across all the participants for the same task is given in
Figure 3. The histogram is generated by considering the optimal
channel ids for all the participants taken together. It is to be noted
that in the figure, the channels are not consistent across all the
participants and the generalization of channels is not possible.
If same channels were selected as optimal channels, then the
histogram would have centered over a small subset of channels.
On similar grounds, the results change drastically when different
optimization schemes are used for the said purpose. This can
really make the task of arriving at a subset of generalized optimal
channels to be used during real time BCI challenging, as no
algorithm till date yields the same set of optimal channels for the
same task and for the same participant.

Solving multi-objective functions of channel selection like
least number of channels and least error rate leads to pareto
solutions (as shown in Figure 4) and selecting a pareto optimal
solution depends on the researcher or on the application.
Figure 4 shows the pareto solutions of error rates at the expense
of number of channels (Kee et al., 2015). As the number of
channels increase, there is a decrease in error rate. In such cases,
it is tricky to settle down to a certain count of channels with a
satisfactorily lower error rate.
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FIGURE 3 | Histogram of selected EEG channels for a 22-channel MI task across participants.

FIGURE 4 | Pareto optimal solutions for a channel selection problem in MI task (adapted from Kee et al., 2015).

4. DISCUSSIONS

Usage of optimization has recently gained wide popularity in
EEG analysis, mainly in the field of feature selection and channel
selection. This can be attributed to the fact that these two
tasks are straightforward, majorly relying on the objective of
maximizing accuracy of classification tasks. Though channel
selection and feature extraction are means of selecting a subset
of the data, however, they both vary considerably in nature.

Channel selection deals with selecting a subset of optimal
channels whereas, feature selection deals with selection of a
subset of optimal features. A common practice is to apply
feature selection on the subset of optimal selected channels.
The selected optimal channels can give insights on the source
location of the task being performed. However, the selected
features can help understand the signal specific characteristics
of the underlying effect. Another common practice that we
observed in this field is the usage of evolutionary algorithms.
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TABLE 5 | Summary of optimization strategies employed in EEG analysis.

Task Objective functions Advantages Disadvantages

Noise cleaning
(1) Minimize error

Output signal

resembles

desired signal

Knowledge

of target

signal

characteristics

is a must

(2) Obtain tuning

parameters

(3) Minimize mutual

information

ERP extraction Minimize error in

adaptive filters

Data driven ERP components

are prone to get

distorted

Feature

selection

(1) Filter method Reduces overall

system time

complexity

Non repeatable

set of features

get selected

(2) Wrapper method
Enhances

accuracy

Only

subject-specific

selection
(3) Embedded/Hybrid

method

Channel

selection

(1) Minimum number

of channels

Can lead to

usage of low

cost devices

Highly

subjective

(2) Region of

interest-based

Enhances

accuracy
Additional data

reduction method

required
(3) Classification

accuracy-based

Reduced system

complexity

Mode

decomposition

(1) All modes sum

up to form the

original signal

with least error

Decomposition

based on

frequency

information

Increased time

complexity

(2) Sum of bandwidths

of all modes

is minimum

Generally, when non-linear optimization schemes are deployed
for EEG based problems, the objective function yields multiple
local solutions in cases involving high dimensional search
space and for lower values of signal-to-noise ratios. This
has attracted the researchers to use meta-heuristic algorithms
which work very well for such scenarios. Hence, it is
obvious to find a rich source of EEG optimization literature
involving meta-heuristic algorithms which is also evident in
this review.

Selection of proper objective functions is crucial to any
optimization-based problem solving. In case of EEG, this
becomes more challenging owing to the non-stationary nature of
the signal but at the same time, it comes with added advantages.
Table 5 summarizes the objective functions, its advantages and
disadvantages in different EEG pipelines. It is evident that
optimization when used in any given EEG pipeline comes
with its own pros and cons. However, their widespread usage
in current times shows the benefits that it has over their
conventional counterparts.

As EEG is a very powerful diagnostic tool for detecting
abnormal electrical discharges in the brain, its usage in the field

of medicine is inevitable. Optimization has been used in various
ways in such EEG-based diagnosis process and hence, this section
aims at throwing light on such applications.

One of the early implementations of genetic algorithm in
epileptic EEG is found in Marchesi et al. (1997). The authors
utilized genetic algorithm to detect the 3 Hz spikes and slow
wave complexes in the EEG. The objective function involved
the following

f = fitness cases− hits (2)

where fitness cases corresponds to the total number of training
examples and hits refer to the count of the matches. The
stopping is thus when the count of the training cases equals
to that of the hits or when the maximum number of
generations are reached. An overall accuracy of 85% is seen with
this setup.

The works in Wen and Zhang (2017) showed the usage
of optimization in the frequency domain bin selection and in
overall subset of feature selection in the analysis of epileptic
EEG. A variant of genetic algorithm is used to first search
for the optimal frequency ranges as features and then the
features thus obtained are fused with non linear EEG features.
The objective function thus aims at minimizing the linear
discriminant analysis-based coefficients of the frequency bin
summations done over an assortment of bins and traversed
using certain constants called the slack variables. For the feature
selection process, the objective function aims at minimizing
the following,

minimize(FPR− (1− TPR)) (3)

where FPR is the false positive
rate and TPR is the true
positive rate.

The detection of epileptic seizures is attempted using grid
search optimization as in Wang et al. (2019). The usage of
optimization in this study was to tune the parameters of
the random forest algorithm as it mainly generates a large
number of hyperparameters and it is difficult to empirically
arrive at the optimal values of these parameters. The targeted
hyperparameters were number of decision trees, minimum
sample leaf, maximum features, number of split features,
and number of estimators. The objective function was to
maximize the classification accuracy based on K-fold cross-
validation technique. On similar grounds the work in Gomathi
et al. (2020) worked toward detecting brain abnormalities
arising due to brain stroke, brain tumor, birth defects, genetic
mutation, and brain injuries using evolutionary gravitational
neocognitron based optimization technique to obtain tuned
parameters in a typical neural network classifier. Another
attempt in optimizing a standard neural network classifier using
genetic algorithm for detecting Alzheimer’s disease is in Kim
et al. (2005). This study made use of a single channel EEG
and used rest and auditory odd ball stimulus for generating
event related potentials. Standard EEG features were derived
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and the objective function confined to the NN architecture
is used,

f =
1

N ×m

N
∑

i=1

m
∑

j=1

(NOij − DOij)
2 (4)

where NO is the network output and DO is the desired
output. N is the number of training patterns and m
is the number of output nodes of the network. The
work in Singh et al. (2019) showed the optimization of
parameters in an ensemble of classifier algorithms for
the sake of classifying epileptic EEG. Thus, optimization
has crucial role to play in the field of medical
EEG analysis.

5. CONCLUSIONS

This paper summarizes the various optimization approaches in
BCI pipelines. It is to be noted that evolutionary optimization
techniques have been widely used in the domain of EEG signal
analysis. The widely used evolutionary algorithms were GA,
ABC, DE, PSO, and so on. It is to be noted that these algorithms
were further enhanced so as to adapt to the use-cases in
BCI. The usage of evolutionary algorithms for optimizing the
parameters in BCI exceeds that of linear programming-based
conventional tools of optimization. The reason being that the
latter assumes the starting point of the search to be well-defined,
whereas in case of evolutionary schemes, the starting point is
selected heuristically.

Most of the existing literature on using optimization in
BCI focuses mainly on optimal feature or channel selection,
and a very few works dealing with EEG preprocessing or ERP
detection using optimization are found. The review aims at
providing the researches in the field to have a clear understanding
of the techniques of optimization applied in BCI domain
so far. As a guideline for using optimization in BCI, we
observe that,

• Many optimization tools are readily available which can
be either used directly for BCI uses-cases or needs to be
enhanced so as to obtain better outcomes. The modification
or enhancement of existing optimization tools requires a lot
of expertise and skill in the field and should not be altered
arbitrarily which could end up providing feasible solutions to
a limited set of inputs.

• The nature of task and the area of using optimization
techniques should be well-studied by using the existing
literature. The tables summarizing the techniques and the
application area can be used in this regard.

• The optimization problem should be designed carefully so as
to match closely with the domain knowledge. In most of the
cases, multiobjective optimization method is required and the
confusion with pareto optimal solutions should be taken care
of, effectively.

• Mode decomposition of EEG signals should be done using
high end machines owing to the computational demands of
the algorithms. In the absence of such systems, only small
portions of EEG with fewer channels can be decomposed into
fewer IMFs. The number of IMFs required should be judicious
and the center frequencies of each of them should be assessed
to avoid unwanted realizations of the signals.

The aim of this review is to help the researchers in knowing the
state of existing attempts made in optimizing the BCI pipelines.
We further encourage the readers to use the references for each
of the pipelines for understanding the methodologies in detail.
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Recording and manipulating neuronal ensemble activity is a key requirement in
advanced neuromodulatory and behavior studies. Devices capable of both recording
and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally
operate un-tethered and allow chronic longitudinal manipulations in the freely moving
animal. In this study, we designed a new intracortical BCI feasible of telemetric recording
and stimulating local gray and white matter of visual neural circuit after irradiation
exposure. To increase the translational reliance, we put forward a Göttingen minipig
model. The animal was stereotactically irradiated at the level of the visual cortex upon
defining the target by a fused cerebral MRI and CT scan. A fully implantable neural
telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry
capsule, and an inductive rechargeable battery was then implanted into the visual cortex
to record and manipulate local field potentials, and multi-unit activity. We achieved a
3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-
communication, inductive battery charging, and device biocompatibility for 3 months.
Finally, we could reliably record the local signature of sub- and suprathreshold neuronal
activity in the visual cortex with high bandwidth without complications. The ability to
wireless induction charging combined with the entirely implantable design, the rather
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high recording bandwidth, and the ability to record and stimulate simultaneously put
forward a wireless BCI capable of long-term un-tethered real-time communication for
causal preclinical circuit-based closed-loop interventions.

Keywords: brain-machine (computer) interface, electrophysiology, neuromodulation, animal model, EEG,
stereotactic radiosurgery, Göttingen minipig, closed-loop

INTRODUCTION

The recent advances in recording and manipulation techniques,
particularly in preclinical animal models, significantly furthered
our understanding of the neuronal circuit functions underlying
complex behaviors. It becomes now apparent, that complex and
multifactorial disorders of the CNS such as depression could
be classified as neural circuit disorders (Insel et al., 2010). Yet,
for probing the contributory role of distinct components of a
neuronal circuitry to a given (dys)-function, a causal, real-time
intervention is mandatory. Ideally, a current neuronal activity
signature should inform the manipulation schemes in a closed-
loop fashion, in an unrestrained, unperturbed subject. Integrated
devices capable of interfacing with the external experimenter
are termed brain-computer interfaces (BCI) or Brain-machine
interfaces (BMI). The first requirement for BCI is a dense
recording of the current activity state of the given circuitry. For
that, superficial, non-invasive Electroencephalography (EEG) is
already well established in the clinical diagnosis of neurological
disorders (Lebedev and Nicolelis, 2006). In the framework of
BCI, EEG represents the recording module of BCIs enabling the
patient to drive an electronic spelling device employing slow
cortical potentials (SCPs) (Birbaumer et al., 1999). Also, locked-in
amyotrophic lateral sclerosis (ALS) patients can learn to control
virtual keyboards via slow cortical potentials or oscillatory EEG
components as the input signals for the BCIs (Pfurtscheller et al.,
2003; Hinterberger et al., 2005). Until recently, the precision
of the non-invasive EEG-based interfaces was limited by a
rather low spatial resolution (Srinivasan, 1999), poor signal-to-
noise ratio (Bang et al., 2013), and low transfer rate (Wolpaw
et al., 2002). Particularly in preclinical animal studies, hard-
wired devices restrict the degrees of freedom for behavior studies.
However, the newer generation of minimally/non-invasive
wearable EEG-based seizure detection devices utilizing closed-
loop warning systems, and non-EEG-based devices employing
accelerometer (ACM), Electromyography (EMG), etc., have
incredibly assisted the clinical management of epileptic disorders
(Borujeny et al., 2013; Ramgopal et al., 2014; Van de Vel
et al., 2016). Still, long-term monitoring of brain activity
via scalp EEG devices has some shortcomings which could
be anticipated to be addressed by sub-scalp EEG devices
(Duun-Henriksen et al., 2020).

Invasive methods are subclassified into intracranial EEG
(ECoG and stereo-EEG) or intracortical and intraparenchymal
micro-arrays where penetrating electrodes are employed to
target deeper regions including the limbic system (Parvizi
and Kastner, 2018). Such methods provide recordings with
broader temporal bandwidth up to 500 Hz (Staba et al., 2002;
Butterfield et al., 2007), better spatial resolution, and typically

a higher amplitude, as the electrodes are closer to the neural
tissue (Lebedev and Nicolelis, 2006; Ball et al., 2009). The iEEG
recordings are less affected by electric potentials caused by e.g.,
the cranial muscles or eye movements (Mak and Wolpaw, 2009).
Indeed, ECoG is used for BCIs implemented in neural motor
prosthesis devices for paralyzed patients e.g., fully implanted BCI
in locked-in ALS patients (Vansteensel et al., 2016). Invasive
methods might therefore be more suitable for BCIs due to the
higher spatial precision of recording (tenths of millimeters) and
lesser need for user training than scalp EEG based systems
(Wolpaw et al., 2002; Leuthardt et al., 2004; Lebedev and
Nicolelis, 2006; Schalk and Leuthardt, 2011). Long-term clinical
usage of invasive BCIs employing micro-arrays is, however,
limited by complications related to the implantation surgery
and long-term recording instability due to signal degradation of
the impedances of the recording sites caused by encapsulation
and displacement of electrodes (Shain et al., 2003; Schalk
et al., 2007). On the technical side, the low signal transfer
rate (below 10 megabits/s) limits the large-scale investigation of
brain activity signatures with adequate resolution. A hard-wired
interface communication with an extra-corporal remote terminal
constrains the movement of the patient/experimental subject
(Liu et al., 2018; Zaer et al., 2020). Partly wireless systems allow
rather unrestraint movements of the patients, but, still need to
be constantly inductively powered when in use (Guenther et al.,
2009; Liu et al., 2018).

Another important example of neural interfacing devices as
deep brain stimulation (DBS) devices are not classically described
as BCI devices. However, the newer generation of DBS units
combined with the concept of Bi-directional BCI, for instance
in Parkinson’s patients, investigates the possibility of stimulation
by utilizing the sensing electrodes according to the intermittent
nature of the disease symptoms (Angeles et al., 2016).

In terms of achieving the real-time acquisition of the
current local neuronal activity state, the use of microelectrode
arrays has gained momentum. Recent advances in array design
and fabrication allow for the production of ideally tailored
multichannel probes according to the geometry of the targeted
brain region, in both preclinical and even clinical studies.
Depending on the coating, diameter, and distance of the
individual electrode sites, not only the local field potential can
be assessed, but also the recording of multi- and single-unit (MU
and SU) activity is attainable. Spike sorting and mapping enable
the identification of the excitatory vs. inhibitory neurons can be
identified (Yang et al., 2017). Of particular importance is the high
spatial resolution given by the dense array of individual electrode
sites. This enables the recording, identification, and replay of
complex patterns of local neuronal ensemble activities, due to
the ability to use various sites for stimulation. Multielectrode
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arrays, therefore, may represent a suitable solution for real-time
closed-loop applications.

In this study, we designed a new fully implantable
invasive intra-parenchymal BCI for electrophysiological
telecommunication in a large animal model using the Göttingen
minipig to at least partially overcome the aforementioned
current limitations due to hard-wired charging systems and
rather low bandwidth. These animals have a sufficiently large
brain for testing the human-sized implants, in contrast to
the small rodent brain (Gierthmuehlen et al., 2014). The
physiology, internal anatomy, and even genome of the Göttingen
minipigs are reasonably similar to humans in comparison
to rodents (Dolezalova et al., 2014; Sjöstedt et al., 2020).
Moreover, Göttingen minipigs are also suited for chronic
studies as they grow slowly to a maximum of 35 kg and allow
biocompatibility assessment of the implanted materials over
long periods providing an accessible large animal model for
various preclinical translational study (Sørensen et al., 2011;
Bro et al., 2012).

To validate the function and quality of the device we
used visual cortical lesions made by ablative radiosurgery.
While ablative radiosurgery has been used for decades,
relatively recently, studies suggested a neuromodulatory effect
of sub-necrotic doses on irradiated neurons (Schneider et al.,
2010). For instance, radiosurgery of epileptogenic arteriovenous
malformations (AVM) in functional areas has shown cessation
or remission of epileptic attacks, unexpectedly prior to fully
obliteration of AVM and visible changes in MRI (Steiner et al.,
1992). This gap between appearing MRI or histological changes
and the clinical effect of irradiation raised the idea of the potential
neuromodulatory effect of sublethal radiodoses (Regis et al., 1995,
1999). Irradiating a specifically targeted area within the brain
circuits with sublethal doses (“radio-modulation”) is postulated
to alter the function of the circuit as a whole (Schneider et al.,
2010). The effect of radiation is suggested to be depending
on the radiation dose, type, and volume of the targeted brain
tissue (Regis, 2014). Below the necrotic radiodoses, there may
still be alterations, not visible in anatomical imaging; therefore,
evaluation of post-irradiation functional changes in neuronal
circuits is mandatory for radiation dose-adjustment to obtain
neuromodulatory effects without necrosis. Here, we chose the
primary visual cortex as the implantation site. While certainly
the primary visual cortex is tasked with the representation and
computation of visual afferents, it becomes apparent, that even
primary sensory cortical areas go beyond the functions for which
they are named. Recent pieces of evidence suggest, that primary
cortical networks exhibit complex dysregulations mirroring
behavioral states in neuronal disorders originating in distant
regions (Iaccarino et al., 2016; Arnoux et al., 2018; Ellwardt et al.,
2018). Moreover, the visual cortex (V1) in Göttingen minipigs is
surgically easily accessible and big enough to facilitate the process
of radiosurgical targeting and implantation of invasive electrodes.
By choosing the visual cortex, we could simultaneously achieve
different goals. First, verification of the functionality of this BCI.
Second, piloting the stereotactic radiosurgical approach on the
very thin cortical layer of the visual cortex (2–3 mm). Third,
assessing the feasibility of observing radio-neuromodulatory

changes by this system. In this study, as a part of the larger
project on evaluation of the neuromodulatory effect of ionizing
radiation, we aimed to design a BCI to survey the real-time
electrophysiological events after stereotactic radiosurgery in
the visual cortex.

MATERIALS AND METHODS

One female Göttingen minipig, age 6 months, weight 15 kg,
was used for this proof of concept study. The Danish Animal
Experiments Inspectorate (2016-15-0201-01103) approved this
study in compliance with the ARRIVE guidelines and the
2010/63/EU directive for animal experiments. After a month of
acclimatization in a standardized research environment facility,
the animal underwent Magnetic Resonance Imaging (MRI) of the
brain as a baseline and to define the target area for the stereotactic
radiosurgery and then implantation of the device as described
below in each corresponding subsection.

Radiotherapy Treatment Planning and
Treatment Delivery
Stereotactic radiosurgery treatment planning was based on fused
CT and MR image data sets. The planning CTs were acquired
with 1.5 mm slice thickness (Brilliance Big Bore CT, Phillips,
Amsterdam, Netherlands) (Figures 1A,B). The T1 MR scans
were acquired with a 1.0 mm slice thickness (Figures 1C–
E). A point target was defined in the fused CT/MR data sets.
Treatment was planned using the Eclipse treatment planning
system (Eclipse 13.7, Varian Medical Systems, Palo Alto, CA,
United States) and based on a Truebeam linear accelerator
equipped with an HD 120 multileaf collimator (MLC) of 2.5 mm
leaf widths. The treatment plan consisted of 14 beams (6MV;
dose rate 600 MU/min) using a non-coplanar beam arrangement
with MLC defined apertures centered at the target. Aperture
sizes were quadratic 5 × 5 mm with a calculated target dose
of 100 Gy normalized to the defined point target (0.03 cm3

receiving 80 Gy or above). The dose calculated by the Eclipse
treatment planning system (Acuros v. 13.7.14 dose calculation
algorithm with calculation grid size 0.1 cm) was corrected with
small-field dosimetric factors obtained from measurements with
a diamond detector [Natural diamond detector, type 600003
(PTW Freiburg GmBH)] in a water phantom. Localization of
the irradiation target was obtained by fusing a pre-treatment
1.5 mm slice thickness kV cone-beam CT (CBCT) scan with the
planning CT, using the onboard imaging system of the Truebeam
accelerator. Couch corrections were performed according to the
CBCT with 6 degrees of freedom (translational, rotation, pitch,
and roll). A verification CBCT was taken after couch correction
(before treatment) to assess if the animal had moved during the
correction. An additional CBCT was taken post-treatment to
verify intra-fractional positional stability.

Surgical Procedure
The animal was sedated with an intramuscular injection
of Midazolam (0.8 mg/kg)/Ketamine (20 mg/kg) mixture as
premedication. An ear vein was catheterized (21G venflon)
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FIGURE 1 | Target definition by the fused MRI/CT (A) axial and (B) sagittal view CT scans of the radiotherapy planning system – The green cross shows the target
area on the visual cortex (V1) irradiated with 100 Gy. (C) Axial (D) Sagittal (E) Horizontal view MRI images of the brain – the crosshair shows the target area – Green
arrows in (C,D) point at the fiducial marker on top of the irradiated area.

and anesthesia was induced with a second IV injection
of Midazolam/S-ketamine mixture. Shortly afterward, the
minipig was intubated (4.5 mm cuffed tube) and anesthesia
was maintained using approximately 2% isoflurane through
mechanical ventilation and a mixture of 50% O2. Intravenous
injection of propofol (20 ml/h) was used during transportation
for the imaging procedures. The pig was fixated prone in
an MRI-compatible localizer box (Figure 2A; Bjarkam et al.,
2004). A mid-sagittal skin incision was made, exposing the
skull. The periosteum was removed, and a small drill hole was
made posterior to the bregma (Figure 2B). A plastic screw
containing copper sulfate was placed in the drill hole, providing
a fixed point for the estimation of stereotaxic coordinates
(Glud et al., 2017). Three titanium screws were also put in the
skull anterior, posterior, and lateral to the fiducial marker as
landmarks for more accuracy during the implantation surgery
(Figures 2C,D). Preoperative MRI of the animal fixated in
the localizer box was carried out using a 3D T1-weighted
MRI brain scan (3.0 T Siemens Skyra). The visual cortex was
visualized according to the online Brain Atlas of Göttingen
minipig (Orlowski et al., 2019). The location of the target
(visual cortex) in relation to the fiducial marker was calculated.
The cranium was opened by surgical drill and the visual
cortex was exposed after opening the dura (Figure 2D). The
probe was placed using microsurgical forceps directly into
the visual cortex and then the flexible outcoming wire was
fixed by fibrin sealant (TISSEEL R© Baxter, United States) above
the dura (Figure 2E). The Omnetics connector afterward was
attached to the skull bone with two titanium screws and an
interconnecting plastic bar (Figure 2F). The rest of the flexible
wire between the probe and the Omnetics connector then was
secured with Bioglue R© (CryoLife, United States). Three of the
ground wires were put in the muscles and one underneath
the titanium screw and thereby fixated to the skull bone.
The battery and communicating capsule was placed into the
subcutaneous pocket in the posterior neck region and sutured
to the muscles with a holding Dacron ribbon (Figure 2F). Then,

the surgical wound was closed. The animal received prophylactic
antibiotic [Benzyl Penicillin procaine 30,000 IE/kg (Penovet R©,
Boehringer Ingelheim, Denmark)] and analgesic [Meloxicam
1.5 mg/kg (Metacam R©, Boehringer Ingelheim, Denmark)] both
once a day for 5 days.

Design of the Telemetric Brain-Computer
Interface
For achieving the methodological milestone to record and
manipulate cortical gray and white matter activity with real-
time and closed-loop communication ability, we implemented
an integrated telemetric system including a custom-built 8-
shank multielectrode probe. The fully implantable array consists
of 16 independent electrical stimulation channels and 48
channels for continuous recording (Figures 3A, 4A,D). The
implant was designed to record local field potentials (LFP)
and multi-unit activity (MUA). The main components of the
system entailed an electrode interface, custom application-
specific integrated circuits (ASICs) (Figures 4E,G), wireless
radiofrequency communication (RF) (Figure 4F), hermetic
packaging capsule (size = 70 × 50 × 15 mm, Figure 4D),
computer software for bidirectional communication with the
implantable device and induction charging pad to be worn
around the pig’s neck like a collar (Figures 4D–H).

We have previously reported a former version of this
technology (Deshmukh et al., 2020). The interfacing targets had
been peripheral neural interfaces which are easier to interface
with an implanted capsule. Here, we introduce the technology
to be implanted intracerebrally, a decisive new step in terms
of technology development. In detail, these were the technical
changes and improvements: I. The electrode here represents
a multichannel stimulation and recording array. II. In this
publication, we developed a 16-stimulation channel and 48-
recording channel integrated into the same capsule. III. To
provide the power for operating the system we implanted the
wireless inductive chargeable system and battery, and IV. to cater
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FIGURE 2 | Implantation surgery. (A) The minipig fixated in the MRI compatible head frame. (B) Drilling the skull posterior to Bregma (C,D) Plastic and titanium
fiducial markers. (D) Visual cortex exposure – pointed by green arrow. (E) Insertion of the probe in the visual cortex and fixation with Fibrin Sealant. (F) Fixation of the
Omnetics connector to the skull bone.

to size restrictions, we redesigned our PCBs to lower current
requirements. The current draw is reduced from 60 mA to 45 mA.

Electrode Interface
A custom intracortical electrode array (NeuroNexus, Ann Arbor,
MI, United States) consisting of 64 planar silicon electrodes
distributed on 8 shanks was designed to study the spatial extent
of gray and white matter excitability in the visual cortex. Two
electrode types were designed; the stimulatory electrodes to
target the white matter and gray matter, respectively, and the
recording electrodes (Figure 4A). The total length of the array
was 10 mm. Each shank has ventral (deeper) and dorsal (closer
to the surface) groups of electrodes consisting of stimulation
and recording channels for each white matter and the overlying
cortex (Figures 3A, 4A). The surface area of the stimulatory
electrodes was 1250 µm2 while the area of the recording

electrodes was 177 µm2. The electrodes were separated by
500 µm, except for the 4th and 5th electrodes from the upper
side on shanks one and eight which were separated by 4 mm
to record deeper in white matter. The electrode was attached to
the telemetric device using a 64 channel Omnetics connector and
wires coated in silicon.

Electrophysiology Protocol
Data were recorded at a 27.7 kHz sampling rate. For stimulation,
biphasic constant current pulses (f = 0.2 Hz; pulse duration:
0.1 ms/polarity) were conducted at one of the stimulation
electrodes at a given time. To probe local excitability in gray
matter, 5–30 µA current was administered at dorsal stimulation
electrodes 4, 12, 20, 28, 36, 44, 52, and 60. To probe white
matter integrity, 100–400 µA current was administered at
ventral stimulation electrodes 2, 16, 24, 32, 40, 48, 56, and 58
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FIGURE 3 | Electrophysiology results (A) The probe design. Stimulation sites are circled red. (B) Example VEPs recorded from the superficial four layers of
electrodes in response to LED flashlight. (C) Example evoked responses stimulated by 100 µA current conducted at electrode 58 (shank 8).

(Figure 3A). To ensure the physiological origin of the recorded
data, visual evoked potentials (VEPs) were recorded in response
to a LED flashlight at the right eye in a dimly illuminated
room. For electrical stimulation, biphasic constant current pulses
(f = 0.2 Hz; pulse duration: 0.1 ms/polarity) were conducted at
one of the stimulation electrodes at a given time.

Histology
Three months after irradiation, the animal was humanly
killed by an overdose of Pentobarbital (400 mg/ml) and
transcardially perfused with 5 liters of 10% buffered formalin

(Ettrup et al., 2011). The brain was then removed and post-fixed
for 5 days in the same fixative and afterward sliced into 1.25 cm
thick coronal tissue slabs (Sorensen et al., 2000). The tissue slabs
containing areas of interest were cryoprotected in a 30% sucrose
solution in buffered saline (PBS) for 10 days, followed by freezing
in isopentane cooled by dry ice. The frozen brain slabs were then
cryostat sectioned into 40 µm thick sections, which were either
directly mounted on the microscopic slides or preserved free-
floating in DeOlmos cryoprotecting solution. The response of the
brain tissue was visualized using Nissl, anti-MBP, anti-GFAP, and
isolectin stainings.
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FIGURE 4 | Schematic view of the probe, target area, and schematic description of the communication loop between the PC and the fully implantable wireless BCI
device. (A) Schematic view of the probe with corresponding parts for gray and white matter. (B) Magnified view of the targeted area (V1). (C) Histological coronal
view of the brain at the level of the visual cortex. (D) Implantable combo 16 channel stimulation and 48 channel recording capsule interfaced with 64 electrodes
cortical array. (F) System overview consisting of RF communication via dongle and receiver to trans-receive commands as well as neural data enabled by
independent recording and stimulation software, respectively, along with the implantable capsule with the electrode array. (E) Functional diagram highlighting the
information flow through various components of the system for stimulation. (G) Functional diagram for wireless recording system. The red dots are the whole box
from preamplifier to multiplexer ADC, which is the custom ASIC. (H) Drawing of near-field induction charging pad worn as a neck belt around the pig.
(I) Radio-communication loss for phantom gelatin 2 cm thick to simulate animal tissue with a loss of 4% and (J) Radio loss of 7% in air.
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RESULTS

Recording System
A low noise, mixed-signal preamplifier, and multiplexing ASICs
for 48 input channels was developed for this study. These small
printed circuit board (PCB) electronics encapsulate the ASICs
for low noise pre-amplifiers and bandpass filters (Won et al.,
2002; Obeid et al., 2003) along with the harvester circuits, RF
voltage controlled oscillator (VCO), transmitter power amplifier,
and antennas. Harvester circuits detect the wireless fluctuating
magnetic fields of the charging pads and convert this magnetic
energy into an electrical voltage to operate the circuit boards.

The maximum data sampling rate is 50 kHz with a signal
bandwidth of 0.8 Hz to 7 kHz. The custom wireless radio
has a wideband frequency modulation (FM) architecture for
low power and high data rates, consisting of a radiofrequency
(RF) voltage controlled oscillator (VCO), RF amplifier, and
splitter to two chip antennas. The receiver consists of an RF
demodulator and analog demultiplexer which feeds the data
into a 16-bit data acquisition (DAQ) system, or to raw analog
signal outputs. Input referred noise was ∼5 uV/root Hz. The
frequency of operation for the wireless recording system was
2.7 GHz. The analog data may be viewed simultaneously for all
channels in the custom software (“Neuroware”). The software
also marks event timestamps regarding behavioral activity or
precise stimulation times with less than 1 ms delay in the
recorded data. The software includes filters that can be applied
for viewing LFPs and multi-units with highpass, lowpass, or
bandpass filtering. The system technically is capable of SU
recording with a programmable bandpass filter, however, we did
not use this possibility in this experimental setup. The real-time
RF signal strengths of the radio communication were remotely
monitored before and during the experiment to ensure its smooth
running. The recording system was also synchronized with the
stimulation system to automatically record stimulation pattern
indicator pulses indicating the start and end of the stimulation
(Deshmukh et al., 2020).

Stimulation System
For stimulation, the system consists of 16 independent channels
out of which, user can multiplex between any two constant
current output channels with a maximum output of ±4 mA on
each channel. Thus at the given time, the user can simultaneously
select any two channels from the available 16 channels for a given
stimulation pattern by swapping between the two channels but
not all 16 at the same time. The minimum multiplexer switching
time delay is 20 µs for stimulation channels, which is the fastest
the stimulation driver can switch between two selected channels
for stimulation patterns. The stimulator radio system consists of
an RF transceiver dongle connected to a PC via a USB cable which
sends commands to the WiFi chipset within the capsule. The RF
transceiver dongle can monitor and control up to 50 independent
implantable stimulator capsules, each with their own unique
identifier address for communication, and provides feedback to
the stimulation software (“StimWare”) installed on the PC. With
a transmission range of up to 3 m, the system provides real-time

feedback to the PC for the implantable capsule consisting of the
battery voltage, temperature, and stimulation pattern status as
well as the strength of the wireless charging field. The stimulation
system is also equipped to run automated diagnostics on the
implant like battery life, charging state, radio signal strength, and
in vivo electrode impedances.

Induction Charging System
A novel inductive charging system was designed to supply
wireless energy to the active and passive electronic components of
the implantable capsules for operation and to charge the battery
for continuous recording and stimulation (Figures 4D,H). It
consists of an efficient power harvester design which is used to
capture the energy produced by the induction from the time-
varying magnetic field. The interface is designed by following IEC
60601-1 and IEC 60601-1-2 (safety and effectiveness of medical
electrical equipment) standards. The wireless induction charging
system consists of a loosely coupled transmitter and receiver
coils. The receiver coil is placed in the implantable capsule
along with the power harvester electronics. The system uses near
field charging that places the receiver and transmitter coils 5–
7.5 cm apart. The maximum depth inside the animal to achieve
efficient implant powering via the charging pad was approx.
20 ± 2 mm. Each of the coil’s electrical parameters entailing
coil quality (Q), inductance (L), and resistance (R) are carefully
tuned at a resonate frequency to maximize the efficiency of the
inductive powering system for energy transfer. We employed a
rechargeable LiON 200 mAh battery. The battery is rechargeable;
however, the run time of the battery depends on a couple of
factors e.g., the current draw on the battery from the application
being used via simultaneous recording and stimulation which
draws up to 32 mA per hour whereas stimulation along draws
17–19 mA depending on the stimulation pattern.

Since the heating of electronics has the potential to cause
thermal injury in the implantation’s surrounding tissue, the
rise in implant temperature was continuously monitored. The
temperature changes due to charging were recorded at three
different locations in the lab: Inside the capsule, reporting
the temperature value to the software every 2500 ms, at
the shell of the capsule via heat sensor strips, and via an
infrared camera monitoring the capsule shell and its immediate
surroundings. Pre-implantation tests were carried out with the
capsule immersed in 38◦C water inside an insulated container
made up of Styrofoam to prevent heat loss, and monitored
over time while in operation for multiple battery life charging
cycles. The test was also repeated with the capsule encased inside
phantom gelatin to represent body tissue. The outside shell
temperature of the capsule was observed to be 8 ± 2 C lower
than inside the capsule using infrared cameras. Unfortunately,
these tests could not be replicated inside the animal due to
the lack of visual observable space in the surgical site. The
temperature from inside the capsule during benchtop testing in
phantom gelatin recorded a maximum of 44◦C (Figure 5A). The
battery benchmark 3 months post-implantation was done during
the full functional operation, and the core temperature rose to
48 C, which may be estimated at around 38 C on the outer
shell (Figure 5B).
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FIGURE 5 | Benchmark results of temperature and radio-communication. (A) Core implant temperature profile during wireless charging and full operational use
(recording and stimulation). Temperature sensor is located with the electronics inside the capsule. The temperature observed on the shell of the implant capsule is
10 C lower than the core temperature. (B) Battery benchmark 3 months post-implantation.

Software User Interface
The stimulation interface was designed so that the stimulation
channel alias names would match the electrode site diagram
to ease the experimental planning. Sub-channels 1 to 16 each
had a unique alias following the format that equates to “Shank
number and Electrode Site number” matching the probe design.
This enabled the researcher to know exactly which electrode site
has been selected for a two-channel simultaneous stimulation
from the entire array. The ability to wirelessly switch between
16 channels in real-time over the entire array gives an advanced
ability to cover more targets horizontally and along with the
depth of the array catering to better spatial resolution for
stimulation. The second spatial control is to choose stimulatory

electrodes on different shanks (irradiated vs. non-irradiated) that
helps the user control the protocol in real-time. The recording
channels are configured with a similar format to follow an index
of 1 through 52 to identify which electrode site on a particular
shank is used from the record channel pinout. Within these
52 channels, there were 48 neural recording channels and 4
reference channels.

Radio Transmission Quality Testing
The implanted transceiver capsule was tested for the quality of
its wireless data transmission by measuring the percentage of
data packet loss at a maximum distance of 3.6 m through the
air and the animal’s tissue. The stimulator radio power loss at
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FIGURE 6 | Histology results showing the necrosis and electrode tract with different stainings. The arrows show necrosis and * – electrode tract (A) Nissl Staining,
black pointer: Edema and necrotic changes, approximate cortex diameter 1.95 mm, (B) Isolectin staining (microglia/macrophages), (C) Anti-MBP myelin staining
pointer: necrotic area, (D) Anti-GFAP staining, Tissue with enhanced glia response (Scale bar 2 mm).

3.6 m distance was validated using 2 cm of phantom gelatin to
represent animal tissue with data presented (Figures 4I,J). The
total loss of packets in lab tests was 7% for in the air and 4% in
2 cm thick phantom gelatin. This means 4% of all data packets
were not able to complete the full-duplex data link shown in
Figures 4E,G between the stimulator to the probe inserted in
the animal and then back to the receiving PC transceiver dongle
(Figure 4F). The wireless radio frequency (RF) communication
device was tuned to a specific frequency (2.4 GHz for the
stimulation system and 2.7 GHz for the recording system). The
impedance of the RF transmitter board and RF receiver were
tuned to the said frequency for maximum wireless signal strength
which minimizes the data packet loss. Since the efficiency of the
frequency changes in different mediums, the minimum power
loss of packets reflects the good quality of the wireless data
communicated in the intended tissue. The result is supported
by the fact that the radio is tuned for better performance in the
animal once implanted as opposed to tuning in just air. The
recording radio has been optimized to work best once implanted
by adjusting the RF antenna strengths to maximum. The tuning
was carried out during the assembly of the device by utilizing
the attenuation of the RF in phantom gelatin. It was carried
out only once and not during the in vivo study. This tuning is
considered sufficient for long term implantation as it is carried
out by fixing the values of the capacitors and impedances to
have maximum resonance. This is maintained with the radio and

does not get detuned unless the circuit containing the hardware
components somehow gets damaged in the case that the capsule
is damaged. The latter is controlled by the percentage packet
loss test performed after the device was implanted in the animal
(Figure 4). This radio tuning method preempts the loss of signal
strength due to intervening animal tissue once implanted. The
implanted transmitter device also records the presence of radio-
signal lock at the receiver, indicating receipt of a strong signal.
The effective range of the telemetry system is 3 m.

Electrophysiology
The visual evoked potentials in response to the LED stimulation
are shown in Figure 3B. In comparison to flash VEP in humans
(Odom et al., 2016), putative components P1, N2, and P2 were
observed. N1 was not apparent.

Electrically evoked responses by 100 µA stimulation
conducted at electrode 58 (shank 8) are shown in Figure 3C.
A larger artifact was observed at recording sites in the shank
where stimulation was conducted.

Histology
The position of the electrode in V1 (visual cortex) was verified
using the online atlas of the Göttingen minipig brain (Orlowski
et al., 2019). The inflammatory response of the brain tissue
around the probe was observed (Figure 6A). The dorsal half,
about 2–3 mm, of the visible electrode track, was positioned
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in the gray matter, the ventral part of the electrode track was
situated in the white matter (Figures 6A–D). On the side of the
electrode track in the border between cortical gray and white
matter, there were visible small irradiation-induced necrotic
changes and edema (Figures 6A,B,D). The electrode track visible
on the sections is around 0.5 mm wide; the length is around
8 mm (the visible tissue reaction stretches a bit longer – up to
10 mm). The glial scar, with a thickness varying from 0.3 to
0.6 mm, surrounded the electrode track (Figure 6D). According
to the cell-morphology, numerous activated microglia cells and
macrophages were observed within the small irradiation-induced
necrotic area close to the insertion area (Figure 6B).

Surgical Outcome
One day after BCI implantation surgery, the animal was
transported back to the university farm with controlled humidity,
temperature, and diet. The wound healed normally during
the 10 days after the surgery. While there was no explicit
behavior testing, nonetheless, the animal was monitored by the
veterinarian nurses on a daily basis, and no signs of obvious
behavioral changes, such as increased aggression, or decrease in
food intake, had been reported. The animal status was followed
for 3 months after the surgery without any sign of infection or
failure to thrive.

DISCUSSION

Assessing neuronal network function while the subject
exhibits complex behavioral tasks remains as one of the
last methodological frontiers. For a causal understanding of
the relevance of the given neuronal ensemble activity for the
respective brain function and dysfunction, recording the network
signature will not suffice. Therefore, we need to manipulate and
modulate the current activity state on the fly, in a closed-loop
fashion. BCIs comprising multielectrode arrays would enable
bimodal neuromodulatory experimental designs (Grand et al.,
2013). Inductive charging and telemetric communication with
a fully implanted device will open up new avenues of in vivo
neuronal activity recordings in a minimally invasive fashion.

We developed this methodological concept that enables us
to address the effects of local radiation on the function of
neuronal circuits. Even complex and multi-factorial disorders
such as depression are thought to be a manifestation of a neuronal
circuit disorder, i.e., a dysbalance of the highly interconnected
and functionally bound network. It is hypothesized, that the
application of stereotactic radiotherapy, even though initially
developed for ablation of brain tumors might, at lower doses,
lead to neuromodulation (Schneider et al., 2010; Yeh et al.,
2020; Zaer, 2020). The study of neuromodulation effects requires
identification of the local network signature of spontaneous
and sensory-driven activity and the local excitability in a
longitudinal fashion to understand the phasic activity of the
network and its components. At first, we employed a rather high
dose of radiation, known to cause necrosis (Yeh et al., 2020;
Zaer, 2020). According to the histology results, the stereotactic
radiotherapy was correctly targeted and resulted in irradiation-
induced necrosis.

The fully implantable BCI developed here has exhibited
stable performance during the study period in terms of the
technical specs of the device, such as the battery life, the
absence of leakage, quality of radio-communication, and we
did not find any significant post mortem inflammatory tissue
reaction. The feasibility of inductive charging, wireless recording
and stimulation, and the stable signal quality throughout the
recording period pioneered a BCI for large animal models.
The three-meter-range of the telemetry system permits the
experimental subject to behave freely in its environment
with minimal interference. Indeed, removing the tethered
connections, hypnotic medicine, and the immediate presence
of the researcher during the data acquisition should drastically
reduce physiological noise and increase data validity. Moreover,
the wireless connection will reduce the risk of infection in
chronic studies. This fully implantable wireless BCI is capable of
providing LFP data, multiunit activities as well as cortical and
white matter stimulation on different specified electrodes with
simultaneous recording of the real-time responses. Some of the
main features of the presented device in comparison to other
recently published BCIs are noted in Table 1 (Rouse et al., 2011;
Bagheri et al., 2013; Yin et al., 2014; Musk, 2019; Zhou et al., 2019;
NeuroPace, 2020; Zhu et al., 2020). Rather than the possibility

TABLE 1 | Comparison of different main specifications of recently presented brain-computer interfaces.

Brain-computer
interface

Simultaneous
Stimulation/

recording

Recording
channels
number

Stimulatory
channels
number

Wireless
induction
charging

Sample
rate (Hz)

Bandwidth
(Hz)

Recording
type

ADC
resolution

(bit)

This study + 48 16 + 50 kHz 0.7 Hz–8 kHz LFP-MU 16

WAND (1) + 128 128 − 1 kHz 500 Hz LFP 15

Activa PC + S (2) + 4 8 − 200 Hz 500 Hz LFP-EEG 10

NeuroPace RNS (3) + 4 8 − 250 Hz ≥50 kHz EEG-LFP 10

University of
Toronto (4)

+ 256 64 − 15 kHz 1 Hz–5 kHz EEG 8

Neuralink (5) − 3072 − − 19.3 kHz 3 Hz–27 kHz LFP-MU 10

Braingate (6) − 100 − − 20 kHz 0.1 Hz–7.8 kHz LFP-SU 12

WIMAGINE (7) − 64 − − 1 kHz 0.5–300 Hz ECoG 12

LFP, local field potential; MU, multi-unit activity; SU, single-unit activity; EEG, electroencephalogram; ECoG, electrocorticography (1, 3–6, 8).
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of wireless inductive charging, other specificities such as high
sample rate, ADC resolution, and width bandwidth range can
be mentioned as improvements in this study. We perceive it as a
strength of our BCI, that it had not been developed as individual
components, but in contrast with a comprehensive and unifying
goal: the bandwidth, the power of the battery, the software, the
impedances of the electrodes for stimulation and recordings had
all been tailored for the question at hand, i.e., the recording and
stimulation of a neuronal circuit in the visual cortex upon local
radio-modulation.

In terms of the closed-loop ability: The system cannot
only record but also stimulate, the recorded signals can be
displayed and computed in real-time, followed by stimulation.
Here, we simply did not showcase an example, which could
be, for instance, recording a VEP and stimulating exactly
on a determined timestamp after the N1 peak, to probe
local excitability.

The wireless communication part of the device can interface
with different types of probes according to the study purpose and
gives the opportunity of targeting deep brain structures. Other
indications of implementing this concept could be probing of
deep-brain structures such as the hippocampus, highly relevant
for behavioral studies. A large variety of electrode designs from
different manufacturers can be connected and integrated into
this BCI. Single shank probes with densely spaced recording
electrodes for example could even be used for spike sorting,
and the identification of putatively inhibitory and excitatory
units (Yang et al., 2017). Alternatively, electrode meshes could
be used covering large portions of the cortical surface, ideal
for studying the propagation of neurophysiological signals, e.g.,
in the field of epilepsy research. What is more, the capability
of simultaneously recording and stimulation opens up closed-
loop experimental designs. A key technical advance represents
the fully implantable approach and the inductive charging
capability, allowing for longitudinal studies. Other examples
of the wireless recording of LFP, MU, EOG, EMG together
with activity data have also been previously presented, however,
lack of closed-loop modulation, inductive wireless charging, and
the possibility of full implantation limit their application in
neuromodulatory studies (Grand et al., 2013). A major obstacle
in the implementation of long-lasting microelectrode-based BCI
represents the biological compatibility and degradation of the
electrode functionality, mainly due to local gliosis (Lebedev
and Nicolelis, 2006; Ball et al., 2009; Orlowski et al., 2017).
The second challenging issue is to avoid thermal tissue injury
generated by the wireless charging pad. This is intended to be
addressed in the future using a variable design of the charging
pad belt with variable height adjustments as well as a closed-
loop software system. The software system will automatically
control the charging duty cycle strength based on data from
the temperature and battery life status of the implant, and
temperature on the surface of the charging pad.

For BCIs to be implemented in clinical applications in a
broader context, it is mandatory to decode network computations
from background noise by gaining reproducible, spatially defined
signals from specified brain regions (Pfurtscheller et al., 2006).
Adequate deciphering is of great importance, providing the
necessary input for communication tools, and to at least partially

restore motor function in stroke, Locked-in syndrome, and
amyotrophic lateral sclerosis patients (Kennedy and Bakay,
1998). Despite advances in developing robotic limbs for plegic
patients (Collinger et al., 2013; Bouton et al., 2016) or
communication tools for long-suffering Locked-in individuals
(Vansteensel et al., 2016), the clinical implementation of these
technologies is still extremely challenging. The shortcomings of
these systems rely heavily on the current advances in hardware
technology. While there is still a long way to go, our proof-of-
concept study at least suggests a few key concepts to improve the
integrated framework of a highly sensitive and fully implantable
BCIs. For mastering the crucial transition from laboratory to
in-home BCI use, research efforts should be directed toward
enhancing the stability of BCIs concerning user autonomy,
long-lasting functionality in terms of permanent availability of
neural interfaces with a minimum neural tissue disturbance and
irritation (Huggins et al., 2011; Nijboer, 2015).
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In EEG studies, one of the most common ways to detect a weak periodic signal in

the steady-state visual evoked potential (SSVEP) is spectral evaluation, a process that

detects peaks of power present at notable temporal frequencies. However, the presence

of noise decreases the signal-to-noise ratio (SNR), which in turn lowers the probability of

successful detection of these spectral peaks. In this paper, using a single EEG channel,

we compare the detection performance of four different metrics to analyse the SSVEP:

two metrics that use spectral power density, and two other metrics that use phase

coherency. We employ these metrics find weak signals with a known temporal frequency

hidden in the SSVEP, using both simulation and real data from a stereoscopic apparent

depth movement perception task. We demonstrate that out of these metrics, the phase

coherency analysis is the most sensitive way to find weak signals in the SSVEP, provided

that the phase information of the stimulus eliciting the SSVEP is preserved.

Keywords: EEG, frequency tagging, SSVEP, phase coherency, stereograms, disparity

1. INTRODUCTION

While acquiring an EEG signal is easy, the difficulty of recording decent quality signal cannot be
overstated: since the data acquisition equipment is working with very small voltages, it is very
susceptible to various external (electrical grid, smartphones, etc.) and internal (eye blinks, vascular
pulse, etc.) noise sources, which are often several times more powerful than the signal intended
to be measured. Unfortunately, various signal processing techniques can clean up an existing
recording only to a certain degree, which may not be sufficient in applications where the signals are
exceptionally weak. Despite these problems, EEG remains popular since it has excellent temporal
resolution and it is non-invasive: in the clinic it may be used to detect anomalous oscillations
in patients with epilepsy or migraine (Camfield et al., 1978; Adeli et al., 2003), it may be used
for characterizing a transient or steady-state response in the brain (Ciganek, 1961; Norcia et al.,
2015), or may be used in Brain-Computer Interface (BCI) applications (Bayliss and Ballard, 2000;
Nakanishi et al., 2018).

One of the oldest applications for EEG is to investigate the response of a brain when exposed to
a transient stimulus. In the 1960s, this was done with presenting flashes of light, and the EEG signal
was recorded by taking a photograph of the EEG trace displayed on an oscilloscope (Ciganek, 1961).
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Since the recorded signals were very noisy, the experiment was
repeated several dozen times, and the corresponding films were
overlaid on each other. After this operation, the magnitude of the
noise is reduced, and a clearer transient response, what we now
call a flash-evoked potential or Event-Related Potential (ERP)
is revealed. The modern-day equivalent of overlaying exposed
and developed films on top of each other is averaging the EEG
signal in the time domain: after capturing the response for a
flash is presented in each trial, it is possible align each trial’s
recording to the time of the flash, and averaging the signals to
reveal the ERP. This time-averaged signal then can be evaluated
against a comparison standard (signal absent, healthy controls,
etc.) later-on in the analysis.

Based on the same principle, it is possible to not only
investigate the transient response, but the steady-state response
of the brain as well: a more sophisticated example is the
“frequency tagging” technique, where instead of a single transient
stimulus, a continuous periodic stimulus is used. Using the
flash example above mentioned earlier, this would mean using
flickering light instead of presenting a single flash. Provided
that the light conditions are carefully chosen (Herrmann, 2001;
Norcia et al., 2015), and are kept constant throughout the trials,
the stimulus elicits a detectable neural response, and if there
are enough trials recorded, the amplitude of the frequency or
frequencies corresponding to the stimulus will elevated in the
spectrum of the SSVEP. The elevated frequencies may not always
be the same as the temporal frequency of the stimulus (Hébert-
Lalonde et al., 2014): it may be a harmonic (Norcia and Tyler,
1984) or if several temporal frequencies are used at the same time,
they may produce intermodulational products (Baitch and Levi,
1988): the sum and difference of these frequencies, or an arbitrary
combination of these. SSVEPs may be studied with techniques
other than EEG as well, such asMagnetoencephalography (MEG)
(Srinivasan et al., 1999) or functional Magnetic Resonance
Imaging (fMRI) (Boremanse et al., 2013) as well.

To analyse SSVEPs, the signal is converted between the
time and frequency domains with a time-frequency transform,
which is typically the Fourier transform (Norcia et al., 2015),
or alternatively, the continuous wavelet transform (Daubechies,
1990; Adeli et al., 2003; Wu and Yao, 2007) may be used. There is
a free and open-source software implementation of both of these,
and they are part of a larger package called EEGLAB (Delorme
and Makeig, 2004).

With the use of the Fourier transform, if Sk(t) is the EEG
trace recorded at a particular channel on the kth trial where the
stimulus was presented, we can define the Fourier component
Vk(f ) at the frequency f as:

Vk(f ) =
1

Tw

∫ Tw

0
e2π iftSk(t)dt (1)

where Tw is the temporal window which contains the SSVEP and
is being used for the Fourier-transform. It is worth noting that
Equation (1) is for analogue signals that are continuous in time.
In modern computer systems, the signals are sampled at a rate
that is at least twice more than the maximum intended temporal
frequency to be recorded. In EEG, this sampling frequency ranges

between 250 Hz and 1 kHz. On the sampled signal, which is
now discrete in time, it is still possible to execute the Fourier
transform, which is typically done by the Fast Fourier Transform
(FFT) algorithm (Cooley and Turkey, 1965). The FFT produces
a number of components (or “bins”), that are corresponding to
discrete temporal frequencies. They contain the spectral power
and phase of a small band of these frequencies determined by
the ratio of the sampling frequency and the number of samples
in the FFT window. To find which component corresponds
to a particular temporal frequency in the analogue signal, the
following equation may be used:

nc =
fx

[

(fs/2)/(nw/2)
] + 1; where nC ∈ N (2)

fx is the temporal frequency in question, fs is the frequency the
EEG signal was sampled at, nw is the FFT window size, which is
the number of samples the FFT algorithm worked with. The +1
term is there to add the offset for the component corresponding
to the temporal frequency of 0 Hz, which is also called the “Direct
Current” (DC) component. As the result of the FFT is discrete in
frequency, nc can only be a natural number and the equation’s
result should be rounded to the nearest integer. Once the correct
Fourier component is identified using this equation, we can use
the same signal processing steps as we would for an analogue
signal. The Fourier-component is a complex number, and has an
amplitude and phase component.

We assume that the SSVEP in the EEG recording in the
presence of a periodic stimulus is a linear combination of
the “signal” that we want to measure (the neural response to
the periodic stimulus), and the “noise” which represents the
measurement of every other source contained in the EEG trace.
If both the signal and the noise are small enough to not cause
non-linear distortion, we can express them as:

Vk =
[

(A0 + αk)exp(iφ0 + iζk)
]

+
[

(N0 + βk)exp(iξk)
]

(3)

where the first term represents the Fourier component of the
signal which is the response to the periodic stimulus; and the
second term is the response due to the noise in the EEG trace.
A0 andN0 are themean values of the signal and noise amplitudes,
respectively across k trials. αk and βk are trial-dependent. φ0 is the
phase of the signal that is elicited by the periodic stimulus at the
frequency f . Without loss of generality, we have defined the mean
phase in the noise as being zero: < ζk >=< ξk >= 0, where <>

denotes the average over the k trials. For clarity we have dropped
the (f ) throughout, but both terms in this equation depend on
the frequency f . It is applicable for both analog signals by using
f directly, and for digital signals by finding the corresponding
Fourier component using Equation (2). Note that the amplitude
noise components (αk; βk) and the phase noise components (ζk;
ξk) are orthogonal. Their effect on the signal Vk is illustrated
in Figure 1.

1.1. Different Methods for Estimating the
SNR
From Equation (3), we have seen that even a single Fourier-
component is a consist of several noise terms, and unfortunately
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we do not have access to the particular values of these noise
terms following a time-frequency transform. Since the definition
of noise is very broad and effectively covers any signal or
phenomena that is unwanted, different estimation methods exist
in the literature. Provided that we have an understanding of the
neural mechanism we are investigating, we can select a smaller
band in the spectrum. For example, in a study where we have a
good understanding of the neural mechanism tested, it is possible
to anticipate which temporal frequencies will be present in the
SSVEP. In studies where FFT is used to analyse the spectrum
of the SSVEP, an acceptable approach is to take the neighboring
10–20 Fourier components surrounding the temporal frequency
of interest, and calculate its average value. Then, the SNR may
be estimated by calculating the ratio of the values of the of the
Fourier component of interest, and the noise level. This was done
in several studies (Srinivasan et al., 1999; Cottereau et al., 2011;
Alonso-Prieto et al., 2013; Boremanse et al., 2013), and with this
method, it is impossible to detect signals that are below the noise.

This method works best if the spectrum used for calculating
the noise levels are clear enough, and we know precisely which
temporal frequency we are expecting the signal to be present in
the SSVEP. Unfortunately, in some cases we may not have such
luxury: the noise may not be pure white or pink noise, or perhaps
other oscillations may be present in the SSVEP that may not be
related to the stimulus at all. In these cases, this SNR estimation
method may not be reliable.

Perhaps a better approach is to go back to the original
definition: noise is every signal we don’t want in our recording.
The signal we are investigating is weak, and is buried in the
EEG trace in the time domain. If the signal was strong, we
would be able to find it just by looking at the EEG signal itself
in the time domain. In the time domain, the SNR can simply
be calculated by the taking the ratio of the peak levels, in a
similar way how the A0 and N0 terms play a role in Equation
(3). Since the SSVEPs are usually invisible in a single trial, we
can assume that they are several times below the noise level. A
few example representations of SNRs in the time domain are
shown in Figure 2. Every subsequent signal processing step, such
as filtering or averaging across trials is considered to be part of
the detection process. Estimating in the SNR in the frequency
domain is not as straightforward as in the time domain, since the
noise power depends on the spectral bandwidth, and if discrete
time signals are used, the values of the Fourier components will
additionally depend on the ratio of the FFT window length and
sampling frequency as well.

1.2. Detecting Weak Signals in the SSVEP
It is possible to express various metrics that can be used to
evaluate the SSVEP and detect the signal.

The spectrum is calculated by taking the scalar means of
the amplitudes of the Fourier components for each temporal
frequency, across all presentations of the stimulus. Formula A
is used in Table 1 to calculate this metric. Since calculating the
spectrum ignores the phase angles altogether, only the amplitude
terms A0 and αk, N0 and βk play a role in Equation (3). This
is visually represented in the left plot of Figure 3: our signal is
successfully found, when the 95% of k vectors are within the
shaded annulus. The width of the annulus is proportional to the

FIGURE 1 | If we take a complex Fourier component Vk (f ) from a trial, it can

be represented as a vector. As this is an EEG signal, it will be naturally noisy.

The noise is a vectorial sum of two orthogonal components: the amplitude

noise which only affects the length of the vector, and phase noise, which

changes the phase angle of the vector, without affecting its amplitude.

trial-dependent terms αk and βk in Equation (3). This formula
represents the oldest and most straightforward approach. It is
used in many studies, such as Norcia et al. (2015), Hébert-
Lalonde et al. (2014), Scherbaum et al. (2011), Gruss et al. (2012),
Kamphuisen et al. (2008), Kamphuisen et al. (2008), Skrandies
and Jedynak (1999), Baitch and Levi (1988), Alonso-Prieto et al.
(2013), Panicker et al. (2011), Rossion et al. (2012), Wu and Yao
(2007), Mun et al. (2012), Gruss et al. (2012), and Rideaux et al.
(2020). The spectrum can also be used as a control measure or
comparison standard, to demonstrate some other technique. A
few examples are: Hakvoort (2001) and Lin et al. (2006), where
they used spectrum to demonstrate the superiority of multi-
channel correlation analysis; and Nakanishi et al. (2018), where
they used spectrum to demonstrate the effectiveness of extracting
the task-related independent components of the EEG signal.

An other possibility is to take the vector average to calculate
the complex spectrum, i.e., to average the complex Fourier
components and then calculate the magnitude at the last step to
get the result. This is done with formula B in Table 1. Assuming
each trial consists of an integer number of stimulus cycles, this is
equivalent to joining all the trials together in the time domain and
computing the Fourier amplitude of the result. This metric takes
both the amplitude and the phase (A0 and N0; φ0 in Equation
3, respectively) into account. In the middle plot of Figure 3,
the complex spectrum is represented as a partial annulus: not
only the 95% of the k vectors have to have a certain length to
detect our signal, but they have to be grouped around a certain
phase angle φ0. Similarly to the spectrum, the width of the
partial annulus is dependent on the amplitude components, but
additionally the angle of the partial annulus is proportional to the
trial-dependent variations (ζk and ξk terms in Equation 3) of the

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 600543128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Derzsi Detecting Weak Signals With Coherency

FIGURE 2 | A demonstration of noisy signals in the time domain. From the top to the bottom, the signal is faded a hundred times.

phase components. With additional filtering in the time domain,
formula B was used in the spectral analysis part of Norcia and
Tyler (1984). While, Boremanse et al. (2013) used formula A in
their study, they averaged the signal in the time domain first,
thus effectively used formula B. Except for the missing final step,
Cottereau et al. (2011) used formula B, but they kept the final
result in vectorial form. Johansson and Jakobsson (2000) purely
used formula B.

The third and fourth metrics are the two interpretations of
the inter-trial phase coherency (ITC, or simply “Coherency”),
and both formula C and D in Table 1 can be used to calculate
it. The coherency metric gets rid of the amplitude component

along with its per-trial variations by normalizing the length of
the Vk vectors in Equation (3) to unity across trials, and only
the phase information is preserved. From Equation (3), only the
trial-dependent phase angle terms ζk and ξk play a role in this
metric. As the φ0 term represents signal propagation time which
is treated as a constant, this term is ignored. Thismetric is visually
represented in the right plot of Figure 3: as all the vectors are now
the same length, successful detection of the signal only occurs
when 95% of the k trials are within the highlighted part of the
circle. The subtle difference between formula C and formula D
is when the averaging was done: in formula C, the averaging was
done as the first step for the vector mean and the second step for
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the scalar mean. This formula is used by Norcia and Tyler (1984),
and they derived it from first principles. Formula D, on the other
hand, executes the averaging at the very last step. This formula
is used in EEGLAB (Delorme and Makeig, 2004), in Mitra and
Pesaran (1999), Kamphuisen et al. (2008), and Derzsi (2017) as
well. The coherency can also be calculated from the variances

of the phases across trials: 1 −
ζk
ξk
, but this is often impractical

because it is computationally more intensive to get the phase
angle variances of Vk when compared to formula C and D.

We are not aware of any studies which compares the
performance of different metrics that can be used for analysing
SSVEPs. Norcia and Tyler argue that the vector mean amplitude
(B) is preferable to the scalar mean (A), “since noise voltage is
proportional to the square root of the bandwidth in Hz” and
so “the resulting improvement in signal-to-noise is equal to
sqrt(n)” (Norcia and Tyler, 1984). One can see from Equation (3)
that if the phase of the original response were entirely random,
i.e., ζk were uniformly distributed between [0◦360◦], the first
complex component would tend to average to zero across many
repetitions, and this metric would asymptote to A0, the mean
amplitude of the signal. However, in general, which metric is best
must depend on the properties of the signal as well as of the noise
and thus is hard to derive a priori. In this paper, we find out which
of these four metrics provide the most reliable results with the
least number of trials to detect weak signals such as the ones used
in frequency tagging studies. We compare the performance of the
four metrics shown in Table 1 using a simulation and the SSVEPs
from a frequency tagging experiment where human subjects
viewed temporally modulated stereoscopic disparity (Norcia and
Tyler, 1984; Derzsi, 2017).

2. METHODS

We created two simulations in Matlab to evaluate our four
metrics in Table 1, and we also replicated Norcia and Tyler’s
single-carrier frequency tagging study (Norcia and Tyler, 1984).

2.1. Simulations
We created two simulations: In the first simulation, we created
two different SNR conditions, for the purpose of finding out how
many trials are required for our fourmetrics to successfully detect
the signal. The second simulation, we approximated how many
trials are needed to reliably detect the signal as a function of
the SNR.

The distributions in both simulations are built up from
three components: white noise (1); an interfering “birdie” signal
(2), which is an 8 Hz sine wave. This signal is unstable, its
frequency and its phase angle are both randomized across trials.
The purpose of the birdie signal is to imitate an independent
separate oscillation in the EEG signal, similarly to alpha waves
for example. In both simulations, we use the four metrics to
find the frequency tagged carrier (3), which is a weak 13 Hz
sine wave, and is always in the same phase across the trials. The
detection criterion is always the same: the Fourier component
belonging to the frequency tagged signal has to be above the noise
threshold, which is the 95th percentile of the distribution created

TABLE 1 | Some metrics that can be extracted from an SSVEP.

Name Formula Used in studies

Spectrum A(f ) = 1
n

∑n
k=1 |Vk (f )| Norcia et al. (2015), Hébert-Lalonde

et al. (2014), Scherbaum et al. (2011),

Gruss et al. (2012), Kamphuisen et al.

(2008), Skrandies and Jedynak (1999),

Baitch and Levi (1988), Hakvoort (2001)

as a control; Lin et al. (2006) as control;

Alonso-Prieto et al. (2013), Panicker

et al. (2011), Rossion et al. (2012), Wu

and Yao (2007), Nakanishi et al. (2018)

as control; Mun et al. (2012), Gruss

et al. (2012), Rideaux et al. (2020), and

many many more...

Complex

spectrum

B(f ) = 1
n

∣

∣

∑n
k=1 Vk (f )

∣

∣ Norcia and Tyler (1984) with additional

filtering in the time-domain; Cottereau

et al. (2011) and they kept the values in

a vectorial form; Boremanse et al.

(2013) used formula A, but they

averaged in the time domain first;

Johansson and Jakobsson (2000)

Coherency 1 C(f ) =
∣

∣

∣

∑n
k=1 Vk (f )

∑n
k=1 |Vk (f )|

∣

∣

∣
Norcia and Tyler (1984)

Coherency 2 D(f ) = 1
n

∣

∣

∣

∑n
k=1

Vk (f )
|Vk (f )|

∣

∣

∣
Mitra and Pesaran (1999), Kamphuisen

et al. (2008), Derzsi (2017), and the

experiment in this paper

Vk (f ) is the input Fourier component recorded by a particular channel at frequency f, in

the kth trial across n trials.

from the birdie signal and the white noise in the frequency
band of 0.1–30 Hz.

2.1.1. First Stimulation: Performance of Metrics for a

Fixed SNR
In the first simulation, the noise had a peak value of 1, the
birdie had the peak value of 8. In the “Strong” condition had
the peak value of the frequency-tagged signal was 0.042, which
corresponds to an SNR of 0.047. The “Weak” condition had a
much smaller frequency-tagged signal, with the peak value of
0.003, which corresponds to an SNR of 0.0003. In each iteration,
the simulation code creates a new data set with an increasing
number of trials, and calculates the probability of the signal
being part of the noise distribution. The signal is deemed to be
successfully detected for each metric when this probability is less
than or below 0.05.

2.1.2. Second Simulation: Number of Trials Required

as a Function of SNR
The second simulation, the noise had a peak value of 0.825,
the birdie had a peak value of 0.175, and the SNR was varied
between 0.1 and 0.00063 in 10 logarithmic steps. The signal
was reliably detected with a metric, when the probability of the
signal’s Fourier component was above the noise distribution, with
a probability of being part of the noise distribution (consisting of
the white noise and the birdie) being<0.05. Since this simulation
involves working with random numbers, the simulation is
executed 20 times and the resulting trial numbers were averaged.
To shorten the execution time, a maximum trial limit of 3,000
was set. If the number of trials exceeded this number without
detecting the signal for a metric, no valid results was returned.
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FIGURE 3 | A visual illustration of how each metric operates, for a single frequency, in a vectorial form. In the left plot, the spectrum (formula A in Table 1) only detects

the signal, when more than 95% of the samples are inside the shaded annulus, implying that this Fourier component’s spectral power is significantly elevated. The

complex spectrum (formula B in Table 1, and in the middle plot) is similar to formula A, but with an added phase criterion: the signal is only detected if 95% of the

samples are inside the partial annulus; the Fourier component not only has to be significantly elevated, but also needs to be in a particular phase angle range as well.

With coherency (right plot, formula C and D in Table 1), the signal only gets detected when 95% of the normalized vector samples are forming a small enough

distribution with respect to the entire circle (orange line with respect to the gray dashed line). It doesn’t matter where they actually are on the circle, as long as their

spread is sufficiently low.

FIGURE 4 | One cheerful participant wearing our 128-channel EGI electrode

cap, sitting in front of the 3D display. The mirror assembly of the Wheatstone

stereoscope is just behind her head.

The Matlab code used to create the simulation results are
included as Supplementary Material to this paper.

2.2. EEG Experiment
2.2.1. Participants and Ethics
As part of a PhD project (Derzsi, 2017), we measured the spatio-
temporal limits of depth perception. As a secondary experiment
in the project which is essentially a replication of Norcia
and Tyler’s study, we collected 537 good trials from the EEG
recordings of 4 participants (adults, 2 males, 2 females, age 23.5
± 3.5 years). The project was approved by the Ethics Committee
of the Faculty of Medical Sciences of Newcastle University.

FIGURE 5 | The stimulus used in our experiment and in Norcia and Tyler’s

experiment: a correlated random-dot stereogram plane that bounced in and

out of the screen plane with positive and negative binocular disparity. Norcia

and Tyler used a modified television set to create anaglyph stereograms, our

experiment used two CRT monitors in a Wheatstone stereoscope arrangement

(Norcia and Tyler, 1984). Copyright 1984, with permission from Elsevier.

2.2.2. Stimulus and Trials
We used two calibrated Dell P992 CRTmonitors in aWheatstone
stereoscope configuration to create our stereoscopic stimulus.
The participant’s head was placed on a chin rest in front of the
mirror, and the displays covered 40 × 40◦ visual angle. The
refresh rate of the monitors was 100 Hz. A photo of the set-up
is shown in Figure 4.

We wrote a stimulus using Psychtoolbox (Pelli, 1997; Kleiner
et al., 2007) which displayed a dynamic random-dot stereogram
(Julesz, 1971), consisting of an equal number of black and white
dots, presented on a 50% gray background. The mean luminance
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of the stimulus was 57.5 cd/m2, and the dot density was 0.06%.
The locations of the dots were updated at every frame (10 ms).

The trials were executed by the participants, and they were
short, between 6 and 8 s. Each trial featured a “dot onset”
preamble of between 1 and 1.5 s where the dots were displayed
with zero disparity. Then once this time had elapsed, the
applied binocular disparity (“disparity onset”) alternated between
±0.05◦, at a rate of 2.1 Hz, or 48 frames, as depicted in Figure 5.
This alternation continued for a random time between 5 and
6 s. The EEG traces were then temporally aligned such that
the onset of the disparity alternation occurred at t = 0 as per
Figure 6 corresponded.

2.2.3. EEG Recordings and Preprocessing
We used Electrical Geodesics’ (“EGI,” Eugene, Oregon, USA)
128 channel HydroCel Geodesic Sensor Net (GSN) system to
record our EEG data. The electrode cap is connected to the
participant using silver chloride electrodes, with sponges soaked
in an electrolyte, which is made of saline solution with baby
shampoo mixed in. For each channel, the impedances were kept
below 50 k�. The signal was sampled at 1 kHz, and the “disparity
onset” event was presented as a TTL signal that was directly
coupled from the CRT monitor using a photodiode and a peak
detector circuit.

In Net Station (EGI’s proprietary EEG software) we filtered
the continuous recordings between 0.1 and 70 Hz, and a narrow
band-stop (notch) filter was also in place to reduce the effect of
the 50Hzmains hum. The recordings then were segmented to the
“disparity onset” event within the trials, and further processing
was done in Matlab. Trials containing cardiovascular artifacts, or
eye blinks and other muscle movements were rejected. If a trial
had more than 10% noisy channels that showed signs of electrode
detachment, or the drying of electrolyte for example in the EEG
signal, it was also rejected. For further analysis, we only used a
single channel (no. 72 of the GSN), which was located just above
the inion.

2.2.4. Analysis
We analyzed the trials using our own code in Matlab, and
some analysis was done using EEGLAB (Delorme and Makeig,
2004). We analyzed the simulation results and the EEG data the
same way, with the exception that we investigated only the first
harmonic of tagged frequency in the simulation.

In the spectral analysis, the neural response to the stimulus
is detected by identifying a peak at the known temporal
frequency of the stimulus, or a harmonic. In both spectral
metrics (formula A and B in Table 1), we compared the sample’s
Fourier component value at these signal harmonics to every other
frequency (i.e., the noise) in the analysis. We counted successful
signal detection as occurring when the value at the harmonic is
larger than the 95th percentile of the noise. The probability of
false detection is calculated by the ratio of how many other peaks
in the noise are above the 95th percentile, and how many Fourier

components are included at distinct temporal frequencies in the
analysis:

p =





fmax
∑

f=fmin

Ssignal(f ) > [95th percentile(Nnoise(f ))]





/

(

∑

(fmax − fmin)
)

(4)

where S(f ) is the value of the signal sample, Nnoise noise
distribution at the frequency f .

Ssignal(f ) is always a single component in the simulation. In the
experimental data analysis, we used the first six harmonics of the
temporal frequency of the periodic stimulus.

2.2.5. Analysis and Statistics on our EEG Data
In the trials, we looked at the (1/

√

f )-compensated spectrum and
the calculated coherency of the SSVEPs of one single channel at
the central occipital area. Since the waveform of the temporal
modulation of the stereogram’s depth plane is a symmetrical
square wave which only contains odd harmonics, and we know
that the neural mechanism triggered is sensitive to changes in
disparity, we expect the first derivative of this signal to be present
in our EEG recordings. Therefore, we only consider the presence
of the even harmonics to be linked to processing, and the odd
harmonics to be the original signal passing through the human
visual system.

The coherency values are compared against a large number
(1,000) synthesized, phase-scrambled noise data sets. Unlike the
bootstrapping operation, where the data would be re-sampled at
a trial level, we generated our data sets with identical number
of trials to the real data we analyzed. This allows us to calculate
the 95th percentile of the noise distribution not just across the
spectrum, but across data sets, and create a reliable measure
of upper noise floor or “noise threshold.” If a coherency value
is above this noise threshold, we know immediately that it is
statistically significant. The exact probability can be worked out
using formula 4 as well.

3. RESULTS

3.1. Simulations
3.1.1. First Simulation: Performance of Metrics for a

Fixed SNR
In the high SNR (0.047) condition, the signals are shown in three
sets of plots in Figure 7. In this condition, the frequency-tagged
signal is so powerful that the coherency analysis (formula C and
D in Table 1) is capable of detecting it with only three trials.
This is shown in the top middle and top right plot. The complex
spectrum (formula B in Table 1) is on the edge of detecting
the signal too, but it’s p-value is slightly below the significance
threshold of 0.05. However, just by adding an extra trial in the
middle plot, it also successfully detects the frequency tagged
signal. While there is a distinct peak at the spectrum (formula
A in Table 1) at the tagged frequency of 13 Hz as well, it takes far
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FIGURE 6 | Anatomy of a trial: the preamble was displayed for a random time between 1 and 1.5 s, then the modulated bouncing disparity appeared on the screen,

for a random time between 5 and 6 s. The timing of the “disparity onset” event was recorded with millisecond precision.

more, 11 trials for the spectral analysis to detect it reliably. This is
shown in the bottom left plot.

For the low SNR (0.0003) condition, the performance of each
metric (see Figure 15) under the conditions set in the included
supplementary code show the probability of erroneous detection
(i.e., significance level, p-value) as a function of how many trials
are included in a data set. The coherency analysis (formula C and
D in Table 1) requires around 200 trials for a p-value of 0.05, with
formula C showing to be a little more sensitive than formula D.
The complex spectrum metric (formula B in Table 1) requires
about 800 trials to achieve the same significance level. For the
same signal and same conditions, the spectral analysis (formula A
in Table 1) does not provide meaningful results. For the purpose
of illustration, Figure 15’s scatter of p-values are fitted with a
simple exponential model (y = a × exp(bx)), with good quality
fitting r2 ≥ 0.85, with the exception of the spectral analysis, as
the p-values hover around 0.4–0.5.

In the low SNR condition, the signals are shown in the top
plots of Figure 6 at 350 trials, and in the top plots at 900 trials.
The spectral analysis shows in the far left plots how powerful
the birdie signal is with respect to the tagged carrier signal:
under these circumstances, detecting the tagged signal in the
spectrum is impossible. In top middle left plot, the complex
spectrum (formula B in Table 1) does show a peak at the tagged
frequency, but its p-value is too high to be deemed reliable. The
coherency analysis (formula C and D in Table 1, middle and
far right plots) show confidence levels below 0.05, implying that
the signal was reliably detected. Formula D’s coherency value is
lower (0.15) than Formula C’s (0.2), but -similarly to the complex
spectrum- formula C shows a false positive at the birdie signal’s
frequency of 8 Hz.

Adding more trials to the experiment shows two additional
benefits: from Figures 7, 8, the noise floor is noticeably lower,
particularly with the coherency analysis at the right plots; and
adding more trials to the data set allows the complex spectrum to
detect the frequency tagged signal as well. The effect of the birdie
is still visible in all metrics, but with formula D in the bottom far
right plot of Figure 7 it is considerably diminished.

3.1.2. Second Simulation: Number of Trials Required

as a Function of SNR
In Figure 14, the straight lines are estimations from information
theory. At high SNRs, up to about 0.06 and above, only a

single trial is enough to find the frequency tagged signal with
the spectrum and the complex spectrum techniques (formula
A and B in Table 1). Below these SNRs, the required trial
numbers increase rapidly, requiring about a hundred trials at
the SNR of 0.03. The traces split noticeably at around the
SNR of 0.02, where the spectrum requires about 4–5 times
more trials than the coherency (formula C and D in Table 1)
and the complex spectrum to detect the signal (B in Table 1).
By the time the SNR gets to as small as 0.01, more than
3,000 trials are needed to be detected with the spectrum, at
which point the simulation terminated. Going further to weaker
and weaker SNRs, the complex spectrum and the coherency
lines split: at around the SNR of 0.0035, approximately the
complex spectrum requires double the number of trials than the
coherency to detect the signal. This ratio diminishes somewhat
as the SNR approaches even smaller values. At the SNR of
0.002, more than 3,000 trials are required for the complex
spectrum to detect the signal, at which point the simulation
terminates. Interestingly, the required number of trials seem
to peak at the SNR of 0.002, and fewer trials are needed for
worse SNRs. At the SNR of 0.0005, the complex spectrum
required about 1,000 trials, whereas the coherency only needed
4–500.

3.2. EEG Experiment
Figures 9, 10 show the results of all four metrics (see Table 1),
for two participants. The plots were generated from 111
and 139 trials, respectively. In the two left (spectrum and
complex spectrum) plots, the blue lines are the 95th percentile
of the noise spectrum with the harmonics of the stimulus
signal excluded.

The spectrum (formula A in Table 1, far left plots), besides
a peak around the alpha (8–12 Hz) band with one participant,
is unremarkable. The near left plots show the results of the
complex spectrum calculated with formula B in Table 1, which
does seem to show peaks at the first harmonic of the temporal
modulation frequency with both participants, and the second
and fourth harmonics with one participant. There are other
peaks present above the 95th percentile in unrelated frequencies
between the first and the second harmonics in a similar fashion
to the response to the birdie signal presented in the simulation
results in Figures 8, 7, respectively.
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FIGURE 7 | In the high SNR (0.0047) condition tested by the simulation, only a handful of trials were enough to detect the hidden signal: in the top right plots, formula

C and D only required three trials to achieve reliable detection. In the middle plots, in the middle left, the complex spectrum detected the signal at 4 trials. For the

spectrum to do the same, 11 trials were necessary, as visible in the bottom plot. These plots are generated using the code in the Supplementary Material, using the

same signal. The frequency tagged signal is at 13 Hz, and the unstable birdie signal originating from an independent oscillation is at 8 ±0.8 Hz.
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FIGURE 8 | In the low SNR (0.0003) condition tested by the simulation, at 350 trials in the top plots, the hidden signal was detected successfully with the coherency

(formula C and D in Table 1) method. The complex spectrum (formula B in Table 1) provided reliable results only at the bottom at 900 trials. The spectrum failed to

detect the signal at all. These plots are generated using the code in the Supplementary Material, using the same signal. The frequency tagged signal is at 13 Hz,

and the birdie signal originating from an independent oscillation is at 8 ± 0.8 Hz. The birdie signal’s interference is visible in all plots except formula D’s in the far right of

the bottom plots.

The two right plots show the coherency of the signal
(formula C and D in Table 1), with the peaks on the red
traces highlighting the harmonics of the temporal modulation
frequency. The blue lines in the right plots are noise thresholds,
which is calculated as the mean 95th percentile of 1,000 phase-
scrambled noise data sets, with matching number of trials to
the EEG data. This “noise threshold” is used as an indicator
for significance: if a signal is above the noise threshold, it is
deemed to be significant, and thus the signal is detected. The
star above the peak indicates that the first, second, and fourth
harmonics are distinct from the noise, with a detection error
probability of <0.05. The exact probabilities are calculated with
formula 4. Furthermore, the coherency peaks are smaller with
formula D than formula C, but at the same time there are
fewer coherency peaks above the noise threshold at unrelated
temporal frequencies.

In Figure 11, we pooled together the trials of our four
participants, and plotted the results from all four metrics: the
spectrum (formula A in Table 1) is in the far plot, the complex
spectrum (formula B in Table 1), and the coherency (formula
D in Table 1) are in the right plots. The spectrum of the EEG
recordings show the alpha band of 10...12 Hz increased. Apart
from this, the spectrum’s plot is unremarkable, there are no
visible peaks at any of the harmonics of the depth alternation
frequency. The complex spectrum in the near right plot did
detect the second harmonics of the stimulus frequency, and there
are other distinct peaks at further harmonics, but below the
significance threshold.

However, the two left plot’s coherency analysis shows
distinct peaks at the second (4.2 Hz), fourth (8.4 Hz), and
sixth (12.6 Hz) harmonics, which are phase-locked to the
stimulus stereograms’s depth alternation. Additionally, formula
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FIGURE 9 | EEG data of participant AO. The spectrum (formula A in Table 1) does seem to show a peak above the 95th percentile at the fourth harmonic (8.4 Hz) of

the temporal modulation frequency. The complex spectrum shows more peaks harmonics of the 2.1 Hz temporal modulation frequency. The coherency analyses

(formula C and D in Table 1) in the right two plots do show significance at the second and fourth harmonics at the temporal modulation frequency. In the coherency

analysis, the signal was compared against a generated white noise comparison standard, with identical number of trials. The blue “noise threshold” line indicates the p

= 0.05 significance level, which is the 95th percentile of our phase-scrambled synthesized noise distribution sets.

C also detected the base harmonic (2.1 Hz) of the stimulus
as well.

4. DISCUSSION

4.1. EEG Experiment: Successful
Replication of Norcia and Tyler’s 1984
Study
While we aimed to replicate the original (Norcia and Tyler,
1984) study as closely as we could in our experiment, since
some hardware could not be obtained easily over 30 years after
the original study. We have implemented some changes: we
doubled the number of participants to 4 and they were naïve
to the subject, we rejected trials based on detected artifacts in
the EEG signal instead of letting the participants report bad
trials themselves, and a single temporal frequency was chosen
for the depth alternation which provided us with the strongest
neural response. Our display covered a larger visual angle and
did not require the wearing of anaglyph glasses. Unlike our study
with constant stimulus frequency, Norcia and Tyler used the
frequency sweeping technique for the depth alternation. Their
frequency response of a single participant is shown in the top plot
of Figure 12, with a peak at around 3.5Hz. The second harmonic
of our temporal modulation frequency was reasonably close to
this value, 4.2Hz.

Apart from the above, our dot density and the peak disparity
values were close to identical to the original study. Norcia and

Tyler concentrated only at analysing the second harmonic of the
depth alternation frequency, because they used discrete tunable
filters on the recorded EEG waveform and they calculated the
coherency value manually.

Our signal acquisition and processing was done using
computers, and so were the time-frequency transforms, which
allowed us to not only investigate coherency at the second
harmonic of the temporal modulation frequency, but to do
so over the entire spectrum until the 500 Hz Nyquist-limit.
However, we only analyzed and plotted a smaller sensible part
of this band, from 0.1 to 15 Hz. Perhaps a notable drawback of
using discrete time signals is when analysing short bursts of it: in
our case, only 5 s after the disparity onset event mean that the
window of the Fast Fourier Transform is rather small, which lead
to a relatively poor, but yet still acceptable frequency resolution of
0.2 Hz per Fourier component. Without increasing the sampling
frequency or using longer trials, this is unavoidable. We also
believe that this is one of the reasons why our coherency values
are smaller than what Norcia and Tyler reported. However, with
our statistics, the frequency tagged signal is reliably detected, and
thus we have successfully replicated Norcia and Tyler’s study.

4.2. Control Measures
The data presented here is a subset of a larger PhD project
(Derzsi, 2017), where we used this technique to characterize
depth perception in the human visual system: we have found
the corresponding coherency peaks for conditions with different
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FIGURE 10 | EEG data of participant SA. The spectrum (formula A in Table 1) in the far left plot shows elevated power in the Alpha band, but not at any harmonics of

the temporal modulation frequency of the stimulus. The complex spectrum shows one peak at the first harmonic the 2.1 Hz temporal modulation frequency. The

coherency analyses (formula C and D in Table 1) in the right two plots do show significance at the second and fourth harmonics at the temporal modulation

frequency. In the coherency analysis, the signal was compared against a generated white noise comparison standard, with identical number of trials. The blue “noise

threshold” line indicates the p = 0.05 significance level, which is the 95th percentile of our phase-scrambled synthesized noise distribution sets.

temporal and spatial frequencies, but for the purpose of this paper
that compares various metrics in a frequency tagging experiment,
only a small fraction of results are included here. In Figure 13,
we demonstrate that the coherency peak follows the temporal
modulation frequency, and that the signal is detectable with
fewer trials.

4.3. Can Pooling Across Participants Ever
Be a Sensible Choice?
A good practice in studies is to collect a number of trials from a
participant, generate a per-individual result, and then pool across
them to come up with the grand average that is used in the
final analysis.

Pooling across participants at a trial level when analysing the
spectrum does not produce meaningful results, because of the
risk of data being driven by a small number of powerful outliers,
which can lead to improper conclusions.

However, since the coherency analysis rejects the amplitude
component of the EEG data by principle, the risk described
above is eliminated. As each participant will have a different
signal propagation time in their brains, the phase angles of the
frequency-tagged signals will be different as well.

Pooling across participants at a trial level will result in a
reduced coherency value because of the increased spread of the
phase angle distribution of the signal (different φ0 and different
ζk in Equation 3 for each participant). Since in the coherency
analysis, we are evaluating the coherency data against synthesized

phase-scrambled control data sets, the actual coherency value
itself does not matter: as long as it’s significantly elevated from
the noise, it is detected successfully. In our case, this is shown
in Figures 9–11: the coherency value for a single participant
at 4.2 Hz is 0.33, which reduces to 0.28 after pooling four
participants together. However, the noise level is 0.18 in the single
participant’s data reduces to around 0.08 in Figure 11, which
means that our chances of detecting the signal has increased
despite the overall reduction of the coherency values, making
pooling across participants at a trial level a worthwhile trade-
off for low temporal frequencies. Provided that the variance of
signal propagation times of individuals is less than half a period
of the temporal frequency of the stimulus, the overall reduction
of coherency values will not be considerable, and this minimizes
the risk of losing the signal.

4.4. Noise Model Choice
In nature, the electrical noise is fundamentally pink noise: the
noise power follows a 1/f pattern in the spectrum, and the EEG
signals are no exception. Since the EEG equipment measures
voltage and not power, the noise follows a 1/

√

f pattern. This
has to be compensated for when evaluating the spectrum and
the complex spectrum (formula A and B in Table 1). However,
irrespective of what type of “noise” we are dealing with—
whether external electrical noise or the electrical signal of some
unrelated biological function—the noise will not be phase-
locked to the temporal modulation frequency of the stimulus.
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FIGURE 11 | In this figure EEG data from our four participants is pooled together at a trial level creating a single data set with 537 trials. We can see that the spectrum

(formula A in Table 1, far left plot) does not show any significant peaks at any of the harmonics of the stimulus frequency. However, it shows elevated spectral power

in the Alpha (8–12 Hz) band. The complex spectrum (formula B in Table 1, middle left plot) does detect the second harmonic (4.2 Hz) of the stimulus frequency, and

possibly the fourth (8.4 Hz) harmonic as well, but it’s just below the 95th percentile threshold line. In contrast, the coherency analysis (formula C and D in Table 1, right

plots) detects the first six harmonics of the stimulus, with formula C in the middle right plot additionally detecting the first harmonic as well. When compared with the

same plots of Figures 9, 10, the coherency values only slightly reduced while the noise threshold lowered considerably. This implies that the trial-level data pooling

may be a worthy trade-off to improve sensitivity with the coherency analysis.

Thus, following a Fourier transform, the distribution of the
arguments of the vectorial representations of the complex Fourier
components are completely stochastic within the interval of 0
and 360◦. Additionally, since in a frequency tagging experiment
we consider every irrelevant signal component as noise, it is
difficult to create a model that accurately imitates the signals
created by the brain. In the simulation, the presence of white
noise and the birdie signal was an attempt to replicate this,
but it is fundamentally insufficient. In reality, there may be a
large number of birdies present, mixed with transients and other
artifacts from various sources. For instance, at 111 (see Figure 9)
and at 139 trials (see Figure 10), we should see some relevant
peaks at the spectrum, even if they are below the significance
threshold. The lack of peaks in the spectra of real data show that
the noisemodel used in the spectrum simulations is too forgiving,
and this leads to a rather optimistic prediction of the performance
of the spectrum in the simulations. This, however, only applies to
the spectrum, and not for the coherency analysis.

Since the coherency analysis effectively removes the amplitude
component along with its noise component of the signal
completely, the resulting phase noise distribution will always
be a uniform distribution, irrespective of what type of noise
the acquired signal contained. This property enables it to
be compared against artificially generated controls with very
good accuracy.

When comparing the coherency plot of the EEG signal in
Figure 11 in between harmonics (for example 10 and 12Hz, or 15
Hz and above in Derzsi (2017) with the coherency plots on either
Figure 7 or Figure 6, we can see that the coherency values are
indeed uniformly distributed with respect to temporal frequency.

We could have implemented any other noise types in the
simulation, but for the sake of simplicity and to due to the fact
that the coherency analysis is insensitive by principle to the type
of noise used, we decided to use only white noise.

4.5. Comparing the Performance of
Spectrum and Coherency With Weak
Signals
The metric that performs the worst is the spectrum (formula
A in Table 1). At very low SNRs the signal is undetectable
with conventional spectral analysis. Findings from information
theory (Proakis, 2000; Proakis and Salehi, 2008; Derzsi, 2017)
suggest that techniques using or exclusively relying on the phase
information performmore reliably at low SNRs.We have verified
this with both our simulation results in Figure 15 and even
with real data in Figure 11. This further reinforces that spectral
evaluation in a weak-signal frequency-tagging study is one of the
worst things to do.

The best performer is the coherency analysis, formula C and D
in Table 1: since it effectively rejects the amplitude component of
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FIGURE 12 | The results of one of the two participants in Norcia and Tyler

(1984). (Top) The amplitude of the acquired EEG signal at the center occipital

area, showing a peak response between 2 and 4 Hz depth alternation

frequency. (Middle) Measured coherency (formula C in Table 1) value.

(Bottom) The phase angle plotted of the signal, implying that there is a

constant or near-constant propagation delay between the depth alternation

and the recorded EEG signal at the second harmonic of the depth alternation

frequency. Copyright 1984, with permission from Elsevier.

a vector along with its noise component, it increases the SNR, and
this property makes it less prone to external interfering signals.
Since the coherency is a measure of how consistent the phase
angles are across the trials, the actual phase angles themselves
are not being taken into account. Rather, their distribution
with respect to the whole circle is the property that carries
information (see Figure 3, middle and right plots), and this
makes the coherency analysis is far more resistant against noise
than any other approach presented in this paper. The only extra
information required in the stimulus is the annotation of the
phase as well as the frequency: without it, the coherency analysis
is useless.

Based on findings from information theory, we can derive
the error performance (Proakis and Salehi, 2008) of various
information enclosure (modulation) methods as a function of the
SNR. This way, we can approximate howmany trials are required
as a minimum for successfully detecting a frequency-tagged
signal (Derzsi, 2017) that has the phase information annotated
with the error probability of p = 0.05. These are:

Lspectrum =
[erfc−1(2× 0.05)]2]

SNR
(5)

Lcoherency ≈
1
4 × [erfc−1(2× 0.05)]2]

SNR
(6)

where L is the number of trials required, erfc is the
complementary error function, and SNR is the signal-to-noise
ratio. It is worth noting that these functions provide a strictly
monotonically decreasing number of trials as a function of the
SNR. These estimated performances are plotted in Figure 14,
and provide similar results to the simulated performance in
Figure 15: for example, at the SNR of 10−3, about 400 trials
are required for coherency analysis and about 1,100 trials are
required for the spectral analysis to provide meaningful results.
When comparing this theoretical finding with the simulation
results, it shows that these estimations show in Equations (5) and
(6) are pessimistic at low SNRs, and optimistic at high SNRs.
With a similar SNR in the simulation code that is included as
Supplementary Material in this paper, these are about 4–500 and
more than 3,000 trials, respectively.

Based on this information, provided that there are no external
interfering signals and that the phase of the stimulus was known,
we can improve a frequency tagged signal’s detection probability
by at least a factor of 4, just by analysing its coherency and not
its spectrum. Of course, with real-world data this improvement
is not as marked, but still considerable.

These equations that estimate the performance do not make
a difference between the spectrum formula A and B and the
coherency formula C and D. Spectral analysis either fails to
detect a weak signal completely, or requires an unrealistically
large number of trials to provide acceptable results. The spectral
analysis method also is prone to show external interfering
signals as false positive results. The coherency analysis, in all
cases is a more sensitive approach for weak signals, with the
capability of either greatly diminish or completely reject external
interfering signals.

4.6. What SNR Is Reasonable in Real Data?
The actual observed SNR depends on the modality and the
conditions of the stimulus. Bright flashes produce a very strong
response, and relatively few trials are required to produce
meaningful results. For example, Hébert-Lalonde et al. (2014)
were able to find spatial visual deficits with a blinking spot on
the screen from about just a minute of EEG recording. Binocular
vision, on the other hand, produces a more subtle response: In
Baitch and Levi (1988), over 100 trials were required to detect
the lack of binocular visual processing in stereoblind participants.
Binocular disparity processing produces even weaker signals: in
the EEG study presented in this paper, more than 100 trials were
required to detect the disparity-defined visual stimulus with the
coherency analysis. Not even 500 trials were enough to detect
the signal in the spectrum. Increasing the binocular disparity
does not necessarily increase the strength of the neural response:
too large, or too quickly changing disparities can not be fused
properly. If the visual system does not have enough time to
solve the stereo correspondence problem (Ip et al., 2014) or the
participant is no longer able to follow it in depth (Alvarez et al.,
2005), the depth perception from binocular disparity falls apart.
This has been verified experimentally with psychophysics (Kane
et al., 2014), and with frequency tagging (Derzsi, 2017) as well.
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FIGURE 13 | Coherency values at different uniform plane (0 cycles-per-degree grating) conditions in Derzsi (2017): the gray line is the temporal modulation frequency

of the grating, and the colored (red, blue, magenta) lines are the (second, fourth, and sixth, respectively) harmonics. As the temporal modulation frequency increases,

the second harmonics’ coherency value follows. The “generated noise coherency” is used as the comparison standard to detect the presence of the signal.

FIGURE 14 | As the SNR gets worse and worse, more and more trials are needed to detect the signal. The estimations are from Equations (5) and (6), they are

approximated from information theory. The simulated performance is shown for each formula. For SNR 0.06 and above, only 2 trials are enough to detect the

frequency tagged signal for the coherency analysis and a single trial for the spectral analysis. Where the lines are incomplete, more than 3,000 trials were not enough

to detect the signal, at which point the simulation was terminated. Having the simulation executed 20 times, we see that the coherency analysis requires the least

number of trials to reliably detect the signal.
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FIGURE 15 | For the low SNR (0.0003) condition the p-values of the statistical analysis of the simulation is plotted against the number of trials used. Zero p-values are

not shown due to the logarithmic axis. With the tagged signal being much weaker than the noise, the coherency analysis (formula C and D in Table 1) detects it with

around 300 trials. For the same confidence level, about 800 trials are required for the complex spectrum (formula B in Table 1). At these low SNRs, the conventional

spectral analysis (formula A in Table 1) completely fails to detect the tagged signal. The lines are fitted with a simple exponential model (y = a× exp(bx)), except for

the spectrum, which hovers around 0.5.

For spectral analysis, Equation (5) may be modified to provide
an approximation of SNR from the number of trials used:

SNR ≈
[erfc−1(2× 0.05)]2]

Lspectrum
(7)

This equation is approximate in nature, because many studies
collect more data than what is absolutely minimally required for
statistical significance. A visualization of this equation is shown
with the dark blue straight line in Figure 14. In practice, this
means that the estimation is somewhat pessimistic, so the SNRs
reported by this formula are somewhat lower than in reality.

From the examples with flashing stimuli above, we estimate
that the time-domain SNR are varying between 0.04 and 0.003:
for 30 trials used in Hébert-Lalonde et al. (2014)’s flashing spot
study is 0.04; for 100 trials used in Baitch and Levi (1988)’s
binocular flash study is 0.02; 480 trials used in the control part of
Nakanishi et al. (2018)’s flashing of characters is 0.003; 192 trials
used in Gruss et al. (2012)’s flashing faces study is 0.015.

For the random-dot stereogram examples from above the SNR
is worse, varying from approximately 0.01 to <0.002: for 100
trials used in Cottereau et al. (2012)’s disparity-defined annulus
study is 0.015, but with the aid of fMRI; for 384 trials in Rideaux
et al. (2020)’s moving circle defined by random-dot stereograms,
it is 0.0025; in the study presented in this paper 537 trials were
not enough to detect the frequency-tagged signal, therefore the
SNR is estimated to be <0.004.

Therefore, the added sensitivity for the coherency analysis
may be beneficial in these low SNR conditions, as it decreases
the probability of erroneous detection. Additionally, since the
coherency analysis is capable of detecting the signals in even
lower SNRs, it will be an ideal analysis candidate for future or

unpublished studies, where conventional analysis methods have
failed provide convincing results.

4.7. Simulations
Both simulations demonstrate that the coherency analysis is the
most sensitive method for detecting a weak signal in the SSVEP.
In the first stimulation, where we used two conditions to imitate
the presence of a strong (see Figure 7) and a weak (see Figure 6)
signal, and in both cases, the coherency analysis required the
lowest number of trials to detect the signal. This is further
reinforced by the plot of performance in the low SNR condition
in Figure 15, where the coherency analysis detected the signal
at around 200 trials, the complex spectrum analysis detected the
signal at around 800 trials, and the spectral analysis did not gain
any confidence after 2,000 trials.

In the second simulation, where the required number of trials
to achieve p = 0.05 significance are plotted against the SNR (see
Figure 14), we see a similar picture: as the signal gets weaker and
weaker, the sensitivity of the coherency analysis is more andmore
apparent. However, we must note that when the tagged signal
is strong, and only a single trial is enough to detect it with the
spectral analysis, it is pointless to do the coherency analysis, as it
requires at least two trials to provide meaningful results.

From Equations (5) and (6), we know that the number of
trials required is strictly monotonically increasing as the SNR
decreases, but interestingly the behavior of the simulation results
do not clearly show this. For example, prior to losing formula
A’s performance at the SNR of 0.01, it required only a fraction of
trials to detect the signal than in the iteration before. The same
is observed with the with the coherency results below the SNR of
0.002. We believe that this phenomenon is an artifact, due to the
limit of double precision numbers, and the fact that we are rapidly
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approaching Shannon’s theoretical limit of information capacity
(Shannon, 2001) in these conditions. Realistically, considering
that it is very difficult to collect more than 2–300 trials in a
frequency tagging experiment from a single participant without
fatigue, the practical limit of SNR at which the coherency analysis
performs best is around x ∗ 10−3. For the spectrum, this is
considerably higher, x ∗ 10−2. Therefore, the best use of the
coherency analysis is when the signals are very weak, and could
not be detected with any other method.

4.8. Does the Interfering Birdie Signal
Matter at All in Coherency Analysis?
In a frequency-tagging study where the mechanism tested is
well isolated, the straightforward approach to rely on the tagged
frequencies themselves. Human stereopsis is a great example for
such a mechanism, as it can do both intermodulation (Baitch and
Levi, 1988) and frequencymultiplication (Norcia and Tyler, 1984;
Norcia et al., 2015) very cleanly, so the temporal frequencies in
the analysis can be calculated easily. In these cases, a powerful
unrelated signal can safely be ignored, and the more sensitive
formula C may be used to find even the weakest signals.

However, when the operation of the mechanism studied is
not so straightforward, such as the case with muscle movements
(Nazarpour et al., 2012) or face perception (Boremanse et al.,
2013), the experimenter may not have the luxury of ignoring
any signal by labeling it as a birdie. In these cases, where
finding and eliminating birdies is vital to avoid erroneous
conclusions, formula D is the safer option as it’s the most robust
against external interference. We also suggest the use of a time-
frequency analysis method in addition to the coherency analysis
in such cases.

5. CONCLUSION

When employing the EEG frequency tagging technique in an
experiment and analysing the SSVEP, spectrum may be the
obvious choice at first glance. Due to its simplicity, it is easy to
write reliable analysis software. The apparent ease of use, however
comes at a price: as it preserves both the amplitude and phase
noise components, spectral analysis is a very insensitive analysis
method. Provided that the frequency and the phase information
of the stimulus is known either by starting the stimulus in the
same phase or recording the phase angle of it in each trial, it is
possible to analyse the inter-trial coherency of the recordings,
which can detect signals that are too weak to be seen in the
spectrum. An added benefit is that the coherency may reliably be
compared against artificially generated controls. Therefore, based
on our simulation results and experimental verification, we found
that the coherency analysis offers the detection of weaker signals,
or requires fewer trials in an experiment.

Based on our analysis, we suggest the annotation of the phase
angle of the stimulus and the use of coherency analysis instead of
spectral analysis in future frequency tagging studies.
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Using P300-based brain–computer interfaces (BCIs) in daily life should take into account
the user’s emotional state because various emotional conditions are likely to influence
event-related potentials (ERPs) and consequently the performance of P300-based
BCIs. This study aimed at investigating whether external emotional stimuli affect the
performance of a P300-based BCI, particularly built for controlling home appliances.
We presented a set of emotional auditory stimuli to subjects, which had been selected
for each subject based on individual valence scores evaluated a priori, while they
were controlling an electric light device using a P300-based BCI. There were four
conditions regarding the auditory stimuli, including high valence, low valence, noise,
and no sound. As a result, subjects controlled the electric light device using the
BCI in real time with a mean accuracy of 88.14%. The overall accuracy and P300
features over most EEG channels did not show a significant difference between the four
auditory conditions (p > 0.05). When we measured emotional states using frontal alpha
asymmetry (FAA) and compared FAA across the auditory conditions, we also found no
significant difference (p > 0.05). Our results suggest that there is no clear evidence
to support a hypothesis that external emotional stimuli influence the P300-based BCI
performance or the P300 features while people are controlling devices using the BCI in
real time. This study may provide useful information for those who are concerned with
the implementation of a P300-based BCI in practice.

Keywords: emotional stimulation, brain-computer interface, P300, ERP, auditory stimulus

INTRODUCTION

A brain–computer interface (BCI) provides a direct communication channel between people and
external environments without any involvement of muscles by translating brain signals directly
into the commands (Wolpaw et al., 2000, 2002). Due to this capacity, BCIs can provide an
alternative means of communication with the external world for those who are suffering from
severe neurological disorders, such as amyotrophic lateral sclerosis, spinal cord injury, or brainstem
stroke (Birbaumer and Cohen, 2007). Not only as a means for communication with the external
world, BCIs can also be used to restore, enhance, supplement, and improve lost central nervous
system (CNS) functions as well as to provide a decent research tool (Brunner et al., 2015). In
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particular, non-invasive BCIs based on electroencephalography
(EEG) have been widely used due to their high temporal
resolution and relatively low cost (Nicolas-Alonso and Gomez-
Gil, 2012).

Brain-computer interfaces can be classified into several
categories such as active, reactive, and passive BCIs (Zander
and Kothe, 2011). Active BCIs elicit brain signals such as
sensorimotor rhythms by self-paced and voluntary mental
activity. Reactive BCIs induce brain signals such as event-related
potentials (ERPs) or steady-state visually evoked potentials
(SSVEPs) by providing external stimuli in a synchronous manner.
Passive BCIs detect brain signals to infer various mental states.
Among reactive BCIs relying on ERPs, P300-based BCIs have
been the most widely investigated, where P300 refers to one
of the ERP components induced by the oddball task paradigm
(Sara et al., 1994). For instance, a P300-based BCI implements
an oddball task with the visual arrangement of letters in
a matrix form and enables one to select and type a letter
using brain activity only (Farwell and Donchin, 1988). It has
been further expanded for device control by selecting a target
function amid available control functions using brain activity
(Aloise et al., 2010; Carabalona et al., 2010; Corralejo et al.,
2014; Halder et al., 2015; Miralles et al., 2015; Schettini et al.,
2015; Pinegger et al., 2016; Zhang et al., 2017). This type of
BCI, potentially combined with the Internet of things (IoT), is
especially useful for those with severe neurological disorders to
operate living goods such as home appliances (Aydin et al., 2016;
Zhong et al., 2019).

To bring BCIs to one’s daily life for efficient communications
and control of devices (Wolpaw et al., 2000), however, a number
of issues need to be resolved. One of them is the fact that the BCI
users are likely to be exposed to virtually all kinds of stimulations
from environments, which can contribute unexpected and
undefined sources of noise to EEG. In particular, the BCI users
would undergo dynamically changing states of emotions driven
by external and internal events, which would increase a chance
to temporarily distort or alternate EEG patterns, affecting the
performance of BCIs. This is particularly crucial for P300-based
BCIs, because a number of ERP components (e.g., late positive
potentials) are known to be related to emotional states and
possibly overlapped with P300 (Schupp et al., 2000; Olofsson
et al., 2008; Hajcak et al., 2010). For instance, Mehmood and
Lee (2015) investigated ERPs during the perception of emotional
visual stimuli (happy, scared, calm, and sad) and observed the
occurrence of P300 at occipital and parietal regions. Also, Conroy
and Polich (2007) reported that the frontal P300 amplitude
varied with valence using emotional stimuli provided in an
oddball paradigm.

Recently, a number of studies investigated the effect of using
emotional stimuli as targets for P300-based BCIs. Zhao et al.
(2013) demonstrated that P300-based BCIs using emotional
faces as target stimuli showed higher performance than using
non-face objects or neutral faces, due to the addition of ERP
components of human face encoding and emotion processing to
those of target recognition, which enhanced the discrimination
of ERPs for targets. Onishi and colleagues (Onishi et al.,
2017; Onishi and Nakagawa, 2019) used emotional auditory

stimuli in a certain range of valence for P300-based BCIs and
suggested that auditory stimuli of positive valence improved
BCI performance. In addition, Fernandez-Rodríguez et al. (2019)
reported that using emotional or neutral pictures resulted in
better performance than using letters as a BCI stimulus, which
was supported by more preferable evaluations by the users
on neutral and positive emotional pictures. Lu et al. (2019)
developed an audiovisual P300 speller equipped with emotional
visual and auditory stimuli, which resulted in an improvement
of performance. All of these studies, however, used emotional
stimuli as targets for the oddball paradigm, which users attended
to all the time. However, when we take the scenario of daily
use of BCIs into consideration, external emotional stimuli would
be more likely irrelevant to BCI control of devices, which the
BCI users need to ignore but can be affected—e.g., the sound
of a laugh or a crash. In this context, little is known about the
effect of external emotional stimuli on P300-based BCIs, not as
target stimuli used as a part of BCIs, but as ambient stimuli
irrelevant to BCIs.

Therefore, this study aims to investigate whether external
emotional stimuli irrelevant to the oddball paradigm influence
the performance of a P300-based BCI used for controlling home
appliances. To modulate one’s emotional states, we used external
emotional auditory stimuli concurrently with the oddball task
in which visual device control icons were used as target
or non-target stimuli. Thus, the BCI user selected a visual
target while receiving auditory emotional stimuli irrelevant to
visual stimuli. The emotional auditory stimuli used in this
study were selected from the International Affective Digitized
Sounds (IADS) (Bradley and Lang, 2007). To address individual
differences in emotional responses to a given emotional auditory
stimulus, we sorted a particular set of auditory stimuli for each
user through a precedential behavioral experiment. To examine
the effect of emotional changes on practical use of BCIs, we
built an online P300-based BCI system that controlled an electric
light device and examined the real-time effect of emotional
stimuli on the users’ performances of controlling the electric light
via the BCI system.

MATERIALS AND METHODS

Participants
Seventeen healthy subjects participated in the study (7 Female,
ages 22–28 with mean 24.61 ± 1.58). For a fair comparison of
BCI outcomes, the age range in this study was selected similar
to the previous BCI studies (Zhao et al., 2013; Lian et al., 2017;
Onishi et al., 2017; Voznenko et al., 2018; Fernandez-Rodríguez
et al., 2019). All subjects had normal or were corrected to normal
vision and had no history of neurological or psychiatric disorders.
All subjects gave informed consent for this study, approved
by the Ulsan National Institutes of Science and Technology,
Institutional Review Board (UNIST-IRB-18-08-A).

Data Acquisition and Preprocessing
The scalp EEG data of subjects were acquired from 31 active
wet electrodes (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1,

Frontiers in Human Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 612777145

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-612777 February 22, 2021 Time: 19:23 # 3

Kim et al. Emotional Stimulation in BCI

FC2, FC6, T7, C3, Cz, C4, CP5, T8, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, O1, Oz, and O2), using a standard EEG cap
placed on the head following the 10–20 system of American
Clinical Neurophysiology Society Guideline 2. Reference and
ground electrodes were placed on mastoids of the left and right
ears, respectively. The impedance of all electrodes was kept
below 5 k�. EEG signals were amplified by a commercial EEG
amplifier (anti-CHamp, Brain Product GmbH, Germany) and
sampled at 500 Hz.

In our study, EEG signals were preprocessed as follows. First,
a raw EEG signal was high-pass filtered above 0.5 Hz. Then, a
bad EEG channel was detected and removed if more than 70%
of all other channels showed a cross-correlation lower than 0.4
with that channel after being band-pass filtered through 0.5 to
1 Hz (Bigdely-Shamlo et al., 2015). This process removed four
channels on average across subjects. Potential noise components
from the reference were removed by using the common average
reference (CAR) technique. The re-referenced EEG signal was
low-pass filtered below 50 Hz. Then, artifacts were eliminated by
the artifact subspace reconstruction (ASR) method (Mullen et al.,
2015; Chang et al., 2018). Finally, the signal was low-pass filtered
again below 12 Hz for the ERP analysis.

Experimental Setup
The experiment was conducted twice on two different days
in each subject, with an interval of 6–8 days between the
experiments. In the first experiment, a pre-survey was taken for
selecting emotion-induced sounds used as individual auditory
stimuli for each subject. In the second experiment, subjects
performed an online P300-based BCI session to control an
electric light device while listening to the set of sounds selected
in the first experiment. Afterward, they took a post-survey again
for the emotion-induced sounds used in the BCI session.

Sound Samples Selection
We selected sound stimuli for individual subjects, used for
inducing positive and negative emotions in them during the
operation of the P300-based BCI; 100 emotional sound samples
were prepared initially from the International Affective Digitized
Sounds, the 2nd edition (IADS-2) (Bradley and Lang, 2007)
based on the reported mean valence rating: 50 highest mean
valence rating (Supplementary Table 1) and 50 lowest mean
valence rating (Supplementary Table 2). These samples included
natural sounds made by people, animals, and objects that are
commonly experienced in daily life (Supplementary Table 1
and Supplementary Table 2). For each of the sound samples,
the survey in the first experiment asked each subject to report
how strongly they felt an emotion by scoring emotional response
in each of the two emotional dimensions: valence and arousal.
The score was scaled between −100 and 100 in each dimension.
We informed subjects to score valence toward −100 if they felt
strongly negative by the sound and toward +100 if they felt
strongly positive. Also, we informed subjects to score arousal
toward−100 if they were weakly aware of an emotion and toward
+100 means if they were strongly aware of an emotion. The
survey questions were provided to subjects in the text form.

In each subject, after the first experiment, we selected the 15
sound samples from each high valence (HV) and low valence

(LV) group showing the largest absolute valence scores along with
positive arousal scores (Figure 1A).

Online BCI Operation
In the second experiment, before the online P300-based BCI
session, subjects performed a training session. The training
session consisted of 40 blocks. Each block started with a fixation
period for 500 ms where a fixation cross appeared at the center
of the screen, followed by the random presentation of four
visual stimuli located at each of the four corners of the screen.
The stimuli were designed as a purple square with an icon
indicating a control function of the electric light device. When
highlighted, the color of square was changed to light green
(Figure 1B). Subjects were given the information about which
of the four stimuli was a target and asked to gaze at it through
the block. Then, a trial began by highlighting one of the stimuli
randomly for 75 ms followed by an inter-trial interval of 75 ms.
There were 40 trials per block—four stimuli were highlighted
exactly 10 times each in a random order, which led to 6 s of
stimuli presentation. Including a fixation period, 4 s of target
presentation and 4 s of feedback presentation and 1 s of inter-
block interval, one block lasts 15.5 s resulting in 10.3 min of
the training session. Note that no auditory stimulus was given to
subjects during training.

After the training session was over, we epoched the
acquired EEG data according to the stimulus information by
distinguishing each stimulus as a target or non-target. Note that
there was an overlap between successive epochs because the
length of an epoch was set to−200 to 600 ms in this study which
was longer than the length of a trial. This was originally designed
for the development of online P300-based BCIs in our previous
studies and shown to work properly (Kim et al., 2019). Then,
we obtained ERPs in response to the target or the non-target in
each block by taking average of EEG in the corresponding epoch
over trials. From these ERPs, we extracted features from the P300
component as well as other potential components by taking out
ERP amplitude values between 150 and 600 ms after stimulus
onset. The features were then used to train a classifier based on
support vector machine (SVM) with a linear kernel and penalty
parameter C as 1, which discriminated between target and non-
target. Note that there were 40 training samples in the target class
and 120 samples in the non-target class, respectively. These data
were imbalanced, possibly posing a problem for classification.
Our previous study (Lee et al., 2020) showed that adjusting the
penalty parameter C could resolve the problem of imbalance
slightly, but the resulting improvement in accuracy was only
marginal. According to this study, we did not adjust C in the
online BCI experiment. In addition, during online BCI operation,
one of the four stimuli that was closest to the target class based on
SVM score was decided as a target.

With a P300-based BCI containing the trained classifier,
subjects performed the online session to control an electric light
device (Phillips hue 2.0, Phillips, Netherlands). The online session
consisted of 60 blocks with four auditory conditions: HV sound
presentation (HV), LV sound presentation (LV), noise sound
presentation (Noise), and no sound (None). As a noise sound,
we used a recording of ambient daily sounds mixed with human
voices, dishes, and objects clattering. All sound samples were
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FIGURE 1 | Experimental protocol. (A) Subjects reported the valence and arousal level of 100 IADS sound samples. From the reports, a total of 30 samples were
selected for each subject (15 highest valence + 15 lowest valence values). (B) Approximately a week later, subjects revisited and conducted a P300 BCI control
experiment while exposed to emotional auditory stimuli with four conditions (high valence, low valence, noise, and none). (C) After the P300 BCI experiment,
subjects again rated the valence and arousal level of the sound samples that they heard during the BCI experiment.

6 s long so that it could be played in the same duration as the
6-s visual stimulation length. Subjects listened to the auditory
stimulus through earphone at a sound level of 61 dB on average.
There were 15 blocks in each of the four conditions. The order
of the blocks was randomized. The composition of a block was
same as that in training session, except for feedback presentation.
In each block, subjects were given the information of which
control command (out of four) they should operate and selected
it using the BCI through 40 trials of the stimulus presentation
in a block. The four commands included light on, light off, color
change, and brightness change. After the block, subjects received
feedback immediately from the real-time operation of the electric
light device located in front of them according to the functional
command generated by the BCI, regardless of the correctness
of the operation (Figure 1B). Unlike automatic progress of the
experiment in training session, the progress to the next block was
done manually, one block lasted 20 s to 35 s, and the entire online
session took approximately 20 min.

After the online session, subjects conducted a post hoc survey
for the selected sound stimuli used in the session with the
same scoring scheme as in the first experiment (i.e., −100
to 100 for valence and arousal each) (Figure 1C). This post
survey was designed to examine how much emotional responses
to the selected sound samples changed before and after the
online BCI session.

Data Analysis
ERP Analysis
We analyzed ERPs for the target stimuli obtained from the online
test session across different auditory conditions. Specifically, we
focused on the amplitude of a positive peak that was defined
as the highest amplitude within a time window from 250 to
500 ms after stimulus onset. We also measured the latency of
this peak in each ERP. To examine whether these ERP features
were different across the four conditions, we applied repeated
measures ANOVA (rmANOVA) for each ERP feature at each
channel. Note that the number of subjects (i.e., samples) tested
varied across channels due to individual differences of bad
channel removal results (see Table 1). Also, the channel FT10 was
completely excluded in this ERP analysis because this channel
was removed in every subject except for one subject, which
was due to problem of the corresponding electrode cap used
in the experiment.

BCI Performance Analysis
Using the BCI control results from the online test session, we
calculated accuracy given by the ratio of the number of blocks
with correct target selection to the number of all blocks (i.e.,
60). After obtaining accuracy of all subjects for each condition,
we divided subjects into two groups according to the extent to
which the presence of emotional stimuli affected subjects’ BCI
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TABLE 1 | The statistical test results of differences in the P300 peak amplitude and latency between emotional conditions (rmANOVA). The values that showed
significance (p < 0.05) were highlighted in bold.

Channel Amplitude Latency The number of subject

F p-value F p-value

F3 2.9188 0.0442 0.9812 0.4101 16

Fz 1.1825 0.3263 0.7303 0.5390 17

F4 0.4108 0.7460 0.0348 0.9912 17

FC1 1.4411 0.2425 0.6397 0.5932 17

FC2 1.8931 0.14543 1.6373 0.1951 15

C3 2.1072 0.1116 2.4873 0.0717 17

Cz 0.1228 0.9462 0.3986 0.7546 17

C4 0.3269 0.8059 0.2995 0.8256 16

CP1 0.4269 0.7346 1.6363 0.1934 17

CP2 0.2813 0.8386 0.1964 0.8983 17

P3 0.2955 0.8285 1.0302 0.3876 17

Pz 0.6687 0.5754 0.0560 0.9823 17

P4 1.609 0.1996 1.0347 0.3857 17

O1 2.2360 0.0980 1.0720 0.3712 15

Oz 0.5893 0.6254 0.2911 0.8316 15

O2 1.1 0.3590 1.7083 0.1788 16

control: a large difference (LD) and small difference (SD) groups.
The LD group consisted of subjects who showed an increase
or decrease of accuracy in either the HV or LV conditions by
more than 10% compared to the None condition. The SD group
consisted of the rest subjects. Since 15 blocks were conducted
for each condition, one correct (or wrong) selection would cause
the change of accuracy as much as 6.67%. Compared to None,
more than one correct or wrong selection in either HV or LV was
deemed to be a large difference in this study, as one or less correct
or wrong selection in both HV and LV than in None would not
sufficiently pronounce a difference of accuracy. Therefore, we set
10% of accuracy as a criterion to discriminate subject groups into
the LD and SD groups. This division was intended to observe
whether those who were influenced more by emotional stimuli
regardless of the valence of emotion (HV or LV) showed different
tendency compared to others. There were nine subjects in the LD
group, and 8 in the SD group, respectively. Then, we compared
BCI control accuracy as well as ERP features (see section “ERP
Analysis”) and emotional EEG features (see section “Emotional
EEG Analysis”) between the four conditions within each group.
This further analysis was conducted to examine whether we could
observe any influence of emotional stimuli on the BCI operation
if we sharpened our focus on a certain group of individuals.

Emotional EEG Analysis
We analyzed EEG characteristics reflecting overt emotional
responses to auditory stimuli during the operation of the BCI.
Specifically, we examined frontal alpha asymmetry (FAA) that
has been well known to represent valence (Coan and Allen,
2003). FAA was calculated by asymmetry between left and right
hemisphere alpha-band power of EEG. In this study, FAA was
determined as follows:

FAA = 10(ln(Powerright)− ln(Powerleft)) (1)

where Powerleft was the average power of alpha band (8–
14 Hz) at channel FP1, F3 and F7; and Powerright was the
average power of the same frequency band at channel FP2, F4,
and F8. We measured FAA from EEG data in each condition
in each subject. Then, we compared FAA across the four
conditions using rmANOVA.

RESULTS

Survey Results
We compared the valence scores from the survey of a set of 30
sound samples selected for each subject taken before and after the
online BCI session (Figure 2). There was no instance that the sign
of the valence scores was altered for any of the samples. However,
the absolute values of the valence scores significantly decreased
after the online BCI session (HV: p = 0.0012; LV: p < 0.001).

ERP Differences
We visually inspected the ERPs from the training data to examine
whether the P300 component was induced by the target stimulus
(Figure 3A). As expected, the P300 component appeared to
be present in response to the target but not to the non-
target over many channels (e.g., Pz, Oz, and others). Next, we
compared the ERPs of different auditory conditions from the test
data (Figure 3B, Supplementary Table 3 and Supplementary
Table 4). We observed no conspicuous difference between the
conditions in the ERP patterns in response to the target stimulus.
The rmANOVA was conducted on those channels in which P300
was observed: F3, Fz, F4, FC1, FC2, C3, Cz, C4, CP1, CP2, P3,
Pz, P4, O1, Oz, and O2. The rmANOVA revealed no significant
difference in the peak ERP amplitude and latency among the
conditions except for F3 (Table 1). In order to examine the
peak amplitude level at F3, the peak amplitude was compared

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 612777148

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-612777 February 22, 2021 Time: 19:23 # 6

Kim et al. Emotional Stimulation in BCI

FIGURE 2 | The distributions of the valence scores of high-, and low-valence stimuli used in the experiment before (Pre) and after (Post) the online BCI session. The
bars indicate the average valence scores. AVG, average over all pre- and post-session scores. There were 15 high-valence and 15 low-valence stimuli, respectively.
There was an approximately 1-week interval between pre- and post-session. **p < 0.01, ***p < 0.001, paired t-test.

FIGURE 3 | ERP graphs. (A) Grand average ERP graphs obtained from the training set. The red line represents ERP of target and black line does that of non-target
stimuli. (B) Grand average ERP graphs obtained from the test set for each of the four emotional auditory stimulation conditions. The shaded area indicates where the
analysis for P300 component was conducted.
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FIGURE 4 | Average accuracy of online P300-based BCI control for each
stimulus condition (HV, high valence; LV, low valence; Noise, noise sound;
None, no sound). Black dots represent the accuracy of individual subjects in
each condition. N indicates the number of samples.

between the target and non-target stimuli, and a paired t-test
showed no significant difference for all conditions (HV: p = 0.35,
LV: p = 0.27, Noise: 0.21, None: p = 0.26). In addition, we
repeated the comparison of the ERP peak amplitude and latency
in each group of subjects: the LD and SD groups. For this
analysis, we used the Friedman test followed by the Tukey’s-HSD
post hoc test. The LD group showed a significant difference in the
peak amplitude only at channel O1 between the HV and None
conditions (HV < None, p = 0.02), while it showed no difference
in the peak latency. The SD group showed a significant difference
between the conditions in neither the peak amplitude nor peak
latency (p > 0.05).

Online BCI Performance
Subjects operated the P300-based BCI to control the electric light
device with an average accuracy of 88.14± 7.26% (Figure 4). The

maximum and minimum accuracy among subjects was 98.33%
and 73.33%, respectively. The rmANOVA showed no significant
difference in accuracy between the conditions [F(3,48) = 0.086,
p = 0.98]. The accuracy was also compared in two groups. The
average accuracy of the LD group was 85.93 ± 5.15% and that of
the SD group was 90.63± 8.77%. Wilcoxon rank sum test showed
no significant difference between these groups (p = 0.118).
In addition, The Friedman test did not show any significance
between the conditions in either the LD [χ2(3, N = 8) = 0.89,
p = 0.828] or SD group [χ2 (3, N = 9) = 0.49, p = 0.922] (Figure 5).

Additionally, subjects were grouped again according to their
accuracy in the None condition. Subjects who showed higher
accuracy than the average belonged to the high accuracy group
and those with lower accuracy than the average belonged to the
low accuracy group. The average accuracy of the high accuracy
group was 92.29 ± 5.77% and that of the low accuracy group
was 84.44 ± 6.61%. Wilcoxon rank sum test showed a significant
difference between these groups (p = 0.0216). Among eight
subjects in the SD group, only one subject was included in the
low accuracy group. Similarly, 8 out of 9 subjects in the LD group
belonged to the low accuracy group (Figure 6).

Frontal Alpha Asymmetry
Overall, the rmANOVA revealed no significant difference in FAA
between the conditions [F(3,48) = 2.496, p = 0.071] (Figure 7). In
the group-wise analysis, the Wilcoxon signed rank test did not
show any significant change of FAA from the None condition
to each of the other auditory conditions (HV, LV, and Noise), in
either the LD or SD group (p > 0.05) (Figure 8 and Table 2).

DISCUSSION

In the present study, we investigated the effect of externally
induced emotions on the performance of a P300-based BCI.
Subjects participating in this study received emotional auditory
stimuli designed to induce positive (HV) and negative (LV)

FIGURE 5 | Average accuracy of online P300-based BCI control for each stimulus condition (HV, high valence; LV, low valence; Noise, noise sound; None, no sound)
in each subject group: small difference group and large difference group. See the text for the details of the criteria of dividing groups. Black dots represent the
accuracy of individual subjects in each condition. N indicates the number of samples in each group.
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FIGURE 6 | The number of subjects included in groups based on the
difference from None condition (SD and LD) and the accuracy in None
condition (high accuracy and low accuracy). The values in parentheses are the
average accuracy of the corresponding group.

FIGURE 7 | The distributions of frontal alpha asymmetry (FAA) values under
each emotional stimulus condition (HV, high valence; LV, low valence; Noise,
noise sound; None, no sound). The red line shows the average of FAA value
over subjects in each condition. Every line connecting dots represents the
FAA variation of each subject across conditions. No significant difference in
FAA between the conditions was found [F (3,48) = 2.496, p = 0.071].

emotions while controlling an electric light device through
the P300-based BCI. In addition to these emotional stimuli,
noise (neutral valence) as well as no sound was presented.
We compared the ERP properties, online BCI performance
and FAA between the four conditions (HV, LV, Noise, and
None). We found no significant difference in the ERP peak
amplitude and peak latency over most EEG channels except for

F3 (although a difference in the peak amplitude was found at
F3, the amplitude level was relatively small and thus hard to
extract meaningful results). Also, BCI control accuracy and FAA
were not different between the conditions. Subjects controlled
the electric light using the BCI fairly well under all conditions
(online control accuracy of 88.14% on average). Furthermore,
we examined whether the extent to which individuals were
influenced by emotional stimuli contributed to individual
differences in accuracy. To this end, we divided subjects into two
groups based on the difference of accuracy between the emotional
and None conditions. We observed no significant difference in
BCI control accuracy, ERP peak amplitude and FAA across the
conditions within each of the large difference (LD) group and
small difference (SD) group. From the results of the present study,
there was no clear evidence that emotional stimulations would
affect the P300-based BCI performance.

Previous studies have suggested that visual or auditory
emotional stimuli can influence P300-based BCIs when the
stimuli are used as targets to select (Onishi et al., 2017;
Fernandez-Rodríguez et al., 2019; Onishi and Nakagawa, 2019).
In these studies, P300-based BCIs included emotional stimuli—
such as sounds or images with different valence levels—as task-
relevant stimuli, so that the user was attending to those emotional
stimuli. This paradigm is different from our study in which
emotional stimuli are irrelevant to the task. In our paradigm,
the user is attending to emotionless stimuli relevant to the
task, while receiving a separate set of task-irrelevant emotional
stimuli. Our task paradigm is closer to real-life situations
because the user would be exposed to a variety of emotional
stimuli from uncontrolled environments when controlling home
appliances using BCIs.

In previous studies where background stimuli were present
during the use of BCI, the BCI accuracy was not improved,
but in most cases decreased (Lian et al., 2017; Voznenko et al.,
2018; Cherepanova et al., 2019; Xu et al., 2020). Especially, the
visual BCI performance deteriorated when background stimuli,
whether auditory or visual, attracted attention. Also, the more
mental workload was required, the more the accuracy decreased
(Cherepanova et al., 2019; Xu et al., 2020). In addition, the
presence of background stimuli without any requirement of
attention often showed reduced performance in BCI (Lian
et al., 2017; Voznenko et al., 2018). According to Voznenko
et al. (2018), music listening while using a BCI influenced each
individual differently. Some subjects were negatively affected
by music stimuli regardless of the genre of music, whereas
others showed the decreased accuracy in specific genre of
music. The authors discussed that subjects reported different
levels of interference with music depending on their preference,
which could cause distraction to the music. Hence, it can
be deduced that when background stimuli do not demand
mental workload, the effect of them depends on the extent
to which people are distracted to them. In our study, the
auditory emotional stimuli, which did not demand any attention,
did not show significant influence on the BCI performance.
It might be because the emotional stimuli did not evoke
distraction enough to decrease the BCI performance on average
in subjects of this study.
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FIGURE 8 | Changes in FAA from the None (no sound) condition to each stimulus condition (HV, high valence; LV, low valence; Noise, noise sound), in each subject
group: small difference group and large difference group. See the text for the details of the criteria of dividing groups. Red lines indicate mean changes in FAA. The
Wilcoxon signed rank test showed no significant difference between the conditions in each group.

TABLE 2 | The statistical test results of changes in frontal alpha asymmetry (FAA)
in a given stimulation condition compared to the condition of no sound (Wilcoxon
signed rank test).

Subject group Stimulation condition Signed-rank statistic p-value

SD HV 6 0.1094

SD LV 24 0.4609

SD Noise 12 0.4609

LD HV 23 1

LD LV 38 0.0742

LD Noise 22 1

SD, small difference group; LD, large difference group; HV, high valence;
LV, low valence.

When we narrowed our focus on a subset of subjects showing
differences in BCI control accuracy with emotional stimuli,
overall BCI control accuracy in the LD group was not different
between emotional conditions. This may be because the effect of
emotional stimuli on BCI performance could vary over subjects
in the LD group. Also, average accuracy in the SD group tended to
be higher than in the LD group. SD group, those whose accuracy
under emotional conditions did not change from the control
condition, tended to be good at operating P300 BCIs. Therefore,
good BCI performers might be relatively less influenced by
emotional conditions. However, it is still premature to draw
any conclusion from this analysis due to the lack of a sufficient
number of samples. Therefore, a more in-depth study is necessary
to investigate influences of emotional state changes on the use of
the BCI specifically for those who are more susceptible to external
emotional events.

Even though we asked subjects to rate valence and arousal
scores of emotional auditory stimuli independently of BCI
control, we additionally computed FAA in each condition to
estimate their emotional states during the online BCI control
task. FAA has been widely used as a metric to represent emotional
valence (Davidson et al., 1979; Harmon-Jones et al., 2010). It was
confirmed in our experiment that the valence score of HV stimuli
remained positive and that of LV stimuli remained negative

before and after the task. We also found no difference between the
SD and LD groups in the valence scores for HV and LV stimuli,
respectively (p > 0.05). In contrast, FAA showed no difference
between the HV, LV, Noise, and None conditions. This result of
FAA may be associated with no significant difference in ERPs and
BCI performance, implying that external emotional stimuli given
during BCI control did not induce emotional changes much in
the brain. We conjecture that no clear effect of the valence of
emotional stimuli on FAA might be due to the fact that subjects
were likely to concentrate on selecting targets during the online
BCI control session with real-time feedback from the device,
which could weaken the effect of auditory emotional stimuli.
However, this conjecture would not be made possible if we only
look into the survey results as self-reporting on HV or LV stimuli
remained positive or negative. In addition, we observed decreases
in the absolute valence scores after the BCI control session.
This reduced emotional recognition of stimuli intensity may be
potentially due to repeated experiences because people tend to
habituate to emotional stimuli when those stimuli are repeated
and evaluate the repeated emotional stimuli to a smaller degree
(Dijksterhuis and Smith, 2002; Leventhal et al., 2007).

In this study, we found no evidence to support a hypothesis
that emotional stimuli would influence the performance of P300-
based BCIs. However, there are some limitations in this study,
which needs further investigations. First, the number of subjects
in each group was too small for statistical test results within
each group to be considered significant. Future studies with a
larger sample size should follow up to confirm our preliminary
results. Second, FAA in the HV or LV condition was not increased
compared to that in the None condition, which might indicate
that the HV or LV auditory stimuli did not successfully evoke
positive emotions. If the auditory stimuli had been selected based
on FAA combined with self-reports, the effect of emotional
stimuli on FAA might be more clearly manifested. This may
indicate a need to simultaneously measure FAA during self-
reporting on emotional stimuli in future studies. Third, it was
plausible that our BCI control task was so intense that subjects’
attention might be mostly attracted to the task and visual
processing, leaving little room for the perception of auditory
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stimuli. To verify this plausibility, we should have a brief session
in which we simply provided the prepared set of auditory stimuli
to subjects and analyzed ERPs and FAA to confirm that subjects’
emotional state changed. The follow-up studies may need to
consider such an addition to experimental design. Lastly, the age
range of subjects in our study was below 29 years. Subjects had to
attend to the BCI task while the irrelevant auditory stimuli were
presenting in the experiment. Since younger people are better at
ignoring irrelevant stimuli (McDowd and Filion, 1992), which
would worked as one of the strategies to successfully complete
the required task, those who are older than subjects in this study
may produce different results. To clarify this important inquiry,
further studies need to investigate the effect of emotions on
P300-based BCIs for elder populations.

Nonetheless, to the best of our knowledge, the present
study investigates the effect of emotional stimuli on the online
performance of a P300-based BCI for the first time and reveals
that there is no significant effect by neither positive nor
negative stimuli. We envision that the present study’s results
may provide useful information to those who are concerned with
potential effects of ambient stimuli when they build a P300-based
BCI in practice.
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Objective: Tangent Space Mapping (TSM) using the geometric structure of the
covariance matrices is an effective method to recognize multiclass motor imagery (MI).
Compared with the traditional CSP method, the Riemann geometric method based on
TSM takes into account the nonlinear information contained in the covariance matrix,
and can extract more abundant and effective features. Moreover, the method is an
unsupervised operation, which can reduce the time of feature extraction. However,
EEG features induced by MI mental activities of different subjects are not the same,
so selection of subject-specific discriminative EEG frequency components play a vital
role in the recognition of multiclass MI. In order to solve the problem, a discriminative
and multi-scale filter bank tangent space mapping (DMFBTSM) algorithm is proposed in
this article to design the subject-specific Filter Bank (FB) so as to effectively recognize
multiclass MI tasks.

Methods: On the 4-class BCI competition IV-2a dataset, first, a non-parametric method
of multivariate analysis of variance (MANOVA) based on the sum of squared distances
is used to select discriminative frequency bands for a subject; next, a multi-scale FB
is generated according to the range of these frequency bands, and then decompose
multi-channel EEG of the subject into multiple sub-bands combined with several
time windows. Then TSM algorithm is used to estimate Riemannian tangent space
features in each sub-band and finally a liner Support Vector Machines (SVM) is used
for classification.

Main Results: The analysis results show that the proposed discriminative FB enhances
the multi-scale TSM algorithm, improves the classification accuracy and reduces the
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execution time during training and testing. On the 4-class BCI competition IV-2a
dataset, the average session to session classification accuracy of nine subjects reached
77.33 ± 12.3%. When the training time and the test time are similar, the average
classification accuracy is 2.56% higher than the latest TSM method based on multi-scale
filter bank analysis technology. When the classification accuracy is similar, the training
speed is increased by more than three times, and the test speed is increased two
times more. Compared with Supervised Fisher Geodesic Minimum Distance to the Mean
(Supervised FGMDRM), another new variant based on Riemann geometry classifier, the
average accuracy is 3.36% higher, we also compared with the latest Deep Learning
method, and the average accuracy of 10-fold cross validation improved by 2.58%.

Conclusion: Research shows that the proposed DMFBTSM algorithm can improve the
classification accuracy of MI tasks.

Significance: Compared with the MFBTSM algorithm, the algorithm proposed in this
article is expected to select frequency bands with good separability for specific subject
to improve the classification accuracy of multiclass MI tasks and reduce the feature
dimension to reduce training time and testing time.

Keywords: tangent space mapping, discriminative and multiscale filter bank, multiclass motor-imagery,
Riemannian geometry based classifier, electroencephalogram

INTRODUCTION

Brain-computer interface (BCI) is a revolutionizing human-
computer interaction (Graimann et al., 2010), and BCI
based on motor imagery (MI-BCI) is an important type
of BCI which is expected to provide communication and
control with the outside world for patients with severe
motor disabilities (Wolpaw and Wolpaw, 2012), especially
in motor dysfunction rehabilitation training (Soares et al.,
2013). However, at present, MI-BCI can classify few MI
tasks, and it can provide few effective instructions, which
limits the communication capability and control freedom
of this type of BCI, making it difficult to enter practical
applications. In order to add instructions, it is necessary to
study the recognition of multiclass MI tasks. At present, the
recognition accuracy of multi-class MI needs to be improved,
which is a challenging work. This article intends to explore
effective methods to improve the recognition accuracy of multi-
class MI.

Neuroscience research has shown that brain activities related
to MI and motor execution (ME) can cause similar sensorimotor
rhythm changes (Pfurtscheller and Neuper, 1997), and the
EEG amplitude of certain frequency bands will decrease event-
related desynchronization (ERD) or increase event related
synchronization (ERS). This ERD/ERS phenomenon or pattern
is most prominent in mu rhythm (8–12 Hz) and beta rhythm
(13–30 Hz), and can also be observed in gamma rhythm close
to 40 Hz (Rao, 2013). In MI-BCI, these patterns are mainly
extracted. However, due to the non-stationarity of EEG, low
signal-to-noise ratio and limited available calibration data, it is
difficult to extract MI feature patterns with good separability
(Lotte et al., 2018). In MI-BCI, the classical processing method

is to extract sources from the pre-processed EEG data using
a spatial filter such as CSP, then extract the feature vectors
from the source signal, and finally classify the feature vectors
using a vector-based classifier (such as LDA) (Yger et al., 2017).
Studies have shown that Common Spatial Pattern (CSP) has
significant advantages in extracting MI features (Lotte et al.,
2018)CSP maximizes the variance of the EEG signal of one
class of MI while minimizing the variance of the other class.
After band-pass filtering, the variance of the EEG signal is
the power of the corresponding frequency band. Therefore,
CSP is a more suitable method to extract the features of the
two classes of MI (Ramoser et al., 2000). Deep Learning is a
specific machine learning algorithm in which features and the
classifier are jointly learned directly from data (Lotte et al., 2018).
Advantages of Deep Learning include that they are well suited
for end-to-end learning, that is, learning from the raw data
without any a priori feature selection, that they scale well to
large datasets, and that they can exploit hierarchical structure
in natural signals (Schirrmeister et al., 2017). Disadvantages
of Deep Learning methods include that they may output false
predictions with high confidence may require a large amount
of training data, may take longer to train than simpler models,
and involve a large number of hyperparameters such as the
number of layers or the type of activation function (Nguyen
et al., 2015). Convolutional neural networks (ConvNets) are the
most popular Deep Learning approaches for BCI (Lotte et al.,
2018). In order to adapt the existing ConvNets architectures
from the field of computer vision to EEG input, the authors
created three ConvNets with different architectures, with the
number of convolutional layers ranging from 2 layers in a
“shallow” ConvNet over a 5-layer deep ConvNet up to a 31-
layer residual network (ResNet) (Schirrmeister et al., 2017). In

Frontiers in Human Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 595723156

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-595723 March 2, 2021 Time: 17:46 # 3

Wu et al. A DMFBTSM for Multi-Class MI-BCI

Sakhavi et al. (2018), according to the features generated by filter
bank CSP (FBCSP), the authors design and optimize a ConvNet
for classification.

In addition to CSP and its various improvement methods
(Ang et al., 2008, 2012; Zhang et al., 2015, 2016), the
researchers used the Riemannian method based on the covariance
matrix in the Riemannian manifold in MI-BCI and achieved
better performance, and this new processing method does not
require source extraction. At present, Riemannian manifold
of symmetric positive definite (SPD) matrices has attracted
more and more attention due to their rich framework for
manipulating the covariance structure of the data. The concept
of the covariance matrices in the manifold has been successfully
used in radar signal processing (Barbaresco, 2008), diffusion
tensor Imaging (Fletcher and Joshi, 2004) and computer vision
(Tuzel et al., 2008). A similar method is combined with K
nearest neighbors and recognizes different sleep states based
on EEG (Li et al., 2009). Barachant et al. (2010) first used
the Riemannian method to classify two-class MI-EEG data
and achieved an average classification accuracy of 85.2%. The
Minimum Distance to Riemannian Mean (MDRM) introduced
in their works is the most basic Riemannian method (Congedo
et al., 2017). In this method, the Riemannian mean of each
class is calculated first based on the training data, and then
classify incoming trials by comparing the Riemannian distances
between the covariance matrices corresponding to the incoming
trials and the Riemannian mean of each class during the test
session (Barachant et al., 2010). Another more sophisticated
and effective Riemannian classifiers is based on tangent space
mapping (TSM), and its classification performance is significantly
better than CSP and other methods (Congedo et al., 2017).
Barachant et al. mapped the covariance matrices onto the tangent
space, and then selected features in it and used LDA, the
results showed that compared with MDRM, it can significantly
improve the accuracy of multi-class (4-class) MI recognition
(Barachant et al., 2012). Barachant et al. (2013) derived a
new kernel by establishing a connection with the Riemannian
geometry of symmetric positive definite matrices, and combined
with a support vector machine to test different kernels, and
demonstrated that this new approach outperformed significantly
state of the art results, effectively replacing the traditional spatial
filtering approach.

In order to further improve the classification performance
of MI-BCI, Ang et al. (2008) proposed the filter bank CSP
(FBCSP) method, a four-stage procedure in which CSP is applied
at several fixed frequency bands, and where the most relevant
sub-band CSP features are automatically pair-wise selected based
upon mutual information criteria. Recently, Zhang et al. (2015)
proposed the sparse filter bank CSP (SFBCSP) in which a small
number of sub-band CSP features are automatically selected
based on LASSO (least absolute shrinkage and selection operator)
regression. According to some recent achievements, we know
that a breakthrough has been made in the research of MI task
recognition based on Deep Learning (Li et al., 2019; Olivas
Padilla and Chacon Murguia, 2019; Xu et al., 2020). In Xu
et al. (2020), a new deep multi-view feature learning method for
the classification task of motor imagery electroencephalogram

(EEG) signals is proposed in order to obtain more representative
motor imagery features in EEG signals. In Li et al. (2019), the
researchers proposes a variant of Discriminative Filter Bank
Common Spatial Pattern (DFBCSP) for extracting MI features,
and then sets the resulting samples into a matrix, which
is then fed to one or many ConvNets previously optimized
by using a Bayesian optimization for classification. In Olivas
Padilla and Chacon Murguia (2019), a densely feature fusion
convolutional neural networks (DFFN) is proposed. DFFN takes
into account the correlation between adjacent layers and cross-
layer features, thus reducing information loss in the process
of convolutional operation. It also takes into account the local
and global characteristics of the network, and improves the
identification accuracy of the ordinary ConvNets framework in
multi-class MI. In the improvement of the method based on
Riemannian geometry, Barachant et al. proposed Fisher Geodesic
Discriminant Analysis for performing Geodesic filtering to make
the classes more separable along the geodesics, which improves
the drawback of MDRM not taking into account intra-class
distribution (Barachant et al., 2010). More recently, Satyam et al.,
combined the two adaptive strategies of RETRAIN and REBIAS
(Shenoy et al., 2006) with MRDM and Fisher Geodesic Minimum
Distance to Riemannian Mean (FgMDRM), and the result
achieved an average classification accuracy of approximately 74%
on the test set (Session 2) of the 2a data set of BCI Competition
IV (Kumar et al., 2019). Islam et al. (2017) proposed a multi-
band TSM method, which takes into account multiple frequency
bands and helps to extract effective noise robust features for
narrow-band signals, but the study did not consider the question
of the subject-specific frequency band. However, MI-BCI is an
active BCI. The EEG features induced by MI mental activity of
different subjects are often different. It is necessary to customize
the feature extraction method for specific subjects. Islam et al.
proposed a multiband tangent space mapping with sub-band
selection (MTSMS). The sub-band selection method adopted can
be based on the mutual information between features and class
labels, thereby effectively extract the frequency band of a specific
subject, and further improve the performance of MI-BCI (Islam
et al., 2018). In addition, in order to overcome the limitation
of using fixed band window analysis in MI-BCI, Hersche et al.
(2018) proposed a multi-scale filter bank TSM (MFBTSM), in
which FB contains the frequency bands are multi-scale and
overlapping. At the same time, multi-scale and overlapping time
windows are divided, so that multiple time windows are used
to analyze EEG trials and perform FB analysis in each time
window. This greatly increases the number of tangent spatial
features, but induce redundant information. The disadvantages
of MFBTSM is that the filter bank used by each subject is the
same, and the test time and training time increase due to the large
feature dimension.

In order to make up for the disadvantages of MFBTSM, this
article intends to use a non-parametric method of multivariate
analysis of variance based on the sum of squared distances
to select the subject-specific discriminative EEG frequency
components, and these component is vital for identifying
multiple types of MI tasks. It is important to use multi-scale filter
bank TSM at the same time, and finally use SVM for classification.
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MATERIALS AND METHODS

Riemann Geometry Associated With the
Proposed Method
EEG Signals Are Represented as Covariance
Matrices
To use Riemannian geometry to process EEG signals, it is
necessary to represent the EEG signals as covariance matrices,
which are SPD matrices. Let Xi ∈ RNc × Ns be the MI EEG signal
of the i-th trial, where Nc is the number of channels and Ns is the
number of samples. The sample covariance matrix (SCM) of the
i-th trial is denoted by Pi ∈ RNc × Nc , which is estimated by eq. (1)
(Barachant et al., 2012):

Pi = 1/(Ns − 1)XiXT
i (1)

Let S(n) denote the set of n × n symmetric matrices, and P(n)
denote the set of n × n SPD matrices.

Riemannian Manifold and Tangent Space
The space of SPD matrices P(n) is a differentiable Riemannian
manifold M (Förstner and Moonen, 2003). The derivatives at
a matrix P on the manifold lies in a vector space TP, which
is the tangent space at that point. The tangent space is lying
in the space S(n). The manifold and the tangent space are
m = n(n++1)/2 dimensional.

Each tangent space has an inner product 〈, 〉P that varies
smoothly from point to point over the manifold. The natural
metric on the manifold of SPD matrices is defined by the local
inner product:

〈S1, S2〉P = Tr(S1P−1S2P−1) (2)

The inner product induces a norm for the tangent vectors on the
tangent space, such that, ‖ S ‖2

P = 〈S, S〉P = Tr(SP−1SP−1).
We note that, at Identity matrix, such norm simplifies into the
Frobenius norm, i.e., 〈S, S〉I = ‖ S ‖ 2

F .

Riemannian Geodesic Distance and Riemannian
Distance
Let 0 (t) : [0, 1]→ P (n) be any (differentiable) path from
0(0) = P1 to 0(1) = P2. The length of 0 (t) is given by:

L(0(t)) =
∫ 1

0
‖ 0̇(t) ‖0(t) dt (3)

With the norm defined previously. The minimum length curve
connecting two points on the manifold is called the geodesic, and
the Riemannian distance between the two points is given by the
length of this curve. The natural metric (2) induces the geodesic
distance (Moakher, 2005):

δR(P1, P2) =‖ log(P−1
1 P2) ‖F = [

n∑
i = 1

log2λi]
1/2 (4)

Where, λi, i = 1...n are the real eigenvalues of P−1
1 P2 .

Exponential Map
For each point P ∈ P(n), we can thus define a tangent space
composed by the set of tangent vectors at P. Each tangent vector
Si can be seen as the derivative at t = 0 of the geodesic 0i(t)
between P and the exponential mapping Pi = ExpP(Si), defined
as:

ExpP(Si) = Pi = P
1
2 exp(P−

1
2 SiP−

1
2 )P

1
2 (5)

The inverse mapping is given by the logarithmic mapping defined
as:

logP(Pi) = Si = P
1
2 log(P−

1
2 PiP−

1
2 )P

1
2 (6)

Euclidean Mean
Using the Euclidean distance on M(n), δE(P1, P2) =
‖ P1 − P2 ‖F , it is possible to define the Euclidean mean of
I ≥ 1 SPD matrices by:

A (P1, ..., PI) = argmin
P∈P(n)

I∑
i = 1

δ2
E (P, Pi) =

1
I

I∑
i = 1

Pi (7)

Riemannian Mean
Similar to Euclidean mean, Karcher/Fréchet means extends the
notion of mean/center of mass to P (n) by estimating the SPD
matrix which minimizes the sum of squared AIRM distances to
all the SPD matrices in the set. Mathematically the Riemannian
mean of I ≥ 1 SPD matrices is given by:

G(P1, ..., PI) = argmin
P∈P(n)

I∑
i = 1

δ2
R(P, Pi) (8)

Eq. (8) has a unique minimum, and there is no closed solution for
I > 2, but many iterative algorithms solve this problem through
numerical analysis (Moakher, 2005).

Discriminative and Multi-Scale Filter
Bank Tangent Space Mapping
The structure of Discriminative and Multi-scale Filter Bank
Tangent Space Mapping (DMFBTSM) proposed in this article is
shown in Figure 1. First, a set of filters is used to decompose
the multi-channel EEG signal into multiple frequency band
components. These filters are called the parent filter bank (Filter
Bank, FB), and the parent FB covers all frequency components
in the range of 2–40 Hz. Then use the one-way multivariate
analysis of variance (MANOVA) based on the sum of squared
distances to calculate the F statistic for each sub-band component
decomposed. According to the F statistic, select EEG frequency
bands that are separable for MI of the specific subject, and then
generate discriminative and multi-scale filter bank (DMFB).

The One-Way MANOVA Based on the Sum of
Squared Distances
In this article, a non-parametric method of MANOVA based
on the sum of squared distances (Anderson, 2001) is used to
select the EEG frequency bands that are separable for MI of
the specific subject. The test statistic is a multivariate analog to
Fisher’s F-ratio and is calculated directly from any symmetric
distance or dissimilarity matrix.
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FIGURE 1 | DMFBTSM structure diagram. After generating DMFB, first decompose the multi-channel EEG signal into T temporal windows (tb1, ..., tbt, ..., tbT ), then
use DMFB to decompose the t-th temporal window into F (fb1, ..., fbf ..., fbF ) frequency bands, estimate the SCM in each time band, and then use the TSM
algorithm to map all SCMs onto the tangent space to extract TSM features, and finally use linear SVM for classification.

First, the EEG signals of a specific subject’s frequency range
of 2–40 Hz are decomposed into 2 Hz width, a total of 19 sub-
bands. Then estimate the SCMs of all trials in each sub-band
and calculate the distance matrix between each pair of SCMs,
as shown in Figure 2. Finally, the F statistic of each sub-band is
calculated by MANOVA based on the square of the distance. The
calculation process is as follows.

Assuming that the test data of the subject has a classes, each
class has n trials, the total number of trials is N = a∗n, and the
total sum of squares is:

SST =
1
N

N−1∑
i = 1

N∑
j = i+1

d2
ij (9)

where, dij is the distance between the SCM of the i-th trial and
the SCM of the j-th trial. In a similar fashion, the within-group or
residual sum of squares is:

SSW =
1
n

N−1∑
i = 1

N∑
j = i+1

d2
ijεij (10)

where, if the i-th trial and the j-th trial are in the same class, the
value of εij is 1, otherwise it is 0, as shown in Figure 2B. The sum
of squares between classes, SSA and F statistics are calculated by
eqs. (11, 12):

SSA = SST − SSW (11)

F =
SSA/(a− 1)

SSW/(N − a)
(12)

In this article, the aforementioned Riemannian distance and
Euclidean distance are applied to eqs. (9–12), respectively. If the
sample points of different classes have different center positions

in the multivariate space (centroid in the case of Euclidean
distance), the ratio of the inter-class distance to the intra-
class distance will be large, and the generated F-statistic will
be relatively large. After calculating the F statistics of all sub-
bands, arrange the sub-bands in descending order of F scores,
take the first several separable sub-bands, and merge the adjacent
separable sub-bands to obtain the EEG frequency bands that are
separable for MI of the specific subject.

Divide Multi-Channel EEG Using Multi-Scale Time
and Frequency Windows
First, the multi-channel EEG of a trial is divided according to the
multi-scale time window shown in Figure 3A, and then according
to the multi-scale frequency band window division shown in
Figure 3B, the frequency bands that are separable for MI of the
specific subject are divided according to the multi-scale frequency
band windows shown in Figure 3B to generate DMFB, and then
the DMFB band-pass filters the signal of each time window.

Tangent Space Mapping
This article uses the TSM algorithm proposed by Barachant
et al. (2010), as shown in Figure 4. The algorithm first needs
to find a reference point PG, which is the Riemann average of
all EEG trials on manifold M: PG = G(Pi, i 1...I). Then map
the SCM corresponding to each trial onto the tangent space TP
to generate a set of m = NC(NC + 1)/2-dimensional tangent
vectors S [s1...sI] ∈ Rm × I , The tangent vector si is calculated
as eq. (13):

si = upper(P
−

1
2

G logPG
(Pi)P

−
1
2

G ) (13)

where, Pi is the SCM corresponding to the i-th trial, upper means
to vectorize the upper triangular part of a SPD matrix, with
appropriate weighting.
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FIGURE 2 | (A) From the raw data to the distance matrix and (B) a non-parametric MANOVA statistic for a one-way design (two groups) directly from the distance
matrix. Sum of squared distances in the half matrix ( ) divided by N (the total number of SCMs in all classes) is the total sum of squares (SST ), and the sum of
squared distances within classes ( ) divided by n (number of SCMs in each class) is within-group sum of squares (SSW ).
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FIGURE 3 | Divide multi-channel EEG using multi-scale time (temporal) and frequency windows. (A) The multi-channel EEG of a trial is divided according to the
multi-scale time window. (B) The frequency bands that are separable for MI of the specific subject are divided according to the multi-scale frequency band windows.

RESULTS

Description of Data
First, analyze the justifiability of selecting frequency bands for
specific subjects based on F statistics, using BCI Competition III
dataset IVa and BCI competition IV dataset 2a1, and finally using

1http://bbci.de/competition/

BCI Competition IV 2a data set evaluation the performance of
the proposed method.

BCI Competition IV Dataset 2a
Dataset 2a (Naeem et al., 2006) contains EEG data from 9 subjects
who perform four kinds of motor imagery (right hand, left hand,
foot, and tongue imagined movements). This dataset is provided
by the Knowledge Discovery Institute (BCI Laboratory) of Graz
University of Technology, Austria. EEG signals are recorded
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FIGURE 4 | Schematic diagram of TSM on Riemannian manifold M.

using 22 electrodes. For each subject, a training set (session 1) and
a test set (session 2) are available. The same number of trials for
all the MI tasks were provided for testing and training session.
Each of the session had 72 trials for each of the four motor
imagery classes.

BCI Competition III Dataset IVa
Dataset IVa (Dornhege et al., 2004) contains 2-class of MI EEG.
This dataset is provided by the Knowledge Discovery Institute
(BCI Laboratory) of Graz University of Technology, Austria. It
records the EEG of 5 healthy subjects who perform two classes
of MI (right hand and foot), Each subject recorded 280 trials,
of which the first 168, 224, 84, 56, and 28 trials constituted the
training set of subjects A1, A2, A3, A4, and A5, and the remaining
trials constituted their test set.

Experimental Results
F Statistic Selects the Frequency Bands That Are
Separable for MI of the Specific Subject
Using the parent FB in the frequency range of 2 to 40 Hz,
the EEG signal of each subject was decomposed into 19 sub-
bands, and then the Riemannian distance was selected as the
distance metric to calculate the F score of each sub-band. In
order to show the justifiability of using the F score of each sub-
band as the criterion for selecting a separable frequency band,
the classification accuracy of different sub-bands of the test data
of different subjects on the BCI competition public data set is
calculated, as shown in Figure 5, where the sub-band width for
calculating the classification accuracy is 4 Hz, and the range
is from 4 to 36 Hz. It can be seen from Figure 5 that the
classification accuracy of the sub-band with a higher F score is
better than that of the sub-band with a lower F score. Therefore,
it is justified to use one-way MANOVA based on the square of
the distance to select the separable sub-bands. Then, the sub-
bands are sorted in descending order of F score, and the top G
sub-bands are used for MI classification.

Multi-Class MI (4-Class) Classification Results
In this study, nine subjects in the BCI competition IV data set 2a
(four types of MI) were selected for separable frequency bands,
and multi-scale time-frequency TSM features were extracted
and classified. In order to better evaluate the performance

FIGURE 5 | Continued
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of DMFBTSM, first compare with MFBTSM, the results are
shown in Table 1, and then test other three related methods
on the same data set. The first method is the combination of
FgMDRM and RETAIN Adaptive strategy, called Supervised
Adaptive FgMDRM (Supervised FgMDRM). In this method, the

FIGURE 5 | Continued

FIGURE 5 | The F score and classification accuracy vary with the subjects
and different frequency bands. (A–H) The F scores and classification accuracy
of subjects A01T, A03T, A05T, A08T, A09T, aa, al, and ay vary with different
frequency bands. The first five subjects are from data set IV- 2a, the last 3
subjects are from data set III-IVa.

FgMDRM classifier is first trained on training/calibration session
data, then during the testing session, the classifier is retrained
after each prediction (Kumar et al., 2019). The second method
is the combination of TSM and adaptive Riemannian kernel
SVM, known as adaptive Riemannian kernel SVM (ARK-SVM)
(Barachant et al., 2013), and the third method is FBCSP (Ang
et al., 2012). Comparison results of these three methods with
DMFBTSM are shown in Table 2.

In addition, this article is compared with the latest three Deep
Learning-based methods. In Deep Multi-view feature learning
method (Xu et al., 2020), the author uses the improved, the deep
restricted Boltzmann machine (RBM) network to learn to learn
the multi-view features of EEG signals, and finally uses SVM
to classify deep multi-view features. The DFFN algorithm is a
dense feature fusion convolutional neural network using CSP and
ConvNet technology (Li et al., 2019). In the Monolithic Network
method (Olivas Padilla and Chacon Murguia, 2019), the authors
used a variant of discriminative FBCSP to extract signal features,
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TABLE 1 | Under different distance measures [N/A (no distance metric), Euclidian distance and Riemannian distance], multi-scale time-frequency TSM features were
extracted, and average classification accuracy (%) and standard deviation (std), average training time and average test time were obtained from the 4 MI classes on the
test data (session 2) of 9 subjects in BCI Competition IV data-set 2a.

Method MFBTSM DMFBTSM

Distance metric N/A N/A Euclidian distance Euclidian distance Riemannian distance Riemannian distance

Time window selection T1 T1, T2, T5 T1 T1, T2, T5 T1 T1, T2, T5

A1 91.81 90.04 91.81 92.53 92.53 93.24

A2 51.59 55.48 56.54 61.13 55.48 60.78

A3 83.52 81.32 82.42 83.15 87.18 87.18

A4 73.25 71.92 69.74 70.18 70.18 71.49

A5 63.41 69.57 67.75 68.12 68.12 66.67

A6 58.60 56.74 61.4 59.53 60.0 61.4

A7 86.64 85.56 83.03 85.92 87.0 86.28

A8 81.55 83.76 80.81 83.39 83.39 85.61

A9 82.58 84.85 82.2 84.85 85.23 83.33

Mean 74.77 75.47 75.08 76.53 76.57 77.33

Std 13.9 12.8 11.7 12.0 13.4 12.3

Avg. training time [s] 34.32 55.39 10.43 29.78 11.04 32.68

Avg. testing time [s] 10.91 20.92 4.47 12.56 4.70 12.24

TABLE 2 | Mean classification accuracy (%) and standard deviation (std) obtained across nine subjects in data-set 2a.

Method DMFBTSM Supervised FgMDRM FgMDRM ARK-SVM FBCSP

Mean 77.33 73.97 68.31 65.29 67.21

Std 12.3 13.1 14.2 14.4 19.2

and then developed a Bayes-optimized ConvNet network for
classification. The Shallow-ConvNet algorithm inspired by the
FBCSP pipeline, specifically tailored to decode band power
features (Schirrmeister et al., 2017). After extracting the FBCSP
features, the CW-ConvNets algorithm inputs them into the
ConvNets for classification (Sakhavi et al., 2018). Comparison
results of the method proposed in this article and the three Deep
Learning methods are shown in Table 3.

Tables 1, 2 present the mean and standard deviation of the
classification accuracy (averaged across all the subjects) on a
session to session transfer evaluation for these methods. The
results presented in Table 3 are obtained by combining and
randomly arranging the training data (Session 1) and test data
(Session 2) of each subject’s data set according to the data
organization method in Xu et al. (2020), and then performing 10
fold cross-validation.

In order to calculate the sub-band F score, Riemannian
distance and Euclidean distance are selected and compared in
this study. In addition, due to the differences in MI of different
subjects, in order to ensure the accuracy of MI classification, the
number of sub-bands G selected by each specific subject may
not be the same. In addition, in order to ensure the accuracy of
MI classification, the number of sub-bands G selected by each
specific subject may not be the same. At the same time, in order
to reduce the number of features to reduce training time and test
time, the value of G ranges from 11 to 14. Specifically, subject 1
and 9 chose G as 13, subject 2, subject 3, subject 6, and subject 8
chose G as 11, subject 4 and 7 chose G as 14, and subject 5 chose
G as 12. Choose one (T1) or three (T1, T2, and T3) time windows

for decomposing EEG signals for comparison. In the case of one
time window, the feature dimension of the subjects is 10879, and
the feature dimension varies from 5060 to 7840 after frequency
band selection. In addition, 10-fold cross-validation was used for
the selection of time window and frequency band, as well as the
determination of the SVM’s hyperparameter C.

In order to evaluate the computational cost of the proposed
method, the average training and testing time of all trials
for each subject is measured. The training time includes the
preprocessing and training time of the classifier, and the testing
time includes the feature extraction and classification time. The
experiments were conducted on an Intel Core i5-7200U 2.71 GHz
processor with 8 GB RAM.

Table 1 shows that the proposed discriminative FB enhances
the multi-scale TSM algorithm. The best classification accuracy
obtained by using Euclidean distance as the distance metric
is 76.53 ± 12.0%, the shortest training time is 10.43 s, and
the shortest test time is 4.47 s; The best classification accuracy
obtained by using Riemannian distance as the distance metric
is 77.33 ± 12.3%, the shortest training time is 11.04 s, and the
shortest test time is 4.70 s.

DISCUSSION

Existing studies have shown that, compared with the
conventional CSP method, Riemannian geometry based
methods can bypass the spatial filtering of electrodes to make
the calibration phase easier, and significantly improve the
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TABLE 3 | Mean classification accuracy (%) and standard deviation (std) on test data by 10 fold cross-validation achieved by DMFBTSM, Deep Multi-View Feature
Learning, Shallow-ConvNet, CW-ConvNet, Monolithic Network, and DFFN, for dataset 2a.

Method DMFBTSM Deep Multi-View Feature Learning Shallow-ConvNet CW-ConvNet Monolithic Network DFFN

Mean 81.0876 78.5074 71.86 73.07 78.41 76.44

Std 11.2 12.0 12.4 15.1 6.3 11.6

recognition accuracy of MI tasks (Barachant et al., 2012, 2013).
In fact, the improvement brought by Riemannian geometry is
due to the consideration of the non-linear information contained
in the covariance matrices, thus better extracting features, which
are usually discarded by the linear space filtering methods. On
the basis, the multi-band Riemannian method can use a small
amount of calibration data to extract the noise robust features,
and achieve better results (Islam et al., 2017, 2018; Hersche et al.,
2018). In order to further improve the multi-band Riemannian
method, this article uses a non-parametric method of MANOVA
based on the sum of squared distances (Anderson, 2001) to
select frequency bands that are separable for specific subjects,
and multi-scale division is performed on the multi-channel EEG
signals in these frequency bands. Finally, use TSM to extract
tangent space features.

It can be seen from Table 1 that when a time window (T1) is
used, the classification accuracy of DMFBTSM using Euclidean
distance is 0.31% higher than that of MFBTSM, the training
time is shortened by more than three times, and the test time
is shortened by more than two times; the classification accuracy
of DMFBTSM using Riemannian distance is 1.8% higher than
that of MFBTSM, the training time is shortened by more than
three times, and the test time is shortened by more than two
times. In the case of using three time windows (T1, T2, and
T3), the classification accuracy of DMFBTSM using Euclidean
distance is 1.06% higher than that of MFBTSM, training time is
shortened by 1.9 times, and test time is shortened by 1.7 times; the
classification accuracy of DMFBTSM using Riemannian distance
is 1.1% higher than that of MFBTSM, the training time is
shortened by 1.7 times, and the test time is shortened by 1.7
times. The test time and training time of DMFBTSM with three
time windows are approximately equal to those of MFBTSM with
one time window, but the classification accuracy is improved by
2.56%. The performance is improved, mainly because DMFBTSM
eliminates the poorly separable frequency bands in the MI task
of the subject, making the extracted features more effective
and reducing the dimensionality of the feature vector. As a
result, the probability of overfitting of the classifier due to much
high dimension of the feature vectors in the case of limited
samples will decrease.

In addition, the average classification accuracy of DMFBTSM
using Riemannian distance is higher than that of DMFBTSM
using Euclidean distance, and the test time is close to the training
time. In the case of three time windows (T1, T2, and T3) and
one time window (T1), the classification accuracy of DMFBTSM
using Riemannian distance is 0.8 and 1.49% higher than that of
DMFBTSM using Euclidean distance. It should be noted that not
every subject’s MI classification accuracy will be improved due to
the choice of frequency band. For subject A4, the classification

accuracy of DMFBTSM is lower than that of MFBTSM. The
performance is improved, mainly because DMFBTSM eliminates
the poorly separable frequency bands in the MI task of the subject,
making the extracted features more effective and reducing the
dimensionality of the feature vectors, so that the classifier would
not overfit due to the too high dimension of the feature vectors in
the case of limited samples.

It can be seen from Table 2 that the average classification
accuracy of Supervised FgMDRM is 5.66% higher than that of
FgMDRM. This is because the combination of FgMDRM and
the RETRAIN adaptive strategy allows the classifier to add new
samples during the testing session and continuously retrain.
However, the retraining process is supervised and requires the
real labels of the new samples. In addition, the role of this
adaptive technology is related to the subjects’ proficiency in
BCI, because the more proficient the subjects, the more stable
EEG patterns are produced., So that more effective samples
can be used for retraining. The average accuracy of DMFBTSM
is approximately 12% higher than that of ARK-SVM, which
shows that DMFBTSM can extract more sufficient, more robust
and more robust Riemann covariance features than single-time
band TSM. The average classification accuracy of DMFBTSM
with the best result is 3.36% higher than that of the supervised
FgMDRM with the second best result, and it can be seen from
Figure 6 that except for the two subjects A8 and A9, PMFBTSM
achieved the best results among other subjects. This result is also
reasonable. The TSM-based Riemann method can use techniques
such as filter bank analysis and band selection to extract more
effective features and combine the advantages of the chosen
classifier to generate more complex decision functions. Although
TSM-based Riemann methods have better overall function than
MDRM methods, they are not suitable for online operation
because of the increased algorithmic complexity and possible
need of intense learning inherited by the classifier. The average
accuracy of DMFBTSM is approximately 10% higher than that
of FBCSP, which is the classical method of frequency domain
feature extraction using filter bank analysis and spatial filtering.
The results are compared to better evaluate the proposed method.

As can be seen from Table 3, the average accuracy of
the proposed method through 10-fold cross-validation on the
test set is 9.23% and 8.02% higher than the two classical
deep learning methods Shallow-ConvNet and CW-ConvNet,
respectively, 2.58% higher than the latest deep learning method
the Deep multi-view feature learning, and 2.68 and 4.65% higher
than that of the Monolithic Network and DFFN methods,
respectively. The first Deep Learning method proposes a new
deep multi-view feature learning method in order to obtain
more representative moving image features from EEG signals.
The last three Deep Learning algorithms adopted ConvNet to
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FIGURE 6 | According to different related methods, classification accuracy is
compared on the test set (Session 2) of 9 subjects in data-set 2a.

learn the spatial characteristics extracted by CSP (Xu et al.,
2020). Compared with the traditional CSP method, the Riemann
geometric method based on TSM takes into account the
nonlinear information contained in the covariance matrix, and
can extract more abundant and effective features. Moreover, the
method is an unsupervised operation, which can reduce the
time of feature extraction (Congedo et al., 2017). These Deep
Learning-based methods mentioned above are very useful, and
have their own advantages and disadvantages and their respective
suitable occasions compared with the methods mentioned in
this article. As highlighted in Yger et al. (2017), the processing
procedures of Riemannian approaches such as MDRM is simpler
and involves fewer stages than more classic approaches. Also,
Riemannian classifiers apply equally well to all BCI paradigms
(e.g., BCIs based on mental imagery, ERPs and SSVEP); only
the manner in which data points are mapped in the SPD
manifold differs (Congedo et al., 2017). Another disadvantage
of the Riemann method is that the TSM-based method seems
to increase the number of sensors (so the greater the dimension
of the covariance matrix), the worse the classification accuracy
will become (Yger et al., 2017). This may be due to the fact
that the increase in the transformation dimension requires
more attention. When almost singular covariance matrices are
generated, they cannot be effectively processed by Riemannian
geometry (Yger et al., 2015).

In our future work, we will try to combine some new Deep
Learning classifiers with DMFBTSM method to further improve
the classification accuracy of multi-class MI-BCI. In addition,
the methods proposed in this article will extract a large number
of real-valued Riemannian covariance features, thus increasing
the number of weights and the complexity of classifiers, which
makes them unsuitable for real-time execution on devices
with limited resources. Therefore, it is considered to combine
regularization, sparse feature selection and other techniques with
linear classification to deal with a large number of Riemannian

covariance features, so that the model obtained by training will
have less memory footprint and better classification performance.

CONCLUSION

A Discriminative and multi-scale Filter Bank Tangent Space
Mapping (DMFBTSM) algorithm is proposed in this article to
design the FB of a specific subject. On the 4-class BCI competition
IV-2a data set, the average classification accuracy of nine subjects
reached 77.33 ± 12.3%. When the training time and the test
time are similar, the classification accuracy is increased by 2.56%
compared to MFBTSM. When the classification accuracy is
similar, the training speed is increased by more than three times,
and the test speed is increased two times more. Compared with
Supervised Fisher Geodesic Minimum Distance to the Mean
(Supervised FGMDRM), another new variant based on Riemann
geometry classifier, the average accuracy is 3.36% higher. The
results show that the proposed DMFBTSM algorithm can be
expected to select a frequency band with good separability
for specific subjects to improve the classification accuracy of
multiclass MI tasks.

Our future work is to apply the proposed method to
neurofeedback to further improve the classification accuracy of
multi-class MI-BCI.
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Due to the individual differences controlling brain-computer interfaces (BCIs), the
applicability and accuracy of BCIs based on motor imagery (MI-BCIs) are limited. To
improve the performance of BCIs, this article examined the effect of transcranial electrical
stimulation (tES) on brain activity during MI. This article designed an experimental
paradigm that combines tES and MI and examined the effects of tES based on the
measurements of electroencephalogram (EEG) features in MI processing, including
the power spectral density (PSD) and dynamic event-related desynchronization (ERD).
Finally, we investigated the effect of tES on the accuracy of MI classification using linear
discriminant analysis (LDA). The results showed that the ERD of the µ and β rhythms
in the left-hand MI task was enhanced after electrical stimulation with a significant
effect in the tDCS group. The average classification accuracy of the transcranial
alternating current stimulation (tACS) group and transcranial direct current stimulation
(tDCS) group (88.19% and 89.93% respectively) were improved significantly compared
to the pre-and pseudo stimulation groups. These findings indicated that tES can
improve the performance and applicability of BCI and that tDCS was a potential
approach in regulating brain activity and enhancing valid features during noninvasive
MI-BCI processing.

Keywords: brain-computer interfaces, motor imagery, transcranial alternating current stimulation, transcranial
direct current stimulation, event-related desynchronization

INTRODUCTION

Brain-computer interface technology based on motor imagery (MI-BCI) has played an important
role in improving and restoring human motor function by activating brain plasticity to induce
patients to recover motor control function (Decety and Boisson, 1990). However, studies have
shown that individuals differ in their ability to control the BCI. Approximately 15–30% of people
could not operate the BCI system effectively, which indicated that their accuracy is lower than that
of the majority of people and that they need more training time (Guger et al., 2003). Therefore,
it is very important to find methods to improve the applicability of the MI-BCI system and the
classification accuracy of electroencephalogram (EEG).
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Previous studies have used invasive or noninvasive neural
regulation technology to reversibly regulate the activity state
of the central nervous system, peripheral nervous system, or
autonomic nervous system via electrical stimulation or drug
regulation to enhance the decoding accuracy and applicability of
BCI (He et al., 2015; Cho et al., 2016). Among them, transcranial
electrical stimulation (tES; Kuo and Nitsche, 2012; Bestmann
and Walsh, 2017), as a non-invasive neuromodulation technique,
has attracted considerable attention in recent years. At present,
tES mainly adopts transcranial direct current stimulation (tDCS;
Unal and Bikson, 2018) and transcranial alternating current
stimulation (tACS; Paulus, 2011). According to the polarity of
stimulation, an anode is placed on or inside the cortex for
tDCS and subthreshold direct current stimulation is introduced
to regulate neural activity (Wei et al., 2013; Flöel, 2014).
Studies have found that the application of a weak direct current
through a scalp electrode could affect the action potential
threshold of neurons, increase the activity of spontaneous
neurons and then noninvasively regulate the excitability of the
cerebral cortex (Bindman et al., 1964; Nitsche and Paulus, 2000;
Tsuiki et al., 2019). tACS applies a low-intensity alternating
current to the cerebral cortex to regulate the activity of
the intracranial central nerve (Kasten and Herrmann, 2017).
Ten Hertz tACS stimulation in the primary motor cortex
could promote the excitability of the motor cortex, although
other frequencies had difficulty evoking excitability changes
(Wach et al., 2013).

Studies have shown that tES could effectively regulate
brain activities in working memory (Talsma et al., 2017),
perception, motor learning, motor control, and other cognitive
functions (Nitsche and Paulus, 2000; Angelakis and Liouta,
2011). Therefore, researchers proposed using tES in the BCI
system to enhance the excitability of the cerebral cortex and
improve the performance of the BCI system (Thomas and Roi,
2018). Baxter et al. (2016) used tDCS in an MI-BCI system and
found that although tDCS can improve motor learning ability,
cathode stimulation can reduce the power of the α and β bands
in the process of right-hand imagery tasks. However, anode tDCS
could induce a significant change in the µ rhythm ERD mode,
which can conditionally improve the performance of BCI (Wei
et al., 2013). Also, several articles have studied the modulation
of tACS on motor learning ability (Pollok et al., 2015; Sugata
et al., 2018) and showed that the capacity for motor learning
was significantly increased for 70 Hz tACS (response time was
270 ms) compared to sham stimulation (response time was
340 ms; Sugata et al., 2018). The application of alpha frequency
(7–13 Hz) tACS induced a leftward bias in visuospatial attention
relative to the sham (P < 0.001; Schuhmann et al., 2019). In
addition, applying tACS in the mental rotation task experiment
significantly decreased the subject’s alpha and beta rhythm
stimulation shortened response time (before_alpha = 0.37 s,
before_beta = 0.39 s, after_alpha = 0.3 s, after_beta = 0.34 s;
Zhang et al., 2016).

In conclusion, tES could promote motor learning, motor
control, MI behavior, and other cognitive functions by regulating
the excitability of the cerebral cortex. As a noninvasive
stimulation technology, BCIs may be easily accepted. However,

previous studies only discussed the effectiveness of a single
stimulus mode in BCI systems and did not compare and analyze
the stimulus modes that can improve the applicability and
effectiveness of BCI systems in the same task. In this article, we
designed an experimental paradigm that combines two different
modes of stimuli within the same framework and quantified the
changes in EEG via three measurements from spatial, temporal,
and classification dimensions to detect the type of stimulus that
can effectively enhance ERD and BCI performance during MI.
Here, tDCS and tACS were applied to the Cz position of the
subjects’ brains to regulate brain activity and feature extraction
was combined with power spectral density (PSD; Liu et al.,
2013) and common spatial pattern (CSP; Tariq et al., 2019).
Finally, the two features with the largest power difference were
extracted by CSP, and the feature vectors were classified by linear
discriminant analysis (LDA; Tariq et al., 2020).

EXPERIMENT PREPARATION

Subjects
This experiment recruited 15 male college students (23–25 years
old, average 24.4± 0.44). All the participants were right-handed.
None of them had any history of nervous system disease or
received any acute or chronic drugs that affected the central
nervous system. Written informed consent according to the
Declaration of Helsinki was obtained from all participants. This
study was approved by the Ethics Committee of the University of
Electronic Science and Technology of China (UESTC).

Signal Acquisition
In this experiment, 16 Ag/AgCl electrodes (i.e., Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6) were employed
for data recording using a Symtop amplifier (Symtop Instrument,
Beijing, China). The placement of each electrode was determined
by the international 10-20 system electrode position method.
The electrode distribution diagram is shown in Figure 1A. The
reference electrode in this experiment was at the AFz location.
Also, the sampling frequency was 1,000 Hz and the impedance
was kept below 5 K�.

Electrical Stimulation
Before the subjects performed the MI task, they all randomly
underwent three stimulation experiments: tDCS, tACS, and
pseudo stimulation, with each stimulation lasting for 10 min.
Pseudo stimulation was used as the control to eliminate the
placebo effect. The electrode placement position for electrical
stimulation is shown in Figure 1B, where the anode was placed at
Cz and the cathode was placed at the forehead area. The current
intensity of tDCS was 1 mA, the stimulation frequency of tACS
was 10 Hz, and the stimulation intensity was determined by
the specificity of the subjects (increasing the current intensity
gradually in a step size of 0.05 mA from 0 to the intensity at
which the subject indicated a stinging sensation or eye pressure
flashing). Then, the current intensity at that moment was
recorded as the stimulation threshold in the formal experiment
(the intensity was not higher than 2 mA).
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FIGURE 1 | Electrode distribution and stimulation electrode location map. (A) The 16 Ag/AgCl electrodes were employed for data recording. (B) The anode is
placed at the Cz and the cathode is placed at the forehead area.

Experimental Paradigm
In this article, we designed an experimental paradigm that
combines electrical stimulations with MI-BCIs. The MI
experiment was conducted in an exclusive room with soft
luminance light and a comfortable temperature. One day before
the MI experiment, the experimenter asked the subjects to pay
attention to certain tasks, including having good rest at night,
refusing psychotropic drugs, and maintaining a healthy life.
Before the start of the formal experiment, the subjects were sat
down in front of the lab computer and explained the procedure
of the experiment, and then they signed relevant consent.

To familiarize the subjects with the experimental process, they
were asked to practice the MI experiment with 40 trials before
the formal experiment. During the experiment, participants
performed a total of four 30-min MI task experiments and
received one kind of stimulation, namely, pseudo stimulation,
tDCS, or tACS. The entire experimental flow chart and single-
trial design are shown in Figure 2. First, the subjects performed
a set of motor imagery EEG experiments before tES, which
consisted of 80 trials. The EEG data obtained in this group
were used to determine the baseline level of all subjects. Second,
the subjects randomly received electrical stimulation lasting
for 10 min. During the period of stimulation, there was no
EEG acquisition. After stimulation, the subjects were asked to
perform another group of MI EEG experiments (all MI EEG
experiments’ conditions were the same, including the MI tasks,
experimental trials, and duration time). To avoid the post effect
of tES, the time interval between each stimulation experiment
was at least 24 h.

In one trial, a prompt ‘‘+’’ first appeared on the screen to
remind the subjects that the task was about to start. Second,
pictures of a left- or right-hand fist appeared on the screen

randomly, prompting the subjects to carry out the corresponding
left- or right-hand MI, which lasted 6 s. Finally, the screen
turned black for 3 s, reminding the subjects to take a break. Each
experiment performed a total of 80 trials, including 40 trials for
the left-hand task and 40 trials for the right-hand task.

MATERIALS AND METHODS

To study the effect of tES on ERD based on MI, EEG
data in four different conditions (prestimulation, pseudo
stimulation, tACS, and tDCS) were collected. After EEG
preprocessing, the power spectrum of the EEG was calculated
and used to extract the specific frequency band, which
could represent the greatest difference between the left-
and right-hand MI tasks. Then, dynamic ERD based on
sliding time windows was obtained. The EEG features in
individual EEG frequency bands were extracted using the CSP
algorithm and applied in the following pattern recognition
classification. The classification accuracy of the left- and
right-hand MI of the subjects in each condition was obtained,
and the effect of tES on the performance of the MI-BCI
was evaluated. The overall implementation steps are shown
in Figure 3.

Signal Preprocessing
Preprocessing aims to obtain effective and reliable EEG trials.
The specific steps are as follows: convert the raw data to
average reference; filter the data with a 5–40 Hz bandpass
filter to obtain the relevant frequency band information; set
the threshold to ± 100 µV (according to the EEG amplitude
range, the trial with more than 100 µV is considered as a bad
trial; Goh et al., 2017); reject data with extreme values; process
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FIGURE 2 | Experiment paradigm. (A) The experimental flow chart. (B) The Single-trial experiment process.

FIGURE 3 | Overall diagram of electroencephalogram (EEG) signal processing.

the remaining data by FastICA to avoid interference by the
electrooculogram (EOG) and electromyogram (EMG) artifacts;
segment data within the period of [−1, 9 s], in which [−1, 0 s]
was considered the baseline for data correction; and downsample
the signal to 500 Hz. During the processing of FastICA, the
typical characteristics of EOG and EMG were considered. As for
EOG (Nguyen et al., 2012), the low frequency-dominated power
distribution was always observed in the prefrontal electrodes,
while EMG was distributed above 20 Hz, and can be found in
most electrodes (Goncharova et al., 2003). After the EOG and

EMG components were identified and removed, the pure EEG
data was reconstructed.

Calculation of ∆Power
When imagining the movement of different parts of the body,
differences are observed in the spatial distribution of the ERD
obtained from the EEG signal. For example, when imagining
the movement of the left hand, the ERD phenomenon in
the right motor cortex was more significant, in which the
electrode with maximum discriminatory power was C4, while
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when imagining the movement of the right hand, the ERD
phenomenon prominent area was in the left-brain area, and the
electrode was C3. Therefore, in this article, the µ and β rhythm
power were extracted from the C3 and C4 power spectra for
each trial of each subject and stimulation condition. First, the
PSD of all trials (6 s for each trial) was calculated based on the
Pwelch method (Blankertz et al., 2010). For µ rhythm power,
the frequency range is 8–13 Hz, and for β rhythm power, the
frequency range is 17–25 Hz. Then, we obtained the power
difference of C3 and C4 under the same conditions (tasks,
rhythms, and stimulation were the same), and the calculation was
as follows:

1Power = OSP − SSP (1)

where OSP is the PSD of the contralateral electrode during the MI
tasks, SSP is the PSD of the ipsilateral electrode, and ∆Power is
the difference between the contralateral and ipsilateral sides. For
example, to obtain ∆Power during the left-hand MI task, C4 is
on the contralateral side and C3 is on the ipsilateral side. Then,
normalized ∆Power was obtained:

normalized1 Power =
1Power

OSP+ SSP
(2)

This step aims to eliminate individual differences.

Feature Extraction
The CSP method is currently considered the most suitable
algorithm for processing the two-category feature extraction
of EEG signals (Lu et al., 2010). It is very suitable for
processing multidimensional signals and data. By using the
spatial correlation of the EEG signal synchronously, the noise
of the signal can be eliminated and localization of local cortical
nerve activity can be achieved.

From the PSD results, the power spectra of all channels of the
subjects in the MI task were estimated. Then, to determine the
individual-specific bandpass filter, we calculated the r2 relative to
the two-hand MI tasks for each subject (Xu et al., 2011). r2 was
described as follows:

r2
=

( √
N1N2

N1 + N2

MEAN (P1)−MEAN (P2)

STD (P1UP2)

)2

(3)

where N1 and N2 represent the number of trials (both N1 and N2
are 40); P1 and P2 are the power spectra of EEG data of left and
right hand MI tasks, respectively. In the equation above, a larger
value of r2 corresponds to a greater power difference between
the EEG data of left- and right-hand MI tasks in this frequency
band. In Figure 4, according to the value of r2, we can select the
appropriate bandpass filter frequency band and apply a specific
bandpass filter to the MI EEG data.

The CSP algorithm was used to extract features from the
processed EEG signals. By designing the parameters of the spatial
filter, the best projection matrix W was obtained. The EEG signal
passed through the spatial filter to obtain the feature vectors
that represent the characteristics of left and right signals, one
of which has the largest variance and the other has the smallest
variance. Finally, the two types of signals were classified by

FIGURE 4 | An example of the r2 map. The x-axis represents the frequency,
the y-axis represents the channels.

classification algorithms. The specific algorithm processes are as
follows (Muller-Gerking et al., 1999):

Note: in the following expressions, i represents the MI task
category, i = 1, 2. It is stipulated that i = 1 is left-hand movement,
and i = 2 is right-hand movement.

Assume that X1 and X2 are the single-trial EEG matrices for
the left and right hand MI tasks under the same experimental
conditions. The matrix dimension is N∗T, where N is the number
of EEG channels, and T is the number of sampling points
(N ≤ T). Y1 and Y2 are two types of MI tasks. In the case of
ignoring noise interference, X1 and X2 are expressed as follows:

Xi = [AiAm]
[

Yi
YM

]
, (4)

where YM is the common source signal of two tasks. The
left-hand movement Y1 and right-hand movement Y2 source
signals of these two tasks are assumed to be linearly independent
of each other, and Y1 and Y2 are composed of m1 and
m2, respectively.

The covariance matrix of X1 and X2 is calculated as follows:

Ri =
XiXT

i

tr (XiXT
i )

, (5)

where tr represents the trace of the matrix, which is the sum of
the diagonal elements of the matrix XXT , and Ri is the covariance
matrix of a single trial. According to the total trial ni, the average
covariance matrix R̄ is as follows:

R̄i =
1
ni

ni∑
j = 1

Rij. (6)

The mixed space covariance matrix R is as follows:

R = R̄1 + R̄2, (7)
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where R is a positive definite matrix, and eigenvalue
decomposition is performed on R according to the singular
value theorem:

R = UλUT , (8)

where λ is a diagonal matrix composed of the eigenvalues
arranged in descending order and U is the matrix composed
of the eigenvectors corresponding to the eigenvalues after
decomposition. The whitened matrix P is obtained as follows:

P =
1
√
λ
UT , (9)

Yi = PR̄iPT . (10)

Then, decomposing the principal component of the whitened
matrix obtains the following:

Yi = QiλiQT
i , (11)

where Y1, Y2 have the same eigenvector. The sum of the diagonal
matrix of two eigenvalues λ1 and λ2 is the identity matrix:

λ1 + λ2 = E. (12)

The projection matrix W can be obtained through the
eigenmatrix Q and the whitened matrix:

W = QTP, (13)

where the projection matrix W is the required spatial filter. The
EEG matrix Xi is projected through the spatial filter W, and the
characteristics can be obtained:

Zi = WXi. (14)

To avoid the instantaneous change caused by body motion, the
variance of the feature signal obtained through the spatial filter
is calculated and normalized, and then the feature vector f i is
extracted as follows:

{
Z1 = WXi

fi =
var(Zi)∑
var(Zi)

. (15)

Quantification of ERD
To compare changes in the C3 and C4 amplitudes elicited by
different motor imagery tasks, dynamic ERD was quantified as
the relative amplitude (RA) to reveal the power decrease and
increase in sliding time windows based on the reference baseline
(Jeon et al., 2011); and, we segmented the EEG epochs into 1 s
time windows.

The calculation of ERD in each time window was as follows:

Act(j) =
1
N

N∑
i = 1

y2
ij, (16)

where, yij is the jth sample of the ith trial, N is the number of trials
and Act(j) is the average power at jth sample squared.

R =
1

k+ 1

r0+k∑
j = r0

Act(j), (17)

where R is the average power in the reference interval [r0, r0
+ k]. Due to the great individual difference, in this study, the
reference interval adopted the whole time course during MI
tasks, i.e., [−1 9 s].

RA(j) (%) =

(
Act(j) − R

R

)
× 100%. (18)

Pattern Recognition Classification
Suppose that the dataset D = {(X1, Y1), (X2, Y2), . . ., (Xm, Ym)},
where Xi is an n-dimensional vector, yi ∈ {0, 1}. Here, N j(j = 0, 1)
is the number of samples of type j,Xj(j = 0, 1) is the set,µj(j = 0, 1)
is the mean value, and Σj(j = 0, 1) is the covariance matrix.

The expression of µj is as follows:

µj =
1
Nj

∑
x∈Xj

x, ....j = 0, 1. (19)

The expression of Σj is as follows:

6j =
∑
x∈Xj

(
x− µj

) (
x− µj

)T , ....j = 0, 1. (20)

Since there are two types of data, we only need to project the
data onto a straight line. Assuming that the projection line is
a vector w, the projection of any sample on w is wTxi; the
center points µ0 and µ1 of the two categories, projected on w
are wTµ0 and wTµ1, respectively. The main purpose of LDA
is to maximize the distance between the centers of different
categories of data to maximize ||wTµ0 − wTµ1||

2
2. At the same

time, we need to make the projection points of the same kind
of data as small as possible; that is, the covariance wTΣ0w and
wTΣ1w of projection points between similar samples should be
as small as possible. Therefore, we need to minimize wTΣ0w +
wTΣ1w.

The optimization objective of the LDA algorithm is as follows:

W∗ = argmax
||wTµ0 − wTµ1||

2
2

wTΣ0 w + wTΣ1w

=
wT(µ0 − µ1)(µ0 − µ1)

Tw
wT(Σ0 + Σ1)w

. (21)

The between-class scatter matrix SB is as follows:

SB = (µ0 − µ1) (µ1 − µ0)
T . (22)

The within-class scatter matrix SW is as follows:

SW = Σ0 +Σ1, (23)

Therefore, the W∗ is rewritten as follows:

W∗ = argmax
wTSBw
wTSWw

. (24)
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Since both the numerator and denominator contain the quadratic
term of w, the objective function is independent of the module
length of w. Let:

wTSWw = 1. (25)

The optimization problem is as follows:{
min(w) − wTSBw
s.t. wTSWw = 1 . (26)

The Lagrangian function of the optimization problem is
as follows:

L (w, λ) = −wTSBw+ λ
(
wTSWw− 1

)
, (27)

Then, by finding the first partial derivative of w for equation
(20) and setting it to zero, we can obtain the following:

S−1
W SBw = λw. (28)

By finding the eigenvector of the matrix, we can obtain w.

Statistical Analysis
Group-level statistical tests were conducted for different EEG
measurements, including the normalized ∆Power, dynamic
ERD, and classification accuracy. Before the statistical tests, the
data distribution was first examined based on Mauchly’s test of
sphericity. Then, a repeated measurement variance analysis of
the general linear model was performed for each group to test
the significance among the subjects in different experimental
conditions. For the normalized ∆Power, one-way repeated-
measures analysis of variance (ANOVA) and post hoc t-tests
were performed on the power for the µ and β rhythms of
the left- and right-hand Ml tasks in four conditions. To obtain
the optimal time range, the values of ERD difference between
the contralateral and ipsilateral sides of all the time windows
were compared between pre-and poststimulation in left- and
right-hand sides (paired t-test). For the classification accuracy-
the significance of differences among experimental conditions
was also tested via ANOVA. All statistic thresholds were set to
P < 0.05 without correction.

RESULTS AND ANALYSIS

Analysis of the Power Spectrum
Characteristics
The power change of the µ and β rhythms among the sensory-
motor rhythms (SMRs) during the left- and right-hand MI
tasks was calculated according to the average power spectrum
collected by the C3 and C4 channels for all subjects in the four
experimental conditions. The results are shown in Figure 5.
For the power change of the µ rhythm at 8–13 Hz, during the
right-hand MI tasks, the power of C3 was lower than that of
C4 both in pre-and poststimulation. When subjects performed
left-hand MI tasks, obvious power differences were not observed
between C3 and C4 in the prestimulation and pseudo stimulation
groups. However, after tACS and tDCS, the phenomenon could
be observed obviously. For the β rhythm of 17–25 Hz, the power
change in the C3 and C4 regions was slight.

FIGURE 5 | The average power spectrum of each group. (A) The
prestimulation group, (B) the pseudo stimulation group, (C) the transcranial
alternating current stimulation (tACS) group, and (D) the tDCS group. The
x-axis represents the frequency, the y-axis represents the power.

To compare the power change statistically, in Figure 6,
the µ and β rhythm power were extracted from the C3 and
C4 power spectra for each trial of each subject and stimulation
condition. ANOVAs were performed on the ∆Power for µ

and β rhythm power of left- and right-hand MI tasks in four
experiments to evaluate the reference effects. Significant
differences revealed by ANOVA were further analyzed
for multiple comparisons using Tukey’s post hoc test. For
left-hand tasks, the µ and β rhythms were in line with the
Mauchly sphere test hypothesis (P = 0.05). For the µ rhythm,
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FIGURE 6 | The ∆Power spectrum of each group (Note: ∆Power is the
difference of ipsilateral and contralateral sides). (A) µ rhythm of the left-hand
task, (B) µ rhythm of the right-hand task, (C) β rhythm of the left-hand task,
and (D) β rhythm of the right-hand task. ∗ represents significance P < 0.05.

compared with the pre- and pseudo stimulation groups, the
tDCS group showed significant differences but the tACS
group showed almost no significant change (tDCS-pre:
P = 0.03 < 0.05; tDCS-Pseudo: P = 0.01 < 0.05). For the
β rhythm, tDCS showed significant differences compared
with prestimulation and tACS showed significant differences
compared with pseudo stimulation, while tDCS showed
marginal significance (tDCS-Pre: P = 0.01 < 0.05; tACS-Pseudo:
P = 0.01 < 0.05; tDCS-Pseudo: P = 0.05). For right-hand
tasks, the µ and β rhythms were in line with the Mauchly
sphere test hypothesis (P = 0.05). Neither tDCS and tACS were
significantly different.

Analysis of Event-Related
Desynchronization Features
Figures 7, 8 show the ERD relative amplitude (RA) time
courses of all subjects from [−1, 9 s] [from 1 s before
the MI task (6 s) to 3 s after the task] for the two MI
tasks. A smaller RA of the contralateral side corresponded to
greater desynchronized ERD movement. In this study, different
ERD phenomena were observed. In Figure 7, the duration
of C4 ERD in the tACS and tDCS groups was longer than
that in the pre-and pseudo stimulation groups. Also, the
RA in the tACS and tDCS groups was smaller than that in
pre-and pseudo stimulation groups. In Figure 8, the duration
of C3 ERD in the tACS and tDCS groups was longer than that

in pre- and pseudo stimulation groups. The RA in the tACS
and tDCS groups was smaller than that in pre- and pseudo
stimulation groups.

Also, the optimal time range of ERD was verified. For
the left-hand tasks, we used one-way ANOVA to test the
significance of the RA difference between the contralateral
and ipsilateral sides in different experimental conditions, and
the optimal time window [3, 5 s] was found (tACS-Pre:
P = 0.03 < 0.05; tDCS-Pre: P = 0.03 < 0.05). However,
in the right-hand tasks, the optimal time range was [3–5 s],
with statistical significance (tACS-Pre: P = 0.13 > 0.05;
tDCS-Pre: P = 0.07 > 0.05). Compared with prestimulation,
tDCS presented marginal significance; however, tACS was
not significant.

Analysis of Classification Accuracy
In this article, the LDA classifier was used to train and
test the MI classification of subjects under four different
conditions: prestimulation, pseudo stimulation, tACS, and tDCS.
After preprocessing the data, we determined the individual
specific bandpass filter of the two tasks, and the results
showed that nine subjective specific frequency bands were
from 8–15 Hz, four subjective specific frequency bands were
from 17–25 Hz, and two subjective specific frequency bands
were from 8–30 Hz. Then, the filtered data were extracted by
CSP and the two types of extracted feature vectors f 1 and
f 2 were input into the LDA classifier as training data for
classification. According to the relatively small distance between
similar data points and the relatively large distance between
data points of different classifications, the best separation plane
was obtained. Then the 5-fold cross-validation method was
implemented for training and testing. The final classification
accuracy results of all subjects are shown in Table 1. The average
classification accuracy of the four groups of experiments is shown
in Figure 9.

From the data in the table, the average accuracy of MI was
effectively improved after the subjects received tDCS. For tACS,
the accuracy of subjects 5, 8, and 11 after tACS decreased
compared with that before stimulation. Subjects 1, 3, and 6 had
better accuracy improvement with tACS than those with tDCS.
Among all subjects in the experimental group, the highest
accuracy of 98.75% was found for subject 1 after tACS, and the
lowest accuracy of 75.11% was observed in subjects 8 after tACS.
Figure 9 shows that the overall classification accuracy of the tACS
group and the tDCS group was significantly improved compared
to that of the pre-and pseudo stimulation groups, although the
improvement effect of the tDCS group was higher than that of
the tACS group.

To investigate the effect of the tACS and tDCS proposed
in this article for improving the accuracy of MI classification
tasks, we used one-way ANOVA to test the significance
of the MI classification accuracy of the subjects under
different experimental conditions (P = 0.05). First, we
confirmed the homogeneity of the sample’s variance, which
is consistent with the Mauchly sphere test hypothesis
(P = 0.134 > 0.05), thus demonstrating that the main effect
is significant. Second, the results of tACS and tDCS were
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FIGURE 7 | Event-related desynchronization (ERD) in left-hand tasks. Where the x-axis represents time and the y-axis represents relative amplitude (RA). (A) The
prestimulation group, (B) the pseudo stimulation group, (C) the tACS group, and (D) the tDCS group. The RA in tACS and tDCS groups are smaller than in
prestimulation and pseudo stimulation groups. The optimal time window is [3, 5 s] (tACS: P = 0.03 < 0.05; tDCS: P = 0.03 < 0.05).

FIGURE 8 | ERD in right-hand tasks. Where the x-axis represents time and the y-axis represents RA. (A) The prestimulation group, (B) the pseudo stimulation
group, (C) the tACS group, and (D) the tDCS group. The RA in tACS and tDCS groups are smaller than in pre-stimulation and pseudo-stimulation groups. The
optimal time range is [3, 5 s] (tDCS: P = 0.07 > 0.05).
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TABLE 1 | The classification accuracy of subjects’ motor imagery.

Subjects Pre-stimulation (%) Pseudo-stimulation (%) tACS (%) tDCS (%)

Subject 1 91.25 93.21 98.75 96.88
Subject 2 83.83 85.84 92.50 97.50
Subject 3 74.68 76.25 86.25 80.00
Subject 4 85.00 85.00 89.74 90.06
Subject 5 82.49 85.00 80.00 86.25
Subject 6 77.50 78.64 85.05 82.68
Subject 7 77.61 71.25 81.27 87.49
Subject 8 77.49 77.50 75.11 81.27
Subject 9 88.77 91.28 94.93 96.31
Subject 10 87.5 92.5 94.64 97.5
Subject 11 91.32 92.78 89.64 92.7
Subject 12 84.29 80.2 95 95
Subject 13 83.55 87.34 87.5 90
Subject 14 74.78 82.06 82.5 85
Subject 15 85.12 87.98 90 90.28
Mean ± Standard 83.01 ± 1.43 84.46 ± 1.73 88.19 ± 1.70 89.93 ± 1.56

FIGURE 9 | Average classification accuracy. Where the x-axis represents
experiment modes and the y-axis represents accuracy. The average
classification accuracy of the tACS group and tDCS group was improved
significantly (tACS-Pre: ∗∗P < 0.001; tDCS-Pre: ∗∗P < 0.001; tACS-Pseudo:
∗P < 0.05; tDCS-Pseudo: ∗∗P < 0.001). ∗ and ∗∗ represent significance.

compared with the results of the pre-and pseudo stimulation
groups, respectively. These statistics revealed significant
differences for all accuracies compared with the pre-and
pseudo stimulation groups (tACS-Pre: P < 0.001; tDCS-
Pre: P < 0.001; tACS-Pseudo: P < 0.05; tDCS-Pseudo:
P < 0.05). Therefore, we concluded that the accuracy of
the subjects in the tACS and tDCS groups was significantly
improved compared with that of the pre-stimulation and pseudo
stimulation groups.

DISCUSSION

The main purpose of this article was to study the effect of
tES on ERD based on MI-BCI. Subjects performed the MI
classification experiment under four conditions: prestimulation,
pseudo stimulation, tDCS, and tACS. The effects of tACS
and tDCS on ERD were analyzed from three aspects: power
spectral density, dynamic ERD, and classification accuracy.
Also, the average classification accuracy was used to verify the
improvement of BCI task ability.

Motor imagery was described as imagining a movement
rather than executing a real movement, and this method is
promising for patients with tetraplegia, spinal cord injury,
and amyotrophic lateral sclerosis (ALS; Abiri et al., 2019).
However, the main drawback of the MI was that the
training time could take weeks or months. tACS and tDCS
as noninvasive neuromodulation techniques could provide
alternative ways to enhance the valid metrics by modifying
ERD patterns (Kuo and Nitsche, 2012). Whether for motor
execution or MI, ERD changes in SMRs are always produced
(Jeon et al., 2011; Bauer et al., 2015). Among them, the
µ rhythm and β rhythm among SMRs were considered to
be related to motor ability and motor control (Pfurtscheller
et al., 1994). In the process of the unilateral MI task,
the power of the µ rhythm and β rhythm decreased
in the contralateral motor-sensory area, namely, the ERD
(Pfurtscheller and Neuper, 1994, 1997). Many articles have
indicated that tES could modulate ERD during MI. In this
study, some interesting findings were obtained: (1) tES could
induce both µ rhythm and β rhythm ERD increases in the
left-hand MI task; (2) tES can prolong the ERD duration and
decrease the relative power; and (3) tES can enhance the MI
accuracy effectively.

These findings could provide a reference for related fields.
Studies have indicated that there is differential lateralization of
hand movement neural representation in right- and left-handed
individuals, and handedness is closely linked to the ability
to control an SMR-BCI (Zapała et al., 2020). In the current
study, all the subjects recruited were right-handed, power
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suppression of the µ rhythm occurred during right-hand MI of
all conditions, but there was no significance between pre-and
poststimulation. However, in the left-hand MI task, the power
of the µ rhythm declined obviously after tDCS, and the
∆Power of the µ rhythm decreased significantly compared
with pre-and pseudo stimulation (tDCS-pre: P = 0.03 < 0.05;
tDCS-Pseudo: P = 0.01 < 0.05). These results implied that tES
may evoke a much higher effect on the neural representation
of the non-dominant hand MI task. Also, as one important
motor rhythm, the power of the β rhythm was not significant
in this study. Interestingly, the ∆Power of the β rhythm in
the left-hand MI showed a significant decrease after tDCS
compared with pre-stimulation (P < 0.05), indicating that this
power difference between bilateral electrodes may create the
potential control signal that drives a BCI. Moreover, the relative
amplitude of ERD during MI was enhanced after tACS and
tDCS, indicating that transcranial electrical stimulation can
enhance the excitability of the cerebral cortex and regulate
brain activity (Pellicciari et al., 2013). Although the duration
of ERD in tACS and tDCS seemed to have been prolonged,
not all the whole period of MI in each trial was usable. The
effective response time of MI was different among individuals,
due to the pattern of neural activation (Williams et al., 2012),
and a previous study indicated that the overall optimal time
segment was [4, 6 s] (Gong et al., 2013). In this article,
the optimal time range was [3, 5 s], where the left-hand
relative amplitudes of ERD in tACS and tDCS were significant
(P < 0.05), but the right-hand relative amplitudes of ERD,
which were was also the range of [3, 5 s], were not significant
after tACS.

To verify the influence of tES on MI-BCI task ability, we
compared the classification accuracy of the four conditions. tACS
enhanced motor imagery ability in terms of the µ and β rhythm.
A possible mechanism was that beta rhythm stimulation was
related to the excitability of the primary motor cortex and the
alpha rhythm stimulation was associated with motor educability
(Zhang et al., 2016). tDCS could enhance ERD patterns and
conditionally improve BCI performance in both the online and
offline BCI classification results(Wei et al., 2013). In this study,
we used CSPs to extract the signal features and LDA to classify
the feature vectors (Wang et al., 2005; Sharma and Paliwal, 2015).
The results showed that the average classification accuracy of
the tACS group and tDCS group was improved significantly
(P < 0.001). However, individual differences impacted tACS,
possibly because of the difference of endogenous oscillations
among individuals with tACS frequencies.

In this study, we designed an experimental paradigm that
combines two different modes of stimuli and compared them
with the stimuli to determine the most effective at enhancing
event-related desynchronization during the MI period. In
the same processing framework, the comparison analysis
of the quantified EEG metrics was conducted from three
dimensions including the PSD difference between contralateral
and ipsilateral electrodes (spatial effect), the time-varying ERD
calculation using sliding windows (temporal effect), and the
classification accuracy based on the classical LDA method in
MI-BCI (classification performance). From the results of EEG

metrics and classification accuracy, we speculated that tDCS
has potential in regulating brain activity and enhancing valid
features in noninvasive MI-BCI processing. Moreover, the time
range of [3, 5 s] after MI start-up led to the optimal ERD
combined with tDCS, which may be helpful for the actual BCI
performance improvement. However, this study also has many
limitations in the experimental and analytical methods. For
example, for the experimental design, the duration of electrical
stimulation was 10 min and the anode of the stimulation
position was located in Cz. In subsequent experiments, different
experimental groups could set the stimulation duration to 5, 15,
and 20 min, and implement different placement of the anode of
tES (Kasashima et al., 2012; Mordillo-Mateos et al., 2012; Wei
et al., 2013; Koo et al., 2016). Additionally, the effect of tACS may
change due to differences in the endogenous oscillation among
individuals. Even if the deviation from the internal frequency of
individuals is very small, it may cause other effects or reduce
the modulation effect of tACS (Herrmann et al., 2013). The
preliminary conclusion based on the findings was that tES may
make subjects start MI tasks faster; however, this point requires
further investigation. Moreover, the number of subjects should
be increased in subsequent experiments to verify the results of
the statistical test.

CONCLUSION

In this article, tDCS and tACS were conducted and evaluated
based on the same motor imagery (MI) tasks and subjects. The
two tES methods can effectively enhance the activation of the
cerebral motor cortex, which makes ERD more obvious during
the MI period. Then, we quantified ERD by dynamic time
windows, which can provide the optimal time range of [3, 5 s]
for future MI-BCIs. Moreover, in the case of using the basic
feature extraction and classification algorithm for EEG signal
processing, both kinds of stimulation methods can improve
the performance of MI-BCI using a lower difficulty algorithm
and tDCS showed superiority in regulating activity and evoking
effective features in MI-BCI.
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Recently, due to the emergence of mobile electroencephalography (EEG) devices,

assessment of mental workload in highly ecological settings has gained popularity. In

such settings, however, motion and other common artifacts have been shown to severely

hamper signal quality and to degrade mental workload assessment performance.

Here, we show that classical EEG enhancement algorithms, conventionally developed

to remove ocular and muscle artifacts, are not optimal in settings where participant

movement (e.g., walking or running) is expected. As such, an adaptive filter is proposed

that relies on an accelerometer-based referential signal. We show that when combined

with classical algorithms, accurate mental workload assessment is achieved. To test

the proposed algorithm, data from 48 participants was collected as they performed

the Revised Multi-Attribute Task Battery-II (MATB-II) under a low and a high workload

setting, either while walking/jogging on a treadmill, or using a stationary exercise bicycle.

Accuracy as high as 95% could be achieved with a random forest basedmental workload

classifier with ambulant users. Moreover, an increase in gamma activity was found in the

parietal cortex, suggesting a connection between sensorimotor integration, attention,

and workload in ambulant users.

Keywords: EEG, physical activity, amplitude modulation features, wearable sensors, adaptive filtering, mental

workload assessment

1. INTRODUCTION

Many professions, such as first responders (firemen, policemen, paramedics) and pilots are often
faced with cognitive challenges including information overload, multitasking, interruptions, and
fatigue. All these factors increase stress and reduce the efficiency with which this complex set of
tasks is performed (Grtner et al., 2019). In many cases, these individuals are also exposed to a
combination of physical and mental factors that further contribute to a high mental workload
(MW), thus resulting in increased chances for errors, which could be life threatening. As such,
MWmonitoring has gained popularity in recent years.

Mental workload assessment can follow three methods: subjective, behavioral, or
instrumental/objective. Subjective assessment relies on users reporting their perceived levels
of mental workload and the NASA task load index (TLX) (Hart and Staveland, 1988; Cao et al.,
2009) has been widely used. Behavioral methods, in turn, rely on task performance metrics (e.g.,
accuracy, response times, error rate) to characterize MW states. As can be seen, it is difficult
for subjective and behavioral assessment methods to provide real-time measures of MW, thus
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have limited applications in closed-loop systems to improve task
performance. This is where instrumental or objective methods
have filled a gap. With such systems, real-time correlates of
MW are obtained and unobtrusive neuronal and physiological
measures have been explored, such as electroencephalography
(EEG), electrocardiography (ECG), and galvanic skin response,
amongst others.

With the popularization of wearable devices and improved
dry electrode technologies, EEGs have emerged as a potential
candidate for automated instrumental MW assessment (Lean
and Shan, 2012; Mullen et al., 2015). Successful applications
have been shown in aircraft pilots and car drivers (Borghini
et al., 2014), and air traffic controllers (Aricò et al., 2016), to
name a few. Numerous different features have been explored
and shown useful, including power spectral, magnitude, and
phase coherence (Aghajani andOmurtag, 2016; Dimitrakopoulos
et al., 2017; So et al., 2017). For example, increases in theta and
decreases in alpha band powers have been shown in prefrontal
and parietal brain regions when task difficulty increases (Borghini
et al., 2014). Temporal complexity measures have also shown
some robustness against ocular and muscular artifacts (Tiwari
et al., 2019) and spectro-temporal measures have been shown
to provide complementary information to conventional power
spectral ones (Albuquerque et al., 2019). Most available works,
however, have relied on stationary users, such as sitting pilots
and drivers (Borghini et al., 2014; Johnson et al., 2015), or have
controlled for body movements (Hogervorst et al., 2014).

Practical applications, however, have users that are highly
ambulatory (e.g., first responders). It is known that dry
electrodes are very sensitive to movement artifacts, which
could severely hamper MWmonitoring performance (Morikawa
et al., 2013). In our previous work, we explored the use of
several conventional EEG enhancement algorithms to gauge
their benefits in instrumental measurement of MW in highly
ecological settings (Rosanne et al., 2019). We found that while
some improvements were seen relative to using noisy raw data,
overall MW measurement performance levels remained lower
than what has typically been reported for stationary users.
This is due to the fact that existing enhancement algorithms
have been developed and optimized to remove muscle and
eye blink/movement artifacts, and not necessarily movement
artifacts seen with, e.g., running.

To overcome this limitation, here we propose the use of
an adaptive filter to remove movement-specific motion artifacts
from mobile EEG data. Accelerometry signals measured from
the participant’s torsos are used as reference signals for the
adaptive filter. The algorithm was tested on a database collected
in-house from 48 participants while they performed the Multi-
Attribute Task Battery-II (Santiago-Espada et al., 2011) under
two workload conditions (low and high) and two physical activity
(PA) types (stationary bike and treadmill), each at three activity
levels (none, medium, and high). Experimental results show
the proposed algorithm accurately removing body movement
artifacts and resulting in MW monitoring performance as high
as 97% and independent of activity type and level.

Lastly, with the enhanced signals available, we conducted an
in-depth analysis of the top features selected for MW assessment,

thus obtaining insights into the cognitive processes involved
during the workload task under physical activity. We found
typical patterns related to visuo-motor control, attention, and
fronto-parietal communication; patterns that would otherwise
have been lost due to movement artifacts.

The remainder of this paper is organized as follows: section
II describes the materials and methods used in the experiment.
Section III presents and discusses the obtained results, and
section IV presents the study conclusions.

2. MATERIALS AND METHODS

2.1. Data Collection
Data was collected from 48 participants (23 females, 27.4 ± 6.6
year old), of which 22 utilized a treadmill during the experiment
and 26 a stationary bike. Participants using the treadmill were
asked to wear a safety harness around their chest in order to
avoid falls. The experimental protocol was approved by the Ethics
Boards at INRS and Université Laval, participants provided
written consent, andweremonetarily compensated for their time.

The experimental protocol comprised two MW levels
(low/high) elicited through the MATB-II software, which
has participants executing three simultaneous tasks: system
monitoring, tracking, and resource management, as presented in
Figure 1. Low and high MW settings were implemented based
on changing the difficulty levels for each of the three tasks. As
an example, a low MW task was composed by “easy” versions of
the three tasks. Participants used an Xbox 360 joystick to interact
with the MATB-II interface.

While executing MATB-II, subjects were asked to either bike
or walk/jog on a treadmill at three levels of physical activity (PA):
no movement, medium (treadmill: 3 km/h, bike: 50 rpm), and
high (treadmill: 5 km/h, bike: 70 rpm). In total, six combinations
of MW and physical activity were tested. The experiment was
then split into six sessions, each one corresponding to one of
the six combinations described above, counterbalanced to avoid
ordering effects. Each session took 10 min to run and was
systematically followed by a 5-min break. Before every session,
two baseline periods were recorded. The first corresponded to
1 min without task nor physical activity. The second, in turn,
corresponded to 1 min with only physical activity at the same
level to be executed in the upcoming session. At the end of
the experiment, each subject was asked to fill the NASA-TLX
questionnaire (Hart and Staveland, 1988) to subjectively evaluate
their perceived workload levels, as well as the reported their
fatigue levels using the Borg scale (Borg, 1998).

EEG data was acquired from the participants using the
Neurolectrics Enobio 8-channel portable headset with the
following channel locations according to the international 10–
20 system: Fp1, Fp2, AF7, AF8, T9, T10, P3, P4 (see Figure 2).
Signals were collected at a sampling rate 500 Hz and were
later downsampled to 250 Hz. Two virtual inter-hemispheric
bipolar signals were also computed, namely Fp1-Fp2 and P3-P4.
Movement activity was also recorded with a sampling rate of 50
Hz using the embedded accelerometer available in the Zephir
Bioharness wearable device, which was placed on the chest of
each subject. Accelerometry data was upsampled to 250 Hz to
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FIGURE 1 | Graphical interface of the MATB-II software used to modulate high and low MW levels.

coincide with the EEG data. The interested reader is referred to
Albuquerque et al. (2020) for more details about the database.

2.2. Movement Artifacts
To illustrate the effects of movement, particularly in the
walking/jogging conditions, Figure 3 depicts the average spectral
representation of each of the eight EEG channels, as well as that
of the accelerometer signals (bottom plot) during 10 s of the
high physical activity condition. Here, the accelerometer signal
corresponds to a L2-normalization of the accelerometer x, y,
and z axes. As can be seen, particularly for the frequency range
below 10 Hz, there is a significant effect from gait/movement
on the EEG spectra, something previously reported in the
literature (Zhang et al., 2014; Nathan and Contreras-Vidal,
2016). As movement artifacts are known to be detrimental
to EEG quality (Gao et al., 2010; McMenamin et al., 2011),
this has motivated the proposal of an adaptive filter using the
accelerometer signal as a reference signal.

Movement artifacts observed in EEG signals can be caused
either by a relative movement between the skin and the electrode
(Burbank and Webster, 1978) or by a change in electrical

potential when the skin stretches and contracts duringmovement
(de Talhouet andWebster, 1996; Kearney et al., 2007). Movement
artifacts have been reported to span spectral content between 0.11
and 20 Hz (Bouten et al., 1997), thus overlap with frequency
bands relevant for mental workload monitoring (Mak et al.,
2013). Conventional EEG enhancement algorithms, traditionally
developed for ocular and muscle artifacts (Urigüen and Garcia-
Zapirain, 2015; Mucarquer et al., 2019; Zou et al., 2019), have
been shown to help with ambulatory users. For example, in
Gwin et al. (2010), independent component analysis (ICA)
and component-based template regression was used to remove
gait movement artifacts from EEG event related potentials.
ICA-based decomposition was also used to remove head
movements in Onikura and Iramina (2015). Notwithstanding,
these conventional solutions have been shown to interfere with
MW assessment (Rosanne et al., 2019). Moreover, ICA-based
enhancement methods typically rely on human intervention to
remove artifactual components, thus have limited use in real-time
applications. Adaptive filtering, in turn, has been used to reduce
head movement artifacts (Mihajlović et al., 2014) and simulated
random noise in EEGs (Raya and Sison, 2002). To the best of
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FIGURE 2 | Electrode placement using the international 10–20 system.

our knowledge, however, the use of adaptive filtering, with or
without combined “blind” filtering approaches (i.e., that do not
rely on human intervention), has yet to be quantified for EEG-
based mental workload monitoring of ambulant users. We aim
to fill this gap.

2.3. Adaptive Filtering
Figure 4 depicts a block diagram of the adaptive filtering scheme
explored herein. Signal x(n) corresponds to the accelerometer
signal, whereas s(n) corresponds to the neuronal activity signal.
From the accelerometer signal, movement artifacts are modeled
and represent y(n). When added to the neuronal activity signal
s(n), the output represents the noisy EEG signal d(n) = s(n) +
y(n) recorded during physical activity. The goal of the adaptive
filter is to find the optimal distortion weights Ŵ(n) from the
accelerometer signal x(n) to best estimate the movement artifacts
via ŷ(n) and remove their effects from the noisy EEG signal
via e(n) = d(n)− ŷ(n).

More specifically:

ŷ(n) = Ŵ(n) ∗ x(n), (1)

and

e(n) = d(n)− ŷ(n),

e(n) = y(n)+ s(n)− ŷ(n).
(2)

The filter weights are found using the normalized least mean
squares (NLMS) procedure (Diniz, 1997) for loss function C(n)
using the steepest descent algorithm, i.e.:

∇ŵHC(n) = ∇ŵHE
[

e(n)2
]

= E
[

2e(n)∇ŵH e(n)
]

= −2E
[

x(n)e(n)
]

,

(3)

FIGURE 3 | Average spectral representation of the eight EEG signals and the

accelerometer signal over 10 s of recording for the low MW and high PA

condition.

FIGURE 4 | Block diagram of proposed adaptive filter.

where ∇ is the gradient operator and E [·] the expected value.
This leads to the following update rule:

ŵ(n+ 1) = ŵ(n)+ µE
[

x(n)e(n)
]

, (4)

where µ/2 is the step size.
We approximate the last term using the single-sample

unbiased estimator E
[

x(n)e(n)
]

=
x(n)e(n)
|x(n)|2

, thus simplifying

(4) to:

ŵ(n+ 1) = ŵ(n)+
µx(n)e(n)

|x(n)|2
. (5)

Here, a filter length of 500 samples was used, corresponding
to a signal duration of 2 s. Figure 5 depicts the noisy and
enhanced EEG signals, as well as the accelerometry signal, to
visually showcase the movement effects on the EEG signal and
the effectiveness of the adaptive filter.
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FIGURE 5 | Time representation of a 5-s EEG segment from electrode AF8

before (blue) and after (black) adaptive filtering. The L2-normalization of the x,

y, and z accelerometry axes is represented in orange.

2.4. Benchmark Enhancement Algorithms
As mentioned previously, numerous EEG enhancement
algorithms exist. Most have been developed to remove eye and
muscular artifacts. Some are completely autonomous, whereas
others rely on expert supervision. Here, four algorithms widely
used for automatic (i.e., not relying on human intervention) EEG
enhancement are used as benchmarks. They are used alone or in
combination with each other. The following configurations are
applied to the entire signals prior to epoching:

• ASR: artifact subspace reconstruction (ASR) is a method
developed to remove transient and large-amplitude artifacts
from noisy EEG. It relies on principal components analysis
to reject large-variance components prior to reconstruction.
The method relies on automatically identifying clean portions
of the EEG signal and using these segments to determine
thresholds for rejecting components. As stated in Chang et al.
(2019), ASR has become the standard benchmark for EEG
enhancement. The interested reader is referred to Mullen et al.
(2015) for more details on the ASR method.

• ADJUST: Automatic EEG artifact Detection based on the
Joint Use of Spatial and Temporal features (ADJUST)
is an automatic artifact removal method that relies on
“templates” of the effects of stereotyped artifacts (e.g., due
to eye movements, blinks, and heart beats) on independent
components. Components related to stereotyped artifacts are
then removed and the signal is reconstructed. It has been
reported that non-stereotyped artifacts, such as those due to
movement, are not accurately removed with ADJUST and
multiple methods are needed. More details about ADJUST can
be found in Mognon et al. (2011).

• Wavelet-ICA: Wavelet-enhanced independent component
analysis (ICA) relies on wavelet coefficient thresholding of
independent components to reject artifactual components.
The method has been shown to outperform conventional ICA

and to better preserve EEG spectral and phase coherence
properties (Castellanos and Makarov, 2006), especially for
low-density EEG configurations (Cassani et al., 2014).

• HAPPE: The Harvard Automated Processing Pipeline for
Electroencephalography (HAPPE) is a pipeline suitable for
low density EEG channels and limited data samples. It relies
on wICA and multiple artifact rejection algorithm (MARA)
to detect artifactual components for rejection. The interested
reader is referred to Gabard-Durnam et al. (2018) for complete
details on the HAPPE method.

• Algorithm Combinations: In addition to the combined
methods approach in HAPPE, the following additional
benchmark algorithmic combinations were also explored:
ASR + wICA and ASR + ADJUST. Moreover, the
proposed adaptive filter was also used in combination
with the benchmark algorithms to explore their combined
effectiveness. Henceforth, results represented as “Raw” assume
no enhancement, “AF” when only the adaptive filter has been
applied, and methods combined with AF will be preceded by
the prefix “AF_.”

2.5. Feature Extraction
Prior to feature extraction, EEG signals were first filtered with a
FIR band-pass filter in the range 1–45 Hz. The following feature
sets were extracted from the raw and enhanced signals:

2.5.1. Power Spectral Density
Power Spectral Density (PSD) features measure signal power
across different subband frequencies. In this study, nine
frequency bands were considered, namely: δ (1–4 Hz), θ (4–8
Hz), α (8–12 Hz), β (12–30 Hz), low γ (30–45 Hz), δ to β (1–
30 Hz), θ to β (4–30 Hz), low α (8–10 Hz), and high α (10–12
Hz). The relative power of each of these bands was calculated by
normalizing per-band values by the full-band power. A total of
90 PSD features were extracted. Numerous studies have reported
the usefulness of such features for mental workload assessment
(Liu et al., 2017; Craik et al., 2019; Zhang et al., 2019).

2.5.2. Phase and Magnitude Spectral Coherence
Phase and Magnitude Spectral Coherence (PMSC) features
are useful for measuring connectivity between cortical regions
as these techniques measure co-variance of the phase and
magnitude between two signals. The interested reader is referred
to Aoki et al. (1999) for more details on PMSC computation.
PMSC is computed for two pairs of electrodes, namely FP1-FP2
and P3-P4 for each 5 sub-bands (δ, θ , α, β , γ ). A total of 20
PMSC features were extracted. These features are motivated from
Zhang et al. (2014) and Zarjam et al. (2015) that have shown their
usefulness in mental workload assessment.

2.5.3. Amplitude Modulation Rate-of-Change
Amplitude Modulation (AM) rate-of-change features quantify
the rate-of-change of specific frequency sub-bands and
provides insight into cross-frequency magnitude-magnitude
coupling/interactions and reveals interactions between different
brain processes (Tort et al., 2010; Voytek et al., 2010; Seeber
et al., 2014), as well as long-range communication (Zanto et al.,
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2011; Clayton et al., 2015). The interested reader is referred
to Trambaiolli et al. (2011) and Fraga et al. (2013) for more
complete details on the measure. A total of 140 features were
extracted that provide robustness against movement artifacts, as
described in Albuquerque et al. (2018).

2.5.4. Phase and Magnitude Spectral Coherence of

Amplitude Modulation Features (PMSC-AM)
PMSC-AM extends the capacity of PMSC features to amplitude
modulations. These features were recently proposed for affective
state monitoring and showed useful for arousal and valence
prediction (Clerico et al., 2015, 2018). They are explored here for
the first time as correlates of mental workload. These features are
based on the modulated signals of each band which make a total
of fourteen signals per channels (see Clerico et al., 2018 for more
details). After splitting the signals into epochs, the magnitude
spectral coherence and phase coherence is then computed for
the FP1-FP2 and P3-P4 channel pairs only. A total of 56 features
were extracted.

2.6. Feature Selection and Ranking
Feature selection is a common step in classification tasks to
remove redundant (Peng et al., 2005) or irrelevant features
(Blum and Langley, 1997) and for dimensionality reduction (Fan
and Fan, 2008) to improve classification performance. In this
study, we rely on the so-called minimum Redundancy Maximum
Relevance (mRMR) filter method (Peng et al., 2005) which not
only finds the most relevant features for the task at hand, but
removes features with highmutual information, thus minimizing
redundancy. The algorithm has been shown to be extremely
useful for EEG-based affective state assessment (e.g., Cassani
et al., 2014; Clerico et al., 2018). In addition to feature selection,
we further rank the importance of the top-features using a
wrapper-based method. It is important to emphasize that feature
selection/ranking is not crucial here, given the number of features
explored. Nonetheless, we use it to obtain insights into the
neuronal patterns related to mental workload during activity and
how such patterns may be affected by movement artifacts.

2.7. Classification and Hyperparameter
Tuning
We are interested in exploring the effects of movement artifacts
and, consequently, EEG enhancement on mental workload
assessment. Here, we assume the binary problem of classifying
low vs. high mental workload levels. Two conventional classifiers
are explored, namely random forest (RF) (Qi, 2012) and support
vector machine (SVM). A repeated (10 times) 10-fold cross
validation testing setup is used.

For hyperparameter tuning, the cross-validation grid search
available in the scikit-learn library (Pedregosa et al., 2011) was
explored. This approach, however, yielded a high number of trees
(around 500) for the RF classifier, as compared to the amount
of available data (Oshiro et al., 2012). As an alternative, we
empirically fixed tree depth to 8 and stopped adding trees once
the evolution of the area under the curve—receiver operating
characteristics (AUC-ROC) became constant across out-of-bag
conditions. Next, a similar strategy was used to optimize tree

FIGURE 6 | Evolution of AUC-ROC for training and out-of-bag (oob) sets as a

function of number of trees.

FIGURE 7 | Evolution of AUC-ROC for training and out-of-bag (oob) sets as a

function of tree depth.

depth and we fixed the number of trees to the value found in
the previous analysis. In both cases, a stratified 5-fold cross-
validation procedure was used with all subjects to ensure reliable
generalization performance.

Figure 6 shows the evolution of AUC-ROC scores for the
training and out-of-bag (oob) sets as a function of number of
trees. When building each random tree in the forest, not all
features and samples of the dataset are used. Instead, a small
randomly-selected set called the bootstrap bag is used to build
a single tree; this bag is different for each tree. The oob set, thus,
corresponds to the remaining unused samples. The accuracy with
the oob set is shown to stabilize at around 100 trees. Moreover,
Figure 7 depicts accuracy as a function of tree depth. As can be
seen, for the out-of-bag set the accuracy plateaus at around a
depth of 10. Henceforth, these values are used in our experiments.

Figure 8 presents accuracy values obtained during a grid
search to find the optimal C and γ values of the support vector
classifier. It can be seen that the best accuracy is reached with
C = 310 and γ = 0.001 with a Radial Basis Function kernel;
these values are used henceforth.
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FIGURE 8 | Accuracy hyperparameter grid search for the SVM classifier.

3. RESULTS AND DISCUSSION

3.1. Classification Performance
3.1.1. Ablation Study
In order to estimate the impact of the adaptive filter on
EEG enhancement, mental workload classification accuracy
is reported with and without its use. Tables 1, 2 present
classification accuracy values for the RF and SVM classifiers,
respectively. While each column corresponds to a tested
benchmark enhancement algorithm, with or without (termed
“Base”) adaptive filtering, each row corresponds to a specific
feature set used for classification in the low and high physical
activity (PA) conditions. Row labeled “All” indicates fusion of
all features. Results reported are the average of a 10-fold cross-
validation test setup repeated ten times by shuffling the partitions
each time. Whenever the achieved results with the adaptive
filter were significantly different (based on a paired t-test) than
without, results are indicated with superscripts “†” and “‡” for
p ≤ 0.05 and p ≤ 0.01, respectively.

As can be seen from the Tables 1, 2, the adaptive filter
significantly improved accuracy for most tested configurations,
particularly for features derived from the amplitude modulation
analysis, as well as for the high physical activity conditions in
which movement artifacts are most pronounced. Overall, the RF
classifier consistently outperformed the SVM.

For PSD based features, the best results were achieved with a
combination of ASR and ADJUST methods (93.68%), followed
closely by HAPPE and AF (92.96%) for low physical activity

conditions and the ASR-wICA-AF combination for high PA
conditions. Similar accuracy values were achieved for the AM and
PMSC feature sets. The PMSC-AM features, on the other hand,
resulted in the lowest values, thus suggesting that they may not be
useful for mental workload assessment when used alone. Overall,
fusion of the different feature sets showed to result in the highest
accuracy for both RF and SVM classifiers, thus suggesting their
complementarity. The highest accuracy achieved was of 97.90%
with the HAPPE-AF combination for both the high and low PA
conditions. Such findings show that by combining all feature sets
with the proposed adaptive filtering and HAPPE enhancement
methods, the same mental workload measurement accuracy can
be achieved despite physical activity levels.

3.1.2. Effect of Number of Features
The results reported in Tables 1, 2 relied on all extracted features.
In order to investigate the impact of feature dimensionality on
overall accuracy, Figure 9 depicts the achieved accuracy as a
function of number of features used, in decreasing importance,
as ranked by mRMR. Here, the AF-HAPPE enhancement
combination is used with the RF classifier and the average
accuracy over a single 10-fold cross-validation setup is used. For
this comparison, default classifier parameters are used in order to
gauge the effectiveness of the features per se, and not the classifier.
As can be seen, sharp increases in accuracy are achieved with the
first 60 features and then slight increases occur after 100 and then
200 features are considered. A small gap is seen for both low and
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TABLE 1 | RF mental workload classification accuracy for different feature and enhancement algorithm configurations.

Raw ASR ADJUST HAPPE ASR_ADJUST ASR_wICA wICA

Random forest
Base AF Base AF Base AF Base AF Base AF Base AF Base AF

low PA 86.27 85.59‡ 88.60 89.71‡ 89.23 88.89 86.25 92.96‡ 93.68 90.37‡ 92.34 92.73 88.66 90.87‡
PSD

high PA 87.15 85.05‡ 89.55 89.89 89.92 89.76 89.57 90.91‡ 89.14 91.80‡ 94.13 94.61‡ 89.14 91.69‡

low PA 83.91 84.28† 84.78 86.48‡ 88.12 88.26 83.90 91.93‡ 91.94 87.28‡ 87.26 89.47‡ 84.83 87.88‡
AM

high PA 83.83 84.77‡ 86.84 89.21‡ 88.27 89.08‡ 87.33 89.36‡ 87.62 89.13‡ 90.91 92.60‡ 85.59 89.27‡

low PA 84.23 85.76‡ 82.67 82.66 90.05 92.26‡ 87.85 95.15‡ 89.38 87.08‡ 84.33 82.44‡ 84.66 86.03‡
PMSC

high PA 82.07 82.78‡ 80.74 79.95‡ 86.79 88.08‡ 89.80 90.51‡ 89.90 84.84‡ 82.44 80.46‡ 81.31 83.81‡

low PA 65.79 70.81‡ 67.89 68.32 66.62 71.92‡ 73.84 78.34‡ 67.77 64.99‡ 70.18 67.48‡ 65.56 70.19‡
PMSC-AM

high PA 67.90 74.10‡ 67.57 67.66 69.59 70.56‡ 71.46 75.71‡ 68.46 64.78‡ 67.75 67.05† 68.59 72.09‡

low PA 89.17 95.03‡ 90.23 94.32‡ 92.55 95.65‡ 93.24 97.90‡ 96.21 93.56‡ 93.61 95.86‡ 90.49 96.22‡
All

high PA 88.89 91.20‡ 90.77 93.39‡ 94.22 95.36‡ 94.54 97.89‡ 93.36 93.54 94.95 95.19 90.20 93.97‡

TABLE 2 | SVM mental workload classification accuracy for different feature and enhancement algorithm configurations.

Raw ASR ADJUST HAPPE ASR_ADJUST ASR_wICA wICA

SVM
Base AF Base AF Base AF Base AF Base AF Base AF Base AF

low PA 59.31 59.35 61.72 60.16‡ 64.08 67.16‡ 67.98 73.57‡ 70.72 71.37 66.66 63.13‡ 59.99 59.82
PSD

high PA 64.22 66.56‡ 65.78 67.81‡ 68.40 70.00‡ 67.56 73.58‡ 67.61 71.91‡ 69.29 70.96‡ 64.79 70.07‡

low PA 56.75 59.03‡ 58.37 61.05‡ 61.63 69.18‡ 62.69 73.39‡ 69.48 68.65† 60.74 62.74‡ 56.15 59.63‡
AM

high PA 62.49 65.35‡ 66.67 64.64‡ 68.88 69.66‡ 66.16 70.94‡ 68.45 70.36‡ 68.80 66.77‡ 63.27 67.22‡

low PA 60.25 72.25‡ 60.70 69.61‡ 61.59 68.45‡ 63.94 75.11‡ 70.45 68.22‡ 61.06 69.71‡ 61.07 73.27‡
PMSC

high PA 60.43 71.86‡ 65.79 68.48‡ 67.97 69.62‡ 70.80 72.98‡ 72.09 67.64‡ 66.35 69.04‡ 60.05 71.34‡

low PA 56.05 62.53‡ 56.57 58.89‡ 56.03 62.04‡ 59.83 65.23‡ 59.37 58.68† 56.60 58.04‡ 55.36 59.79‡
PMSC-AM

high PA 59.35 65.37‡ 59.63 60.29 61.36 61.69 59.11 63.43‡ 58.49 58.61 59.96 62.62‡ 60.10 64.21‡

low PA 64.94 78.34‡ 66.59 73.54‡ 73.28 80.25‡ 78.88 87.49‡ 76.60 79.58‡ 68.22 75.37‡ 66.87 77.39‡
All

high PA 71.37 81.09‡ 73.31 76.26‡ 78.33 81.03‡ 79.38 86.93‡ 78.94 77.88‡ 74.42 77.72‡ 71.22 81.86‡

high physical activity conditions once all 306 features are used. If
feature dimensionality is of concern, the achieved results and the
small gap between low and high PA conditions suggest that 236
features can be a good compromise (94 and 90%, low and high
PA, respectively), followed by 111 features (91 and 87%, low and
high PA, respectively). For comparison, with the top-60 features,
accuracy of 84 and 88% are achieved, respectively.

3.2. Top-Ranking Features
To obtain insights from top-selected features, we performed
an in-depth analysis of the top-60 features selected from the
combined “All” feature set in the low and high physical activity
conditions using both the raw data and the top-performing
AF_HAPPE enhanced data; Table 3 lists these features.

As can be seen, for all conditions tested, modulation spectral
features resulted in the majority of the top 60 features.
For example, for the high PA conditions without and with
AF_HAPPE processing, they corresponded to 50 and 70% of
the top features, respectively. This corroborates findings from
Albuquerque et al. (2018, 2019) and Clerico et al. (2018) that
show the importance of such features for mental workload
and affective state assessment, as well as their robustness to
movement artifacts.

FIGURE 9 | Accuracy vs. number of features for a RF classifier and a

combined AF-HAPPE enhancement pipeline.

Coherence based measures, in turn, were the second top-
performing features and appeared mostly in high PA conditions.
They represented ∼17 and 18% of the top features for the
raw and enhanced conditions, respectively. Coherence measures
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TABLE 3 | Top-60 features for different physical activity (PA) and signal processing

conditions.

Raw AF_HAPPE

Low PA High PA Low PA High PA

β-mα-P4 msc-β-mθ-FP1-

FP2

γ -mγ -FP1-FP2 phc-β-mδ-FP1-

FP2

α-mδ-AF8 msc-δ-P3-P4 δ-P3-P4 γ -mδ-P4

tab-FP1 γ -mδ-T10 γ -mβ-P4 β-mδ-T9

α-AF8 α-mθ-T10 α1-T9 γ -mθ-AF8

θ-mθ-FP1 α-mδ-FP1 β-mα-AF7 β-mθ-AF8

γ -mδ-P4 γ -mθ-FP2 θ-mθ-T9 β-mθ-P4

γ -mθ-T10 β-mδ-AF7 γ -mδ-P4 γ -mδ-AF8

θ-mθ-T9 β-mθ-P4 dtab-T10 θ-mθ-P3-P4

θ-mθ-FP1-FP2 β-mδ-FP1-FP2 β-mθ-AF7 tab-FP2

θ-mθ-T10 β-mδ-T10 θ-P3-P4 γ -mα-FP1-FP2

α1-FP1-FP2 α-mθ-AF8 δ-mδ-FP1 α-T9

α-mθ-P3 α-mδ-P3 γ -mθ-FP2 γ -mδ-FP2

γ -mθ-FP2 msc-α-mδ-FP1-

FP2

γ -mδ-P3 β-T9

γ -mβ-FP2 α-FP2 tab-T9 msc-γ -mδ-FP1-

FP2

θ-mδ-FP1-FP β-mα-P4 β-mδ-P3 β-mδ-FP2

α-mθ-P3-P4 α-AF8 γ -mδ-FP2 α2-P4

γ -mα-P3 θ-mδ-FP1-FP2 dtab-T9 dtab-P3

dtab-T9 α2-T10 θ-mθ-FP1-FP2 γ -mθ-T10

β-mβ-P3-P4 θ-FP2 γ -mβ-AF8 β-mθ-FP2

tab-T9 tab-FP2 γ -mδ-FP1 γ -P3

δ-mδ-AF7 α2-T9 β-P3 β-mθ-T9

phc-δ-mδ-P3-P4 β-mθ-P3 γ -mγ -FP2 γ -mθ-FP2

γ -mβ-P4 γ -mα-P3-P4 θ-mδ-FP1 γ -mβ-P3

β-mβ-T9 γ -mα-FP2 phc-β-mθ-P3-P4 γ -FP1

β-mβ-P3 θ-T10 γ -mγ -P3 δ-AF8

dtab-AF7 β-mδ-P3-P4 θ-mθ-P3 β-mα-FP1-FP2

γ -mα-FP2 dtab-T9 γ -mγ -FP1 γ -mθ-FP1-FP2

θ-T10 β-T10 β-mθ-FP1 γ -mθ-P4

γ -mα-T9 tab-T10 γ -mγ -P3-P4 δ-mδ-FP1

θ-mθ-AF8 γ -T9 γ -mβ-FP1-FP2 β-mα-AF7

γ -mθ-P3 θ-mθ-P3 β-mα-P3 θ-mδ-P4

γ -T10 dtab-FP1 γ -mθ-FP1 msc-β-mθ-FP1-

FP2

δ-AF7 β-P3 α2-T9 δ-mδ-AF8

δ-mδ-P3-P4 msc-γ -FP1-FP2 β-mδ-P4 tab-FP1-FP2

α-mθ-T10 msc-α-mθ-FP1-

FP2

δ-mδ-P4 β-AF8

β-mδ-P3-P4 α-mθ-FP2 δ-P4 β-mθ-P3

γ -mθ-P3-P4 α1-P3-P4 phc-θ-P3-P4 β-P3-P4

β-mδ-P3 γ -mδ-P3-P4 γ -mβ-FP1 γ -mδ-T9

α-T10 δ-mδ-P4 γ -mα-FP1-FP2 α1-T10

α2-P3-P4 γ -P3 θ-mδ-P3 δ-mδ-FP2

θ-mδ-P4 α1-T9 β-mα-P4 msc-β-mβ-FP1-

FP2

β-mθ-P3-P4 β-mθ-P3-P4 β-mθ-P3-P4 β-mδ-P4

θ-mδ-T10 α-mδ-FP2 β-mβ-P4 α-T10

msc-β-mδ-P3-P4 γ -T10 γ -mθ-FP1-FP2 γ -mγ -T9

(Continued)

TABLE 3 | Continued

Raw AF_HAPPE

Low PA High PA Low PA High PA

phc-β-P3-P4 β-P3-P4 β-mβ-FP2 msc-δ-P3-P4

α-mδ-P4 msc-β-mδ-FP1-

FP2

γ -mα-FP1 msc-β-mα-FP1-

FP2

γ -FP1-FP2 δ-FP1-FP2 δ-mδ-P3-P4 msc-γ -mθ-FP1-

FP2

θ-P3-P4 msc-γ -mθ-FP1-

FP2

γ -mβ-FP2 γ -mα-P3-P4

phc-δ-P3-P4 β-P4 δ-FP1-FP2 γ -mα-T9

α1-P3-P4 tab-P4 γ -mβ-P3-P4 δ-mδ-P4

β-mδ-T9 δ-T9 β-mβ-FP1-FP2 msc-δ-FP1-FP2

α1-T9 dtab-T10 γ -T10 β-mδ-AF7

γ -mδ-P3-P4 α-mδ-T10 γ -mγ -T10 β-mβ-P3-P4

θ-P4 msc-β-FP1-FP2 γ -mβ-T10 γ -mθ-AF7

α2-P4 msc-θ-FP1-FP2 γ -mα-P3-P4 γ -mθ-P3-P4

dtab-P3 dtab-P4 β-mδ-P3-P4 γ -mβ-P3-P4

θ-FP2 δ-P3-P4 θ-mδ-P3-P4 msc-θ-FP1-FP2

β-FP2 tab-T9 α-mδ-T9 β-mθ-AF7

α2-T9 msc-δ-FP1-FP2 dtab-FP1 msc-α-FP1-FP2

α-P3 β-FP2 γ -mα-T10 phc-γ -FP1-FP2

Feature names are self explanatory and follow the feature-electrode notation; “tab”

corresponds to 4–30 Hz spectral subband power; “dtab” to 1–30 Hz; “phc” to phase

coherence; and “msc” to magnitude square coherence.

have been linked movement and visual-motion discrimination
and are indicative of the additional mental resources involved
during physical activity (Händel and Haarmeier, 2009; Cheron
et al., 2016). The important coherence features were mostly
extracted from the pre-frontal regions, which have been
linked to mental workload and attention (Mandrick et al.,
2013), while a few were extracted from parietal regions, thus
suggesting some contribution of balance control also involved
(Hülsdünker et al., 2015).

Regarding brain hemispheres, features from the right regions
were selected slightly more often than the left hemisphere,
particularly in high PA conditions. This corroborates previous
work (Perennou et al., 1999) that has shown the existence
of a right hemispheric dominance for postural control. Inter-
hemispheric signals, in turn, corresponded to roughly 33% of
the top features for all PA conditions. Within the top features,
inter-hemispheric parietal features typically appeared in low
PA conditions, whereas inter-hemispheric pre-frontal features
appeared during high PA conditions. This suggests a shift in
visuo-motor (Iacoboni and Zaidel, 2004) and attention (Vossel
et al., 2016) aspects during low PA, to more complex motor
behaviors and sensorimotor integration aspects with high PA
(Geschwind and Iacoboni, 1999). Overall, in the enhancement
scenario, the parietal regions were responsible for the majority
of the top features, followed closely by the pre-frontal cortex,
for both low and high PA conditions. These results are in line
with the classical mental workload literature with non-ambulant
users (Aoki et al., 1999; Holm et al., 2009; Borghini et al., 2012;
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Mandrick et al., 2013; Käthner et al., 2014; Al-Shargie, 2019),
thus further showing the promise of the proposed adaptive
filtering scheme.

Lastly, regarding EEG subband frequencies, as expected,
adaptive filtering combined with HAPPE reduced the importance
of features extracted from θ and α bands, as these have the
highest overlap with the accelerometry data. It did, on the other
hand, boost the importance of features extracted from the β and
γ bands. It is well-known that γ is highly sensitive to muscle
activity (Muthukumaraswamy, 2013) and HAPPE is known to
remove such artifacts. With the proposed enhancement scheme,
γ features (and γ − mδ) remained consistent between low and
high PA conditions and covered aspects related to sensory motor
integration (Aoki et al., 1999; Sauseng et al., 2015), attention
(Sammer et al., 2007; Wang et al., 2017), and balance control
(Gwin et al., 2011; Sipp et al., 2013). The importance of the
β band, in turn, has been observed in other studies during
intense physical exercises (Rahman et al., 2019), anticipation in
a decision making game (Cohen et al., 2009) and increment of
cognitive control and attention (Kakkos et al., 2019).

4. CONCLUSIONS

This paper has proposed the use of an adaptive filtering scheme to
remove movement artifacts from EEG signals for robust mental
workload assessment. Experimental results have shown that the
proposed adaptive filtering scheme is best combined withHAPPE
and can result in 97% mental workload prediction accuracy for
both low and high physical activity conditions. Moreover, an
in-depth analysis of the top-selected features have shown the

importance of modulation spectral features for the task at hand,
as well as the potential of the proposed enhancement solution at
maintaining important discriminant information from the EEG

for mental workload measurement, in particular those captured
by γ frequency band-based features.
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As a physiological process and high-level cognitive behavior, emotion is an important

subarea in neuroscience research. Emotion recognition across subjects based on brain

signals has attracted much attention. Due to individual differences across subjects

and the low signal-to-noise ratio of EEG signals, the performance of conventional

emotion recognition methods is relatively poor. In this paper, we propose a self-organized

graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike

the previous studies based on pre-constructed and fixed graph structure, the graph

structure of SOGNN are dynamically constructed by self-organized module for each

signal. To evaluate the cross-subject EEG emotion recognition performance of our model,

leave-one-subject-out experiments are conducted on two public emotion recognition

datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion

recognition performance. Moreover, we investigated the performance variances of the

models with different graph construction techniques or features in different frequency

bands. Furthermore, we visualized the graph structure learned by the proposed model

and found that part of the structure coincided with previous neuroscience research. The

experiments demonstrated the effectiveness of the proposed model for cross-subject

EEG emotion recognition.

Keywords: SEED dataset, graph neural network, cross-subject, emotion recognition, graph construction

1. INTRODUCTION

Human emotion is a complex psychophysiological process that plays an important role in daily
communications. Emotion recognition is a significant and fundamental research topic in affective
computing and neuroscience (Cowie et al., 2001). In general, human emotions can be recognized
using data from different modalities, such as facial expression images, body language, textual
information and physiological signals such as electromyogram (EMG), electrocardiogram (ECG),
and electroencephalogram (EEG) (Busso et al., 2004; Shu et al., 2018). EEG is a widely used
technique in neuroscience research that is able to directly capture brain signals that could reflect
neural activities in real time. Therefore, EEG-based emotion recognition has received considerable
attention in the areas of affective computing and neuroscience (Coan and Allen, 2004; Lin et al.,
2010; Alarcao and Fonseca, 2017; Li et al., 2019).

In order to facilitate EEG-based emotion recognition research, the SJTU emotion EEG dataset
(SEED) was released (Duan et al., 2013). In addition, its evolutionary dataset termed SEED-IV
was also available (Zheng et al., 2018). Before the experiments on SEED and SEED-IV datasets, a
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series of film clips with different emotional tendencies were
chosen as stimulation materials. In the SEED dataset, happy,
sad and neutral emotions were included, while the SEED-IV
dataset consisted of happy, sad, fear and neutral emotions.
During the experiments, each participant watched the film clips
while his/her EEG signals were recorded with a 62-channel
ESI NeuroScan System. Consequently, the recorded EEG signals
and the corresponding emotion labels of film clips can be
used to train an emotion recognition model. If the trained
emotion recognition model is effective, we will be able to
decode the emotions of a new participant when he/she watched
a film. Therefore, based on the SEED and SEED-IV datasets,
different emotion recognition methods can be evaluated on
common benchmarks.

In the past few years, many feature extraction and machine
learning approaches have been proposed for EEG-based emotion
recognition. In an original research on SEED dataset, the
features of the energy spectrum (ES), differential entropy
(DE), rational asymmetry (RASM), and differential asymmetry
(DASM) were proven to be effective features for EEG-based
emotion recognition (Duan et al., 2013). To explore different
EEG features for cross-subject emotion recognition, 18 kinds
of linear and non-linear EEG features were evaluated (Li et al.,
2018b). Moreover, a machine learning technique was used
to investigate stable EEG patterns for emotion recognition
and achieved high performance on SEED and DEAP emotion
recognition datasets (Zheng et al., 2017). To eliminate the
individual differences in EEG signals, a deep adaption network
(DAN) was proposed and applied on the SEED and SEED-
IV datasets to conduct cross-subject emotion recognition (Li
et al., 2018a). A novel group sparse canonical correlation analysis
(GSCCA) method was proposed for simultaneous EEG channel
selection and emotion recognition (Zheng, 2016).

Recently, deep learning and graph representation
methodology were proven to be powerful tools to model
structured data and achieved significant performance in many
applications (Linial et al., 1995; Even, 2011). A deep belief
network (DBN) was applied to process differential entropy
features extracted from multichannel EEG signals (Zheng et al.,
2014). To investigate critical frequency bands and channels
for EEG-based emotion recognition, a deep neural network
was proposed (Zheng and Lu, 2015). Long-short term memory
(LSTM) was used to learn features from EEG signals, and
these features were discriminative for emotion recognition
on the DEAP dataset (Alhagry et al., 2017). EEG signals were
recorded by EEG caps placed on the scalp, and these data
can be considered to be a typical kind of structured data
(Micheloyannis et al., 2006). Accordingly, graph representation
approaches also achieved impressive performance in handling
EEG signals in emotion recognition experiments. For example,
a dynamic graph convolutional neural network (DGCNN) was
proposed for emotion recognition, and its graph structure was
determined by a dynamic adjacency matrix that reflected the
intrinsic relationships between different EEG electrodes (Song
et al., 2019b). In order to explore the deeper-level information of
graph-structured EEG data, a graph convolutional broad network
(GCB-net) was proposed and achieved high performance on the

SEED and DREAMER datasets (Zhang et al., 2019). To capture
both local and global interchannel relations, a regularized
graph neural network (RGNN) was proposed and achieved
state-of-the-art performance on the SEED and SEED-IV datasets
(Zhong et al., 2020).

In this paper, we proposed a novel model for cross-subject
EEG emotion recognition and evaluated the model on two
common datasets. The main contributions of this paper can be
summarized as follows:

1. A novel cross-subject emotion recognition model, termed
the self-organized graph neural network (SOGNN),
was proposed.

2. The SOGNN is able to achieve state-of-the-art emotion
recognition performance with cross-subject accuracy
of 86.81% on the SEED dataset and 75.27% on the
SEED-IV dataset.

3. Interchannel connections and time-frequency features
are aggregated by the self-organized graph construction
module, graph convolution and hierarchical structure
of the SOGNN to improve the cross-subject emotion
recognition performance.

The remainder of this paper is organized as follows. The EEG
emotion recognition datasets (SEED and SEED-IV) and the
proposed SOGNN model are presented in section 2. In section
3, numerical emotion recognition experiments are conducted.
In addition, the performance of the current methods and
the proposed methods are presented and compared. Some
discussions and analysis of the proposed model are presented in
section 4. The conclusions of this paper are given in section 5.

2. MATERIALS AND METHODS

2.1. EEG Emotion Recognition Datasets
In order to facilitate EEG-based emotion recognition research,
the SJTU emotion EEG dataset (SEED) was released on http://
bcmi.sjtu.edu.cn/~seed/ (Duan et al., 2013). In addition, its
evolutionary dataset termed SEED-IV was also available (Zheng
et al., 2018). Before the experiments on the SEED and SEED-
IV datasets, a series of film clips with different emotional
tendencies were chosen as stimulation materials. The SEED
dataset includes happy, sad and neutral film clips while the
SEED-IV dataset consists of happy, sad, fear and neutral film
clips. During the experiments, each participant watched film clips
while his/her EEG signals were recorded with a 62-channel ESI
NeuroScan System.

In the SEED and SEED-IV datasets, 15 subjects (7 males
and 8 females) participated in the experiments. During the
experiments, 62-channel EEG signals of each subject were
recorded when he/she was watching film clips with different
emotion labels. There are 675 EEG samples (45 samples * 15
subjects) in SEED datasets. For each subject, there are 15 samples
of happy, 15 samples of sad, and 15 samples of neutral emotion.
There are 1,080 samples (72 samples * 15 subjects) in SEED-IV
dataset. For each subject, there are 4 different kinds of emotion
including happy, sad, fear and neutral emotion that the number
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of each emotion class is 18. So the number of samples per
subject/class are balanced.

The signals were synchronously recorded at a 1,000 Hz
sampling rate. Bandpass frequency filters of 0–75 and 1–75 Hz
were applied to filter the unrelated artifacts for the SEED and
SEED-IV datasets, respectively. To accelerate the computation,
the signals were downsampled with sampling frequency of 200
Hz. In addition, the dataset provider applied the linear dynamic
system approach to filter out noise and artifacts that were
unrelated to the EEG features (Shi and Lu, 2010; Zheng et al.,
2018). In the two datasets, the EEG features of the differential
entropy (DE), power spectral density (PSD), asymmetry(ASM),
differential asymmetry (DASM), differential caudality (DCAU),
and radial asymmetry (RASM) were provided. The DE feature
and PSD feature extract contents about the frequency and
energy spectrum, respectively; the DASM feature and RASM
feature obtain asymmetrical information of EEG channels, and
DCAU feature computes the differences between channel pairs.
Compared with the other features, the DE feature is more
discriminative for emotion recognition according to the previous
research (Duan et al., 2013; Song et al., 2019b; Zhong et al., 2020).

Therefore, we used DE features as the input data for our
model. The DE features are frequency domain features that are
calculated by a 512-point short-time Fourier transform with
a non-overlapped Hanning window of 1 s and averaged in 5
frequency bands, e.g., δ band (1–3 Hz), θ band (4–7 Hz), α band
(8–13 Hz), β band (14–30 Hz), and γ band (31–50 Hz). As a
result, the output DE feature can be represented as a 5×T matrix
in which T denotes the time window which is dependent on the
stimulated film clip. The time window T of the SEED dataset
ranges from 185 to 265 while the window of SEED-IV ranges
from 12 to 64. For normalization, the features with a short time
window will be zero-padded to a length of 265 for SEED dataset
and a length of 64 for the SEED-IV dataset.

Based on the benchmark SEED and SEED IV datasets,
different EEG emotion recognition models can be evaluated and
compared with each other.

2.2. Self-Organized Graph Neural Network
Generally, EEG signal can be considered to be a typical kind
of structured data and defined on a graph (Micheloyannis
et al., 2006). Graph representation techniques and graph neural
networks were proven to be effective in processing brain signals
(Petrosian et al., 2000; de Haan et al., 2009; Varatharajah et al.,
2017; Zhang et al., 2020). Here, the EEG signal is defined on a
graph model as follows:

G = (V , E ,A)

V = {vi| i = 1, . . . ,N}

E =
{

eij
∣

∣ vi, vj ∈ V
}

A = {aij}

(1)

where V denotes the nodes (a total of N nodes) in graph G, E are
the connected edges between different nodes, each node denotes
one EEG electrode, A ∈ R

N×N is the adjacency matrix, and
its element aij denotes the adjacent connection weight between
nodes vi and vj. Consequently, the structure of a graph is
determined by its adjacency matrix.

As shown in Figure 1, the brain graph structure is predefined
by a distance function f between different channels in many
previous studies (Micheloyannis et al., 2006; Ktena et al., 2018;
Wang et al., 2018; Zhang et al., 2019; Zhong et al., 2020).
However, the predefined and fixed graph structures could not
properly model the dynamic brain signals of different subjects in
different emotion states.

Here, we propose a self-organized graph construction module
for modeling EEG emotion features. The proposed self-organized
graph is determined by the input brain signals rather than based
on a predefined graph structure as in many previous researches.
The adjacent weight aij of the self-organized graph is defined by
function f (vi, vj) as

aij = f (vi, vj) =
exp(θ(viW)θ(vjW)T)

∑N
i=1 exp(θ(viW)θ(vjW)T)

(2)

where v ∈ R
1×F is a feature vector of one node (i.e., EEG

electrode) in V ∈ R
N×F , there are a total of N nodes

(EEG electrodes), W ∈ R
F×L and θ are the weight and

tanh activation function of a linear layer, respectively; and
the exponential function is part of the softmax activation
function for normalization and obtains a positive and bounded
adjacent weight. The linear layer work as a bottleneck to reduce
computational cost.

To clarify the details of the self-organized graph construction
module, we also presented its matrix operation form in Figure 2.
The self-organized adjacent matrix can be calculated as follows:

G = Tanh(VW) (3)

A = Softmax(GGT) (4)

where V ∈ R
N×F is the input EEG features whose row vectors

are node features of the graph to build, the W ∈ R
F×L

denote the weight of a linear layer, we adopted tanh activation
function, G ∈ R

N×L is the output of the linear layer, softmax
activation function is applied to obtain a positive and bounded
adjacent matrix A. With the self-organized graph construction
module, the graph structure, is dynamically constructed by the
corresponding input features.

Generally, the computational costs of sparse graphs are much
lower than those of dense graphs. To construct a sparse graph, we
adopt a top-k technique in which only the k largest weights of the
adjacent matrix will be maintained while the small connection
weights will be set to zero. The top-k operation is applied
as follow







for i = 1, 2, · · · ,N

index = argtopk(A[i, :])

A[ i, index ] = 0

(5)

where argtopk(·) is a function to obtain the index of the top-k

largest values of each vectorA[i, :] in adjacentmatrixA, and index
denotes the index of those values that do not belong to the top-
k largest values in A[i, :]. As a result, only the k largest values in
each row vector of adjacent matrix A are maintained while the
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FIGURE 1 | General brain graph construction function.

FIGURE 2 | Self-organized graph construction module.

remaining values will be set to zero. Actually, the top-k strategy
can be considered as a modified max-pooling layer. Therefore,
the parameters of the network can be updated as the network with
max-pooling layers with backpropagation.

With the self-organized graph construction module, the graph
structure is dynamically constructed by the corresponding input
EEG features. Then, the newly built graphs can be processed
by the graph convolutional layers to extract the local/global
connection features for emotion recognition.

Based on the self-organized graph construction module, we
propose SOGNN as shown in Figure 3. The SOGNN is composed
of three conv-pool blocks, three self-organized graph layers,
three graph convolution layers, one fully-connected layer and an
output layer.

For the proposed SOGNN model, its input EEG feature

is sized Electrodes × Bands × TimeFrames. To simplify the

illustration of the model, we take the SEED dataset with a 62 ×

5× 265 input feature as an example in Figure 3. ∗Maps indicates

the number of output feature maps of each layer. In each conv-

pool block, standard convolution and max-pooling layers were
applied to extract features for each EEG electrode independently.
Therefore, the features of different EEG electrodes will not mix
with each other so that the corresponding graph structure can be
maintained. In the conv-pool 1 block, the 5 × 5 convolutional
kernel extracts features in a window of 5 frequency bands and 5
time frames. Therefore, the output features are sized 62×1×261
in the SEED dataset. A 1 × 4 max-pooling layer is applied to
downsample the features of the SEED dataset. Then the output

feature map of conv-pool 1 block is sized 62×1×65 for the input
feature of SEED. For the SEED-IV dataset, 1 × 2 max-pooling
layers are used. A convolutional kernel 1×5 was applied in conv-
pool 2 and 3. There are 32, 64, and 128 convolutional kernels
in conv-pool 1-3 blocks that will obtain 32, 64, and 128 output
feature maps, respectively.

The output of each conv-pool block was reshaped as a
matrix with the shape of electrodes×features and fed into self-
organized graph layers (SO-graphs 1-3). In the SO-graph layer,
the feature of each EEG electrode remains unchanged, and
only the adjacent weights between different EEG electrodes are
calculated according to (2)–(5). For each SO-graph layer, there
are 64 linear units, 32 output units and top-10 adjacent weights.
With different input features, the graph features of the SO-graph
1-3 layers are different. Next, we applied graph convolution layers
to process these graph features.

According to previous research (Bruna et al., 2013; Song et al.,
2019b), spectral graph convolution multiplied a signal x ∈ R

n

with a graph convolution kernel 2 by a graph convolution
operator ∗G as,

2∗Gx = 2(L)x = 2(U3UT)x = U2(3)UTx (6)

where graph Fourier basis U ∈ R
N×N is the matrix of

eigenvectors for the normalized graph Laplacian L = In −

D−1/2AD−1/2 = ULUT ∈ R
N×N (In is an identity matrix,

D ∈ R
N×N is the diagonal degree matrix with Dii =

∑

j Aij,

A ∈ R
N×N is the adjacency matrix mentioned in Equation
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FIGURE 3 | Self-organized graph neural network for EEG emotion prediction.

1); 3 ∈ R
N×N is the diagonal matrix of the eigenvalues

of L, and filter 2(3) is also a diagonal matrix. According to
this definition, a graph signal x is filtered by a kernel 2 with
multiplication between 2 and graph Fourier transform UTx
(Shuman et al., 2013).

The outputs of the graph convolution layers were flattened
and concatenated as a feature vector. This feature vector will
be fed into fully-connected (FC) layer with a softmax activation
function to predict emotional states. The proposed SOGNN
model can be trained by minimizing the cross-entropy error of
its prediction and ground truth. As a result, the loss function is
defined as

L = −
∑

i∈�

∑

c

yic log(pic)+ (1− yic) log(1− pic) (7)

where pic is the output value of the c-th output unit of the
SOGNN model with the input of the i-th training sample, pic
can be considered as the model’s predicted probability of the
c-th class, yic is the ground truth, and � denotes all of the
training samples.

3. RESULTS

In this section, a series of experiments will be conducted to
evaluate the proposed model. In addition, the corresponding
experimental results of our method will be presented and
compared with the results of the other methods. The model
implementation will be publicly available at https://github.com/

tailofcat/SOGNN. In our experiments, the hardware and software
configuration of our system is a platform with an Nvidia Titan
Xp, Ubuntu 16.04, PyTorch 1.5.1, and PyTorch-geometric 1.5.0
(Fey and Lenssen, 2019).

In order to investigate the cross-subject emotion recognition
performance, a leave-one-subject-out (LOSO) cross-validation
strategy was applied in the experiments. In each run of the LOSO
experiment, the DE features of 14 subjects in SEED/SEED-IV
are used as the training dataset while the data of the remaining
subject is the validation dataset. Regarding normalization, the
features of each subject will be normalized by subtracting its
mean and then dividing by its standard deviation.

In order to train the proposed SOGNN model, the Adam
optimizer is applied to minimize the model’s loss. The proposed
model was trained by the Adam optimizer with a learning
rate of 0.00001, a weight-decay rate of 0.0001 and mini-
batch size of 16. A drop-out operation with a dropout rate of
0.1 was applied in the training procedure to randomly block
the output units of the internal layers. During the training
procedure, we monitored the model’s mean area under the
curve (AUC) from the receiver operating characteristic curve
for all emotion classes. Once the training averaged AUC score
reached 0.99, the training procedure was stopped. Finally,
the trained SOGNN model could be applied for emotion
prediction. Once the proposed SOGNN model was trained, it
could be applied to the validation dataset. For the SEED/SEED-
IV database with 15 subjects, the LOSO experiment will be
conducted in 15 runs. Then, the average validation accuracy
can be considered as the model’s performance, which can
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TABLE 1 | Leave-one-subject-out emotion recognition accuracy (mean/standard deviation) on SEED and SEED-IV.

SEED SEED-IV

Model Delta band Theta band Alpha band Beta band Gamma band All bands All bands

SVM (Zhong et al., 2020) 43.06/8.27 40.07/6.50 43.97/10.89 48.64/10.29 51.59/11.83 56.73/16.29 37.99/12.52

TCA (Pan et al., 2011) 44.10/8.22 41.26/9.21 42.93/14.33 43.93/10.06 48.43/9.73 63.64/14.88 56.56/13.77

SA (Fernando et al., 2013) 54.23/7.47 50.60/8.31 55.06/10.60 56.72/10.78 64.47/14.96 69.00/10.89 64.44/9.46

T-SVM (Collobert et al., 2006) - - - - - 72.53/14.00 -

TPT (Sangineto et al., 2014) - - - - - 76.31/15.89 -

DGCNN (Song et al., 2019b) 49.79/10.94 46.36/12.06 48.29/12.28 56.15/14.01 54.87/17.53 79.95/9.02 52.82/9.23

A-LSTM (Song et al., 2019a) - - - - - - 55.03/9.28

DAN (Li et al., 2018a) - - - - - 83.81/8.56 58.87/8.13

BiDANN-S (Li et al., 2018c) 63.01/7.49 63.22/7.52 63.50/9.50 73.59/9.12 73.72/8.67 84.14/6.87 65.59/10.39

BiHDM (Li et al., 2020) - - - - - 85.40/7.53 69.03/8.66

RGNN (Zhong et al., 2020) 64.88/6.87 60.69/5.79 60.84/7.57 74.96/8.94 77.50/8.10 85.30/6.72 73.84/8.02

SOGNN (Ours) 70.37/7.68 76.00/6.92 66.22/11.52 72.54/8.97 71.70/8.03 86.81/5.79 75.27/8.19

FIGURE 4 | Emotion recognition performance of SOGNN with DE, PSD, ASM,

DASM, DCAU, and RASM features.

be compared with the results of other EEG-based emotion
recognition models.

As shown in Table 1, the experimental results of the proposed
SOGNN and many other methods on the SEED and SEED-IV
databases are presented. The bold values indicated the largest
values in all methods. In the experiments of the model for one-
band features, we changed the input features from 5 bands to
1 band, changed the input size of the model to fit the inputs,
and retrained the model for evaluation of sub-band features. The
proposed SOGNN with delta or theta band features achieved
higher accuracies than the other methods with the same features.
Regarding the features of the other bands, the proposed SOGNN
achieved relatively high performance which was quite close to the
best performing methods.

With the features of all bands, the SOGNN achieved averaged
accuracy of 86.81% on the SEED dataset and 75.27% on the
SEED-IV dataset, which are higher than the performances of
the state-of-the-art methods, i. e. the BiHDM (Li et al., 2020)
and RGNN (Zhong et al., 2020) models. The proposed SOGNN

FIGURE 5 | Performance changes of SOGNN as the variance of top-k sparse

graph varies.

achieved a macro-F1 score of 0.8669 and an AUC score of
0.9685 on the SEED dataset. The F1 scores of happy, sad and
neutral emotion class are 0.8556, 0.8577, and 0.8874. For SEED-
IV dataset, it achieved a macro-F1 score of 0.7547 and an AUC
score of 0.9162. The F1 scores of happy, sad, fear and neutral class
are 0.7517, 0.7419, 0.7441, and 0.7810. As a typical kind of neural
network, the performance of the SOGNN may be different when
the model is randomly initialized by different random seeds.
According to our experiments, the averaged accuracy on SEED
dataset is from 0.83 to 0.88 while the averaged accuracy on SEED-
IV dataset is between 0.70 and 0.78. In Table 1, we presented
the medium results of the two datasets. The performance of the
proposed SOGNN demonstrated its effectiveness in cross-subject
emotion recognition.

Many previous graph models like DGCNN and BIDANN
were based on predefined graph structure according to prior
knowledge of EEG emotion signals. However, the predefined and
fixed graph structures could not properly model the dynamic
brain signals of different subjects in different emotion states. The
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strength of the proposed SOGNN is that it could automatically
extract graph structure from EEG features. The graph structure of
SOGNN is dynamic and independent for different EEG features.
As a result, the proposed SOGNN obtained more accurate and
robust emotion recognition performance. In the next section, we
will discuss and analyze the proposed model.

4. DISCUSSION

In this section, we analyze the proposed method and its internal
properties in detail. We will discuss the performance differences
of the SOGNN model with different features, self-organized
graphs with different top-k rates, different graph construction
methods, interchannel connections, etc.

Figure 4 shows the emotion recognition accuracies of the
proposed SOGNN model with different features including DE,
PSD, ASM, DASM, DCAU, and RASM features. We found
that the DE feature is the most discriminate feature while the
performances of the other features are much lower. This finding
is consistent with previous researches (Song et al., 2019b; Zhong
et al., 2020).

Accordingly, dense graph convolution usually has high
computational costs. Therefore, it is significant to construct a
sparse and effective graph in practice. To obtain a sparse adjacent
matrix of graph, we applied the top-k technique in which only
the k-largest connection weights of each EEG electrode in the
adjacent matrix were maintained while the remaining small
weights were set to zero. As shown in Figure 5, the performance
of the SOGNN with different top-k sparse graphs is presented.
In the figure, k-10 denotes that only the 10 largest connection
weights were maintained while the remaining weights were set to
zeros. Likewise, k-62 indicates that the total connections between
all 62 electrodes were reserved. We can find that the model with
k-10 connections achieved similar performances as those models
with more connections. This finding indicates the effectiveness of
the model with sparse adjacent matrix.

In the proposed SOGNN model, a self-organized graph
construction module is applied to dynamically learn the
interchannel relationships of EEG signals across subjects. Here,
we investigate different graph construction technique and
their performance. Figure 6 presents the emotion recognition
accuracies on SEED dataset of the models with different graphs.
To compare the performance of the models with different graphs,
we would like to conduct statistical analyses. Evaluated on a
dataset with only 15 subjects, the results of each model may
not follow normal distribution. Wilcoxon signed-rank test is a
non-parametric statistical hypothesis test which is suitable for
the analysis on non-normally distributed data. With Wilcoxon
signed-rank test result, we are able to determine whether the
proposed model could achieve statistically significant better
performance than the other models. As shown in Figure 6, the
SOGNN achieved significantly better performance than non-
graph model and the model with covariance graph. Regarding
the covariance graph, the values of the elements in its adjacent
matrix are usually too large that the graph convolutional layers
will be easily saturated. This might be the reason for the low

FIGURE 6 | Emotion recognition performance based on different graphs.

Wilcoxon signed rank test: ∼ non-significant,
†
p < 0.05,

††
p < 0.01.

performance of the model with the covariance graph. The
correlation graph can be considered as a normalized version of
the covariance graph in which its adjacentmatrix is normalized to
be in [0, 1]. As a result, its performance is improved a little. Here,
we propose a straightforward method termed self-organized
graph construction in (5). The proposed SOGNN could achieve
state-of-the-art emotion recognition performance on the SEED
and SEED-IV datasets. Our experiments demonstrated the
effectiveness of the proposed model and the self-organized graph
construction method.

To analyze the interchannel relationships learned by the
proposed model, we obtained the average adjacent matrix of its
self-organized graph (SO-graphs 1-3 as indicated in Figure 3) for
SEED samples. Then, the average adjacent matrixes of SO-graphs
1-3 are normalized to [0, 1] for ease of analysis and presented in
Figure 7A. These graphs reflect the common connections of EEG
electrodes for emotion recognition. The SO-graph 1 is diagonally
dominant that only few diagonal elements are relatively large
while most of the rest elements are close to zero. That is only
the features of a few EEG channels are discriminative for first
graph convolution layer. Moreover, the off-diagonal elements of
SO-graph 2 and 3 indicated that interchannel relationships also
play important roles in classifying different emotion EEG signals.

Furthermore, we analyze the interchannel connections of
the learned graphs for emotion recognition. We extracted the
diagonal elements of the adjacent matrixes for SO-graph 1-
3 and transformed into topographic maps. The topographic
maps for SO-graphs 1-3 are presented in Figure 7B. According
to the topographic maps, the prefrontal, and centro-parietal
electrodes (e.g., F7, CPZ, FP2) had the largest weights in
the topographic maps. The five electrodes with the largest
weights connected with CPZ and FP2 are also presented.
According to a previous study (Davidson et al., 1999), the
activation in the regions of prefrontal cortex is related to
blunted positive and negative emotions. A positive waveform
will be enhanced over the centro-parietal electrode (CPZ)
for emotional pictures (Lang and Bradley, 2010). In many
related studies (Tyng et al., 2017; Alia-Klein et al., 2018; Pan
et al., 2018), the prefrontal-parietal network is activated by
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FIGURE 7 | Adjacent matrixes (A) and topographic maps (B) learned by SOGNN.

emotion-related stimulus such as facial feelings, negative emotion
processing, anger, etc. The interchannel relations between
prefrontal, parietal and occipital channels are discriminative
for emotion recognition EEG signals. Our findings coincide
with the spatial distribution for emotion, as suggested by
prior studies.

The above experiments and analysis of the proposed SOGNN
model are significant for EEG-based emotion recognition.
As a novel graph processing method for brain signals,
it may bring some inspiration for neuroscience research,
such as graph-based functional magnetic resonance imaging
data processing.

5. CONCLUSION

In this paper, a novel model termed SOGNN was proposed for
cross-subject emotion recognition. The SOGNN model was
able to dynamically learn the interchannel relationships of EEG
emotion signals using a self-organized graph construction
module. The proposed model achieved state-of-the-art
performance on two open EEG emotion recognition databases,
i.e., SEED and SEED-IV. In addition, a series of analyses
demonstrated the effectiveness of the proposed model on
graph construction and emotion recognition. The experimental

results indicated that the SOGNN model is not only an effective
model for recognizing emotions, but it is also a potential
technique for other EEG-based applications. In the future, we
would like to build more efficient networks to model brain
signals and effectively decode high-level cognitive behaviors.
Moreover, some new emerging machine learning techniques
can also inspire the methodology for emotion recognition and
affective computing.
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Background: In combined with neurofeedback, Motor Imagery (MI) based Brain-
Computer Interface (BCI) has been an effective long-term treatment therapy for motor
dysfunction caused by neurological injury in the brain (e.g., post-stroke hemiplegia).
However, individual neurological differences have led to variability in the single sessions
of rehabilitation training. Research on the impact of short training sessions on
brain functioning patterns can help evaluate and standardize the short duration of
rehabilitation training. In this paper, we use the electroencephalogram (EEG) signals to
explore the brain patterns’ changes after a short-term rehabilitation training.

Materials and Methods: Using an EEG-BCI system, we analyzed the changes in
short-term (about 1-h) MI training data with and without visual feedback, respectively.
We first examined the EEG signal’s Mu band power’s attenuation caused by Event-
Related Desynchronization (ERD). Then we use the EEG’s Event-Related Potentials
(ERP) features to construct brain networks and evaluate the training from multiple
perspectives: small-scale based on single nodes, medium-scale based on hemispheres,
and large-scale based on all-brain.

Results: Results showed no significant difference in the ERD power attenuation
estimation in both groups. But the neurofeedback group’s ERP brain network
parameters had substantial changes and trend properties compared to the group
without feedback. The neurofeedback group’s Mu band power’s attenuation increased
but not significantly (fitting line slope = 0.2, t-test value p > 0.05) after the short-term
MI training, while the non-feedback group occurred an insignificant decrease (fitting line
slope = −0.4, t-test value p > 0.05). In the ERP-based brain network analysis, the
neurofeedback group’s network parameters were attenuated in all scales significantly (t-
test value: p < 0.01); while the non-feedback group’s most network parameters didn’t
change significantly (t-test value: p > 0.05).

Frontiers in Human Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 627100202

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.627100
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2021.627100
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.627100&domain=pdf&date_stamp=2021-06-24
https://www.frontiersin.org/articles/10.3389/fnhum.2021.627100/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-627100 June 30, 2021 Time: 16:23 # 2

Wang et al. Short-Term BCI Rehabilitation Study

Conclusion: The MI-BCI training’s short-term effects does not show up in the ERD
analysis significantly but can be detected by ERP-based network analysis significantly.
Results inspire the efficient evaluation of short-term rehabilitation training and provide a
useful reference for subsequent studies.

Keywords: brain-computer interface, electroencephalogram, motor imagery, neurofeedback-rehabilitation,
short-term training, event-related potentials, brain-network analysis

INTRODUCTION

Electroencephalograph (EEG)-based BCI systems is often applied
in combination with motor imagery (MI) paradigm (Alkadhi
et al., 2005) for neurorehabilitation training (Kumar et al., 2016;
Baig et al., 2017; Oikonomou et al., 2017; Cheng et al., 2018),
especially for enhancing motor recovery from brain injuries
such as stroke hemiplegia (Buch et al., 2008; Zimmermann-
Schlatter et al., 2008; Daly et al., 2009; Langhorne et al., 2009;
Barclay et al., 2020). Neurofeedback (NF) is also commonly
applied in the BCI system. Thus cortical movement intention
can be transferred to physical activity or stimulation that feeds
back to the patient as a consequent response, forming a closed-
loop neural circuit (Yu et al., 2015; Zich et al., 2015; Sitaram
et al., 2017). Clinical studies have shown improvement in
neurorehabilitation using MI-BCI system with NF (Prasad et al.,
2009; Caria et al., 2011; Shindo et al., 2011; Ramos-Murguialday
et al., 2013; Mukaino et al., 2014), and results are supported
by the underlying mechanisms of neural plasticity and brain
reorganization (Rozelle and Budzynski, 1995; Ang et al., 2014).

Neurorehabilitation assessment is essential for both patients
as well as BCI system evaluation. Clinical assessments of physical
function restoration such as functional upper extremity test
(FMA), wolf motor function test (WMFT) are used as typical
methods (Rozelle and Budzynski, 1995; Mihara et al., 2013; Ang
et al., 2014; Li et al., 2014; Kim et al., 2016; Leeb et al., 2016).
However, most physical assessments are only applicable after
substantial functional recovery with a long training period and
are the indirect measure of brain injury recovery. Researchers
have been studying brain imaging techniques such as functional
Magnetic Resonance Imaging (fMRI) (Song et al., 2014; Young
et al., 2014), EEG (Daly and Wolpaw, 2008; Ono et al., 2015),
and electromyogram (EMG) (Rozelle and Budzynski, 1995;
Daly and Wolpaw, 2008). The goal is to find new assessment
methods to analyze the brain directly and observe subtle changes
in neural reorganization. For BCI rehabilitation, the challenge
is to establish an EEG quantitative standard to evaluate the
rehabilitation effect. MI as a typical BCI rehabilitation paradigm
varies in its performance when applying different feedback
strategies (Ahn and Jun, 2015; Marzbani et al., 2016; Renton et al.,
2017). There are other factors such as induction paradigm or
training engagement, may affect potential brain recovery, thus
make it more important to find direct and rapid measurements
for BCI rehabilitation using EEG.

For BCI EEG analysis, sensorimotor rhythm (SMR) of
neurophysiological oscillations and event-related potentials
(ERPs) are commonly used as neurophysiological features. As a
particular example of SMR, desynchronization/synchronization

(ERD/ERS) modulation during MI or movement execution
(Pfurtscheller and Da Silva, 1999; Graimann et al., 2009; Nicolas-
Alonso and Gomez-Gil, 2012) is proportional to the motor
function’s impaired level of patients (Matsumoto et al., 2010;
Rossiter et al., 2014; Naros and Gharabaghi, 2015; Soekadar et al.,
2015). And it was found to be improved in the prolonged MI-
BCI rehabilitation (Rozelle and Budzynski, 1995; Pfurtscheller
and Da Silva, 1999; Yoshida et al., 2016). The ERPs as EEG
averages are direct amplitude changes in response to exhibited
events (Kok, 1997). Both signals characterize as potential
recovery measures, given that they may carry information about
underlying mechanisms of brain recovery. What’s more, the
functional connectivity of brain networks is another strategy to
reveal changes in neural activity. For example, brain network
analysis based on fMRI has been used in clinical-pathological
studies (Van Den Heuvel and Pol, 2010). Compared to the
fMRI, the convenience and high temporal resolution of the
EEG signal has led to an increasing number of scholars
using it to analyze the brain networks (Varela et al., 2001;
Wang et al., 2010; Faith et al., 2011; Sakkalis, 2011; Carter
et al., 2012; Stam and Van Straaten, 2012; Belardinelli et al.,
2017). Further studies use the EEG to apply graph theory
on the cortical network (Bullmore and Sporns, 2009; Fallani
et al., 2013; Cheng et al., 2015) to measure brain changes by
rehabilitation training (Brown, 1970; de Vico Fallani et al., 2014;
Philips et al., 2017).

Studies mentioned above show that neural functional changes
reflected by EEG signals are reliably correlated with changes
in physical function. Still, the results are observed only after
prolonged training, which may not be comprehensive enough.
Thus, we consider the short-term effects of BCI on brain
activity. BCI training with feedback could alternately enhance
and suppress spontaneous rhythmic activity for short periods
(Nowlis and Kamiya, 1970; Beatty et al., 1974; Sterman, 1974)
and leads to sustained changes in neural activity (Kaplan, 1975;
Wyler et al., 1976). Lin et al. found that short-term training
leading to significant neural activity changes in brain network
by using functional connectivity of fMRI (Lin et al., 2017).
In neurorehabilitation, Tsuchimoto et al. (2019) found that
BCI training with neurofeedback can effect on patients’ EEG
synchrony in the short term. We can infer that the short-term
MI-BCI rehabilitation training variations based on EEG signals
may also have the ability to interpret the rehabilitation process.
Evaluating those variations can help to portray the recovery
process more accurately. Yet, the variations are still unclear, and
an efficient and rapid recovery assessment method of short-term
MI-BCI rehabilitation training has not been proposed. Using the
EEG to study the state of neural signal expression in a short
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time may provide a new approach to measuring the effects of
rehabilitation training.

Our study investigated how the short-term MI-BCI training
affects the human brain and uses EEG signals to evaluate it. We
used EEG’s Mu band power attenuation to analyze the impact of
short-term rehabilitation training and use network methods to
analyze the effectiveness of exercise on various network scales. In
section II, the experimental data are presented, and the analysis
methods are described. Section III presents the experimental
results of the short-term ERD modulation and the ERP-based
cortical network, respectively. Discussion and conclusions are
presented at the end.

MATERIALS AND METHODS

Data Acquisition
We used left- and right-handed motor imagery data from a
publicly available dataset (Kaya et al., 2018). All 5 subjects
underwent 3 days of MI-BCI training were selected, of which
four subjects with no visual feedback and one subject with
visual feedback. In all experiments, an EEG distribution with 19
electrodes in the International Standard 10–20 system was used.
Data was acquired using a medical-grade EEG-1200 recording
system with a JE-921A acquisition cassette (Nihon Kohden,
Japan) and band-filtered at 0.53∼70 Hz at the recording phase.
Participants were seated in a chair and observed a computer
screen about 200 cm in front of the BCI system. A typical
rehabilitation training of left/right hand MI was applied as
the experiment paradigm. Two formats of experiments were
conducted, a “non-feedback” mode as well as a “feedback” mode,
introduced as follows.

Non-feedback Data
The whole process lasted 51.5 min, assembled from three 15-min
sessions, with a 2.5-min break to initialize the system before the
session start, followed by a 2-min break between the two sessions
for the subject to relax (Figure 1C). Each session contained 300
trials in total, each consisting of pause and action phases. The

pause phase had a duration of 1.5–2.5 s randomly, with an average
of 2 s. During the action phase, the screen showed a GUI interface
with a red square, to instruct the participant to perform the
corresponding task for 1 s (Figure 1A). The red square upon the
left- or right-handed cartoon image indicated the grasping MI
task, and upon the middle circle indicated a “hold” task with no
imagery (Figure 1A). The experiment was carried out on 3 days
at irregular intervals. The four subjects of non-feedback paradigm
were labeled as A, C, D, E in this article.

Feedback Data
The feedback paradigm had the same overall steps as the non-
feedback paradigm, however subjects were asked to control
actions of a 3D virtual robotic arm. During the action phase,
the screen showed a virtual robotic-arm bellow the task
icons. Depending on the real-time decoding analysis of Mu-
suppression, robotic arm appeared to move left/right or stay
“hold” (Figure 1B). The robotic-arm moved as the feedback of an
imagery success. The first session followed the same steps as in the
non-feedback paradigm. In second and third sessions, subject’s
imagery was actively performed, and the movement of the virtual
robotic arm was determined by subjects themselves initially. It
was then set as specific task sequences, e.g., to “move two units
to the left” or to “move 1 unit to the left and then three units
to the right.” We labeled the feedback subject as subject B later
in the article. We arranged EEG data of 3 days in parallel for
statistical analysis for each subject. In each day, left- or right-hand
imagery task trials were used with all “hold” trials removed for
EEG analysis in this article.

Mu Suppression Score
ERD/ERS in MI task is calculated by the power spectral
density(PSD) of EEG signals in the personalized frequency range,
typically at 8–13 Hz known as the Mu band (Kuhlman, 1978;
Pfurtscheller and Da Silva, 1999). In the ERD phenomenon,
the corresponding region of primary motor cortex (M1) in
the hemisphere contralateral to the movement is attenuated.
In this study, the C3 and C4 electrode positions from the 10

FIGURE 1 | Experimental Paradigm. (A) The experimental paradigm of the data is divided into three 15-min sessions, each containing 300 BCI trials, with an average
duration of 3 s per trial, including about 2 s of pause and 1 s of the action. (B) Icons seen by the subjects during the non-feedback experiment. Subjects follow the
instructions in the red box for the MI task. (C) Computer instructions for Feedback experiment. Subject are able to move the robotic-arms as feedback in the MI-task.
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to 20 international system are located close to the M1 region.
Therefore, for the right-hand MI, we used the C3 channel as the
contralateral side, and its symmetric electrode C4 as the ipsilateral
side. The same applies to the left-hand MI.

The quantification of ERD/ERS can be calculated using the
classical approach called Mu-suppression. The obtained EEG
signal is first converted to the frequency domain by Fourier
transform. Then, we used multi-taper method (Thomson, 1982)
to calculate the PSD, selected frequency range with Mu-
suppression for individual experiment to derive the band power.
Change of contralateral Mu-band energy between the task state
and the resting state was evaluated, using the most recent 1-s
before task initiation representing resting state (Thomson, 1982;
Oberman et al., 2008; Braadbaart et al., 2013). The following
formula gives the Mu-suppression score (MuSC):

MuSC = −
MuPbo −MuPnbo

MuPnbo
∗ 100 (1)

where MuPbo is the band power of the task state, and MuPnbo is
the band power of the resting state.

As human brain is characterized by inter-individual variability
and rapid dynamic changes, we applied a sliding frequency
window with a size of 3 Hz (0.67 overlaps) to precisely
select the subject-specific Mu-band boundaries. The most
suppressed window comparing the MI state (0∼1 s) against
the corresponding resting state (−1∼0 s) was chosen as MI-
related EEG oscillations for each subject each day. The screening
results for subject-specific Mu-band boundaries are presented in
Supplementary Table 1.

Network Analysis
Functional Connectivity Estimation
Neuronal oscillations are implicit in the underlying coordination
mechanisms of the brain (Singer, 1999; Varela et al., 2001). The
channels with EEG signal contain a collection of oscillations
of regional neurons. The synchronization of oscillations
between channels may indicate that the brain has information
flow between regions (Womelsdorf et al., 2007). Functional
Connectivity is a method for assessing the synchronization of
oscillating signals from channel to channel. The degree between
channels indicates how much information is exchanged.

ERPs is any stereotyped electrophysiological response to a
stimulus, which have excellent temporal resolution. Considering
the immediacy of the short-term changes targeted in this study,
we chose ERPs as the basis for brain network calculations.
In the scenario of MI, ERPs are generally obtained by trial
averaging. Band-pass filtering is commonly used in some EEG
studies for data preprocessing and to investigate the extraction
and amplification of signals of interest by different band-
pass filter bands, such as Movement-related cortical potentials
(MRCP,0.05–6 Hz). In this study, We made preliminary band-
pass pre-process for different frequency bands that may be
triggered by MI, then the EEG signal was averaged over every
20 trials as “trial-block” to obtain a pronounced ERP curve.
Pearson’s correlation coefficient was used for the functional
connectivity estimation, directly expressing the correlation of

amplitude characteristics. The Pearson correlation coefficient was
calculated as follows:

ρ =
E[(X − µX)(Y − µY)]

σXσY

=
E[(X − µX)(Y − µY)]√∑n

i=1(Xi − µX)2
√∑n

i=1(Yi − µY)2
(2)

where X and Y represent the calculated signal values for trial-
block ERPs of two channels. µX and µY represent the mean of
X and Y. σX and σY represent the standard deviation of X and
Y. The formula calculates the covariance ratio between the two
channels to the product of two standard deviations.

Network Indicators
Graph theory plays a crucial role in network analysis. Each EEG
channel represents a single node in graph. Degrees derived from
Functional Connectivity estimates between nodes then form a
graph. Since MI-action focuses on C3 and C4 nodes’ expression,
we consider the direct calculation of the change in C3 and C4
nodes’ degree as the task proceeds.

Ei(G) =
∑
j6=i∈G

dij (3)

where i is the node of interest, G is the whole brain connectivity
map. J is other nodes and Ei(G) is the sum of the connection
weights of the node of the claim. All other nodes within the region
were calculated. We also performed the same calculation to O1
and P1 nodes’ degrees far away from the M1 region, used as a
comparison study. Also, the summation of degrees for all nodes
in the region provides a complete picture of the corresponding
brain regions’ overall neural activity:

Eregion(R) =
∑
j6=i∈R

dij (4)

Where Eregion refers to the region of interest, which can be the
left or right hemisphere. R is the set of nodes within the brain
hemisphere, and j is the other nodes. This equation calculates
the sum of the weights of all weighted edges in the region.
This calculation allows us to estimate the overall activity of the
nodes in the region.

The clustering coefficient (Gonzalez-Lima and Mclntosh,
1994; Latora and Marchiori, 2001) is used in this analysis, aiming
to explore the whole brain’s variation. Clustering coefficients
are divided into three calculation methods: global, local, and
average. The global clustering coefficient is used to explore the
variation of the whole brain. The clustering coefficient calculation
requires that the graph be binary and coherent. Thresholds
should be properly chosen to binarize the calculated connectivity
in the brain network analysis. To ensure the connectivity of the
graph, we use the threshold value of 0.6 in this experiment. The
coefficient is obtained by dividing the number of closed-loop
ternary groups by the number of all ternary groups in the graph,
calculated as follows:

Ctotal(G) =
3× G1

3× G1 + G3
(5)
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where G1 represents the number of closed-loop triads in the
graph (three nodes connected), and G∧ means that there are
only two edges with weight one between the three nodes. In this
experiment, we calculate the changes of the clustering coefficients
of the whole brain and the hemispheres overtime to get a
global picture of the brain network’s changes in the short-term
for the MI task.

RESULTS

Change of ERD MuSC
We applied Mu-band boundary selection for each individual and
results were within alpha and lower-beta band (5–20 Hz, filtering
results listed in the Supplementary Material for reference).
MuSC was calculated from the 636 non-feedback subject A and
616 feedback subject B trials then averaged for each consecutive
20 trials constructing “trial blocks” results. The MuSC of the non-
feedback subject A tends to be downwards with the fitting line
slope of −0.4 (Figure 2A), by contrast, the feedback B’s MuSC
rises with the fitting line slope of 0.2 (Figure 2B), similar to the
result in previous studies (Shindo et al., 2011; Yoshida et al.,
2016). However, there is no significant difference between the two
experiments due to the large variance. Changes in ERD’s MuSC
can be observed in short-term MI experiments with feedback, but
the trend of the data is subtle and difficult to use to measure the
effect of short-term training. Four non-feedback subjects showed
consistent result of ERD/ERS, thus we took non-feedback subject
A as the typical subject to show the comparisons and analysis
in the following.

Change of ERP Network
We used different frequency bands (0.53–4 Hz, 3–6 Hz, 5–
10 Hz, 8–16 Hz, and 15–30 Hz) to apply an initial inspection
of degree-of-nodes for four non-feedback subjects (A,C,D,E)
and 3-day data separately of the feedback subject B. This

was to design an appropriate EEG preprocessing filter before
construction the ERP functional network. We study the three
sequential sessions with MI training of both paradigms and
label the first to third sessions in the experimental sequence
as super-trial 1–3, respectively. Results showed that both the
2nd and 3rd super-trial of the 3-day data of the feedback
group in 3–6 Hz had significant decrease compared to the
1st super-trial (p = 2e-3, 7e-3 for day 1 respectively, p = 2e-
3, for day 2, p = 6.5e-4, 5e-5 for day 3, respectivley) (see
Table 1). Some other frequency band above 5 Hz also showed
a partially significant trend. However, signal in the 0.53∼4
Hz band of the low frequency component did not show
differences during on-going training sessions. In contrast,
non-feedback subjects showed subtle increase at 0.53∼4 Hz,
while no trend showing in other frequency ranges. Results
indicated a consistent change along the short-term training for
the feedback group.

To investigate the detailed dynamic change along the short-
term training, we compared 1st and 3rd super-trial ERPs of
the feedback subject B, at both 0.3–30 Hz and 3–30 Hz
frequency bands. In the case of 0.3–30 Hz filtering (Figure 3A),
the ERP dynamic processes did not show significant changes,
with topographic maps appearing similarly patterns at the MI
task. However, ERP dynamic changes were revealed under
the 3–30 Hz filtering (Figure 3B), such as a strengthening
of the negative potential at 0.35 s, of the following positive
potential at 0.55 s, and the negative potential at 0.65 s. ERP
features at 3∼30 Hz presented strengthened deflections from
the beginning of the training session to the end. By combining
results in Table 1, result indicated the EEG low frequency
component containing MI brain activities, as consistent with
(Ramos-Murguialday and Birbaumer, 2015; Schwarz et al., 2019),
and it contained information of short-term variations at the
feedback paradigm. We choose a 3∼30 Hz band-pass filter to
capture EEG characteristics as interested before average and
further analysis.

FIGURE 2 | The MuSC of subject A and B. (A) the MuSC for non-feedback subject A (3-day experimental data are synchronized and averaged according to a set of
20 trials). The red line is a linear fit, where the slope of line A is negative (slope = −0.4). (B) the MuSC for Subject B, the slope of line B is positive (slope = 0.2).
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As event-related responses apart from Mu-suppression, we
analyzed ERPs of left or right MI task for non-feedback subject
A and feedback subject B. It was derived from averaging 20
trials at −0.5∼1 s filtered at 3–30 Hz for of all EEG channels.
The ERP responses initiated after the start of the MI task. The
overall ERP performance of the feedback (Figure 4A) and non-
feedback subject (Figure 4B) were stable for left- and right-
handed MI, with slightly different ERP performance for different
side-channels for left- and right-handed MI.

Degree of Nodes
Single node degrees were analyzed for non-feedback subject
A and feedback subject B, respectively. Figure 5A shows the
analyzed nodes. The contralateral analysis target nodes for left-
handed motion include C4, O2, Fp2, and right-handed C3, O1,
Fp1, and the opposite nodes for ipsilateral motion. The subject
experiments were divided into three groups according to the
order in which the sessions were performed. The trials for MI
task execution were selected from each group, averaging the
20 original trials to containing ERP features to calculate the
network’s connectivity. In Figure 5B, the connectivity histogram
of subject A’s ipsilateral and contralateral sides Fp node’s
contralateral side is significantly different (t-test value p = 0.01)
between the first and third super-trials, while the other nodes
not significantly different. In Figure 5C for subject B, the second
and third super-trials of the C and Fp nodes are significantly
different from the first in both ipsilateral and contralateral (t-
test value p = 2.3e-5, 1.2e-5 for C; p = 2.1e-5,3.7e-6for Fp in
contralateral and p = 1.5e-8, 2.5e-6 for C; p = 3.2e-6,1.2e-6 for Fp
in ipsilateral); in addition, the O nodes’ contralateral experiments
were significantly different between the first and third super-trials
(t-test value p = 0.6e-2 and 0.3e-3 in contralateral and ipsilateral).
Different significant downward trends can be observed in subject
A and subject B. Thus, we hypothesize that feedback BCI training
leads to decreased node degrees in the ERP brain network.

Degree of Region
In this part, we calculated the sum of the connectivity in the left
and right hemispheres as LnL and LnR, and connectivity between
two sides (excluding the medial node) as EX (Figure 6A). Then
used linear regression to fit a straight line of scatter. In Figure 6B
for subject A, The slopes of the three fitted lines all approach 0 in
both left-handed and right-handed MI. In Subject B’s feedback
experiment (Figure 6C), the slopes of all fitted lines were
negative, indicating a decrease in regional connectivity. During
left-handed MI, the slope of LnR on the opposite side was smaller
than that of LnL on the same side (Ex fitting line slope = −0.67,
Lnl fitting line slope = −0.32, LnR fitting line slope = −0.66),
whereas this phenomenon does not appear, the fitted lines for
right-handed MI are (Ex fitting line slope = −0.53, Lnl fitting
line slope = −0.31, LnR fitting line slope = −0.42). Figure 5
gives a clear contrast between the regional degree summation.
The feedback experiments will have an overall downward trend,
and its contralateral downward trend is more pronounced in left
MI. The slopes of LnR in their leftMI are smaller than LnL both in
subjects A and B, which is presumed to be related to the ERD/ERS
features of the EEG.
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FIGURE 3 | ERP and topographic comparisons between the 1st and 3rd super-trials of the short-term BCI training process. This comparison was for feedback
subject B. Each super-trials containing consecutive 100 non-hold trials. (A) Filter with 0.3–30 Hz. No significant change between the 1st and 3rd super-trials. Some
drift changes were present in the prefrontal channels. (B) Filter with 3–30 Hz. The 1st and 3rd topographic maps show dynamic differences. N-potential attenuation
at 0.35 s, P-potential enhanced at 0.55 s, then N-potential enhanced at 0.65 s.

FIGURE 4 | The overall ERP performance of the feedback and non-feedback subject. (A) Non-feedback subject A, the potential graph of each channel during left-
and right- handed MI training (−0.5∼1 s). (B) Feedback subject B, the potential graph of each channel during left- and right- handed MI training (−0.5∼1 s). Both
subjects present clear ERP curves, and the ERP curves of the left channels and the right channels show slight differences at different MI task.
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FIGURE 5 | (A) A schematic representation of the one-node degree analysis. (B) Single node degree after averaging the three non-feedback trials of subject A, the
effect tends to be smooth, where the contralateral Fp node degree shows a significant change of 1–2 super-trial (t-test value p < 0.05). (C) The single node degree
of subject B, both the ipsilateral and contralateral single nodes have a decrease relative to the initial value (t-test value C’s ipsilateral:s = 5.60, p < 0.01; s = 2.97,
p < 0.01, C’s contralateral: s = 10.40, p < 0.01, s = 3.13, p < 0.01, Fp’s ipsilateral: s = 5.69, p < 0.01, s = −7.09, p < 0.01, Fp’s contralateral: s = 6.85, p < 0.01,
s = −8.08, p < 0.01). The symbols * and ** represent the mark of significant and very significant changed data.

FIGURE 6 | (A) A schematic representation of the nodes included in the three computational methods, from top to bottom, Ex, LnL, and LnR. (B) Scatter plot of the
brain network indicators in the MI task state of Subject A and calculates the linear regression fitted straight lines for the three scatter types. Among them, B-figure left
EX,LNL,LNR; (C) Scatter plots of network indicators in subject B’s feedback experimental data, and the slopes of all straight lines fitted are negative, (B,C) indicate
the gradients of LnR in their leftMI are all less than LnL.
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Clustering of Network
Clustering coefficients were calculated for the whole brain, left
hemisphere, and right hemisphere. The differences between
the task and resting states were calculated separately. Among
the three calculations of subject A (Figure 7A), there was a
downward trend and significant difference (t-test value p = 0.04)
between the 1–3 super-trials of left-handed MI in the right
hemisphere. Figure 7B for Subject B shows a significant
downward trend for left-handed MI’s both all-brain and right
hemisphere (p = 1.3e-3 and 0.2e-3 for all-brain), and the
left hemisphere was significantly different only in first-to-third
experimental comparisons (t-test value p = 0.04); in right-
handed MI, all-brain, left and right hemisphere had significant
decreases (all:t-test value p = 4.3e-3, 6.9e-3, left: t-test value
p = 0.04,right:p = 4.3e-3) while there are no significant changes
in the rest state. The results show that feedback experiments
altered the task-state clustering coefficient to decay and more
extensive in the contralateral sides. Training did not affect the
resting state significantly.

DISCUSSION

In the present study, we focused on using EEG signals to
investigate what impact MI-BCI training can have on the brain
in short-term. We applied controlled research using MI-BCI
training with/without visual feedback.

Firstly we analyzed the Mu band’s energy attenuation on
the contralateral side. The result showed ERD changed with an
increasing trend at the feedback group. This was consistent with
studies of rehabilitation in Shindo et al. (2011) and Yoshida
et al. (2016), suggesting ERD strengthened for successful BCI
training. On the other hand, the non-feedback group presented
little change, and the change from 1-h feedback training was
of no statistical significance, which was different from the
long-term rehabilitation training. Therefore, characteristics of
cortical motor activities need to be further investigated, to
introduce new assessment tools to quantify changes with MI-BCI
training of short-terms.

We then studied ERPs of MI tasks in this study. In the
MI analysis of ERP, MRCP is often used. the ERP analyzed
in this paper intersects with MRCP but is not identical in
definition. The low frequency (below 6 Hz or so) negative shifts
in the EEG signal representing brain activity changes related
to movement. In our investigation, the negative deflection of
MRCP appeared relatively obvious only after filtering above
3 Hz. The corresponding ERP dynamic presented visible
changes along the MI training process as well. The EEG
signal band-pass filtered at 3–6 Hz contains information of
significant changes in relation to short-term training. On
the other hand, signals below 3 Hz had relatively large
amplitude but the response was dynamically consistent during
the training process. This may obscure functional changes
of great interest to us. Previous studies have mentioned

FIGURE 7 | (A) Clustering coefficients histograms of non-feedback subject A, left, middle and right plots were calculated for left-handed MI, right-handed MI, and
rest condition, a significant decrease in the right hemispheric region value in 1–2 trials during left-handed MI (t-test value p < 0.05), rest condition The all-brain
indicator was also significantly different (t-test value p < 0.05); (B) clustering coefficients of feedback subject B, there was an extremely significant downward trend in
the left-handed MI for both the all-brain and right hemisphere indicators 1–2, 1–3 (t-test value p < 0.01), left hemisphere had an extremely significant difference only
between 1 and 3 experimental comparisons (t-test value p < 0.05). In rightMI, all-brain had a significant decrease between 1 and 2, 1 and 3 super-trials (p < 0.01).
Left hemisphere and right hemisphere indicators have significant changed between 1 and 3 super-trials (p < 0.05) and 1–2 super-trials (p < 0.01), respectively. The
symbols * and ** represent the mark of significant and very significant changed data.
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that there are discriminable information for MI decoding in
Bands at 1∼6 Hz of ERP (Ramos-Murguialday and Birbaumer,
2015; Korik et al., 2018; Schwarz et al., 2019). For example,
Ramos et al. used filtering in the 3∼45 Hz for a BCI
motor task analysis. Korik et al. studied ERP at 4∼8 Hz for
decoding imagined 3D hand movement in EEG (Korik et al.,
2018). Marshall et al. investigated ERP with 3 Hz high-pass
filter for infants’ auditory (Marshall et al., 2009). Thus we
applied preprocess filtering with low cut-off frequency at 3
Hz to satisfy our analysis requirements. As we choose 3–30
Hz of EEG containing MI brain activities for investigation
functional changes during short-term training, it contains
ERD range as well.

Different behavioral patterns have different brain network
activations (Gonzalez-Lima and Mclntosh, 1994; Büchel and
Friston, 1997; Büchel and Friston, 2000; Horwitz et al., 2000;
Taylor et al., 2000). Functional connectivity has been defined
as ’neural context’ (McIntosh, 1999, 2000; McIntosh et al.,
2001). By calculating functional connectivity, we can further
apply graph theory to analyze brain networks. Graph theory,
which describes the brain as a single interconnected network
(Bullmore and Sporns, 2009; Fallani et al., 2013; Cheng et al.,
2015), provides a theoretical framework with the potential
ability to characterize the behavior of complex brain systems
and can reveal important information about the local and
global organization of functional brain networks. Applying the
methodology described above, this paper validates the changes
in brain networks brought about by short-term MI training
of these two neural contexts with and without feedback and
their differences. For example, in Figure 5, we see that the
feedback experimental set of individual nodes of this brain
network (i.e., with visual feedback) shows a significant downward
trend in degree summation. We speculate that this trend stems
from the fact that MI training with visual feedback leads to
decreased connectivity of the blocks represented by the nodes
due to stronger inhibitory action generation, mentioned in
previous literature (Waldvogel et al., 2000; Attwell and Iadecola,
2002). In Figure 7, we analyzed network connectivity changes
from the perspective of the cerebral hemispheres’ internal and
external interactions. We speculated that the decreasing trend
of the feedback group might be caused by the concentration
of neural clusters in the brain area and the concentration of
ERP changes in specific relevant areas, which led to a decrease
in the overall correlation within the region. The reduction in
the contralateral MI of the left hand indicated certain ERD
characteristics. Feedback MI training more significantly affects
brain networks in the task state than in the resting state. In
conclusion, this ERP-based constructed network change showed
a significant decrease in the short-time task state, contralateral
effectiveness, etc., intuitively reflecting the immediate effect of
short-term BCI training on the brain.

In the current research on BCI rehabilitation training, we
see that many studies have been devoted to finding indicators
of long-term rehabilitation. In contrast, the indicators proposed
in this paper found that brain network activity changes over
a short period. Feedback training results are more significant
than those of no-feedback training indicators, which are expected

to be applied to short-term training value assessment. Unlike
other classical brain network analysis methods such as fMRI
(Van Den Heuvel and Pol, 2010), EEG signals have unique
advantages—high temporal and spatial resolution, which can be
analyzed more quickly and easily. It makes a good pavement
for the short-term MI-BCI rehabilitation assessment. This paper
differs from the conventional brain network construction of
EEG (Friston, 2011). It adopts an EEG signal combination
processing method with ERP characteristics, which can reduce
EEG signals’ instability and reflect signals’ event characteristics
more effectively.

However, there are many limitations for improvement in this
study. For example, the experimental sample data is insufficient.
The ERP construction method used for network construction has
not been tried in non-MI rehabilitation training. The present
analysis is based on the visual feedback training of healthy
subjects. The sample data can be improved in many aspects: for
example, changing healthy subjects to patients or using different
feedback methods; it is also possible to make a comparison
between short-term training and long-term training indicators
and integrate the processes of existing indicators proposed in this
paper to form a perfect evaluation method to quantify the goals
of rehabilitation training better.

CONCLUSION

In summary, this paper is a preliminary attempt in the field of
EEG brain network-based rehabilitation assessment. We applied
Mu band power’s attenuation and ERP-based brain network to
analyze the EEG changes during short-term MI task. We found
significant changes in brain connectivity, that the functional
network topology coefficients of feedback subject showed a
significant decrease after about 1 h of MI-BCI training, while
the non-feedback group’s most network parameters didn’t change
significantly. The experimental results showed the necessity
of neurofeedback. This study has laid a good foundation for
subsequent BCI closed-loop neurological rehabilitation studies.
The analytical approach for measuring the effectiveness of short-
term rehabilitation training proposed in this study is expected to
facilitate the establishment of a more personalized rehabilitation
assessment system, which, when correlated with long-term
clinical indicators, can lead to more credible and regulated
individual treatment schedules and help patients to undergo
more efficient rehabilitation.

The next step of the study is to collect more data or try
to apply generative methods to deal with the data scarcity.
Furthermore, we also consider different feedback strategies
to link the short-term indicators to the specific neurological
mechanisms, so as to provide a more underlying and reliable basis
for experimental results.
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