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Abstract—Mapping resources to tasks accurately in order to
gain performance, energy efficiency, reduction in peak tempera-
ture, etc. on an embedded/Edge device is a big challenge. Machine
learning has proven to be effective in learning heuristics based
resource mapping approaches, but its success is bound by the
quality of feature extraction. Additionally, feature extraction in
such approaches not just requires expert domain knowledge and
human effort, but at the same time requires the application
(tasks) to be profiled for such processes. Therefore, the efficacy
of such resource mapping methodologies depends on expertise,
skills, profiling time and architecture of the system. In this paper,
we propose a novel methodology, Asynchronous Hybrid Deep
Learning (AHDL), which sets a new paradigm of using Deep
Learning approaches to map resources to application (tasks). In
our approach, we leverage task profiling methodologies to achieve
accurate mapping in order to achieve greater reward from the
system, but at the same time is able to allocate resources to
unprofiled application (tasks) at the same time without the need
of manual feature extraction by domain experts. Our proposed
methodology is able to achieve competitive results in comparison
with the state-of- the-art without the usual associated challenges
such as manual feature extraction.

Index Terms—DVFS, MPSoC, asynchronous hybrid deep
learning, resource mapping

I. INTRODUCTION AND MOTIVATION

Recently we could see an increase in embedded/Edge
computing systems [1], which employs heterogeneous multi-
processor systems-on-chips (MPSoCs) consisting of different
types of processing cores such as CPU and GPU. These
architectures provide opportunities to exploit distinct fea-
tures of CPU and GPU cores to meet performance, power
consumption, thermal behaviour and security requirements.
Furthermore, the cores in these MPSoCs support dynamic
voltage and frequency scaling (DVFS) [2]–[5], which can be
used to reduce dynamic power consumption (P ∝ V 2f ) [6],
[7]. This helps to reduce the power consumption by executing
the workload over extra time at a lower voltage and frequency,
which could be accounted for reduced power consumption.

On the other hand, several studies, which are focused on
extracting features from the source code of an application and
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then utilizing several machine learning models [8]–[13] such
as Support Vector Machines (SVMs), Nearest Neighbor, etc.
to classify different set of applications and then deciding the
resources that need to be allocated to such applications. Using
such methodologies also have their own disadvantages. De-
pending on feature extraction such as number of code blocks,
branches, divergent instructions, and then utilizing machine
learning on them usually requires accurate identification of
features from the training data and then feeding them to the
model. Extracting features from a source code of a program
and then feeding to the machine learning model so that further
inference could be made is difficult in many ways and often
requires human intervention (domain experts). One of the key
challenges in this area is to automate such feature extraction
process from the source code such that appropriate computing
resources could be allocated to the associated application to
reduce power consumption and peak temperature of the device.

In this paper, we propose a novel method to allocate
resources to application (tasks) without the need of manual
feature extraction by domain experts. We leverage Deep Learn-
ing [14] approach to classify different types of applications
and then allocate computing resources for the particular appli-
cation to improve performance, power consumption, thermal
behaviour and security of the device, as required. To this
extent, the concrete contribution of this paper are as follows.

1) Propose a method for resource allocation to application
(tasks) without the need of manual feature extraction by
domain experts.

2) Experimental results on real hardware device (Odroid
XU4 [15]).

3) Comparative study of the proposed approach with the
state-of-the-art methods.

II. RELATED WORK

In several earlier studies [16]–[20], many researchers have
focused on designing methodologies and frameworks to op-
timize power and operating temperature of MPSoCs based
on different approaches to computing resource mapping. One
such noteworthy study is performed by Ghasemazar et al.
[16] where the researchers proposed a hierarchical framework
leveraging DVFS capabilities of the processing cores to find



the optimal voltage-frequency to cater for power consumption
and temperature. This methodology was successful in achiev-
ing 20% performance boost without impacting the overall
operating temperature but their experiments focused mainly on
CISC architectures and all results were based on a MATLAB-
based Chip Multiprocessor simulator. In another paper [17],
Kamal et al. proposed a heuristic based thermal stress-aware
mechanism for management of power and temperature in
MPSoCs formulated in a convex optimization problem. This
approach was implemented on Sniper multicore simulator [18]
and was able to reduce spatial and temporal thermal gradients
by 7% and 18% respectively when compared to the work in
[16].

In [19] Sigla et al. present a predictor using power sensors
to predict the next power consumption based on the follow-
ing frequency setting is developed. Their technique uses a
leakage power model of the ARM’s big.LITTLE architecture
on the Odroid-XU3 to validate its predictor and Dynamic
Power and Frequency Management technique. An Extension
of this work has also been published in [20]. Both [19], [20]
methods involve predicting the future core temperatures to
adjust the workloads or frequencies before exceeding a set
threshold. In [21], Reddy et al. proposed a Memory Reads Per
Instruction (MRPI) metric based computing resource mapping,
whereas, in [2], Dey et al. proposed a methodology to optimize
temperature by performing DVFS on CPUs based on the
relationship between operating frequency of the processing
cores and temperature of the MPSoC.

Moreover, none of the aforementioned approaches [16]–[20]
optimize the power and thermal behaviour of the MPSoC
by optimizing the computing resource as required by the
type of executing applications. Executing applications could
potentially fall into any of the following three categories [22]:
Compute intensive, Memory intensive & Mixed workload,
where the application is both Compute and Memory intensive.
Additionally, executing application could also require different
processing cores such as CPU and GPU at different times
of the execution. The aforementioned approaches does not
account for such changing demand in processing elements
based on the type of the executing application.

The primary focus of this work is to design an approach to
allocate computing resources to application/tasks by extracting
features of executing applications automatically such that
performance, power and temperature of the MPSoC could be
optimized.

III. PROPOSED METHODOLOGY: ASYNCHRONOUS
HYBRID DEEP LEARNING (AHDL)

To overcome the challenge of mapping computing resources
(M ) to new tasks or applications, which might or might not
have been profiled or executed before, we propose an Asyn-
chronous Hybrid Deep Learning (AHDL) resource mapping
approach, which determines (classify) the type of executing
application (tasks) without requiring manual feature extraction
and then allocates the appropriate computing resources based
on that. AHDL has two phases: Learning Phase and Decision
Phase. To get more accurate resource mapping in order to
achieve the most from the system we use offline profiling of

the application instance (Appi). We refer our desired output
requirement of the Appi on the system as Reward (R). Our
goal is to maximize the Reward of Appi while minimizing the
resources being allocated to Appi. Reward will vary depending
on the application and the user’s need. For example, if we are
trying to map resources for a face detection application on
the MPSoC where performance of the application is crucial
in terms of frames per second (fps) for the recorded video
then fps becomes the Reward in this case. Whereas in another
example where we are trying to map resources to an instance
of audio decoding application then execution time ETAppi

of the application becomes the Reward, which we need to
prioritize to maximize. Therefore, if M is the resources that
need to be allocated to the application Appi, PEs is the set
of all available processing elements in the system, FPEs is
the set of all associated frequency scaling levels leveraging
DVFS capabilities for all processing elements in PEs, the
main objective of the AHDL resource mapping approach is as
follows:

∀M ∈ {PEs, FPEs} : maximize(R) ∝ minimize(M)
(1)

Note: For some cases, the main objective of AHDL resource
mapping could be to minimize the value of reward (R) instead
while minimizing the resources to be allocated. For example,
if an application is utilizing data encryption algorithm then
instead of focusing on performance the main objective should
be to reduce the operating temperature of the processing
elements in order to protect against temperature side-channel
attacks. Hence, in this case the Reward will be temperature
and the goal is to minimize R while minimizing the resources
being allocated to the application Appi. Therefore, the main
objective of the AHDL could be modified to represent as
follows:

∀M ∈ {PEs, FPEs} : minimize(R) ∝ minimize(M) (2)

A. Overview of AHDL
For every instance of an application (Appi) from a set of

applications (Apps), Appi is profiled in the Regression Module
in Training Phase, where frequency of the processing elements
(PEs) are modified along with the number of processing ele-
ments (PE) mapped to the task(s) to generate a set of Rewards
(S(R)). From this set of Rewards (S(R)), the maximum of
the set is chosen to reflect the maximized Reward and the
associated mapped process elements, associated frequencies
and other relationship variables are saved on the memory.
These are the Reward Profiled Data, which will be used
during the Decision Phase to map proper resources along with
associated frequencies of the processing elements.

Back in the Training Phase, the source code of Appi is fed
to Imager Module, which is a software agent that converts the
source code into visual images such that the image (IAppi

)
representing the source code of the application Appi could
be used to train a pre-Trained convolutional neural network
(CNN) to understand the difference between different set of
applications. After the training of the CNN is complete, the



trained CNN (Coder CNN) could be used to classify an
application if that application is not profiled before. Using
this approach we could classify new applications during run-
time and map appropriate resources to this application based
on our heuristics in the Decision Phase. More details on
each phases (Training & Decision) and modules (Regression
& Visual Convolutional Neural Network) are provided in the
following subsections.

B. Training Phase
The Training Phase is performed completely offline due

to the time required for profiling the applications (Apps). In
this Phase we take an application instance Appi from a set of
applications Apps and pass it through a Regression Module.
We call this as Regression Module because we use simple
linear regression to evaluate and set the frequency levels of
the processing elements in order to achieve the maximum
Reward. But before utilizing this approach, the type of Reward
is required to be finalized by the user based on the application.
For example, if the application is a computer vision one
then frames per second is chosen as the Reward, whereas for
execution critical application the execution time is chosen as
a Reward. Once the Reward is finalized, we profile Appi in
the Regression Module.

Fig. 1. Block digram of Imager Module

1) Regression Module: If we assume that a processing
element PEi has an operating frequency of fPEi

and utilizing
the concept of DVFS we could derive the governing equation
(see Eq. 3) for our regression model as follows:

R = αfPEi
+ β (3)

In Eq. 3 α is the relationship variable whereas β is the
intercept. Now, for MPSoCs which allow cluster wide DVFS
capabilities with a cluster of processing elements having the
same operating frequency (fPEcluster

) instead of having indi-
vidual operating frequencies (fPEi

) for each PE, the equation
could be written as follows.

R = αfPEcluster
+ β (4)

If we consider that FPEs is the set of all the possible fre-
quencies at which the processing elements could operate and
S(R) be the set of all associated Rewards for each operating
frequency in FPEs and Rdesired be the desired maximum
Reward we want to achieve then we get the governing equation
as follows:

∀fPEi , fPEcluster
∈ FPEs : Rdesired = max S(R) (5)

Therefore, using the Eq. 3, 4 and 5 we profile Appi and
save the number of PEs, associated operating frequencies, α
and β on the memory. We then repeat this approach to profile
the same Appi for M number of times to achieve a Reward
(Rewarddesiredi ) for each instance and use ensemble average
approach [23] to get the desired Reward (RAppi

desired) for the
application. The mathematical representation of this could be
fulfilled by Eq. 6.

RAppi

desired =
1

M
×

M∑
i=1

Rdesiredi
(6)

The output of Eq. 6 (see Fig. 2) are saved as the Reward
Profiled Data, which would be later used in the Decision
Phase. Now, the program source code of Appi is fed to our Im-
ager Module of Visual Convolutional Neural Network Module,
which is the main software agent aiding in representing the
program source code into an image so that it could be used by
a visual CNN for automatic feature extraction method without
requiring skilled manual feature extraction.

2) Visual Convolutional Neural Network Module: This
module is responsible for converting program source code into
images and train a chosen pre-Trained CNN using Transfer
Learning such that the CNN is capable of extracting features
automatically from images. This approach was first proposed
in [22] by Dey et al.
Imager Module: Fig. 1 shows the inner working of the Imager
Module and the algorithm is provided in Algo. 1. The Imager
Module is a software agent where the program source code is
fed and the agent first converts the source code to an optimized
LLVM intermediate representation (IR) [24]. In the Imager
Module, a sub module named Code Cleanser then acts on the
LLVM IR to strip off all the unwanted codes such as meta-
data and comments and later processed by another sub module
named Image Creator to be represented as an image (IAppi

). In
the Image Creator sub module, each byte of cleansed LLVM
IR is read as an integer value, which ranges from 0 to 255
(ASCII value). Each of these bytes are then represented as a
pixel value in a w × h image where w is the width and h
is the height of the image. If there are n number of bytes of
cleansed LLVM IR code then n,w & h form the relationship
of n = w × h.

After the creation of image representation by Imager Mod-
ule, IAppi

of several different applications (Apps) is then
categorized into different classes so that the visual CNN could
be trained for future classification and further decision making
based on our heuristics. If we consider IApps as the dataset
of images representing all the source codes of Apps then
we run the dataset IApps through the pre-Trained CNN and
training a new, randomly initialized classifier on top of the
semantic image output vector using the concept of Transfer
Learning in CNN [25], [26]. After training the CNN with
our own custom classifier we call the CNN as Coder CNN.
Note: Categorizing each IAppi

would depend on the choice
of the user and the object of maximizing the Reward. For
example, based on the types of applications being profiled we
segregated the image representation into 3 categories: compute
intensive, memory intensive and mixed load (both compute



Fig. 2. Block digram of Training Phase of Asynchronous Hybrid Deep Learning Resource Mapping

Algorithm 1: Imager Module Execution
Input: SCAppi : source code of Appi
Output: IAppi : image representation of the source code of

Appi
IR Generator:
IRAppi = GenerateLLVMIR(SCAppi );

. GenerateLLVMIR(SCAppi ) is a function to generate the
optimized LLVM IR code from the source code SCAppi
and returns IR code as IRAppi

Code Cleanser:
CIRAppi = CleanIRCode(IRAppi );
. CleanIRCode(IRAppi ) is a function to strip off unwanted
parts from the IR code such as comments and meta-data
and returns the cleansed IR code as CIRAppi

Image Creator:
n = TotalBytes(CIRAppi );

. TotalBytes(CIRAppi ) is a function to return the total
number of bytes in thecleansed IR code

< w, h > = CalculateWidthHeight(n);
. CalculateWidthHeight(n) is a function to calculate the

width (w) and height (h) of the image representation such
that n = w × h is true and returns w & h as a tuple

I = CreateAMatrix(w, h);
. CreateAMatrix(w, h) is a function to create a blank matrix
with w × h× 3 dimensions to represent a RGB image

foreach Byte bi in n bytes of CIRAppi do
ii = Int(bi);
. Int(bi) is a function to return the integer value of byte
bi

PaintImage(ii, I);
. PaintImage(ii) is a function to copy the value of ii at
the position of bi in I matrix for all 3 channels(R,G,B)

IAppi = SaveMatrixToImage(I);
. SaveMatrixToImage(I) is a function to save the matrix into

an image format on the memory and returns the image
IAppi

return IAppi ;

and memory intensive) [22]. We chose these 3 categories

because we allocate resources to new applications based on
their computational capacities in the Decision Phase.

C. Decision Phase

The block diagram of Decision Phase is provided in Fig.
3. The knowledge gathered through profiling (Reward Profiled
Data & Coder CNN) from the Training Phase is transfered
on the MPSoC. Decision Phase is implemented as a software
agent. When an application instance Appi is executed on
the MPSoC, the agent first checks whether Appi is profiled
in advance in the Training Phase. If no associated Reward
Profiled Data on Appi is found then the source code of the
application Appi is fed to the Imager Module to create the
image representation IAppi so that it could be classified by the
Coder CNN and then allocation of resources take place based
on the classification. But if the associated Reward Profiled
Data on Appi is found then resources are allocated based
on the Reward Profiled Data. We have to keep in mind that
resource allocation through Regression Module of Decision
Phase is more accurate because the application has been pro-
filed in advance but the resource allocation achieved from the
Visual Convolutional Neural Network Module in the Decision
Phase is less accurate but has been able to produce competitive
results to achieve maximum Reward when compared to the
state-of-the-art (see Sec. IV for comparison) without requiring
any manual feature selection of the application. Note: For
Visual Convolutional Neural Network Module we are setting
different resources (operating frequency and number of pro-
cessing elements such as big and LITTLE CPUs) for different
types of applications. The following resources are chosen for
different types of applications for our experimental platform
(Odroid XU4 [15]): compute intensive (all the big CPUs, all
the LITTLE CPUs, maximum operating frequency of the big
CPUs + LITTLE CPUs), memory intensive (half of the total
number of LITTLE CPUs, maximum operating frequency of
the LITTLE CPUs) and mixed load (half of the total number



Fig. 3. Block digram of Decision Phase of Asynchronous Hybrid Deep Learning Resource Mapping

of the big CPUs, all the LITTLE CPUs, middle operating
frequency of the big CPUs + LITTLE CPUs).

(a) Power consumption

(b) Peak temperature

Fig. 4. Comparative study of power consumption and peak temperature for
different methods on different benchmark applications

IV. EXPERIMENTAL RESULTS

A. Hardware & Software Infrastructure
1) Hardware Infrastructure: Nowadays heterogeneous MP-

SoCs consist of different types of cores, either having the

same or different instruction set architecture (ISA). Moreover,
the number of cores of each type of ISA can vary based
on MPSoCs and are usually clustered if the types of cores
are similar. For this research, we have chosen an Asymmet-
ric Multicore Processors (AMPs) system-on-chip (AMPSoC),
which is a special case of heterogeneous MPSoC and has
clustered cores on the system. Our study was pursued on
the Odroid XU4 board [15], which employs the Samsung
Exynos 5422 [27] MPSoC. Exynos 5422 is based on ARM’s
big.LITTLE technology [28] and contains cluster of 4 ARM
Cortex-A15 (big) CPU cores and another of 4 ARM Cortex-A7
(LITTLE) CPU cores, where each core implements the ARM
v7A ISA. This MPSoC provides dynamic voltage frequency
scaling feature per cluster, where the big core cluster has 19
frequency scaling levels, ranging from 200 MHz to 2000 MHz
with each step of 100 MHz and the LITTLE cluster has 13
frequency scaling levels, ranging from 200 MHz to 1400 MHz,
with each step of 100 MHz. Additionally, each core on the
cluster has a private L1 instruction and data cache, and a L2
cache, which is shared across all the cores within a cluster.

Since Odroid XU4 board does not have an internal power
sensor onboard, hence an external power monitor [29] with
networking capabilities over WIFI is used to take power
consumption readings. On the Odroid XU4 the temperature
sensors are located on the big CPUs.

2) Software Infrastructure: For multi-core systems, multi-
threaded applications are heavily used in recent times to
represent workloads as they could leverage concurrency and
parallel processing. Examples of such applications are avail-
able in several benchmarks such as PARSEC [30]. For our
experiments we chose Streamcluster with native option and
Blackscholes with native option from the PARSEC bench-
marks’ suit because these applications closely represented real-
world mixed load applications. We also validated our approach
for face detection using Haar-cascade [31] application [32].
For our experiments each benchmark applications were exe-
cuted five times and the average power consumption and peak



temperature of the big CPUs are reported in the results. For
Streamcluster and Blackscholes the Reward (desired output)
was chosen to be the least execution time, whereas, for the
face detection application 30 FPS was chosen to be the
Reward (desired output) of AHDL method. We have run all
our experiments on UbuntuMate version 14.04 (Linux Odroid
Kernel: 3.10.105).

B. Results and comparative study
We evaluated our AHDL approach with state-of-the-art

methods such as Memory Reads Per Instruction (MRPI) by
Reddy et al. [21] and EdgeCoolingMode by Dey et al. [2]
along with default Linux governors such as performance and
interactive. Fig. IV.(a) shows the comparative study for the
average power consumption between the different methods
including AHDL for the benchmark applications, whereas,
Fig. IV.(b) shows the comparative study for the average peak
temperature of the big CPUs for the different methods. From
Fig. IV we can notice that AHDL outperforms the state-of-
the-art methods and achieves reduced power consumption and
peak temperature.

V. CONCLUSION

In this paper, we proposed Asynchronous Hybrid Deep
Learning (AHDL) resource mapping approach, which classi-
fies the type of executing application (tasks) without requiring
manual feature extraction and then allocates the appropriate
computing resources based on that to achieve reduced power
consumption and peak temperature in embedded mobile de-
vices. Experimental results on real hardware platform, Odroid
XU4, proves the efficacy of the proposed approach while being
competitively better than the state-of-the-art methods.
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