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Abstract

Foraging entails finding multiple targets sequentially. In humans and other animals, a key

observation has been a tendency to forage in ‘runs’ of the same target type. This tendency

is context-sensitive, and in humans, it is strongest when the targets are difficult to distinguish

from the distractors. Many important questions have yet to be addressed about this and

other tendencies in human foraging, and a key limitation is a lack of precise measures of for-

aging behaviour. The standard measures tend to be run statistics, such as the maximum

run length and the number of runs. But these measures are not only interdependent, they

are also constrained by the number and distribution of targets, making it difficult to make

inferences about the effects of these aspects of the environment on foraging. Moreover, run

statistics are underspecified about the underlying cognitive processes determining foraging

behaviour. We present an alternative approach: modelling foraging as a procedure of gener-

ative sampling without replacement, implemented in a Bayesian multilevel model. This

allows us to break behaviour down into a number of biases that influence target selection,

such as the proximity of targets and a bias for selecting targets in runs, in a way that is not

dependent on the number of targets present. Our method thereby facilitates direct compari-

son of specific foraging tendencies between search environments that differ in theoretically

important dimensions. We demonstrate the use of our model with simulation examples and

re-analysis of existing data. We believe our model will provide deeper insights into visual for-

aging and provide a foundation for further modelling work in this area.

Author summary

Foraging has been well-studied in many species that rely on widely distributed food

sources, such as bees and birds. Less well understood is how humans approach foraging

tasks, and whether there are general policies we can identify that describe how we search

for different categories of objects that can vary in quantity and distribution. We present a

way to model foraging behaviour as a generative sampling without replacement proce-

dure, implemented in a Bayesian multilevel model. This allows us to break down behav-

iour into a number of independent biases that influence target selection, including the
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proximity of targets, a bias for selecting targets in runs and a bias for a particular target

type, in a way that is not dependent on the number of targets present. We believe this tool

can open the door for foraging to become a standard task for refining our understanding

of attention, working memory, prospective memory, learning, planning and decision-

making.

Introduction

Foraging typically refers to the process of searching for and gathering dispersed food. As

would be expected given the survival value of this skill, a well-studied question in animal

behaviour is the extent to which foraging can be thought of as efficient (e.g. [1, 2]). That is,

does the forager’s path and food source selection maximize energy intake and minimize energy

expenditure and risk? For contemporary humans, most foraging for food takes place in super-

markets, but foraging can be more broadly defined as search for multiple instances of different

categories of targets. Many tasks involve this more general definition of foraging (e.g. a security

officer monitoring a crowded event; a radiologist searching for all signs of cancer in an X-ray

[3]).

The human foraging literature has been directly inspired by animal behaviour research,

including research on how humans find patches [4] and how they terminate their search and

move onto another patch [3, 5–8]. In the latter context, an influential modelling framework

has been marginal value theorem (MVT) [9], which predicts that an optimal forager should

leave a patch when the “instantaneous rate of return” from a given patch drops below the aver-

age rate of return across all the patches (including travel time, during which no elements can

be collected). Recent work has shown that human observers can forage optimally [3], although

interestingly this may not hold in all cases e.g. older adults appear to show non-optimal behav-

iour, staying too long in each patch to adhere to MVT [8], and other studies have also found

deviations from optimality [10]. Thus, when considering search termination, there are good

theoretical models of behaviour that can be used to understand the cognitive processes under-

lying performance.

Another well-established feature of foraging is that animals tend to search for food in ‘runs’

of one particular food type, particularly when prey are cryptic [11, 12]. (See Figs 1 and 2 for

examples.) Pollinators exhibit a tendency known as ‘flower constancy’, where they selectively

visit flowers of a particular category and ignore equivalently rewarding flowers from other cat-

egories. This tendency seems to be context-sensitive in many species, suggesting it is a beha-

vioural adaptation e.g. [13]. These observations led to research into the concept of the ‘search

image’, where animals direct selective attention to particular features of prey in order to facili-

tate fast detection [14, 15]. A similar concept of ‘attentional templates’ (the representation of

the search goal in working memory) has also been proposed for human visual search [16]. Tar-

get switching is important because it presents a promising model task for understanding the

coordination of cognitive and physical effort. Selecting targets based on proximity, that is,

selecting all the nearby targets before moving to a new area, minimizes the distance of travel,

but the cost is the high cognitive load associated with switching between multiple target tem-

plates in working memory. Selecting all the targets of one category before moving on to the

next category will minimize the cognitive load, at the cost of increased distance of travel

between targets. Which of these two strategies is more efficient will depend on features of both

the environment (the distance between targets, the number and complexity of the different

types of targets) and the individual (their physical as well as cognitive capabilities). Whether
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Fig 1. Example data from Dawkins (1971). The first 100 grains taken by one chick in experiment 1.

https://doi.org/10.1371/journal.pcbi.1009813.g001

Fig 2. An example of how foraging tasks can be thought of as spatial, using example data from Kristjánsson et al.

(2014). The ‘path’ taken by the forager is indicated by the white line, with the numbers indicating the order of targets

taken (first three selections only).

https://doi.org/10.1371/journal.pcbi.1009813.g002
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and how humans and other species adjust their strategies in a way that is sensitive to these con-

straints is a question with broad implications for understanding the efficiency of behaviour

more generally.

When focusing on target switching, behaviour similar to that seen in nonhuman animal

studies has now been replicated multiple times in human adult participants [17–24]: in a task

where participants need to collect as many targets as possible (while ignoring distractors),

they tend to switch target type regularly when the task is relatively easy (e.g. when the targets

can be distinguished from the distractors by a single feature dimension, such as colour, in an

analogous manner to feature search in classical visual search paradigms). However, when

participants are completing a more difficult search task (e.g. a conjunction search, where the

target can only be distinguished from the distractor using two or more feature dimensions)

they tend to search in ‘runs’, exhaustively searching for one target type before switching to

another.

Human foraging studies have also highlighted that there can be surprising heterogeneity

between participants in their search strategies. Some participants have been termed ‘superfora-

gers’, showing no difference in foraging strategy for feature and conjunction type searches [17,

18, 25], potentially implying that they are able to hold multiple target templates simultaneously

in working memory. However, recent work has also suggested that this group of people may

be better described as employing a different strategy; working memory performance is not a

good predictor of these individual differences [26], and in fact, it may not be a stable trait.

Instead, people may be able to flexibly adjust their strategy in accordance with task demands

[25, 27, 28]. It has even been suggested that ‘superforagers’ is a misnomer, as these participants

may show more errors than ‘normal’ foragers, and instead these strategies may be sub-optimal

responses to the task demands [29]. Interestingly, children under the age of 12 find conjunc-

tion foraging very difficult, indicating the important role of executive functions in this task,

and highlighting that our understanding of the cognitive processes underlying run behaviour

remains incomplete [24].

Problems with run statistics

An episode of foraging entails a sequence of target-detection responses which have both a spa-

tial and a target identity dimension. With each target selection response in the sequence, the

distribution of remaining targets changes on both of these dimensions. In this respect, foraging

data presents a unique analytical challenge relative to single-target search.

To study target switching, many previous studies have used a set of similar, highly corre-

lated dependent measures: the target switch rate, the average number of runs per trial, or the

average run length per trial. An issue with all of these measures is that the ground truth of the

search area will influence target switching; the relative proximity and number of targets of the

other category makes switches more likely. This is problematic for comparing run statistics

across different conditions or studies that vary the distributions of target locations and catego-

ries. More fundamentally, run statistics do not adequately represent the underlying cognitive

processes that might be determining foraging behaviour. Ideally, we would to model behav-

iour with respect to the relative contribution of parameters such as the tendency towards target

constancy or switching target type, in conjunction with possible biases for one target type over

another.

Run statistics also leave aside the intrinsic spatial aspects of foraging tasks. The effect of

the distribution of foraging targets relative to the forager is central to understanding foraging

efficiency: for example, patch leaving is affected by distance between patches [3], and heavy

bees have a stronger proximity bias than lighter ones [30]. Despite this, relatively little work
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has looked at target switching in direct relation to the effect of target proximity (although see

[31] for one recent approach). This is especially important given that the spatial distribution

of targets varies not only between conditions and studies, but also within a single episode of

foraging, as each consecutive target is found and removed and the distribution becomes

sparser.

Our proposed approach

We propose an alternative strategy for analysing visual foraging data, which involves model-

ling the process as a generative sampling without replacement procedure, implemented in a

Bayesian multilevel model. A strength of our approach is that it leads to measurements (model

parameters) that are independent of the number of targets presented on screen and the num-

ber of targets that the participants are tasked with finding. In addition, we can estimate the

latent biases that led to the run statistics.

We begin by demonstrating the modelling approach for a single trial of visual foraging data

from [11], a classic study from the animal foraging literature. From this single trial, we can esti-

mate a parameter that represents the probability that a forager will stick to the same target type

or switch to a different type. We will then extend the model to multiple trials and conditions,

adding in a bias for target type, and show that our model is able to detect small differences in

these parameters that would not be picked up using the dependent variables of maximum run

length or number of runs. We then extend to multi-level models to incorporate individual dif-

ferences, and demonstrate the use of these models using previous data from [32].

Finally, we present a version of the model that incorporates a proximity bias, allowing us to

estimate how likely participants are to select a target close to the previously selected target. We

use this to demonstrate how the proximity bias affects the calculation of the other biases using

example data from [21].

Pulling balls out of a bag

We are modelling visual foraging as a process of weighted sampling without replacement, in

what we call a ‘bag foraging model’. Targets are selected one at a time and we define t(i) = ti as

the ith target selected in a trial, i = 1, 2, . . .. Our model is binary: targets can be one of two clas-

ses, ti 2 {a, b}, with na and nb counting the number of each class of targets that have not yet

been selected. nT = na + nb is the total number of eligible targets remaining in trial. We assume

that any biases in target selection strategy are constant within, and over, trials.

Single trial

Materials and methods. We start with only one trial of data and assume targets of class a
and b are equally likely be selected. We model the preference, ps 2 [0, 1], for selecting a target

of the same class as the previously selected target. Higher values of ps will lead to longer runs

with the same class of target being selected repeatedly, while values of ps< 0.5 indicate a pref-

erence for alternating between target classes.

For the first target selection, t1, the probability of selecting a target of class a, is simply the

proportion of a’s present in the stimulus:

Prðt1 ¼ aÞ ¼
na

na þ nb
ð1Þ
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For all subsequent target selections, t2, t3, . . ., the probabilities Pr(ti = a) and Pr(ti = b) = 1 −
Pr(ti = a) depend on the the identity of the previously selected target, ti−1:

Prðti ¼ aÞ ¼

psna

psna þ ð1 � psÞnb
if ti� 1 ¼ a

ð1 � psÞna

ð1 � psÞna þ psnb
if ti� 1 ¼ b

8
>>><

>>>:

ð2Þ

An easy way to think about ps is to consider the special case when there are equal numbers

of both classes of targets left. In this case, ps can be interpreted as:

ps ¼ Prðti ¼ ti� 1jna ¼ nbÞ ð3Þ

The model was coded in Stan and we use logit link functions to ensure that our probabilities

will lie between 0 and 1. I.e., we fit bs = logit(ps). We define our prior as bs* N(0, 1), which

translates to a prior prediction that ps will fall within 0.1 and 0.9 approximately 95% of the

time. The code is presented in S1 Appendix and is available on the Open Science Framework

(https://osf.io/7yuaz/). We ran the model using R (v4.0.3) and rStan, v.2.21.2, [33] with four

chains and 1000 iterations. Further details of model checking procedures can be found in

S1 File).

Chicken foraging. We imported chicken foraging data from [11], which is often refer-

enced as one of the classic papers in the foraging literature. The data is from one chick, choos-

ing between two types of food (grains of rice), and is shown in Fig 1.

After running the model on the data, we inspected traceplots and model summary statistics

(R̂, neff) to check that for successful convergence. These can be found in S1 File. The posterior

is shown in Fig 3. By calculating the 53% and 97% HPDIs (highest posterior density intervals)

around the preference to select the same target class, we obtain intervals of [0.80, 0.85] (more

likely than not) and [0.73, 0.88] (very likely). We use these intervals over the more common,

but equally arbitrary, 95% for the following reasons: i) 53% represents a little over half of the

distributions while 97% represents most of it. ii) there are many cognitive biases associated

with the interpretation of probabilities and it is possible that 50% intervals could be viewed as

Fig 3. Prior and posterior probability distributions for ps for the chicken foraging data from Dawkins (1971).

https://doi.org/10.1371/journal.pcbi.1009813.g003
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being more likely to contain the “true” value than not. iii) 97% offers a more conservative

choice than 95% while avoiding numerical difficulties in obtaining stable estimates out in the

tails of the distribution.

Stable estimates over trial length and number of targets. How much data is required

to get a stable estimate of these biases? [11] only looked at the first 100 of 2000 targets

found (5%). We ran a simulation where the chickens found greater proportions of the

grains (10% or 100%) and found that our model does improve with more data, but only

marginally: there is no great benefit to a 20-fold increase in grains in this simple simulation.

We also ran a simulation where the chickens always found 100 grains, but the total number

of grains varied, and again found this had only small effects on the estimates of ps. Our

method appears to offer robust model fits even with relatively small numbers of targets

(see S1 File).

Multiple trials & conditions

Materials and methods. One of the issues with previous measures used in the foraging lit-

erature is that they are not able to address why run lengths may differ. That is, what are the

underlying cognitive processes that drive a switch to a different target? Our method allows us

to consider multiple biases: for example, in addition to a forager’s tendency to stick with one

target type or to switch (ps) we can add in a second parameter, pa, which reflects the bias

towards one target type or another (e.g. if one target has a higher value). Increasing either or

both parameters will lead to a smaller number of longer runs, but for different reasons.

We therefore expanded our model to work over multiple trials and conditions, and allowed

participants to have a preference for one target class over the other:

pa ¼ Prðti ¼ ajna ¼ nbÞ ð4Þ

We estimate ps and pa independently for each condition, under the assumption that they

are constant over trials from the same condition. Our model then becomes:

Prðt1 ¼ aÞ ¼
pana

pana þ ð1 � paÞnb
ð5Þ

Prðti ¼ aÞ ¼

papsna

papsna þ ð1 � paÞð1 � psÞnb
if ti� 1 ¼ a

pað1 � psÞna

pað1 � psÞna þ ð1 � paÞpsnb
if ti� 1 ¼ b

8
>>><

>>>:

ð6Þ

See S2 Appendix for the Stan code; the model was run in a similar manner to the one trial

model.

Misattribution example: A pa bias with no ps bias. A strength of our model is it allows us

to more accurately determine the biases that underlie foraging patterns. We can compare a

condition with no biases (pa = 0.5 and ps = 0.5, a ‘neutral’ condition) with one where the

observer prefers one target over the other (pa = 0.8 and ps = 0.5, which we call a ‘target bias’

condition, as in this case one target is preferred over the other e.g. because it has been given a

higher value in the experiment, or because of its visual properties). An ANOVA (the standard

statistical method used in foraging papers) can detect a statistically significant difference

between these two conditions in terms of both the number of runs (F = 91.1, p< 0.001) and

the maximum run length (F = 99.1, p< 0.001): see Fig 4A). However, it is not clear from this

analysis what is driving these effects. The posterior probabilities from our model are presented

in Fig 4C and clearly distinguish the underlying processes i.e. that there is no difference
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between ps in the two conditions but a clear difference between pa: if we repeat the procedure

100 times, we find a difference in pa 100% of the time, and a difference in ps only 2% of the

time.

Differentiation example: Two conditions which give the same run statistics. To dem-

onstrate the power of our approach, we can look at a simulation example, comparing a condi-

tion with a small stick bias (pa = 0.5, ps = 0.55) to a condition with a small target type

preference (pa = 0.65, ps = 0.5). We simulated 50 trials from an experiment with these two con-

ditions, with each trial consisting of 40 targets. As can be seen in Fig 4B, these two conditions

give rise to very similar distributions of maximum run lengths and number of runs. Indeed,

when applying the standard ANOVA to these data, we fail to detect a statistically significant

difference: for example, in one simulated dataset, F = 0.02, p = 0.9 for the maximum run

lengths and F = 0.41, p = 0.52 for the number of runs.

In contrast, running our model on these data results in the posterior probability distribu-

tion seen in Fig 4D. From these, we can calculate the difference between conditions, which can

be summarised with 97% HPDIs for ps, [−0.09, −0.02], and pa, [0.10, 0.17]. These intervals do

not cross 0, consistent with a difference between conditions for each measure separately. An

alternative way to summarise these posterior distributions is to calculate Pr(difference > 0|

data). We can then carry out a power analysis by repeating this procedure 100 times. When we

do this, we detect a significant difference in pa and ps in 100% and 83% of simulations,

Fig 4. Results for simulated biases in the bag model. A: boxplots showing the maximum run length and number of runs in each of our two simulated

misattribution conditions. B: boxplots showing the maximum run length and number of runs in each of our two simulated differentiation conditions.

C: density plots showing the pa and ps values calculated by our model for each of the two simulated misattribution conditions. D: density plots showing

the pa and ps values calculated by our model for each of the two simulated differentiation conditions.

https://doi.org/10.1371/journal.pcbi.1009813.g004
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respectively. In contrast, applying the same power analysis using the standard run statistics, we

find a statistically significant difference in the number of runs in just 8% of the simulations.

Similarly, we find a difference 21% of the time for the maximum run length statistic. We detect

a difference in either statistic, and hence detect a difference between conditions, only 29% of

the time. Our approach is therefore not only more sensitive than run statistics to the difference

between conditions, but is able to correctly attribute the difference to a combination of a bias

to switch and a preference for one target over the other.

Multi-level: Tagu and Kristjánsson (2021). The final version of the bag foraging model

allows multiple participants in a multi-level framework (see S3 Appendix). Both ps and ps are

allowed to vary from one participant to the next.

Using simulated data, we can show that our model can recover both overall ps and pa biases,

as well as the parameters from individual participants (see S1 File for details).

Our model also works well with more complex examples. In a recent study, [32] included a

target value manipulation, where participants searched for three target types (among three dif-

ferent types of distractors). Participants had to earn a certain number of points in order to

complete the trial, and in the ‘value’ condition, one of the target types was deemed high value,

whereas the other two were low value. We would therefore expect this condition to have a

higher pa bias than the ‘no value’ control, where all targets had the same value. This is indeed

what we see in Fig 5. This example also shows the flexibility of the model; in this experiment,

the proportion of the different target types (high and low value) was not equal to 50:50, and tri-

als were not necessarily equal lengths. Note, for simplicity, we considered only the blocks

where participants used a computer mouse in our analysis, and only the trials where the targets

had a random distribution (see S1 File).

Fig 5. pa and ps biases across participants in multi-level re-analysis of Tagu and Kristjánsson (2021), showing both

the value and no-value conditions.

https://doi.org/10.1371/journal.pcbi.1009813.g005
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Discussion

The bag foraging model we have presented above can account for run behaviour in foraging

tasks. Alongside data from [11] and [32], we have also fit the multi-level model to data from

[17] (presented in S1 File) and can replicate their key findings. For example, on average, partic-

ipants have a lower ps in the feature condition than in the conjunction condition, demonstrat-

ing that they are more likely to have longer ‘runs’ of one target type in the conjunction

condition. We can also clearly identify the so-called ‘superforager’ participants, who show a

much smaller gap between conditions. However, our method also allows us to see new patterns

in the data. For example, the pa values in the conjunction condition were often below 0.5. This

indicates that participants had a preference for the targets labelled 0, suggesting that by chance,

in this dataset, these targets were more salient: S1 File shows how the individual pAz correlated

well with the participants’ tendency to select a ‘0’ for the first target on each trial. Our method

therefore allows deeper analysis of the underlying biases than has been possible with the met-

rics used in previous studies, while also correlating well with those measures.

One limitation of our model is that it can give less accurate parameter estimates if there are

very extreme biases e.g. if the two target types are found almost exclusively in disjoint, non-

overlapping runs. If ps = 1 (and pa = 0.5), our simulated results suggest that the recovery of the

ps parameter will be accurate, but the posterior for pa is shifted away from 0.5. If we take the

converse example where pa = 1 (and ps = 0.5), we obtain a model fit that generates posterior

predictions that are identical to the types of runs that would be generated by these parameters

i.e. the model correctly predicts that all the targets of one type will be selected first. However,

we see that both pa and ps estimates are actually close to one (see S1 File). This is because an

extremely strong target preference means that the participant will find all these preferred tar-

gets before the non-preferred, generating a trial where they appear never to switch. Thus, the

estimated parameters are entirely consistent with the observed data. However, assuming a

slightly less extreme value of pa = 0.97, or adjusting the priors, allows better recovery of the cor-

rect parameters (see S1 File). In the case of the [17] data, the pa bias appears to be real, as man-

ual inspection of the first five target selections per trial in the conjunction condition shows a

similar bias towards the target labelled ‘0’. Thus, some caution should therefore be exercised in

interpreting parameters where there are strong biases, but it is simple to check if there are

model fitting problems.

Spatial biases

Materials and methods

Our initial model incorporates several biases which appear to help explain the findings in pre-

viously published research [32]. However, this model has no representation of the spatial loca-

tion of targets. It seems plausible that people are more likely to select targets nearby to the one

they have just selected. Proximity could be particularly important in feature search, where the

targets are relatively easily distinguished so there are fewer additional constraints on selection;

if so, perhaps proximity is relatively less important for conjunction search. We can also investi-

gate the effect of direction/momentum: do observers incorporate some form of momentum to

their target selections, or do they prefer to double back on themselves? Extending our bag for-

aging model to incoporate spatial biases allows us to see to what extent these hypotheses are

true, and how the inclusion of a spatial bias will affect our estimation of the other biases.

For our second model, we take our stimuli to be a collection of targets, t(i) = (ti, xi, yi),
where (xi, yi) gives the target’s location and ti 2 {a, b} gives the target’s class. For mathematical

convenience, we will take a and b to factor levels with a = 1 and b = −1. If we take d(i, j) to be

the Euclidean distance between targets (xi, yi) and (xj, yj), we can define a proximity measure
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between the two items as:

rdði; jÞ ¼ e� sddði;jÞ

where σd is a proximity tuning parameter that controls how quickly ρ decreases from 1 to 0.

Similarly, we can define the angular difference θ(i, j) to be:

yði; jÞ ¼
f ðatan2ði; jÞ � atan2ði � 1; iÞÞ

p
where atan2(j, i) is the direction of travel from i to j and f(ϕ1, ϕ2) calculates the angular differ-

ence:

f ð�1; �2Þ ¼ minðð�1 � �2Þ%2p; ð�2 � �1Þ%2pÞ

This should give a value between 0 and 1, with 0 indicating a target that “in front” of the

current target, 0.5 represents a change of direction of 90˚ and 1 represented doubling back in

the direction we just came from. Having calculated θ, we can now define:

ryði; jÞ ¼ e� syyði;jÞ

In the bag foraging model, all targets of the same class were interchangeable and so a simple

Bernoulli process could be used to model each target selection. However, this no longer holds,

as each target has a unique spatial location that needs to be taken into account. Therefore we

will use a categorical model with the weights for each remaining target being defined as:

wðiÞ ¼ gðbati þ bsmðti; ti� 1ÞÞ � rdði; i � 1Þryði; i � 1Þ ð7Þ

where g is the inverse logit function and m is an indicator function that equals 1 if ti = ti,1 and -1

otherwise. Targets that have already been selected earlier in a trial have their weights set to 0. S4

and S5 Appendices show the code for the basic and multi-level spatial models, respectively.

Results

Simulation examples. We present a simple example using simulated data in S2 File, and

demonstrate that we can recover the parameters used to generate the data. A more interesting

example can be seen in the case where the targets have spatial structure in the environment,

being found in patches (See S2 File for example stimulus). In our simulation, we set ba and bs
to be zero, and used a proximity tuning value of 15. If analysed without including a proximity

bias parameter, the model mistakenly generates a bs bias: the clumping of targets does indeed

lead to them being collected in runs, simply because our simulated participant has a preference

for nearby targets (see Fig 6). However, the model including the proximity bias parameter is

able to recover the correct parameters. Our model is therefore able to distinguish between a

preference for a similar target and a preference for a nearby target, a distinction that is likely to

be particularly important in more naturalistic set ups where target clumping might be expected

to be prevalent.

Multi-level: Clarke et al. (2018). The data from [21] closely replicates [17], yet has around

four times as many participants, giving us greater power to investigate individual differences in

feature and conjunction foraging. The fixed-effects of the model are shown in Fig 7. There is a

small bias towards repeating target selections during feature search, and this increases to

approach ceiling in the conjunction condition. There is also a very strong proximity bias in both

conditions, with very little weight given to targets more than a quarter stimulus width from the

currently selected target. The parameter for the direction bias comes out as negative, leading the

model to favour doubling back on itself to select targets that may have been skipped over (see

S2 File for simulated examples of how different direction biases affect foraging behaviour).
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Interestingly, both of these biases are slightly weaker for conjunction foraging, suggesting partic-

ipants are relying less on spatial attention and emphasising feature-based attention.

As this model was fit using a multi-level framework, we can also look differences between

participants. Fig 8 shows how the parameters vary over participants and conditions. We can

see that with the exception of parameters linked to the spatial biases, there are little-to-no cor-

relations between different parameters across conditions, or within parameters across condi-

tions. However, the two spatial parameters appear to be correlated: participants with a

stronger preference to select nearby targets also have a more negative direction bias. Partici-

pants with a weaker proximity bias are more likely to have a positive directional bias. While

there is no clear partition of participants into subgroups, the two opposing ends of this range

Fig 6. Posterior distributions for both a bag foraging model and a spatial model trained on patchy stimuli, where

target types are clumped. The shaded ribbons for the proximity and direction weighting indicate 53%, 89% and 97%

HPDIs. The spatial model gives more weight to nearby targets (i.e. where the distance is close to zero), and has no

particular preference for any direction, as indicated by the fact that a value of 1 falls within the HPDI for all directions.

https://doi.org/10.1371/journal.pcbi.1009813.g006
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could be interpreted as a strategy to search within local patches compared to a more global

scanning strategy.

Finally, we can use the fitted model to simulate new data and compare run statistics and

inter-target distances with the original empirical data. We do this for n = 100 samples from the

fitted posterior probability distributions so that we can quantify the uncertainty in the model’s

predictions. The results (Fig 9) show a good correspondence between the posterior predictions

and empirical data. Both the summary run statistics (the two statistics most commonly ana-

lysed in the visual foraging literature) are a close-to-perfect match between the model and the

empirical data. The inter-target distances are more interesting. The model offers a reasonably

good fit, especially in terms of the mean distances and in the later half of a trial. However, we

Fig 7. Posterior distributions for our model when trained on data from Clarke et al. (2018). The shaded ribbons

for the proximity and direction weighting indicate 53%, 89% and 97% HPDIs. Note that there is a higher weighting for

directions closer to pi i.e. completely reversing the direction, indicating negative momentum.

https://doi.org/10.1371/journal.pcbi.1009813.g007
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can see two main differences: i) the variance in the human data is larger, suggesting that per-

haps the negative exponential proximity function down-weights more distant targets too

much; and ii) there is an interesting dynamic at the start of the trial in which the first few tar-

gets selected tend to have shorter inter-target distances than the model would expect. This

raises the possibility that participants either chose an initial target that is in a relatively dense

patch of potential targets, or that they are able to accurately plan out an efficient order for the

first five or so target selections that minimises the distance that they would be required to

travel. This observation highlights another use of the model, which is to detect deviations in

human behaviour from the model’s predictions. These deviations can guide the direction of

further investigation.

Discussion

The spatial model presented extends the simple bag foraging model to incorporate new param-

eters that further explain participant behaviour on foraging tasks by accounting for spatial

attention. This section demonstrates the flexibility and modularity of the bag foraging model,

which can be used as a starting point for exploring many questions about foraging behaviour.

As well as presenting the model fit for the [21] dataset above, S2 File presents fits for a number

of other datasets, including [17], [32] and [28]. Another key strength of our model demon-

strated in S2 File is that it is able to generate good parameter estimates with relatively little data

(e.g. one trial per participant per condition), in stark contrast to using traditional run statistics,

Fig 8. Individual differences in Clarke et al. (2018). The first two rows show the correlations in the random effect structure between different

parameters. We can see that ps and ps appear to be independent from one another, and independent from the spatial biases bp and pm. However, bp and

pm are correlated with one another in both the feature and conjunction conditions. The bottom row shows the correlation between conditions for each

parameter in our model.

https://doi.org/10.1371/journal.pcbi.1009813.g008
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which reduces each trial to one summary number. This means that our model could allow

analysis of foraging data from populations where it is difficult to carry out large numbers of tri-

als, such as from clinical populations or when studying animal behaviour.

General discussion

One of the biggest strengths of our approach is its relative simplicity. By taking the task struc-

ture of sampling without replacement into account, we need only four parameters to charac-

terise the relatively complex sequences of runs and inter-target distances produced during

foraging tasks. While approximating these parameters with summary statistics (e.g. the

mean of the run lengths) in many cases will lead to broadly similar conclusions, we have

Fig 9. Posterior predictions for Clarke et al. (2018). (top:) Scatter plots between empirical and predicted summary

run statistics. Error bars indicated 89% HPDI for the posterior predictions. (bottom:) Comparison of inter-target

distances and how they vary over time. Shaded region gives 89% intervals.

https://doi.org/10.1371/journal.pcbi.1009813.g009
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demonstrated that in some instances, run statistics give misleading results that our approach

avoids. In addition, summary statistics require much more data per participant and condition

to be able to make good estimates. By treating each selection instance as a separate observation,

our approach reaches stable estimates of biases far more efficiently.

Our model is also extremely flexible, and could be adapted in many ways. The underlying

assumptions of the model are all tuneable and testable: for example, it would be straightforward

to compare and contrast different proximity functions, as our choice of using an isotropic neg-

ative exponential is relatively arbitrary, and other functions may offer improved performance

for predicting behaviour. The momentum function also assumes a monotonic trend from

going forwards in a straight line to going backwards, but again, there are other possibilities that

could easily be tested. For example, it could also be explored whether functions that allow for a

forward-backward preference over perpendicular movement are better. Interesting further

questions could explore momentum and proximity biases across different modalities. Most of

the data included here was based on finger or mouse-click foraging, but larger movements

(such as moving around a large area) or smaller ones (such as eye movements) are likely to be

characterised by different proximity and momentum functions.

More broadly, the model is extremely straightforward to extend. As it stands, our model

works well with different types of foraging tasks, as we have demonstrated using both exhaus-

tive and non-exhaustive foraging example datasets. However, while outside the scope of the

current paper, it would be easy to also implement stopping rules for models of non-exhaustive

foraging, and it would be possible to make quantitative predictions about distributions by

assuming different stopping rules (for example, by assuming that after each target selection,

there is some given probability to terminate the trial). This would allow modelling of patch-

leaving rules, assuming that one trial acts as one patch. Within a trial, it would also be possible

to model patches made up of multiple “clumped” targets on a single large display, by modify-

ing the spatial bias component to include a categorical factor to indicate the different clumps

of targets (that are therefore assumed to be perceptually ‘further away’ from each other). The

pa bias could also be broken down into sub-biases based on how preference changes based on

stimulus properties such as colour, luminance and value. The model could also be extended to

explore how biases change temporally (e.g. over multiple trials), or to include new biases, such

as a bias for the initial target selection. Finally, it would also be possible to extend beyond two

target categories: for example, for three categories, instead of fitting one value for Pr(ti = a)

and and then letting Pr(ti = b) = 1 − Pr(ti = a), we would need to add an extra parameter,

which could be parameterised Pr(ti = c) = 1 − Pr(ti = a) − Pr(ti = b).

In other aspects of foraging, such as the marginal value theorem for predicting when foragers

should leave a patch [9], formal mathematical modelling has been used to effectively represent

the underlying structure of foraging behaviour. Our work provides a similar framework for tar-

get selection during foraging, extending our theoretical models of foraging behaviour and giv-

ing a way for researchers to begin to understand the cognitive processes that underlie

performance in these tasks. We envision future extensions bringing these and other models

together into a complete understanding of all aspects of foraging. While a full account of

human foraging is of course likely to be extremely complex, involving many factors [10], we are

optimistic that our approach will provide a framework to begin this challenging task. By making

our code freely available, we hope to enable other researchers to update the model as they

require, perhaps to take into account other cognitive factors that they think may be important

in foraging tasks, or to enable them to use the model to study their own variants of the task.

There are a number of potentially important factors that we do not consider in the current

model. For example, it does not currently allow for modelling inter-target selection times,

which are thought to be important in determining foraging behaviour [28]. Similarly, it does
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not explicitly model the effect of background clutter or distractors, although implicit effects

(such as decreasing the salience of one of the target classes) will be captured. As most foraging

studies to date have not focused on distractor effects, information on the distribution of dis-

tractors is not routinely included in freely-available datasets, making it more difficult to model

this aspect of the task. However, if such data were available, the model could be extended to

treat distractors in the same way as targets, but with a sampling-with-replacement and inhibi-

tion of return process for when a distractor is selected.

Conclusion

Our Bayesian statistical model of visual foraging provides a simple and flexible way to estimate

cognitively meaningful parameters underlying foraging tasks. We demonstrate that the model is

able to reproduce the patterns found in existing data, and also provides new avenues for

research questions, such as the role of salience in predicting target preferences and how proxim-

ity and direction biases may represent stable individual differences across different task variants.

By considering the task structure in developing our model, we can go beyond simple linear

models to generate more powerful predictions and deeper insights into foraging behaviour.

Supporting information

S1 File. Supplementary materials part 1. Supplementary materials for the bag foraging

model.

(PDF)

S2 File. Supplementary materials part 2. Supplementary materials for the spatial foraging

model.

(PDF)

S1 Appendix. Bag foraging model—One trial. The Stan code for the basic version of our

sampling-without-replacement model for visual foraging (may be opened in R or in a text edi-

tor).

(STAN)

S2 Appendix. Bag foraging model—Multiple trials and conditions. The Stan code for the

version of our sampling-without-replacement model for visual foraging, incorporating multi-

ple trials and conditions (may be opened in R or in a text editor).

(STAN)

S3 Appendix. Bag foraging model—Multi level. The Stan code for the version of our sam-

pling-without-replacement model for visual foraging, incorporating a multi-level random

effects structure (may be opened in R or in a text editor).

(STAN)

S4 Appendix. Spatial foraging model. The Stan code for the version of our sampling-with-

out-replacement model for visual foraging, incorporating spatial biases (may be opened in R

or in a text editor).

(STAN)

S5 Appendix. Spatial foraging model—Multi level. The Stan code for the version of our sam-

pling-without-replacement model for visual foraging, incorporating spatial biases and a multi-

level random effects structure (may be opened in R or in a text editor).

(STAN)
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20. Kristjánsson T,Kristjánsson Á. Foraging through multiple target categories reveals the flexibility of visual

working memory. Acta Psychologica. 2018; 183:108–115. https://doi.org/10.1016/j.actpsy.2017.12.005

PMID: 29275949

21. Clarke AD, Irons JL, James W, Leber AB, Hunt AR. Stable individual differences in strategies within, but

not between, visual search tasks. Quarterly Journal of Experimental Psychology. 2018;

p. 1747021820929190.

22. Wolfe JM, Cain MS, Aizenman AM. Guidance and selection history in hybrid foraging visual search.

Attention, Perception, & Psychophysics. 2019; 81(3):637–653. https://doi.org/10.3758/s13414-018-

01649-5 PMID: 30603990
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