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Abstract
Based on a standard general equilibrium economy, we develop a framework for pricing 
European options where the risk aversion parameter is state dependent, and aggregate 
wealth and the underlying asset have a bivariate transformed-normal distribution. Our 
results show that the volatility and the skewness of the risk aversion parameter change 
the slope of the pricing kernel, and that, as the volatility of the risk aversion parameter 
increases, the (Black and Scholes) implied volatility shifts upwards but its shape remains 
the same, which implies that the volatility of the risk aversion parameter does not change 
the shape of the risk neutral distribution. Also, we demonstrate that the pricing kernel may 
become non-monotonic for high levels of volatility and low levels of skewness of the risk 
aversion parameter. An empirical example shows that the estimated volatility of the risk 
aversion parameter tends to be low in periods of high market volatility and vice-versa.

Keywords  State-dependent risk aversion · Random risk aversion · Non-monotonic pricing 
kernel · Transformed normal distribution

JEL Classification  G12 · G13 · G22

1  Introduction

Recent research suggests that the level of risk aversion of investors is not constant 
(Barseghyan et al. 2011; Guiso et al. 2018), possibly due to changing inflation rates, equity 
premium, long-term bond risk premia, and credit spread amongst others (Brandt and Wang 
2003; Danthine et al. 2004; Bekaert et al. 2010, 2019). Attempts to estimate the (implicit) 
level of risk aversion using the option markets suggest a non-constant level of risk aversion 
(Jackwerth 2000; Bliss and Panigirtzoglou 2004 amongst others). However, when it comes 
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to option pricing, the assumption that the risk aversion parameter is constant is still stand-
ard in the general equilibrium option pricing framework.1

In this paper we relax this assumption by deriving a general equilibrium European 
option pricing model where the risk aversion parameter (the curvature of the utility func-
tion) is stochastic.2 Thus, an investor faces uncertainty not only about the future payoff of a 
given security but also about the level of risk aversion.3 In this sense, our economy is simi-
lar to the ones proposed by Karni (1983), Karni et al. (1983), and Gordon and St-Amour 
(2000, 2004) amongst others.

Apart from a state dependent risk aversion assumption, the distributional assumptions 
employed here are very general, as we let wealth and the underlying asset have a joint 
transformed-normal distribution. The resulting option pricing formulae derived here do not 
depend on the expected values of wealth, the risk aversion parameter or the underlying 
asset—the formulae depend only on their volatilities and on the correlation between wealth 
and the underlying asset.

We show that, for a fixed level of the risk aversion parameter, the volatility and the 
skewness of the risk aversion parameter change the slope of the pricing kernel. Therefore, 
this result complements the one obtained by Gordon and St-Amour (2000), who show that 
the level of the risk aversion parameter changes the slope of the pricing kernel. We also 
show that a high level of volatility or a low level of skewness may result in a non-mono-
tonic pricing kernel.4

We provide examples to show that the level of volatility of the risk aversion parameter 
affects the level of implied volatility but not its shape. Hence, the volatility of the risk aver-
sion parameter does not change the shape of the risk neutral distribution. In addition, we 
provide an empirical example which shows that the estimated volatility of the risk aver-
sion parameter and the market volatility present a negative relationship. That is, in periods 
of high market volatility the estimated risk aversion volatility is low and vice-versa. Our 
results are consistent with the ones obtained by Bakshi and Madan (2006), and Bekaert 
et al. (2010, 2019), for instance. However, as our model depends on the volatility of the risk 
aversion parameter and not on its level, their results and ours are not directly comparable.

The remainder of this paper is organized as follows: in the next section the economy is 
introduced. The third section introduces the distributional assumptions and obtains a gen-
eral form for the pricing kernel. The fourth section obtains new option pricing models and 
provides a simple empirical application. Finally, the last section concludes.

1  It is clear that the assumption of a constant risk aversion contrasts with the findings of the papers men-
tioned at the beginning of the paragraph.
2  As Hildenbrand (1971, p. 414) points out “(...) if economic agents reveal at all a certain consistency of 
behavior, this consistency is at best of a probabilistic nature.”
3  Note that here the expression ‘uncertain risk aversion’ means that the risk aversion parameter is itself a 
random variable and should not be confused with the concept of Knightian uncertainty.
4  There is a large amount of studies that discuss the existence (or not) of non-monotonic pricing kernels. 
For a survey on this topic, see Cuesdeanu and Jackwerth (2018).
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2 � The basic set up

Suppose the representative investor maximises her future time t expected utility func-
tion of aggregate wealth, w, while her level of risk aversion is state dependent. The 
problem she faces can be written as

where E
i
 is the expectation of w over i outcomes, E

s
 is the expectation of occurrence of state 

s, and u(⋅) is the utility function.
Assuming the existence of a riskless asset with a rate of return r per period, the 

agent will invest in a combination of risky and riskless assets in order to maximise the 
expected utility of aggregate wealth so that, at equilibrium, the current price v0 of any 
given asset can be obtained according to the following equation

where

is defined as the pricing kernel, v0 and vi are the prices of a risky asset at time 0 and t 
respectively. It is important to highlight that one can price any asset in this economy by 
applying Eqs. (2) and (3), provided that the investor’s utility function and the distribution 
followed by the relevant random variables are specified. These are provided in the next 
section, where we discuss two different scenarios: one where the distribution of the risk 
aversion parameter is not specified whilst in the second scenario we let the risk aversion 
parameter have a transformed-normal distribution.

3 � The pricing kernel

In this section we obtain the pricing kernel and discuss the impact that the state-depend-
ent risk aversion parameter has on it. We start with the definition of a transformed-
normal distribution and then we discuss two specific cases.

Definition 1  (The transformed-normal distribution) A random variable x is said to have 
a transformed-normal distribution if x = h−1

x
(� + �z) , where hx(⋅) is a strictly monotonic 

differentiable function, z ∼ N(0, 1) , and � and � are the location and the scale parameters 
respectively.

The transformation is a technique for generating distributions with levels of skewness 
and kurtosis that differ from the normal distribution (see for instance Johnson 1949). 
The family of transformed-normal distributions was introduced to the option pricing 
literature by Camara (2003).
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Definition 2  (The distribution of aggregate wealth and the underlying asset) The time t 
aggregate wealth, w, and the underlying asset price, v, have a bivariate transformed-normal 
distribution with correlation parameter � . Their transformed-normal marginal densities 
are, respectively, hw(w) ∼ N

(
�w, �

2
w

)
 and hv(v) ∼ N

(
�v, �

2
v

)
 , where �w and �v are location 

parameters and �w and �v are scale parameters.

The transformed-normal distribution provides great flexibility in terms of the choice of 
distribution for the relevant random variables. Functions hw and hv need not be the same 
and the transformed-normal family include several types of distributions that have been 
used extensively in option pricing e.g. the log-normal distribution used by Black and 
Scholes (1973), the normal distribution used by Brennan (1979), the displaced log-normal 
distribution used by Rubinstein (1983), the inverse cosh-normal and the Su distributions 
used by Camara (2001, 2003), and the g-distribution used by Vitiello and Poon (2008) 
amongst others.

3.1 � When the distribution of the risk aversion parameter is not specified

As the distribution of the risk aversion parameter is not specified, we assume that there is a 
probability ps that state s will occur and that the risk aversion parameter will have a value 
of �s , as in Gordon and St-Amour (2000). The main result of this subsection is presented 
below.

Proposition 3  (The pricing kernel) Suppose that the representative investor has a mar-
ginal utility function of aggregate wealth of the following form

where �s is the level of risk aversion in state s, 𝜆 > 0 is a constant preference parameter, 
w is the wealth at time t, and hw(⋅) is a function of w, as per Definitions 1 and 2. Let ps be 
the probability of occurrence of state s, for s = 1,… ,N with 

∑
s ps = 1. Then, the pricing 

kernel in Eq. (3) is given by

Proof  See “Appendix”. 	�  ◻

The above proposition leads to the corollary below.

Corollary 4  If the investor’s risk aversion parameter is constant, �s = −� ∀s , and � = 1 
then Eq. (5) reduces to M∗(w) = exp

(
�shw(w) − �s�w − 0.5�2

s
�2
w

)
, which is the same pric-

ing kernel obtained by Camara (2003).

To guarantee non-satiation and risk-aversion, the results from Proposition  3 require, 
in general, that 𝛾s > 0 ∀s and that hw(⋅) is a strictly increasing monotonic differentiable 

(4)u�(w, s) = exp
[
−�s

(
hw(w) − ln �

)]
,

(5)M(w) =

∑
s ps exp

�
−�s

�
hw(w) − ln �

��
∑

s ps exp
�
�s ln � − �w�s + 0.5�2

s
�2
w

� .
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function.5 As that the denominator of Eq. (5) is a constant, any non-linearity in the pricing 
kernel is driven by the marginal utility function in Eq. (4).

It is possible to see from Eq. (4) that if hw(w) = w the investor will have an exponen-
tial marginal utility, u�(w, s) = ��s exp

(
−�sw

)
 . If hw(w) = ln (w) the investor will have a 

power marginal utility, u�(w) = ��sw−�s , which is consistent with the utility function used 
by Gordon and St-Amour (2000), given by u(w, s) = ��sw1−�s∕

(
1 − �s

)
. In this case, using 

the definition of the expected value of a log-normal random variable, the pricing kernel in 
Eq. (5) becomes

To illustrate the impact of � on the pricing kernel, assume that there are only three states 
of nature, i.e. s = 1, 2, 3 , and that �w = 0.9 , �w = 0.25 , ps = 1∕3 , and � = 1.5 . Also, let the 
mean, the standard deviation, and the skewness of the risk aversion parameter be �� , �� , 
and skew� respectively.

Figure 1 shows the pricing kernel in Eq. (6) for three different values of �� and keeping 
the mean 

(
�� = 1

)
 and the skewness 

(
skew� = 0

)
 of the risk aversion parameter constant.6 

The figure shows that changes in �� lead to a change in the slope of the pricing kernel and 

(6)M(w) =

∑
s ps�

�s exp
�
−�s lnw

�
∑

s ps�
�s exp

�
−�w�s + 0.5�2

s
�2
w

� .
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Fig. 1   The pricing kernel for different values of �� . The pricing kernel obtained from Eq. (6) for �� = 1 , 
skew� = 0 , �w = 0.9 , �w = 0.25 , � = 1.5 , ps = 1∕3 with s = 1, 2, 3 , and different values of ��

5  Note that Eq. (5) is similar to the one proposed by Camara (2003), but in his model he does not limit the 
function to be increasing. Hence, in his case, it is not possible to guarantee that the investor will be risk 
averse.
6  In this example, as h

w(w) = ln (w) , provided that 𝛾
s
> 0 ∀s , the pricing kernel is always monotonic 

decreasing in all states.
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that, considering the values of wealth given in the picture, the pricing kernel is a mono-
tonic decreasing function of wealth.

Of the three curves presented in Fig. 1, the pricing kernel with �� = 0.05 is closest to 
having a constant elasticity (see Franke et  al. 1999). As the expected value of the pric-
ing kernel must be equal to one, i.e., E[M(w) = 1] , one curve cannot dominate the other. 
When �� = 0.5 or �� = 0.8 , investors value extreme observations more than the case when 
�� = 0.05.

It is important to note, however, that for high values of �� the pricing kernel may 
become non-monotonic. This is driven by the fact that for high values of �� and w the 
probability-weighted marginal utility function becomes convex. Based on the values used 
in this example, in order to obtain a high �� some of the �s must be negative, which leads to 
a non-concave marginal utility function.

Figure 2 shows the pricing kernel for �� = 1 , �� = 0.8 , and different values of skew� . It 
can be seen that, just like �� , skewness changes the slope of the pricing kernel.7

3.2 � When the risk aversion parameter has a transformed‑normal distribution

If we make the additional assumptions that � has a transformed-normal distribution and 
that it is correlated to the states of nature, s, it is possible to explicitly incorporate the dis-
tributional parameters of � into the pricing kernel. The proposition below introduces such 
a case.

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68 2.7

w

0.9

0.91

0.92

0.93

0.94

0.95

0.96

M
(w

)

skew  = -0.35

skew  =  0

skew  =  0.35

Fig. 2   The pricing kernel for different values of skew� . The pricing kernel obtained from Eq. (6) for �� = 1 , 
�� = 0.8 , �w = 0.9 , �w = 0.25 , � = 1.5 , ps = 1∕3 with s = 1, 2, 3 , and different values of skew�

7  Not shown here is the fact that, for high levels of volatility, as skewness becomes more negative, the pric-
ing kernel becomes non-monotonic.
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Proposition 5  (The pricing kernel when � has a transformed-normal distribution). Sup-
pose that the representative investor has a marginal utility function of aggregate wealth of 
the following form

where 𝜆 > 0 is a constant preference parameter, h� (�) ∼ N
(
�� , �

2
�

)
 and hw(w) ∼ N

(
�w, �

2
w

)
 

are independent and are functions of the risk aversion parameter � and wealth w, respec-
tively. Then, the pricing kernel in Eq. (3) is given by

where fTN(⋅) is the transformed-normal density, 1 − 𝜎2
w
𝜎2
𝛾
> 0 , A = hw(w) − ln � , and 

B = �w − ln �.

Proof  See “Appendix”. 	�  ◻

Corollary 6  If the risk aversion parameter is constant, with �� = −� and � = 1 , then the 
pricing kernel in Eq. (8) collapses into M(w) = exp

(
−�hw(w) + ��w − 0.5�2�2

w

)
 , which is 

the same pricing kernel obtained by Camara (2003).

Similar to the previous section, to guarantee non-satiation and risk-aversion, the results 
from Proposition 5 require, in general, that h𝛾 (𝛾) > 0 and that hw(⋅) is a strictly increasing 
monotonic differentiable function. As an example, let w be log-normally distributed, i.e. 
hw = ln (w) as per Definition 2, and let � be normally distributed, h� (�) = �,8 with loca-
tion and scale parameters �� and �� respectively, and independent of wealth.9 Given these 
assumptions, the pricing kernel in Eq. (8) becomes

(7)u�(w, s) = exp
[
−h� (�)

(
hw(w) − ln �

)]
,

(8)

M(w) =
∫
�
exp

�
−h� (�)

�
hw(w) − ln �

��
fTN(�)d�

∫
�
∫
w
exp

�
−h� (�)

�
hw(w) − ln �

��
fTN(w)fTN(�)dwd�

,

=
�
1 − �2

w
�2
�

�1∕2

exp

⎡⎢⎢⎢⎣
1

2
�2
�
A2 − ��A +

1

2
�
1 − �2

w
�2
�

�
�
2��B − �2

�
B2 − �2

�
�2
w

�⎤⎥⎥⎥⎦
,

(9)

M(w) =
∫
�
�� exp (−� lnw)fN(�)d�

∫
�
∫
w
�� exp (−� lnw)fΛ(w)fN(�)dwd�

=

(
1 − �2

w
�2
�

)1∕2

exp
[
−�� (lnw − ln �) + 0.5�2

�
(lnw − ln �)2

]

exp

[(
2 − 2�2

w
�2
�

)−1(
�2
�

(
�w − ln �

)2
+ �2

�
�2
w
− 2��

(
�w − ln �

))] ,

8  Clearly, the assumption of a normally distributed � is questionable, as it may lead to a negative � (an 
investor with a negative risk aversion parameter is a risk seeker, a common behaviour amongst gamblers). 
However, the aim of the example is to show the model’s flexibility and that it can capture this type of 
behaviour.
9  The variables s and � are treated as exogenous.
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where fN(⋅) is the normal density function, fΛ(⋅) is the log-normal density function, and 
1 − 𝜎2

w
𝜎2
𝛾
> 0.

As w is not correlated to � , Eq. (9) does not have a correlation coefficient, but it con-
tains both the location and the scale parameter of � . For �� = 1 , �w = 0.9 , �w = 0.25 , and 
� = 1.5 , Fig. 3 shows that changing the value of �� leads to a change in the slope of the 
pricing kernel. As discussed in the previous subsection, the pricing kernel will become 
non-monotonic for high values of �� since, considering our distributional assumption, a 
high �� increases the probability of a negative �.10

In the next section we apply Proposition 5 to obtain a framework for the pricing of 
options and provide applications of this framework.

4 � Asset prices in equilibrium

Given the equilibrium relation in Eq. (2), and a non-satiated and risk-averse investor, the 
price at time 0 of an underlying asset with a terminal payoff v is given by the following 
market equilibrium relationship

1.5 2 2.5 3 3.5 4 4.5 5

w

0.4

0.6

0.8

1

1.2

1.4

1.6

M
(w

)
   0
 0.5
0.75

Fig. 3   The pricing kernel for different values of �� . The pricing kernel obtained from Eq. (9) with �� = 1 , 
�w = 0.9 , �w = 0.25 , � = 1.5 , and different values of ��

10  Note that, in this example, the non-monotonicity of the pricing kernel is due to �� only, as the skewness 
of � is zero by definition. Although it is not shown here, by keeping all variables constant and increasing the 
value of �� , the pricing kernel becomes monotonic. That is, as the expected value increases, the probability 
of a negative � decreases. This shows that with random risk aversion, the investor’s behaviour can switch 
between risk averse and risk seeker.
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where fTN(⋅, ⋅) is a bivariate transformed-normal density function. Similarly, the price at 
time 0 of a derivative with payoff �(v) is given by

As Camara (2003) and Heston (1993) point out, if the expectation in Eq. (10) is given 
in closed-form and if it can be expressed in terms of one of the distributional parameters, 
then it may be possible to replace the investor’s preference parameter and/or some of the 
distributional parameters in Eq. (11) with marketable securities.11

We demonstrate the applicability of our framework in the subsections below. The exam-
ples are based on standard assumptions used in discrete-time general equilibrium models 
(see Brennan 1979; Camara 2003), except that we allow the risk aversion parameter to be 
random.

4.1 � The Black and Scholes model when 
 has a normal distribution

Using the results in Proposition 5, and Eqs. (10) and (11), the current prices of the underly-
ing asset, v0 , and of an option written on it, c0 , are obtained in the two propositions below.

Proposition 7  (The underlying asset price equilibrium relationship) Let the risk aversion 
parameter have a normal distribution so that h� (�) = � . Then, given Definitions 1 and 2 
with hw(w) = lnw and hv(v) = ln vt , Eq. (10), and Proposition 5, the equilibrium price of 
the underlying asset at time 0 is given by

where 1 − 𝜎2
𝛾
𝜎2
w
> 0.

Proof  See “Appendix”. 	�  ◻

Proposition 8  (The random-risk-aversion Black–Scholes equation—RRA-BS) 
Given Eq.  (11), and Propositions  5 and 7, the prices of a call option with payoff 
k(v) = max (v − k, 0) , and of a put option with payoff k(v) = max (k − v, 0) where k is the 
strike price, are given respectively by

(10)v0 = e−r
∫ ∫

vM(w)fTN(w, v)dwdv,

(11)c0 = e−r
∫ ∫

�(v)M(w)fTN(w, v)dwdv.

(12)v0 = exp

⎡⎢⎢⎢⎣
�v − r +

�2
v

�
1 −

�
1 − �2

�
�2
�
�2
w

�

2
�
1 − �2

�
�2
w

� −
�v�w�

�
�� − �2

�

�
�w − ln �

��

1 − �2
�
�2
w

⎤⎥⎥⎥⎦
,

(13)call0 = v0N
(
d1
)
− ke−rN

(
d2
)
,

11  The location parameter tends to be substituted out in the transformed-normal family (see Camara 2003). 
However, this is not true for all distributions. In the gamma model of Heston (1993) and in the transformed-
gamma model of Vitiello and Poon (2010), for instance, the scale parameter is used to obtain preference-
free option pricing equations.
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where

with 1 − 𝜎2
𝛾
𝜎2
w
> 0.

Proof  See “Appendix”. 	�  ◻

Corollary 9  If the investor’s risk aversion parameter is constant then Eq.  (12) becomes 
v0 = exp

(
�v − r − ���v�w + 0.5�2

v

)
 , which is the same market equilibrium relationship 

obtained by Brennan (1979). Applying this equilibrium relationship to Eqs. (13) and (14) 
leads to the Black and Scholes (1973) call and put option pricing models respectively.

As discussed earlier in this section, we use the market equilibrium relationship in 
Eq. (12) to replace some of the distributional parameters, and thus Eqs. (13) and (14) do 
not depend on the mean values of the underlying asset return, risk aversion parameter or 
wealth.

(14)put0 = ke−rN
(
−d2

)
− v0N

(
−d1

)
,

d1 =

⎡
⎢⎢⎢⎣
1

�v

�
ln
�v0
k

�
+ r

�
+

�v

�
1 −

�
1 − �2

�
�2
�
�2
w

�

2
�
1 − �2

�
�2
w

�
⎤
⎥⎥⎥⎦

�
1 − �2

�
�2
w

�1∕2

�
1 −

�
1 − �2

�
�2
�
�2
w

�1∕2
,

d2 = d1 −
�v

�
1 −

�
1 − �2

�
�2
�
�2
w

�1∕2

�
1 − �2

�
�2
w

�1∕2
,
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Fig. 4   The volatility smile of the RRA-BS model for different values of �� . Simulated option prices 
obtained from Eq. (14) with �v = 0.5 , �w = 0.25 , � = 0.85 , r = 10% , and different values of ��
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An example of the shape of the implied volatility of put options obtained from the ran-
dom-risk-aversion Black and Scholes (RRA-BS) in Eq. (14) is provided in Fig.  4, with 
�v = 0.5 , �w = 0.25 , � = 0.85 , r = 10% , and different values of ��.12 As in the Black and 
Scholes model, the implied volatility in Fig. 4 is constant, and when �� is zero the implied 
volatility is at its lowest value, which corresponds to the implied volatility obtained from 
the Black and Scholes model, as per Corollary 9. However, as �� increases, the level of 
implied volatility shifts parallel upwards, without changing its shape.

4.2 � The g‑option pricing model when 
 has a normal distribution

In this example, it is assumed that the underlying asset has a g-distribution. This transfor-
mation was introduced by Tukey (1977) and has been applied, for instance, to the calibra-
tion of option prices to risk neutral densities by Dutta and Babbel (2002) and to option 
prices by Vitiello and Poon (2008). The g-distribution is defined below.

Definition 10  (The g-distribution) The underlying asset is said to have a g-distribution if 
v = g−1

[
exp (gy) − 1

]
, where y ∼ N(0, 1) and (gv + 1) > 0 . In this case the density function 

of the underlying asset has the following form

Following the steps taken in the previous subsection, the equilibrium price of the under-
lying asset is given by the proposition below. Note that, as the distributional assumptions 
related to w and � are the same as the ones used in Proposition 7, the pricing kernel is also 
the same. The only difference is the distribution of v.

Proposition 11  (The underlying asset price equilibrium relationship under a g-distribu-
tion) Let wealth have a log-normal distribution, the risk aversion parameter have a nor-
mal distribution, and the underlying asset have a g-distribution as per Definition 10. Then, 
given Eq. (10) and Proposition 5, the equilibrium price of the underlying asset at time 0 is 
given by

Proof  See “Appendix”. 	�  ◻

Using the equilibrium relationship above, the g-distributed option pricing model with 
random � is provided below.

(15)f (v) =
1

�v(gv + 1)
√
2�

exp

�
−

1

2�2
v

�
1

g
ln (gv + 1) − �v

�2
�
.

(16)

v0 =
e−r

g

⎡⎢⎢⎢⎣
exp

⎛⎜⎜⎜⎝
g�v +

g2�2
v

�
1 −

�
1 − �2

�
�2
�
�2
w

�

2
�
1 − �2

�
�2
w

� −
g�v�w�

�
�� − �2

�

�
�w − ln �

��

1 − �2
�
�2
w

⎞⎟⎟⎟⎠
− 1

⎤⎥⎥⎥⎦
.

12  The implied volatilities obtained from the call option model in Eq. (14) are similar to the ones obtained 
from the put option model and thus are not shown here.
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Proposition 12  (The random-risk-aversion g-distributed option pricing equation—
RRA-g) Given Eq.  (11), and Propositions 5 and 16, the prices of a call option with payoff 
�(v) = max (v − k, 0) , and of a put option with payoff �(v) = max (k − v, 0), where k is the 
strike price, are given respectively by

where

with 1 − 𝜎2
𝛾
𝜎2
w
> 0.

Proof  See “Appendix”. 	�  ◻

Corollary 13  If the investor’s risk aversion parameter is constant then Eqs. (17) and (18) 
reduce to the g-option pricing model of Vitiello and Poon (2008).

(17)call0 =
(
gv0 + e−r

)
g−1N

(
d1
)
−
(
g−1 + k

)
e−rN

(
d2
)
,

(18)put0 =
(
g−1 + k

)
e−rN

(
−d2

)
−
(
gv0 + e−r

)
g−1N

(
−d1

)
,

d1 =
1

g�v
ln

(
gv0e

r + 1

gk + 1

) (
1 − �2

�
�2
w

)1∕2

(
1 −

(
1 − �2

)
�2
�
�2
w

)1∕2
+

g�v

(
1 −

(
1 − �2

)
�2
�
�2
w

)1∕2

2
(
1 − �2

�
�2
w

)1∕2
,

d2 = d1 −
g�v

(
1 −

(
1 − �2

)
�2
�
�2
w

)1∕2

(
1 − �2

�
�2
w

)1∕2
,
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Fig. 5   The volatility smile of the RRA-g option pricing model for different values of �� . Simulated option 
prices obtained from Eq. (18) with g = 0.5, �v = 0.5 , �w = 0.25 , � = 0.85 , r = 10% , and different values of 
��
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The implied volatility of the random risk aversion g-distributed option pricing model 
is shown in Fig. 5, with g = 0.5 and keeping all other variables with the same values as 
in the previous figures. Similarly to what happened to the RRA-BS model in Fig. 4, as �� 
increases, the implied volatility also increases, shifting parallel upwards but retaining the 
same shape.

4.3 � A simple empirical application

In this subsection we estimate empirically13 the value of �� by using S&P500 put options 
using the random risk aversion g-distributed option pricing model (RRA-g) from Proposi-
tion 12.14 We use daily prices of 30-day-to-maturity options obtained from OptionMetrics 
for the period of January 2000 to December 2017. The main reason for using 30-day to 
maturity options is to avoid issues with different time values of options. The zero-coupon 
yield and the dividend-yield were also obtained from OptionMetrics, and the value of the 
S&P 500 index was obtained from CRSP.

As we are pricing options on the market index S&P500, the index and the asset distri-
butions are the same, hence v = w , �v = �w , and � = 1. In this case, the RRA-g put option 
formula in Eq. (18) becomes

where � is the dividend yield,

Note that here we are using annualised values for the risk free rate, dividends, �v , and �� so 
that Eq. (19) is comparable to the Black and Scholes (1973) model and the g-option model 
of Vitiello and Poon (2008).

(19)put0 =

(
1

g
+ k

)
e−rtN

(
−d2

)
−

(
1

g

(
gv0e

−�t + e−rt
))

N
(
−d1

)
,

d1 = ln

�
gv0e

(r−�)t + 1

gk + 1

��
1 − �2

�
�2
v
t2
�1∕2

�v

√
t

+
g�v

√
t

2
�
1 − �2

�
�2
v
t2
� ,

d2 =d1 − g�v

√
t
�
1 − �2

�
�2
v
t2
�−1∕2

.

Table 1   Summary of estimated 
values

Estimated values obtained from Eq.  (19), where s.d. is the standard 
deviation, and Max and Min are the maximum and minimum values 
observed respectively

Mean Median s.d. Max Min

�� 11.570 8.929 9.175 93.056 0.541
g 1.396 1.363 0.408 3.917 0.150

13  For each day in our sample, we use option market prices as an input to the model and use an optimisa-
tion procedure to search for the values of the relevant variables that minimise the sum of the squared error 
(see for instance Bakshi et al. 1997).
14  The reason for using the g option pricing model is that it can capture the typical volatility skew observed 
in the equity market.
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Since our interest here is to estimate �� , we use the 5-minute realised volatility obtained 
from the Oxford-Man Institute of Quantitative Finance as a proxy for �v.

The average (mean), the standard deviation (s.d.), and maximum and minimum values 
for �� , and g are presented in Table 1.15 The average value for g is 1.396, which implies a 
longer right tail than the log-normal distribution. This is in line with Bakshi and Madan 
(2006), who obtained a right skewed distribution for risk aversion for both 28 and 56 
days (skewness of 2.77 and 2.17 respectively). The mean value �� = 11.57 seems to be 
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Fig. 6   Daily estimates of g, �� and �v . Estimated values of g, �� and �v obtained from Eq.  (19) for daily 
S&P500 put option prices from January 2000 to December 2017

15  It is important to highlight that the constraint 1 > 𝜎2
𝛾
𝜎2
v
t2 holds for all individual observations in our 

sample.
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sufficiently high to explain the values of risk aversion simulated by Bekaert et al. (2010), 
who found that the 95 percentile of risk aversion is equal to 18.8, and that risk aversion 
exceeds 100 in less than 1% of the cases.

We gauge the impact of high values of �� on the implied volatility by calculating the 
difference between �� = 93.056 , the highest estimated value, and �� = 0 , the case of a con-
stant risk aversion parameter. We calculate theoretical option prices using Eq.  (19) with 
the estimated �� = 93.056 and then repeat the calculations with �� = 0 , for the 25th of 
November of 2016, which is the day the highest �� was observed. Based on these theo-
retical prices, we calculate the implied volatility of an ATM option, obtaining 10.91% for 
�� = 93.056 , and 8.87% for �� = 0.16 That is, an increase from 0 to 93 in �� leads to a 
change of approximately 2 percentage points in the implied volatility.

The daily estimated values of g, �� and �v obtained from daily put option prices are 
presented in Fig. 6, panels a, b and c, respectively. The parameters g and �� move approxi-
mately together and, as Fig. 7 confirms, high levels of �� tend to be related to high positive 
levels of skewness of the risk adjusted distribution.

The relationship between parameters �� and �v is presented in Fig.  8, which shows 
that in periods of low market volatility, �� is high, suggesting a higher dispersion of risk 
aversion. On the other hand, in periods of high market volatility, the volatility of the risk 
aversion parameter gets closer to zero. These findings complement, for instance, the ones 
obtained by Bekaert et al. (2019), who found that risk aversion has a positive relationship 
with implied volatility and a negative relationship with realised volatility—recall that the 
theoretical results obtained in Sect. 3 show a positive relationship between the volatility of 
the risk aversion parameter and implied volatility whilst the results obtained in this section 
show a negative relationship between the estimated volatility of the risk aversion parameter 
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Fig. 7   The estimated relationship between �� and g. Scatter plot from estimated values of the volatility of 
the risk aversion parameter, �� , and distributional parameter g 

16  It is interesting to note that about one third of the cases in which �� is higher than 50 take place during 
the week between Christmas and New Year.
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and realised volatility. Hence, considering our results and the ones by Bekaert et al. (2019) 
together, when implied volatility increases, risk aversion also increases, but the volatility of 
the risk aversion parameter decreases.

5 � Discussion

This article develops a general equilibrium framework for pricing European options when 
risk aversion is random while aggregate wealth and the underlying asset have a bivariate 
transformed-normal distribution. The resulting option pricing models depend on the cor-
relation between wealth and the underlying asset, and on the volatility of the underlying 
asset, wealth and the risk aversion parameter—they do not depend on their means.

We show that the volatility of the risk aversion parameter raises the level of the implied 
volatility but does not change its shape i.e. the volatility of the risk aversion parameter does 
not change the shape of the risk neutral distribution. This means that random risk aversion 
does not alter the relative expensiveness of options, regardless of it being call or put. As the 
increase in implied volatility is the same for all options, the price impact is the highest for 
at-the-money calls and puts.

We also show that the volatility and the skewness of the risk aversion parameter change 
the slope of the pricing kernel. In particular, the slope of the pricing kernel changes when 
we keep the mean value of the risk aversion parameter constant and change its volatility 
or skewness. This result complements the ones obtained by Gordon and St-Amour (2000), 
who show that the level of the risk aversion parameter changes the slope of the pricing 
kernel.
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Fig. 8   The relationship between �� and �v . Scatter plot of �v against estimated values of ��
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It is important to highlight that random risk aversion may lead to a non-zero probability 
that the risk aversion parameter becomes negative, resulting in a non-monotonic pricing 
kernel. Hence, a risk aversion parameter with low mean and high volatility can make the 
investor risk averse at low wealth levels and risk seeking at high wealth levels. Similarly, 
low values of skewness can also lead to a non-monotonic pricing kernel.

Finally, we show that the empirically estimated volatility of the risk aversion parameter 
and the market volatility display a negative relationship. The estimated volatility of the 
risk aversion parameter is very small (tends to zero) when the market volatility is high and 
vice-versa.

Appendix

Proof  (Proposition 3) Solving the denominator of Eq. (3) first, leads to

where each one of the expectations in the second row can be solved as follows (note that 
the expectations are independent)

Considering Eq.  (4) and summing it over all N states gives the numerator of Eq.  (3), 
which can be written as 

∑
s ps�

�s exp
�
−�sh(w)

�
 . Dividing this expression by Eq.  (A.1) 

leads to Eq. (5). 	�  ◻

Proof  (Proposition  5). The pricing kernel in Eq.  (8) can be obtained from 
(3). As � and w are independent, the denominator can be obtained by solving 
∫ ∫ exp

[
−h� (�)hw(w)

]
fTN(w)fTN(�)dwd� , which leads to

where fTN(⋅) is a transformed-normal density function, B = �w − ln � , and 1 − 𝜎2
w
𝜎2
𝛾
> 0 . 

Dividing (7) by (A.2) yields Eq. (8). 	�  ◻

Proof  (Proposition 7) Given Eq. (8) and the fact that wealth and the underlying asset have 
a bivariate log-normal distribution, we can write equation (10) as

(A.1)

∑
s

psEu
�(w, s) =

∑
s

psE
[
��s e−�shw(w)
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where 1 − 𝜎2
w
𝜎2
𝛾
> 0,A = hw(w) − ln � , B = �w − ln � , and

is the bivariate log-normal density.
The solution to Eq.  (A.3) is a matter of algebra, where Eq.  (12) can be obtained by 

means of changing variables and then simplifying the resulting equation. 	�  ◻

Proof  (Proposition 8) Using the results from Proposition 5, Eq. (11), and the bivariate log-
normal density in Eq. (A.4) we obtain

where 1 − 𝜎2
w
𝜎2
𝛾
> 0 , A = hw(w) − ln � , and B = �w − ln �.

Changing variables, solving the inner integral and simplifying yields,

Expanding the expression above and using the market equilibrium relationship from 
Eq. (12) leads to Eq. (14). The put option equation can be obtained in a similar way. 	� ◻

Proof  (Proposition 11) This proof is similar to the one to Proposition 7. Given Eq. (8) and 
the fact that wealth and the underlying asset have a bivariate g-log-normal distribution, we 
obtain an equation similar to (A.3), but the expectation is taken with respect to the bivari-
ate g-log-normal distribution. That is, in Eq. (A.3) we replace fΛ(w, v) with the following 
density

Changing variables and simplifying the resulting equation proves the proposition. 	� ◻

Proof  (Proposition 12) This proof is similar to the one to Proposition 8. Using the results 
from Proposition 5, Eq. (11), and the bivariate g-log-normal density in Eq. (A.5) we obtain

(A.3)
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where 1 − 𝜎2
w
𝜎2
𝛾
> 0 , A = hw(w) − ln � , and B = �w − ln �.

Changing variables, solving the inner integral and simplifying yields,

Expanding the expression above and using the market equilibrium relationship from 
Eq. (16) leads to Eq. (17). The put option equation can be obtained in a similar way. 	� ◻
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