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Abstract—The last decades have seen significant advancements
in non-invasive neuroimaging technologies that have been increas-
ingly adopted to examine human brain development. However,
these improvements have not necessarily been followed by more
sophisticated data analysis measures that are able to explain
the mechanisms underlying functional brain development. For
example, the shift from univariate (single area in the brain)
to multivariate (multiple areas in brain) analysis paradigms is
of significance as it allows investigations into the interactions
between different brain regions. However, despite the potential
of multivariate analysis to shed light on the interactions between
developing brain regions, artificial intelligence (AI) techniques
applied render the analysis non-explainable. The purpose of this
paper is to understand the extent to which current state-of-
the-art AI techniques can inform functional brain development.
In addition, a review of which AI techniques are more likely
to explain their learning based on the processes of brain de-
velopment as defined by developmental cognitive neuroscience
(DCN) frameworks is also undertaken. This work also proposes
that eXplainable AI (XAI) may provide viable methods to
investigate functional brain development as hypothesised by DCN
frameworks.

Index Terms—Explainable Artificial Intelligence, Developmen-
tal Cognitive Neuroscience, xMVPA, fNIRS, EEG

I. INTRODUCTION

Human brain development is a complex and dynamic
process that begins prenatally and extends through to late
adolescence [1]. The human brain has an estimated 100
billion neurons at birth [2] whose interconnections form neural
networks, which become specialised over time and mediate
the functional capabilities of the human brain [3]. This spe-
cialisation results not only from the structural development of
the brain but also as a consequence of optimisation of inter-
regional interactions in the developing brain [3]. Over the past
50 years, the field of developmental cognitive neuroscience
(DCN) has examined the relations between the structural and
functional development of the human brain [4], elucidating
the developmental mechanisms underlying cognitive processes
such as perception, attention, memory, and language.

DCN research can inform us about the influence of genetic
variations and environmental factors in the specialisation of
neural networks [3]. In addition, DCN studies can extend
insights into how these specialised networks mediate newly
acquired social and cognitive functions, shedding light on
typical and atypical trajectories of human brain development
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[5]. A greater understanding of brain development trajecto-
ries can have profound implications for early detection and
the subsequent intervention of developmental disorders [4].
Furthermore, a better understanding of the interplay between
structural and functional brain development can be leveraged
to inform clinical, educational and social policies [6].

In order to examine the neural underpinnings of cognitive
processes and their changes across development, functional
Near-Infrared Spectroscopy (fNIRS) [7] [8], and Electroen-
cephalogram (EEG) [9] have been widely used in DCN studies
with infants and children. These neuroimaging modalities are
both non-invasive, portable, wearable, and relatively inex-
pensive compared to functional magnetic resonance imaging
(fMRI), which has instead proved pivotal in adult brain
neuroimaging. In particular, fNIRS and EEG allow for the
young participants to stay engaged in tasks whilst recording
their brain activity in more naturalistic postures (e.g., sitting
upright vs laying down) and ecologically valid settings such
as their homes [8]. Nevertheless, fMRI has been successfully
used in developmental studies with asleep infants [10, 11], and
more recently with awake infants [12, 13]. As fNIRS and EEG
are considered the most commonly used and ‘infant-friendly’
modalities to investigate neural substrates in DCN studies, the
present review paper will focus on these two modalities and
their respective data analysis paradigms.

fNIRS is an optical neuroimaging modality that uses Near-
Infrared (NIR) light on the scalp to record changes in
blood haemoglobin that occur as a result of cerebral activity.
More specifically, fNIRS measures the relative changes in
haemoglobin (Hb) concentration in the blood, based on NIR
light absorption by the Hb molecules, which is inferred as
a measure of the cortical brain activity [7]. The fNIRS cap,
comprising of pairs of sources and detectors, can be flexibly
adapted based on the brain areas of interest (see for an
example Fig. 1a). The strength of fNIRS lies in its good
spatial localisation (within 2cm) that allows for conclusions
to be drawn about the localised cortical activity from different
anatomical locations of the cortical structures, as recorded by
the fNIRS channels located on the participant’s head (Fig. 1a).
An illustration of the fNIRS principle (Fig. 1b) along with a
representative signal (oxy-Hb in red, and deoxy-Hb in blue is
shown in Fig. 1c) is shown in Fig. 1.

While fNIRS relies on changes in blood oxygenation to
measure brain activity, EEG measures electrophysiological
brain activation. More specifically, EEG records electrical
changes on the scalp, allowing the measurement of rapid
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(a) An infant wearing fNIRS cap.
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(b) fNIRS principle.
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(c) A fNIRS signal.

(d) An infant wearing EEG net.

Pyramid cells

EEG Electrode

EEG Amplifier

(e) EEG principle. (f) 10 EEG signals.

Fig. 1: (a) An infant wearing an fNIRS cap. The placement of the fNIRS channels on the fNIRS cap is dependent on the
areas of interest for investigating the underlying brain activity. (b) An illustration of the fNIRS principle: fNIRS is an optical
neuroimaging modality that reads underlying cerebral activity using fNIRS channels formed by a pair of sources and detectors.
Based on the area under investigation, a fNIRS source shines Near InfraRed (NIR) light at the point on the surface of the head,
and the diffusely refracted NIR light is recorded by a fNIRS detector. The relative changes in haemoglobin (Hb) concentration
in the blood measured by fNIRS channels is inferred as cortical brain activity [7]. The delay in the fNIRS haemodynamic
response measurement varies significantly depending on the age of the participants and the specific cognitive/motor task
undertaken [14]. (c) A representative fNIRS signal. The y-axis has ∆ concentration Hb values recorded at time (x-axis) post
stimulus presentation. The red signal is ∆ concentration in oxy-haemoglobin values whereas the blue signal is ∆ concentration
in deoxy-haemoglobin values. (d) An infant wearing an EEG net. The EEG electrode placement has been standardised using
an international 10–20 system that uses anatomical landmarks on the skull [15]. (e) EEG measures brain electrical activity,
with the electrodes placed on the scalp, which reflect the summated postsynaptic potentials of cortical neurons in response to
changing cognitive or perceptual states [16]. EEG activity is mainly generated by pyramidal neurons in the cerebral cortex that
are perpendicular to the brain’s surface/electrode on the scalp [17]. (f) 10 illustrative EEG signals with measured voltages on
the y-axis and time on the x-axis. EEG signals have temporal resolution in milliseconds, providing a near real-time display of
ongoing cerebral activity, but with limited spatial resolution due to effects of electric field spread [18].

cognitive processes [19] with high temporal accuracy in the
order of milliseconds [20]. The EEG principle is represented
in Fig. 1e. The EEG net has electrodes fitted in it using a
standardised 10/20 electrode placement system that covers the
whole head (see Fig. 1d). Since EEG can record activity on
the time scale of underlying neuronal activity, EEG signals
(representative EEG signal shown in Fig. 1f) are best suited
for connectivity analysis. However, EEG is also more sensitive
to motion artifacts [21] and due to its limited spatial resolution
[18], EEG makes it difficult to map brain electric activity read

by the electrodes to their corresponding anatomical regions in
the brain.

One of the most recent advancements in neuroscience
research is the combined use of neuroimaging techniques (e.g.,
[22]). In particular, in DCN, multimodal imaging can provide
a wider picture of functional brain activity by benefiting from
the advantages of different neural measures (e.g., EEG-fNIRS
[23]). Given the complementary characteristics of EEG and
fNIRS, i.e., EEG records highly accurate temporal information
whilst fNIRS is more spatially localised, multimodal fNIRS-
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EEG studies enable greater information to be recorded re-
garding the underlying brain activity. While this represents
a step further to better study the developing brain, it does not
prove sufficient to translate DCN research to inform typical
and atypical trajectories of functional brain development. More
specifically, if functional brain trajectories using infant’s neu-
roimaging data can be established with the help of explainable
Artificial Intelligence (XAI) methods, it may assist in early
identification of, and thus intervention in, neurodevelopmental
disorders [24], as well as shape policies in the context of
typical neurocognitive development.

Indeed, the fundamental question in DCN of how cognitive
development is mediated by structural maturation (i.e., the
emergence of faculties through growth processes) and opti-
mised interactions remains open. In this regards an under-
standing of the theoretical frameworks that can explain the
bidirectional relation between the structural and functional
development of the human brain is critical. Therefore, in
Section II, we firstly summarise the key concepts of the
DCN frameworks including the ‘Interactive Specialisation’
(IS) theory [3, 25, 26] and the neuroconstructivist approach
[27, 28]. A review of the current artificial intelligence (AI)
algorithms, as applied to fNIRS and EEG data both in infancy
and adulthood is undertaken in Section III. The aim of the
review is to investigate the extent to which these AI methods
can explain human functional brain development in light of the
theoretical frameworks of DCN. Implications of explainable
AI methods, that also mimics the mechanisms proposed by
DCN frameworks, and the conclusion are presented in Section
IV and V respectively.

II. DEVELOPMENTAL COGNITIVE NEUROSCIENCE (DCN)
FRAMEWORKS

The developed adult human brain, both in terms of structure
and function, is a ‘small world’ network [29]. A small world
network is typically characterised with concentrated local
activity, decreased short-range interconnections (segregation),
and increased long-range connections (integration) rendering
it cost efficient. Repeated processing of certain types of
input leads to certain brain networks becoming increasingly
proficient and fine-tuned to process that specific information
[28]. In particular, developmental change in the varying levels
of activity across different cortical regions leads to gradual
specialisation and localisation observed in the developed hu-
man brain [28], as illustrated in Fig. 2.

A developed brain is also modular with respect to functional
organisation, i.e., it has a hierarchical network that has the
ability to feed processed information from one layer (module)
to another. The hypothesis of a more modular developed
brain is based on the evidence of top-down and bottom-
up information flow. For example, during visual processing,
the information in the adult brain flows from the primary
area of visual processing (such as occipital cortex) to higher
hierarchical levels (such as pre-frontal cortex (PFC)) where the
information processed by lower hierarchical levels is integrated
[30, 31].

The three main DCN frameworks, namely 1) Maturational
perspective, 2) Interactive Specialisation (IS), and 3) Skill

learning, aim to answer the question of how these optimised,
hierarchical networks emerge during postnatal development.
For the purpose of this work, we will focus on the IS perspec-
tive, which is largely supported by DCN studies [32]. The IS
framework proposes that both feed-forward and feedback con-
nections between different cortical regions affect the functional
specialisation of cortical regions [33]. More specifically, the
IS theory provides a description of the following three major
processes that occur in the developing brain:

(i) Localisation: The extent of cortex activation for a given
task.

(ii) Specialisation: The extent of functionality achieved by a
given cortical area.

(iii) Parcellation: The optimisation of synaptic connections of
neural circuits.

The IS framework suggests that functional brain develop-
ment is a dynamic process with localisation, specialisation,
and parcellation processes forming a continuous loop of de-
velopment as shown in Fig. 2. As a given cortical area gains
more structural maturation, its specialisation for a given task
increases, which then triggers the parcellation (optimisation)
of information flow in the cortical network formed to subserve
that given task.

Optimisation can take place because of structural and/or
functional maturation (i.e., the emergence of capabilities
through growth processes) of different parts of the brain, along
with more long range connections coming ‘on line’. As a result
of the parcellation process, not all parts of a given cortical
region need to be activated nor are all connections required
to transmit the information to the next level of processing. In
this sense, parcellation takes place both within and between
cortical regions. The increased segregation of information
pathways gives rise to increased specialisation (i.e., a modular
structure), thus leading to the gradual emergence of hierarchi-
cal networks.

An important consideration with regard to the hierarchical
brain is that the interactions between hierarchies at multiple
levels and timescales are not hard-wired, i.e., the coordination
between modules is not fixed [34]. As a consequence, existing
modules could subserve emerging cognitive states through
a reconfiguration of the evolved circuits using neural reuse
[35] process of brain organisation. The other two plausible
processes put forward to explain functional brain organisation
are modularity and holism [35]. The modular functional brain
structure would imply that for each task there would be largely
segregated cortical circuits with limited overlap, whereas, the
holism organisation of the brain suggests that all cortical
circuits may be engaged across all tasks. The idea of neural
reuse seems plausible with respect to optimal usage of existent
circuits evolved for a given cognitive task. In this way, while
neural circuits are modular to some extent with respect to their
individual functionality, neural reuse suggests that they (indi-
vidual modules) have the capacity to connect with each other
in numerous configurations to achieve a range of cognitive-
behavioural tasks. The three aforementioned perspectives of
functional structure of the brain are illustrated in Fig. 3.

Taken together, the IS framework and neural reuse per-
spective can shed light on functional brain development at a
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Functional brain development continues
till optimised cortical networks and
information pathways are formed.

Localisation is the extent of structural
maturation of a given cortical region
that enables its activation/processing
ability in response to presented
information.

Specialisation is the extent of processing
prowess of a given localised cortical region.

Parcellation is the optimisation of
information pathways associated with a
specialised cortical region.

Inactive Active Very
Active

Fig. 2: The Interactive Specialisation (IS) theory focuses on explaining how different anatomical regions in a developing brain
learn to cooperate to form an optimised cortical network using localisation, specialisation, and parcellation processes. The IS
theory hypothesises that functional brain development is not a stationary, one-way process, but instead, all of its components are
in a loop, giving feedback to each other as structural maturation, as well as external stimuli, pave the way for an increasingly
specialised cortical network. An illustration of hypothetical developing cortical activation and interactions are shown in cyan
with the circles representing different cortical regions, with varying levels of activity as denoted by their colour. Red: Very
active; Amber: Active; and Pink: Inactive. The different levels of activity of a cortical region represent the amount of neurons
firing and forming synaptic contacts with other neurons to process presented information.

given time point using cross-sectional DCN studies. However,
a major component of functional brain development that is still
to be accounted for is the associated temporal information,
i.e., at what time the developmental changes are happening
[34]. Clearly, all stages of functional brain development are
not the same with respect to time. In this regard, investigating
the temporal dimension associated with a developing brain
analysis of longitudinal DCN data, i.e., neuroimaging data
recorded over a certain time period, is considered imperative.

Any AI method used to shed light on functional brain de-
velopment must keep in mind the aforementioned phenomena
and challenges associated with DCN. To this end, we will be
reviewing the extent AI methods can explain their underlying
mechanisms to shed light on the processes of functional brain
development.

III. ARTIFICIAL INTELLIGENCE (AI) METHODS IN
COGNITIVE NEUROSCIENCE

The generic field of cognitive neuroscience investigates the
underlying brain functional mechanism that subserve cognitive
processes such as memory, perception, understanding, and
reasoning [36]. DCN is a sub-field of cognitive neuroscience
that focuses on developmental population (infants and younger
children) to investigate how functional brain developmental
processes shape the developing brain. In principle, the AI
techniques that have been applied to study the cognition states
of non-developmental population (such as adults) can also
be used to study the developmental population (infants and
younger children). This is because all the pre-processing stages
of acquired neuroimaging data (fNIRS or EEG) would be
similar as well as the AI techniques that can discern the
difference in brain activation patterns for adults should also
be able to decode the same in infants neuroimaging data
analysis as well. As opposed to cognitive neuroscience for
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Fig. 3: Three different perspectives for the functional structure of the brain are illustrated with cortical modules (denoted by
circles numbered 1 to 6) and interconnections between the cortical modules (shown in green for task Y and cyan for task Z).
(a) The modular structure suggests that different modules will be activated for different tasks with limited overlap of modules.
This is shown by largely segregated modules activated for task Y (i.e., the modules 1, 2, and 3 activated for task Y) and task
Z (i.e., the modules 2, 4, 5, and 6 activated for task Z). As such the modules engaged are largely distinct with limited overlap
(of module 2 in this hypothetical case) for the two separate tasks Y and Z i.e., brain functional organisation is local. (b) In
holistic organisation, all local brain regions are presumed to be involved for all tasks. Hence, all modules are activated for
both task Y and task Z. (c) According to the neural reuse perspective, the brain works as a whole but functional differences
can be appreciated owing to their reconfigured interactions between the same modules (use and reuse).

adult populations, due to the lack of prior assumptions or
cannon models, the application of XAI in DCN helps to bring
new light into a science that otherwise, with classical non-
explainable or purely statistical models, would be challenging
to elucidate.

AI techniques [37] have been both inspired by, and used
for the study of the learning processes in the human brain. A
major component of functional brain development is attributed
to unsupervised learning [38] owing to the massive amounts
of unlabeled sensory data infants receive, although supervised
and reinforcement learning faculties are also hypothesised to
account for some facets of human brain development [39].
There is also considerable debate about how much of the func-
tional brain development is a result of postnatal learning, and
to what extent is the genome (an organism’s complete set of
hereditary material) responsible for shaping brain development
[38].

Considering the aforementioned learning mechanisms in
AI methods, and how they can potentially shed light on
the human functional brain development, in the following
subsections we review the most commonly used AI methods as
applied to fNIRS and EEG neuroimaging data. Most studies
have not necessarily used these algorithms for the analysis
of infants’ neuroimaging data, however, their application to
infants data would be similar in principle. The overarching
aim of the review is to investigate the potential and limitations
of these algorithms, as applied to infants neuroimaging data
analysis, to explain their learnt inference mechanism in terms
of developmental brain processes of localisation, specialisa-
tion, parcellation, and neural reuse as outlined by the DCN
frameworks.

For this reason, here we review AI methods with appli-
cation(s) to fNIRS and EEG data, as well as some recent

promising works for their applicability to DCN research and
data analysis. Please note this is not meant to be an exhaustive
review of all the AI methods used in cognitive neuroscience
studies, nor is it designed to be used as a reference for
implementing the reviewed AI methods. The aim of this review
is to understand the underlying inference mechanism of the
explored AI methods, and what their understating can inform
us about the underlying developing brain processes.

In this regard, depending on how much can be inferred
(or explained by the learnt inference mechanism(s)), the AI
methods can be generally categorised as explainable (inferred
output can be interpreted with linguistic concepts and propo-
sitions), partially explainable (inferred output can shed light
on the feature importance or rank) or non-explainable (no
insight can be obtained from the inferred output). However,
with respect to their implications in DCN research, there is
not much of a distinction between non-explainable and par-
tially explainable methods; hence, we will cover the partially
explainable methods within the non-explainable methods as
well.

The most commonly involved AI methods explainable or
not for the analysis of neuroimaging data can also be broadly
classified into the following three analysis paradigms: 1) Con-
nectivity Analysis (CA); 2) Representation Learning (RepL); 3)
Multivariate Pattern Analysis (MVPA). We briefly summarise
these analysis paradigms before reviewing the explainable and
non-explainable AI methods as applied to adults’ and infants’
neuroimaging data.
1) Connectivity Analysis:

Brain connectivity analysis can shed light on the segregation
and integration of the isolated cortical networks formed to
mediate coherent cognitive and behavioral states.

The three modes of brain connectivity analysis [40] that
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can inform us about the organisation and the workings of the
developing human brain are: 1) structural connectivity (SC)
2) functional connectivity (FC) and 3) effective connectivity
(EC) analysis. SC is generally associated with respect to the
anatomical wiring in the brain and is typically measured in
vivo using diffusion weighted imaging. FC is measured as
the temporal correlation between spatially remote neurophys-
iological events [41]. In contrast, EC measures the influence
that one neural system exerts over another which can be both
activity, and/or time dependent [42].

In most cognitive studies, to understand the underlying
connectivity of cortical regions for processing presented in-
formation, the analysis of FC (to investigate which spatially
distinct cortical areas of the brain are engaged simultane-
ously) and/or EC (to investigate the extent of influence one
cortical region exerts on another) is undertaken. Indeed, the
analysis of FC and EC can potentially inform about brain
architecture; however, to what extent the connectivity analysis
effectively contributes to the understanding of brain processes
is dependent on the choice of the AI technique (used for the
connectivity analysis).
2) Representation Learning:

Many recent works in neuroscience are increasingly using
deep leaning paradigms to investigate the underlying brain ac-
tivity in response to a presented task [43]. Amongst Deep Neu-
ral Networks (DNNs), convolutional neural networks (CNNs)
have gained particular interest because of their remarkable
performance in unsupervised automatic feature extraction and
classification of objects in challenging image classification
problems [43]. Owing to the capability of CNNs to compose
higher level features using lower level features, CNNs can
learn representations of input data automatically overcoming
the long standing challenge to handcraft a feature set in
conventional AI methods [43]. In CNNs, a small matrix of
numbers (called a filter) is passed over (convoluted with) the
raw data, to extract features from the raw data, such as edges
in images, also called a feature map. The convolution layer is
followed by a pooling layer which downsamples the input to
reduce both the spatial size of the input data and the number of
hyperparameters in the network. A typical CNN architecture
consists of the following stages:

(i) Feature Learning Blocks
● Convolution (C) + Rectified Linear Unit (ReLU).
● Pooling (P).

(ii) Classification/Regression Blocks
● Fully Connected Layers.
● Softmax, Logistic regression layer, regression loss

(Root Mean Square Error (RMSE) etc.)
The performance of CNNs is critically dependent on the

optimisation of hyperparameters, and owing to the large num-
ber of hyperparameters that need optimisation, most DNNs,
including CNNs, require large datasets to converge. The hy-
perparameters of a CNN include the size of the filter(s), stride,
number of hidden layers, and the learning rate.
3) Multivariate Pattern Analysis:

In most multivariate analysis, the feature set is crafted by
hand i.e., the statistic characteristic (such as the mean or

amplitude) of a neuroimaging signal which would best capture
the neural underpinnings, corresponding to the task at hand,
is chosen manually. The two dimensional matrix formed by
collating together the features from N channels (for fNIRS)
or electrodes (for EEG) and J number of data trials is then
given as input to an AI method, and is hereby referred to as
a multivariate matrix (MVM).

Although it requires considerable subject-matter expertise
to curate a feature set for MVM that best represents the
underlying neural activity, the classification results based on
the analysis of MVM would reflect on the representational
dynamics of the underlying cortical networks (as read from
fNIRS channels or EEG electrodes). In this regard the classi-
fication results obtained from the analysis of MVM can be at
least partially attributed to the cortical networks activation as
represented by the statistical feature used for constructing the
MVM.

The MVM can be readily analysed using any state-of-the-
art AI methods. Most AI methods such as Support Vector
Machine (SVM) and Random Forest (RF) usually give very
robust classification results with MVM. This analysis approach
is termed multivariate pattern analysis (MVPA) [44] and was
first used for neuroimaging analysis on adult multi-voxel fMRI
data [45].

In the following subsections, we review the explainable
and non-explainable AI methods used on the aforementioned
analysis paradigms on both non-developmental (adults) and
developmental (infants) population.

A. AI in Cognitive Neuroscience for Adult Brains

In Cognitive Neuroscience, AI methods are frequently used
with adult populations (mature brains). Some approaches can
provide no explanation or simply partial information, and
others can derive some explainable structure.

1) Non-Explainable AI Methods

A review of the non-explainable AI methods for investigating
cognitive processes in adults’ cognitive neuroscience studies
is presented next.
a) FC with EEG using SVM

The EEG studies by Moezzi et al. [46] and Klados et
al. [47] used SVM with radial basis function (RBF) as the
underlying kernel to investigate EC. In particular, the work
by Moezzi et al. is of interest with respect to DCN research
as it investigated the difference in FC to recognise young
(mean age 24 years) from old adult brains (mean age 71
years). The FC was studied in the standard frequency bands of
delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz)
and gamma (30–45Hz). The aim was to study oscillations in
standards frequency bands to uncover coordinated activity in
large-scale brain networks which facilitate information flow
between spatially distributed brain regions. The calculation of
FC matrices was done using imaginary coherence in an attempt
to account for the poor spatial localisation of the EEG signals.

Cross-validation was performed to optimise the hyperpa-
rameters (C: regularisation factor, and gamma kernel coef-
ficient) of SVM, improve accuracy, and identify the most
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significant features. To map the FC to brain regions, a grouping
approach was used to spatially localise the observed connec-
tivity patterns. In addition, consensus features were obtained
using Euclidian distance between electrode pairs to investigate
FC patterns based on age. They concluded that consensus
features belonging to delta, theta, alpha and gamma frequency
bands had positive weights showing significantly higher FC in
younger adults than in older adults. Features of the beta band
had negative weights showing significantly higher functional
connectivity in older adults than younger adults. However, as is
also acknowledged in the original study [46], the limitation to
map the consensus features to anatomical regions of the brain
could not facilitate further discussion on FC pattern differences
with respect to brain regions. Hence, despite the prowess of
SVM to differentiate between the FC patterns of old and young
brains with 93% classification accuracy, the SVM’s inference
mechanism could not shed light on the temporal correlations
of the different cortical regions.

The non-explainability of SVM inference mechanism is
because the learnt support vectors, which form the inference
mechanism of SVM for distinguishing between data instances
belonging to distinct classes, are defining a hyperplane that
optimally separates the data instances in a high dimensional
space. Hence, the support vectors as such can not be expressed
in terms of the underlying brain activity patterns. The only
relevant information that can be obtained from the support-
vector of a linear SVM is a feature relevance/significance score
but that too can not shed light on the association between the
inputs to uncover the cortical networks formed.
b) FC with fNIRS using Ridge Regression (RR)

The connectivity analysis with fNIRS does not require
additional spatial localisation of the measured cortical activity
owing to the relatively good spatial resolution that can be
achieved with fNIRS instruments [7]. Two complementary,
non-explainable AI methods, namely ridge regression (RR)
and interpolated functional manifold (IMF), used with fNIRS
connectivity measures are reviewed next.

A fNIRS study investigating intrinsic FC of cortical net-
works to predict anxiety states using linear ridge regression
(RR) models is done by Duan et al. [48]. The resting state FC
was calculated using Pearson correlation coefficient for 1035
edges between 46 nodes (fNIRS channels). The RR was able
to predict the anxiety score with statistical significance using
the connectivity of cortical networks. The mean square error
(MSE) of their model was 122.04 with correlation coefficient
of r = 0.36.

The prowess to predict states of anxiety using FC has
profound implications for the diagnosis of anxiety and related
disorders. However, the ability for the regression model to
explain its 1035 optimal values of β ( also called regressors) in
terms of FC is significantly limited. Therefore, despite getting
statistically significant results, the FC analysis could not shed
light on the resting state cortical networks.
c) FC with fNIRS using Interpolated Functional Manifold
(IFM)

A recent study that puts forth a solution for group-wise
explorative analysis using manifolds is presented by Avila-
Sansores et al. [49]. In this work, fNIRS values are projected to

an ambient space. Since there can be infinite surfaces that can
cross the projected fNIRS values, the aforementioned study
proposes Interpolated Functional Manifold (IFM) to select a
surface. In particular, an explicit model for the surface is
chosen by interpolating between the projected fNIRS values
using RBF.

The proposed IFM method is used on subjects with varying
levels of surgical expertise (knot-tying). The fNIRS values are
projected onto a two-dimensional manifold and the distribution
of the fNIRS values is based on pairwise distances i.e.,
points that are close together in the manifold have similar
characteristics. For this particular study, the medical students’
fNIRS responses got projected to the edges of the manifold,
whereas more experienced participants’ (trainees and consul-
tants) fNIRS responses accumulated in the conceptual centre
of the manifold. The graphs were validated against mixed
effect models (with regressors encoding group variances) and
psychophysiological interaction (PPI). Since IFM analysis may
contain infinite graphs, they visualised the FC with IFM graphs
by thresholding them to obtain maximum similarity of Jaccard
Index(JI). The maximum JI values reported with group level
analysis are 0.89 ± 0.01 and those with PPI are 0.83 ± 0.07.

The advantage of IFM approach is that an explicit analytical
expression is obtained that can be used to quantitatively study
the group based differences, as in the case of participants
with varying level of expertise for certain motor skill. In
addition, the IFM approach can facilitate fNIRS data analysis
in hyper-scanning studies, i.e. blue, reading neuroimaging data
from more than one person at a given time. However, it is a
complimentary analysis for measuring FC since the graph of
FC measures is selected by thresholding it against established
group level models to obtain maximum values of JI.
d) RepL with EEG using EEGNet

In this section, we review the works that learn representa-
tions of input data with multiple levels of abstraction, using
CNNs for brain-computer interface (BCI) applications. The
aim of BCI is to translate brain signals into control signals for
a computer (or device) to perform the desired action [50]. The
advancements in BCI have enabled people with neuromuscular
disorders to restore or replace some of their motor functions
such as limb movements [51]. For a successful BCI, a user
typically has to undergo training for generating brain signals
that can encode their intention for communicating with the
connected device. Likewise, an AI technique powering BCI
also needs to be trained to decode the intention based brain
signals, from the user, to command signals for successful
control of the device.

The relevance of BCI for DCN studies come from gaining
insights into the neural reuse of already evolved cortical cir-
cuits for performing a given function such as limb movement.
Hence this re-learning of a user to control their limb via BCI
instead of normal output pathways of peripheral nerves and
muscles would be a key mechanism for successful BCI. In
this regard, the decoding of the composition of the ‘control’
signal, based on lower level features using multiple processing
layers of CNN, can have profound implications for shedding
light on the consequences of neural commitment (perceptual
narrowing) for defining neural reuse. Consequently, the CNNs
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powering BCI can shed light on the neural reuse and percep-
tual narrowing to perform BCI.

In the following subsections, we review the most promising
studies for both EEG-based [52] and fNIRS-based [53] BCI
applications.

In general, EEG-based BCI paradigms can be categorised
as 1) event-related potential (ERP) and 2) oscillation based
BCI paradigms. The classic ERP based brain-computer in-
terface (BCIs) aim to recognise a relatively high amplitude
characterised with low frequency in the EEG signal evoked in
response to, and time-locked with, an external event/stimulus.
In contrast, the oscillation based BCI paradigms make use
of the signal power pertaining to specific frequency bands
for classification. A general-purpose architecture for CNN
developed for the classification of EEG-based BCI paradigms,
called EEGNet, is proposed by Lawhern et al. [52]. The
strength of the EEGNet lies in its successful classification
for both even-related and oscillatory BCIs, as validated in the
study over 4 different BCI paradigms: 3 ERP-based BCI and
1 oscillatory-based BCI.

The proposed architecture of EEGNet is illustrated in Fig.
4. In reference to Fig. 4, EEGNet undertakes the following
convolutions to learn respective lower level features from the
input EEG data:

(i) C1: Temporal convolution to learn frequency filters.
(ii) C2: Depth-wise convolution to learn frequency-specific

spatial filters (i.e., a specific spatial filter for each fre-
quency filter).

(iii) C3: Separable convolution to optimally aggregate the
features maps together.

Since EEGNet is tested on 4 different EEG datasets, Ch
is used to denote the number of electrodes and T represents
the time samples for a particular dataset. The number of
hyperparameters, per BCI paradigm for a total of 4 paradigms
investigated (P1-P4), to be learnt by EEGNet with 4 temporal
filters and 2 spatial filters per temporal filter, are: [P1: 1066,
P2: 1082, P3: 1098, and P4: 796]. In general, the performance
of EEGNet was superior for ERP-based BCI paradigms in
comparison to oscillatory-based BCI with an average of ∼ 80%
classification accuracy across the 4 paradigms.

In an attempt to validate that their proposed EEGNet model
learning is based on relevant features depicting brain activity,
the authors investigated three different approaches for enabling
feature explainability:

(i) Hidden unit activations: This was done after depth wise
convolution: i.e., C2 in Fig. 4 sheds light on the spatial
localisation of the activations corresponding to a partic-
ular frequency.

(ii) Filter weights: The visualisation of filter weights was
possible because of EEGNets architecture that limits the
connectivity between two convolution layers: i.e., direct
visualisation of the narrow band filter frequency filters
weight for C1, and the frequency-specific spatial filter
weights for C2 in Fig. 4 sheds light on the relevant
frequency components, and frequency specific spatial
localisation.

(iii) Feature relevance: The relevance of individual features
for classification performance of EEGNet was calculated
on a per trial basis using DeepLIFT algorithm.

The validity of the features, on whose basis is the inference
mechanism learnt, is of significance to establish the robustness
of the CNN architecture. However, the almost ∼ 950 learnt
hyperparameters are not explainable since a given optimised
value of a hyperparameter can not be matched to a particular
representation of brain activity. In essence, the optimal values
of the hyperparameters of EEGNet are a filter that can not
shed light on the interconnections or EC of cortical regions.
e) RepL with fNIRS using CNN

The classic analysis paradigms for fNIRS signals are based
on the statistical features most representative of the underlying
activity. For representation learning on fNIRS signals using
CNNs, the fNIRS signals are first transformed to equivalent
image time-frequency representations known as spectrograms.

In the work by Janani et al. [53] the authors investigated
the possibility of classification of four different motor imagery
tasks, i.e., participants imagined moving their limbs instead of
physically moving their limbs, using CNNs. More specifically,
the four different motor imagery tasks were: right- and left-
fist clenching, right- and left-foot tapping. The fNIRS channels
were placed on top of the left and right hemispheres to record
brain activity from respective cortical regions.

The spectrogram method was used to transform the fNIRS
signal into a time-frequency image. The architecture of the
CNN feature extraction stage had two convolution (C) layers
with 1 pooling (P) layer in between the following sizes- C1:
3×23×16; P: 2×12×16 and C2: 3×3×32. The fully connected
layer, had 288 nodes which connected through hidden layers,
classified the input fNIRS image into 4 motor imagery tasks.

The average classification accuracy obtained over all four
tasks was 72.35%. Although the CNN preformed the best
amongst other standard AI methods (SVM and multi-layer
perceptron), the classification accuracy was not at par with
the usual high performing CNNs. The modest performance
of CNN could be attributed to the large input fNIRS image
dimensions (660×22).
f) MVPA with EEG using SVM

The MVM for EEG signals can be built using ERPs, wavelet
coefficients or using component analysis. For ERPs, taking
the average is beneficial for reducing some noise though
single ERPs are more representative. In addition, if the MVPA
investigation with respect to the cortical regions of the brain is
critical, then source localisation of the electrodes is important.

A toolbox that has been designed in particular to make
the MVPA more accessible is the Amsterdam Decoding and
Modeling Toolbox (ADAM) [54]. It takes as input EEG data
in standard formats of FileldTrip or EEGLAB and is able to
pre-process i.e., increase signal to noise ratio, remove motion
artefacts. The first level MVPA can compute a performance
metric, whereas group level MVPA can compute statistical
significance for patterns.

A successful application of MVPA with EEG data for the
detection of a face in the wild (natural settings) is done by
Cauchoix et al. [55]. The stimulus images were grayscale
photographs of human faces presented in their natural contexts.
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Fig. 4: A schematic of the EEGNet [52] architecture that gave the best classification results over 4 different brain computer
interface (BCI) EEG based datasets. (a) The first stage consists of a series of convolutional (C) and pooling (P) layers of
varying dimensions where F1 and F2 denote respective filter sizes, Ch is the number of electrode channels and T stands for
the number of time points. D represents the number of spatial filters. F1 is a temporal filter, whereas F2 is a pointwise filter.
A feature map is constructed from the input matrix by convoluting it with a filter (or kernel). By using different filters on the
same input, different features from the input image can be detected such as an edge. To account for nonlinearities, the feature
map is then passed through an activation function. The pooling layer is used to merge semantically similar features found
from convolution layers into one. The most common pooling function used is the max pooling but in this study [52] average
pooling is used. (b) The feature set thus computed, through convolution and pooling layers, is then flattened and input to a
fully connected layer (a neural network). The softmax layer, which is also an activation function, is the last layer that finally
predicts the label for the class.

After pre-processing the EEG signals, ERPs were computed
separately for correct human face target trials and correct
animal face non-target trials. For face processing in adult EEG
data, MVPA has been successfully used for face detection
in wild settings for ERPs: P100 (positive potential observed
after around 100msec of stimulus presentation) at four bilateral
occipital electrodes (O1, O2, PO3, and PO4) and for the N170,
(negative potential observed after around 170msec of stimulus
presentation) at four right hemisphere occipitotemporal elec-
trodes (PO10, PO8, P8, and TP8).

Their MVPA results with SVM achieved a classification
accuracy of 94.8%. In addition, based on their results, they
suggest that neural dynamics of face detection could be
readout very early, starting ∼95 ms following stimulus onset.

Although the above reviewed works involving SVM, i.e.
Moezzi et al. [46] (section III-A1(a)) and Cauchoix et al. [55]
(section III-A1(f)) are non-explainable methods, other works
involving SVMs in particular have investigated gaining an
insight into the inference mechanism by using logic program-
ming [56], and decision trees [57]. Given the aforementioned
limitations of non-explainable AI methods reviewed to inform
the underlying brain mechanisms, we review the XAI methods
in the next section.

2) XAI Methods

In this section, we review the XAI methods, i.e., AI methods
whose inference mechanism can be explained in terms of the
brain activity patterns. In addition, the insights obtained owing
to the explainability of the applied XAI method for the given
task are also investigated.

a) EC with fNIRS using Effective Fuzzy Cognitive Maps
(EFCMs)

An fNIRS study that estimated EC amongst fNIRS channels
(corresponding anatomical regions in the cortex) based on
fuzzy cognitive maps (FCMs) is proposed by Kiani et al.
[58]. A FCM is a cognitive mapping technique based on graph
theory, with a formal mathematical definition given as follows
in (1).

Cj(t+1) = f(
N

∑
i=1

eijCi(t)) (1)

where N is the number of concepts (or fNIRS channels) in
a given system, Cj(t) is the value of a given concept Cj at
iteration t, eij are the fuzzy weights or EC that concept Ci

exerts on concept Cj and f is typically a sigmoid function
that scales the weights to [-1,1] for comparative analysis such
that a value of 1 means fully interconnected, a value of -1
means fully interconnected in the opposite direction, a value
of 0 means disconnected, and a value between 0 and 1 (or -1)
means interconnected to a certain extent. The optimal values
of EC (eij) are typically found using an evolutionary algorithm
such as Genetic algorithm (GA) (GA has also been used in
the aforementioned study [58]).

The error between the estimated signal and real signal using
the learnt EC weights by EFCM is computed using eq (2)

error =
T

∑
t

N

∑
i

∣Ci(t) − Ĉi(t)∣ (2)

The proposed FCM in Kiani et al. [58] is an enhanced FCM,
called effective FCM (EFCM), that optimises the strength
(scalar magnitude without direction) and direction separately,



10

1615
14

13

12

11

10
9 8 7

6

5

4

3

2
1 1615

14

13

12

11

10
9 8 7

6

5

4

3

2
1 1615

14

13

12

11

10
9 8 7

6

5

4

3

2
1

(a) oxyHb EFCM NVs (b) deoxyHb EFCM NVs (c) EFCM NVs

1615
14

13

12

11

10
9 8 7

6

5

4

3

2
1 1615

14

13

12

11

10
9 8 7

6

5

4

3

2
1 1615

14

13

12

11

10
9 8 7

6

5

4

3

2
1

(d) oxyHb EFCM TNs (e) deoxyHb EFCM TNs (f) EFCM TNs

1615
14

13

12

11

10
9 8 7

6

5

4

3

2
1 1615

14

13

12

11

10
9 8 7

6

5

4

3

2
1 1615

14

13

12

11

10
9 8 7

6

5

4

3

2
1

(g) oxyHb EFCM EXs (h) deoxyHb EFCM EXs (i) EFCM EXs

Fig. 5: (a) The Effective Connectivity (EC) networks, as
delineated by the work of Kiani et al. [58] for oxyHb
and deoxyHb fNIRS signals recorded from prefrontal cortex
(PFC), denoted in red, and motor cortex (MC), denoted in blue,
of surgeons with varying levels of expertise in performing
a complex visual-spatial task (more specifically laparoscopic
surgery(LS)). The expertise level of the participating subjects
was categorised into three levels of Novices (NVs), Trainees
(TNs), and Experts (EXs). The aim of the study was to
discern the difference in EC networks formed with varying
levels of proficiency for carrying out a task that requires
active planning and visual-motor coordination. A green line
signifies the presence of a positive (reinforcement) EC between
the connecting cortical regions and the presence of a black
line denotes a negative (weaken) EC between the connecting
cortical regions.

rendering the EFCM with more degrees of freedom to find the
optimum values of EC i.e., eij in (1). In addition, they also
propose tuning of the transformation (sigmoid) function, f in
(1), to optimise how fast the non-normalised fuzzy degrees
of relationship are squeezed into the normalised range for the
fuzzy degrees of relationship.

They applied their proposed EFCM on a neuroergonomics
study in which brain activity of subjects, with three varying
levels of expertise in performing a surgical task, was recorded
using fNIRS channel placed on the prefrontal cortex (PFC) and
motor cortex (MC). The EC networks found using EFCM are
shown in Fig. 5. They reported an error of 120.7, as defined
in (2), averaged for all three levels of expertise in regressing
the EC.

The EFCMs propose a partial explainable model in terms

of estimating the EC as fuzzy weights (i.e., eij) between its
concepts (fNIRS channels) which can be readily mapped to
anatomical locations in the brain. In the original study of
EFCMs [58] EC was estimated separately for subjects with
varying levels of expertise, as shown in Fig. 5. Hence the
derived EC could shed light on how the cortical networks
differ in their influence on each other to subserve the complex
visual-motor task on skills acquisition. In this regard EFCMs,
when applied to DCN studies for estimating EC, can shed light
on how developing cortical networks change in terms of their
influence (EC) on account of specialisation and neural reuse
processes performing a certain task.

In addition to estimating EC with statistical significance,
EFCM work [58] also demonstrated the prowess to analyse the
difference between estimating EC from oxyHb and deoxyHb
dimensions of fNIRS signals for representing the EC in the
cortical networks. Although it remains to be established which
dimension of fNIRS is more representative for a certain task
or specialisation level, they proposed that EC estimated using
deoxyHb is more representative of the underlying EC as an
individual gains experience in a certain motor task.
b) RepL with EEG using independent component analysis and
Fuzzy Neural Networks (ICA-FNNs)

In the work by Lin et al. [59], the cognitive state of
individuals while driving in a virtual-reality based driving
environment, is measured using an EEG-based XAI method. In
particular, their adaptive method for recognition of drowsiness
of an individual is based on a combination of independent
component analysis (ICA) of the EEG signals, and fuzzy
neural networks (FNNs) called ICA-FNN.

The significance of trying to decode the cognition state of
alertness of an individual, based on the correlation between the
information obtained from their brain signals, i.e., power spec-
tra of ICA components of EEG signals, and the individual’s
driving performance, i.e., the difference between the centre
of the vehicle and the cruising lane, is critical in alerting
the driver before a potential car accident happens. This is of
relevance to shed light on the brain development processes, as
ICA-FNN can potentially be applied on infants’ brain data to
decode their cognitive states as defined by the (un)successful
execution of the task at hand.

The ICA-FNN architecture is defined over five layers, as
shown in Fig. 6. Taken together, the fuzzy inference system
of ICA-FNN takes the following form as shown in (3):

Rule ∶ IF antecedents THEN consequent(s)
Rule i ∶ IF x1 is Ai

1 ...and xj is Ai
j ...and xn is Ai

n

THEN yi is m0i + a1ix1 + ... + ajixj + ... + anixn

(3)

where i is the rule number and [x1, ..., xj , ..., xn]
are inputs, with conceptual labels defining the inputs as
[Ai

1, ...,A
i
j , ...,A

i
n] correspondingly becoming the antecedent

part of the rule i. The centre of a symmetric function is m0i,
yi is the consequent set, aji is a consequent parameter for the
jth antecedent of the ith rule.

The antecedent part of the rules are latent variables obtained
from ICA analysis of the EEG signals. Although the inference
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Fig. 6: The architecture of ICA-FNN by Lin et al. [59] consists
of five layers. The second layer transforms the inputs x1 to xn,
obtained from the input layer 1, to latent variables computed
using ICA on the input data. Each node in layer 3 is a rule (R1

to Rn), and calculates the antecedent match by computing the
firing strength of each rule. Layer 4 is the consequent layer
with defuzzification performed in layer 5 where a crisp output
is produced.

mechanism is expressible in terms of the rules acquired, see eq.
(3), the inputs are abstract features derived from EEG signals.
In this regard, the rules can not shed light on the underlying
cortical networks formed owing to the non-explainability of
the abstract antecedents of the rules.

In addition to the limited explainability of the rules obtained,
the rules are also different across the subjects. This is because
of the adaptive feature selection mechanism based on ICA;
hence, the rules obtained can not be generalised across the
subjects. Moreover, each subject would also need to undergo
the training phase separately to tune the hyperparameters using
the backpropagation algorithm, to learn the cognitive states of
each individual. In this way, the inter-subject variabilities of
cognition states are largely accounted for and yield improved
performance for the recognition of drowsiness/alertness. They
reported a remarkable average accuracy of 98.2 ± 1.0 % over
five subjects.

The rules are also learnt on-line, i.e., during the training
phase for each subject. By learning the rules on-line the
inter-subject variabilities are accounted for. This also helps
for better recognition of drowsiness since ICA-FNN would
remember the inference mechanism is learnt for each subject
to better decode that particular subject’s level of drowsiness.
Also, for a particular subject 2, they reported the acquired
correlation between the abstract features learnt and the state of
drowsiness of subject 2 as 0.93 and 0.88. Their investigations
also concluded that drowsiness related regions are generally
found to be in parietal and occipital lobes.

For the application of ICA-FNN in DCN studies, the on-line

learning of the hyperparameters specific to each subject would
need to be modified, based on the task at hand, since infants
will not be able to provide feedback about their cognition state.
In addition, to address the inter- and intra-subject variabilities,
type-2 fuzzy frameworks can be utilised as explored in these
works [60, 61]. Similarly, EFCMs estimated values of EC can
be mapped generally to the specialisation and neural reuse of
the DCN processes, however not much insight can be gained
about the activation(s) of the individual cortical regions. This
is mainly because of how EFCMs seek to find the optimal
values of the EC, by trying to minimise the error between
the estimated and the actual values of the fNIRS signals with
the help of GA. Hence, not much could be inferred about
which part of the cortex is, for example, more active from the
optimised EC values.

In the next section, we review some of the AI methods as
applied to DCN studies.

B. AI in Developmental Cognitive Neuroscience

The de-facto standard for analysis of DCN studies is univari-
ate analysis based on simple statistical tests, where the cortical
regions most active in response to the presented stimulus is
recognised, i.e., it is an activation based analysis. There is
also a tendency of translating models used in adult research
to DCN; however, this entails making some assumptions. In
contrast, very few DCN studies have focused on decoding the
multivariate patterns in brain activity of infants in response to
the presented stimuli (such as [62] which is a correlation based
MVPA). In fact, there is an evident scarcity for undertaking
AI methods in DCN research.

In this subsection, we review the non-explainable and ex-
plainable AI methods as applied to DCN studies for conduct-
ing MVPA.

1) Non-Explainable AI Method

(a) MVPA with EEG using SVM
In the study by Bayet et al. [63], time resolved EEG based
MVPA is conducted using a linear SVM. Infants aged 12 to
15 months participated in the study. The aim of the study was
to investigate whether neural representations in the adult brain
are different from the developing brain for the processing of
visual stimuli (animals vs human body parts). The group-wise
classification results of the SVM based MVPA was able to
successfully decode between infants’ and adults’ brain activa-
tion patterns in response to the presented stimuli. However,
infant multivariate representations didn’t linearly separate for
animal and body images.

The study was able to establish that neural representation for
visual information processing, of animals vs body parts differ
significantly between infants and adults. These findings were
significant by suggesting that the cortical networks undergo
the processes of localisation and specialisation to process the
presented visual stimulus information. However, the study
could not shed light on what cortical networks were activated
for adults, and likewise, for infants, that could explain the
underlying brain mechanism correspondingly. This is mainly
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because of the non-explainable inference mechanism of SVM
as discussed previously in III-A1.
(b) MVPA with fNIRS using correlation
In contrast to EEG’s MVPA analysis (which is temporally
driven), an fNIRS based MVPA is aimed at spatial investi-
gations into the cortical regions’ activations encoded in the
MVM. A hypothetical construction of a MVM using six fNIRS
signals reading from six different cortical regions is depicted in
Fig. 7 (a) - (b). The work by Emberson et al. [62] decoded the
brain responses in 19 six-months-old infants’ fNIRS signals
in response to auditory and visual stimuli. They decoded the
signals by undertaking a MVPA driven by correlation and
reported an average classification accuracy of 66.67% for trial-
level decoding.

The significance of their work lies in usage of MVPA
that improved the decoding sensitivity in comparison to their
previous work that used univariate methods [64]. A feature
significance analysis was also undertaken to determine which
features (fNIRS channels) are most significant for recognising
the fNIRS signals in response to visual and auditory stimuli.
Their results indicated channel 1 (occipital cortex), channel
3 (occipital cortex), and channel 8 (prefrontal cortex) to be
the most critical channels for decoding between visual and
auditory stimuli.

The identification of fNIRS channels and their correspond-
ing anatomical locations sheds light on the localised acti-
vation of the cortex as delineated by the IS framework. In
addition, the improved sensitivity of MVPA on account of
analysing more than one variable (fNIRS channels’ activity)
rather than univariate analysis further corroborates that cortical
networks (interaction between multiple cortical regions) are
formed for the processing of perceptual stimuli. In this sense,
the correlation based MVPA is able to implicitly imply the
formation of cortical networks. However, what exactly entails
the cortical networks is unknown because the presence and
type of interaction between the fNIRS channels is unrevealed
by the correlation based MVPA.

Motivated from the success of the correlation based MVPA
by Emberson [62] and to overcome its limitation of partial
explainability, we designed an explainable MVPA (xMVPA)
which is reviewed next.

2) XAI Method: MVPA with fNIRS using eXplainable MVPA
(xMVPA)

In order to retain the brain activity patterns in MVM during
the learning of the classification mechanism of a given ML
algorithm to drive MVPA, a previous work from our group
[65] has explored using Fuzzy Logic to power MVPA, called
eXplainable MVPA (xMVPA). The Fuzzy Logic System (FLS)
is unique in its ability to compute with words (CWW) as well
as account for the uncertainty in the input data by assigning
a membership grade µ in the range [0,1] to each input value
x.

In the work [65] an interval type-2 fuzzy logic system (IT2-
FLS) [66] is used for powering the MVPA to analyse the
brain activity patterns of six-month-old infants in response to
sensory inputs. The MVM, constructed from fNIRS channels

of interest on the occipital (associated with visual process-
ing), temporal (associated with auditory processing), and PFC
(associated with thinking and planning), is first converted
into a conceptual linguistic label (CoL) MVM based on the
definition of the membership functions (MFs) of the CoLs, as
illustrated in Fig. 7 (c) - (d). A mathematical definition of IT2
membership functions is given in eq. (4).

Ã = {(x,µ,1)∣∀x ∈X,

∀µ ∈ [µÃ(x), µÃ(x)] ⊆ [0,1]}
(4)

where µÃ represent the MF of interval type-2 fuzzy set Ã
defined over input x.

The CoL MVM is then fed to an evolutionary algorithm
(such as GA) to find optimal patterns in the CoL MVM (train
dataset) such that maximum classification accuracy can be
obtained on the test dataset of the CoL MVM ( Fig. 7 (e)).
The discerned patterns by the xMVPA are able to shed light
on the activations and interconnections of the activated regions
in the cortex in response to the presented stimuli. A general
nomenclature of a pattern discerned by xMVPA is given in
eq. (5).

Pattern Pm ∶ IF x1 is Aq1 AND ...AND xn is Aqn

THEN class is Cj with PWm

(5)

where xi are the crisp brain activity values for the variable
i (fNIRS channel), Ai is the antecedent set for the ith variable
with a total of n variables and j ∈ J number of output
classes. The class predicted with the pattern is Cj with the
pattern weight given by PWm. The pattern weight, PWm, is
a measure of the relevance of a given pattern as deemed by
xMVPA based on its confidence, c, and support, s, values. The
confidence can be viewed as the conditional probability that,
given the antecedent(s) of Pm, how likely the predicted class
will be Cj , whereas support measures the coverage (based on
the number of matching data instances) of training dataset by
the pattern Pm. The upper and lower PWm are defined as
outlined in eq. (6).

PWm =cm ∗ sm
PWm =cm ∗ sm

(6)

where cm and sm are confidence and support for the pattern
Pm which can be calculated as outlined in [67].

The measurement of PW for each pattern enables a com-
parison to evaluate the efficacy of each learnt pattern for the
given classification task. In the study by Andreu-Perez et al.
[65] a total of six patterns were identified for the processing
of sensory stimuli that were able to recognise brain activity
patterns of six-month-old infants, for the visual and auditory
stimuli, encoded in CoL MVM that obtained a classification
accuracy of 67.69%. In [65], the patterns as well as the MF
definitions (start, height and endpoints) were learnt using GA
with a total number of hyperparameters to be learnt equal to
300.

The xMVPA delineated patterns for visual processing that
shed light on an occipital-temporal network as a core system
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(a) 6 fNIRS signals.

Trial No R1 R2 R3 R4 R5 R6 Stimulus
1 −4.10 ∗ 10−6 −1.74 ∗ 10−5 −15.05 ∗ 10−5 1.19 ∗ 10−5 −4.90 ∗ 10−6 −4.91 ∗ 10−6 ,
2 −1.01 ∗ 10−5 6.56 ∗ 10−5 3.48 ∗ 10−5 −3.50 ∗ 10−6 8.00 ∗ 10−7 −4.65 ∗ 10−6 ♪
3 2.13 ∗ 10−5 2.79 ∗ 10−5 −1.50 ∗ 10−5 −3.00 ∗ 10−7 −1.72 ∗ 10−5 0.90 ∗ 10−6 ♪
4 2.49 ∗ 10−5 −3.05 ∗ 10−5 −16.97 ∗ 10−5 −4.93 ∗ 10−6 1.30 ∗ 10−6 −1.90 ∗ 10−6 ,
5 4.77 ∗ 10−5 1.27 ∗ 10−5 −3.32 ∗ 10−5 −1.52 ∗ 10−5 −5.84 ∗ 10−5 6.90 ∗ 10−6 ,
6 −6.68 ∗ 10−5 −3.14 ∗ 10−5 −2.92 ∗ 10−5 −8.90 ∗ 10−6 −4.00 ∗ 10−7 −0.90 ∗ 10−5 ♪
7 −6.22 ∗ 10−5 5.89 ∗ 10−5 −15.35 ∗ 10−5 2.04 ∗ 10−5 −6.60 ∗ 10−6 −5.50 ∗ 10−6 ,
8 3.04 ∗ 10−5 2.07 ∗ 10−5 −4.33 ∗ 10−5 1.77 ∗ 10−5 5.00 ∗ 10−6 −7.97 ∗ 10−6 ♪
9 3.46 ∗ 10−5 −5.83 ∗ 10−5 −9.39 ∗ 10−5 1.05 ∗ 10−5 −8.80 ∗ 10−6 −2.90 ∗ 10−4 ,
10 4.40 ∗ 10−6 5.27 ∗ 10−5 6.90 ∗ 10−6 1.00 ∗ 10−7 −6.00 ∗ 10−7 −4.61 ∗ 10−6 ♪

(b) Numerical Multivariate Matrix (MVM).
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Fig. 7: (a) Six hypothetical fNIRS signals (b) An illustrative multivariate matrix (MVM) of brain activity from 6 different
regions (R) for a total of 10 trials. The rows are trials, whereas the columns are the different regions from where brain activity
is measured.(c) An illustrative plot to exemplify how conceptual labels (CoLs) can be used to represent brain activity. Brain
regions can be expressed with the CoLs Inactive, Active and Very Active with approximate degree of membership values, µ.
The derived ambiguity in the degree of membership ensures that uncertainty in the numeric data (or neuroimaging reading
from fNIRS) is well retained upon transformation into a conceptual label (CoL). (d) The corresponding CoL MVM. Here,
the colours denote the level of activity in different brain regions in response to the presented stimuli. For example, violet
representing high activity, cyan low activity, and white no activity. (e) The CoL MVM is given as an input to xMVPA which
computes the classification accuracy of a given set of patterns on the given data by computing with words (CWW) using
interval type-2 fuzzy logic system (IT2-FLS). The optimal set of patterns is found using an evolutionary algorithm (a genetic
algorithm is used in the study). (f) A model for visual and auditory processing in six-month-old infants, based on the six
patterns (P1 - P6) revealed by the xMVPA inference mechanism [65]. The colour of the channel’s (Ch) octagon is based on
its activity level: Inactive (white), Active (cyan), and Very Active (violet).
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that undertakes the primary processing of facial features, and
of the PFC as an extended system that processes the emotion
associated with the visual stimulus, as shown in Fig. 7 (f). The
proposed model for auditory information processing consists
of the temporal cortex as a core system for processing non-
speech auditory stimuli, and of the PFC as an extended
system that processes the emotion associated with the auditory
stimulus, also shown in Fig. 7 (f).

IV. DISCUSSION

The implications for a greater insight into the developing
brain mechanisms, both structural (physical) and functional
(cognitive), are profound. According to a study in 2007, one
in every four people is affected by a mental illness either
directly or indirectly [74]. In this regard, the study of a
developing brain can inform us about typical and atypical
brain developmental trajectories which may in turn facilitate
the early identification of and intervention for brain disorders
during childhood. However, at present, the DCN research has
limited translation into shaping brain development because
of typically small datasets (owing mostly to non-cooperating
infant behaviour), the non-availability of a-priori information
about the underlying mechanisms in a developing brain, as
well as a lack of explainability of the AI techniques applied
for the analysis of infant’s neuroimaging data.

The neuroimaging modalities of fNIRS and EEG are con-
sidered to be the most ‘infant friendly’, and have reached
a pinnacle in their own right, where real time neuronal
activity can be recorded with EEG, or can be localised to
a corresponding anatomical location within 2cm using fNIRS.
To benefit from their complimentary high resolutions, more
recent studies have undertaken multimodal (fNIRS-EEG) brain
activity analysis to gain greater insights into functional brain
development. Likewise the improvement in AI methods, in
particular, the revolution of ANNs into DNNs and the re-
markable feature learning ability of CNNs with hierarchical
networks has led to breakthroughs in many challenging image
classification, and speech recognition problems [43]. However,
despite the advent of advanced neuroimaging technologies and
the availability of sophisticated CNNs, the DCN research has
not benefited as much from the aforementioned technological
and computational advances in comparison to other complex
fields (such as image classification).

To this end, to bridge the gap between the information
recorded by the neuroimaging technologies and the insights
acquired from the analysis of the neuroimaging data, a review
of the most prevalent AI techniques in different analysis
paradigms is undertaken in the present work. In particular, the
AI methods are investigated for their similarity with theoretical
frameworks for DCN including Interactive specialisation (IS)
[3] and the neuroconstructivist approach [28] (summarised in
section II). The main processes in brain development include:
1) localisation 2) specialisation 3) parcellation and 4) neural
reuse; and if an AI technique’s learning mechanism can shed
light on these DCN processes, it can then inform us about the
underlying mechanisms of a developing brain in line with the
aforementioned DCN processes.

In this regard, the inherent limitation of most AI methods
to not be able to explain what was observed in terms of brain
activity patterns, during learning of their inference mechanism,
renders them ill-suited to shed light on the DCN processes
despite obtaining remarkable classification performance. A
comparison of the strength and limitations of the AI methods,
reviewed in this work, is summarised in Table I. Indeed, the
bottleneck is not the classification prowess of the reviewed
AI methods owing to their advanced learning techniques
to acquire abstract representations from the input data. The
limitation of AI methods, as applied to DCN studies, is that
without explainability of the learnt inference mechanism, not
much insight can be gained on the activated cortical regions
for a given task. Of the AI methods reviewed, the only XAI
method in DCN, to the best of the author’s knowledge, is fuzzy
logic based xMVPA [65].

The capability of fuzzy logic in CWW (computing with
words), and modelling uncertainty are particularly well-suited
for neuroimaging data which is characterised by inter-subject
variabilities. The xMVPA was able to discern patterns in the
neural underpinnings of audio and visual processing in six-
month-old infants. xMVPA is explainable since it identifies
the patterns in the input data prototypical to the presented
stimuli. The classification accuracy reflects the validity of the
discerned patterns to represent the true brain activity patterns
in correspondence to each stimulus. The learnt patterns are
also explainable as they inform about the activations and
interactions of the cortical areas.

The discerned patterns for the visual and auditory process-
ing are illustrated in Fig. 7 (f). The cortical network formed
for visual processing has a hierarchical structure with the
processing of raw data processed in the occipital cortex, and
the processed information is then passed to PFC where higher
level processing is done. This pattern is widely observed in
adult literature of visual processing [75], and verified the
patterns found by xMVPA for processing of a visual stimulus
in six-month-old infants. Based on the similarity of the cortical
network formed for the visual stimulus with those of adults,
the cortical network is identified as specialised.

In contrast, the cortical network formed for auditory pro-
cessing is hypothesised to be a non-specialised cortical net-
work. The authors [65] suggested the formed network to be
non-specialised based on the ‘inactive’ activation status of a
channel (Ch1) forming the link between the information path-
way from the temporal cortex to PFC. This non-specialised
network was hitherto unknown in DCN literature and was only
discerned because of the explainable attributes of the xMVPA.

Likewise, xMVPA can shed light on interactions and activa-
tions for time resolved brain activity. To investigate the process
of neural reuse, the patterns would need to be established
for different time points. In this regard, an analysis of the
interconnections that were present at a given time point and
how these interconnections rewired to acquire a new cognitive
or behavioural state at a later time point can be investigated
in line with the neural reuse process of functional brain
development.
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TABLE I: A comparison of different artificial intelligence (AI) methods used on adult(A) and infant(I) neuroimaging data for
Connectivity Analysis (CA), Representation Learning (RepL) and Multivariate Pattern Analysis (MVPA) with fNIRS and EEG
data. The strengths (S) and limitations (L) of the AI methods are summarised. For CA, separate AI methods most commonly
used with functional connectivity (FC), and effective connectivity (EC) are reported. The full name of the algorithms reviewed
are: Support Vector Machine (SVM), Random Forest (RF), 1Dimensional Convolutional Neural Network with Long Short
Term Memory (1DCNN-LSTM), Ridge Regression (RR), Integrated Functional Manifold (IFM), EEGNet based Convolutional
Neural Networks (EEGNet), Symbol-Concept Association Network (SCAN), Convolutional Neural Networks (CNN), Effective
Fuzzy Cognitive Maps (EFCM), Induced Type-2 Fuzzy Deep Brain Learning Network (IT2FDBN), Independent Component
Analysis based Fuzzy Neural Network (ICA-FNN) and eXplainable MVPA (xMVPA).

Analysis Paradigm Artificial Intelligence (AI) Methods STRENGTHS (S) and LIMITATIONS (L) Population
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CA with EEG

FC: SVM [46] [47], RF: [68]
S: Robust regression mechanism.

L: Limited spatial localisation.
A

EC: 1DCNN-LSTM [69]
S: Automated feature learning.

L: Dependency on large datasets.
A

CA with fNIRS

FC: RR [48]
S: Simple analytical model.

L: Results are dependent on regressors (β).
A

FC: IFM [49]
S: Groupwise exploration is possible.

L: Manifold assumption.
A

RepL with EEG
EEGNet (CNN) [52]

SCAN (CNN) [70]

S: Automated feature learning.

L: Dependency on large datasets.
A

RepL with fNIRS CNN [71] , [72], [53]
S: Automated feature learning.

L: Dependency on large datasets.
A

MVPA with EEG SVM [55] [63]
S: Robust classification mechanism.

L: Limited spatial localisation.
A + I

MVPA with fNIRS Correlation [62]

S: Better spatial localisation with infant level

and trial level decoding results.

L: Lack of insight into the interactions between

the important fNIRS channels.
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I

(X
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et
ho

ds CA with fNIRS EC: EFCM [58]
S: Learnt parameters are EC.

L: Performance non-scalable.
A

FNNs with EEG

IT2-FDBL [73]

S: The empirical model proposed mimics short term

memory of the brain.

L: Dependency on large datasets.

A

ICA-FNN [59]

S: Automatic feature selection with uncertainty

handled with fuzzy models.

L: The obtained rules are not comparable per se

because of online definition of linguistic labels.

A

MVPA with fNIRS xMVPA [65]
S: Brain activity patterns defined by CWW.

L: Linguistic variables are determined a priori.
I

V. CONCLUSION

Cognitive developmental delays and abnormalities are com-
monly associated with behavioural disorders that can become
challenging conditions to treat in adulthood (such as attention
deficit hyperactivity disorder, autism spectrum or bipolar dis-
orders) [76]. The application of AI for cognitive neuroscience
can extend novel ways of interrogating brain function by
maximizing neuroimaging data. This is of particular interest
for the study of developmental brains where the classical
assumptions of brain function for adults cannot serve as
guidance.

In this paper, the aim was to highlight the current gap in

DCN research due to non-explainable AI methods. Since there
is no insight obtained on the learnt classification mechanism
on the basis of brain activity patterns, this critically limits
the translation of DCN research to shape developing brain
trajectories despite acquiring statistically significant classifi-
cation results. To bridge the gap between DCN research and
the translation of their insight(s), we suggest that future DCN
research adopt a more explainable classification mechanism
using XAI methods such as xMVPA [65].

REFERENCES

[1] J. Stiles and T. L. Jernigan, “The basics of brain development,”
Neuropsychology review, vol. 20, pp. 327–48, 2010.



16

[2] S. Ackerman. “Discovering the Brain.” (1992), [Online]. Available:
https : / / www . ncbi . nlm . nih . gov / books / NBK234146/ (visited on
01/19/2021).

[3] M. H. Johnson, “Functional brain development in humans,” Nature
Reviews Neuroscience, vol. 2, pp. 475–483, 2001.

[4] Y. Munakata, B. J. Casey, and A. Diamond, “ Developmental cognitive
neuroscience: progress and potential,” Trends in Cognitive Sciences,
vol. 8, pp. 122–128, 3 2004.

[5] A. Karmiloff-Smith, “Development itself is the key to understand-
ing developmental disorders,” Trends in Cognitive Sciences, vol. 2,
pp. 389–398, 10 1998.

[6] M. H. Johnson, “Into the minds of babes,” Science, vol. 286, p. 247,
5438 1999.

[7] T. Wilcox and M. Biondi, “Fnirs in the developmental sciences,”
WIREs Cognitive Science, vol. 6, pp. 263–283, 2015.

[8] S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the Developing
Brain: The Past, Present and Future of Functional Near Infrared
Spectroscopy,” Neuroscience and Biobehavioural Reviews, vol. 34,
pp. 269–84, 2010.

[9] A. Dereymaeker et al., “Review of sleep-eeg in preterm and term
neonates,” Early Human Development, vol. 113, no. 1, pp. 87–103,
2017.

[10] P. Fransson et al., “Spontaneous Brain Activity in the Newborn Brain
During Natural Sleep—An fMRI Study in Infants Born at Full Term,”
Pediatric Research, vol. 66, pp. 301–305, 2009.

[11] A. Blasi et al., “Early specialization for voice and emotion processing
in the infant brain,” Current Biology, vol. 21, pp. 1220–1224, 14 2011.

[12] B. Deen, H. Richardson, D. Dilks, and et al., “Organization of high-
level visual cortex in human infants,” Nature Communications, vol. 8,
p. 13 995, 3 2017.

[13] C. T. Ellis, L. J. Skalaban, T. S. Yates, V. R. Bejjanki, N. I. Córdova1,
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