
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

A Self-Adaptive SEU Mitigation Scheme for
Embedded Systems in Extreme

Radiation Environments
Yufan Lu , Xiaojun Zhai , Senior Member, IEEE, Sangeet Saha , Shoaib Ehsan , Senior Member, IEEE,

and Klaus D. McDonald-Maier , Senior Member, IEEE

Abstract—When electronic systems are working in radiation
environments, transient errors, and permanent errors may oc-
cur. Static random-access memory (SRAM) has been the one of
most significant parts in various semiconductor chips for its high
performance and high logic density features. However, because of
their dedicated electronic circuits, SRAMs are sensitive to radiation
effects. In this article, a portable scheme combined with error cor-
recting code (ECC) and refreshing techniques is proposed to correct
errors and mitigate error accumulation in extreme radiation envi-
ronments. Since the proposed scheme is small and transparent to
other modules and no additional latency is introduced, it therefore
can be easily applied to the system where the hardware modules are
designed with fixed reading and writing latency. We evaluated this
design by simulation in a hardware fault injection platform and
radiation experiments in the neutron radiation facility. The results
obtained in the neutron experiment, where the flux of neutron
particles is 5 × 106 cm2. s−1, show that the number of bit-flips in
32 kB self-refresh ECC RAM on the Xilinx Artix-7 FPGA remains
zero, while the number of bit-flips in unhardened RAM rose to 32 in
1.5 h.

Index Terms—Error correcting codes (ECCs), neutron
radiation, SEU mitigation, static random access memory (SRAM).

I. INTRODUCTION

THE natural radiation environment consists of electrons,
protons, and a very small fraction of heavier nuclei, which

are trapped by Earth magnetic field or produced in solar events
and cosmic rays [1]. The interaction of these particles with
other materials can further generate a cascade of secondary
particles, including neutrons, protons, and electrons. Electronic
systems based on semiconductor materials can also be affected
in radiation environments. The interaction of these particles
with electronics can lead to transient, permanent, or intermittent
faults [2].

Commonly, there are two major types of radiation effects on
integrated circuits: 1) cumulative effects and 2) single event
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TABLE I
BASIC CATEGORIES OF SEES [6]

effects (SEEs). Cumulative effects are long-term effects that can
change the parameters of semiconductor materials, and these
can be divided into two categories: 1) total ionizing dose [3]
and 2) displacement damage [4]. In contrast, SEE is caused by
a single ionizing particle, when the particle penetrates sensitive
nodes within electronic devices. These can also be divided into
a number of effect categories. The basic effects are given in
Table I. Among them, SET and SEU are most common effects
causing soft errors (recoverable or transient errors) [5].

Static random access memory (SRAM) is one of the most
significant parts in various semiconductor chips, including CPU
and field programmable gate array (FPGA). Due to a special
feedback mechanism facilitating the memories data retention,
it is also the most sensitive to the radiation. Therefore, with
systems designed for radiation environments, it is necessary to
harden the RAM to achieve higher reliability. In order to miti-
gate errors in the memory systems, a series of error mitigation
strategies have been taken into consideration, including triple
modular redundancy (TMR) technology, error correcting codes
(ECCs), and scrubbing technology [7]–[9].

The TMR technology is a well-known fault tolerant tech-
nology [10]. It is an effective way to harden the systems.
However, considering the large size of RAMs, it would require
a large amount of hardware resources as consequence of the
triple redundancy [11]. ECCs are widely known as another
anti-interference encoding strategy, which requires less hard-
ware resource, to enhance the reliability of memory devices
and communication systems [12]–[14]. However, in radiation
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environments, the number of error bits may accumulate and
exceed the correcting capability. Scrubbing is an effective er-
ror mitigation technology for memory devices to resolve the
accumulation of errors [15]–[17]. By keep rewriting the correct
bits to RAMs, the error bits could be corrected in the early stage
of the error accumulation.

Scrubbing method is suitable for hardening RAMs with static
data (e.g., configuration RAMs in FPGAs). However, when it
is applied to the RAMs with dynamic data [e.g., block RAMs
(BRAMs)], it could be a problem for the scrubber and user
modules to access RAMs at the same time. Normally, there are
two options to address this issue. First method uses extra RAM
ports. However, it could be very limited, there is no free ports
in RAMs. Second method is to modify the timing sequence of
user module to spare some bandwidth for scrubbing. However,
the modifications in user modules are timing consuming and
inconvenient, especially for dedicated user modules.

The proposed system is designed to support the computer
system in radiation environment, one of the common features
of such systems is that the clock frequency of processor is
relatively lower than normal system. For example, the frequency
of LEON3/LEON3-FT IP processor [18] (i.e., it is a widely used
IP core in space applications) is designed under 100 MHz, this
frequency is much lower than most of RAMs’ frequencies. It
is possible to unlock the potential of RAMs by increasing the
frequency. Therefore, we proposed a self-refresh RAM design
by doubling the frequency of RAMs.

In the proposed scheme, the scrubber requires no extra RAM
access port in RAMs or modifications in user modules. Because
the frequency of RAMs are doubled, there is extra bandwidth
for scrubbing, and extra cycles for processing errors. For the
user modules, the proposed design works just like a normal
RAMs, hence it could be easily applied in various systems. In
addition, considering that bandwidth for scrubber is equal to
the user module, the scrubber can scan RAMs with high rates,
which provides better error mitigation performance in radiation
environments.

In this article, we use an Xilinx Virtex-5 XC5VLX110 T
FPGA to build a hardware platform for simulation and an Artix-7
XC7A15T-1CPG236 C FPGAs to build a prototype for radiation
experiments. The simulation platform consisting of a hardware
and a software part is proposed to provide SEU injection
and performance verification in real time. The hardware and
software co-simulation shows that the proposed design can
handle more than 99.9% and 99.97% of errors, while the SEU
rates are 1× 104 and 6.25× 104 bit/s, respectively. The size of
the prototype is 4 kB and the RAM frequency is 100 MHz. In
the experiment, the observed error rates in an unhardened RAM
is 1.2 bit/(kB ·h). The errors rates in conventional ECC ram are
approximately 4.3× 10−4 bit/(kB·h), while the self-scrubbing
RAM is less than 8.7× 10−5 bit/(kB·h).

The main contributions of this article are stated as follows.
1) The proposed design is highly flexible. Compared to con-

ventional external scrubbers [19]–[21], the proposed work
will not occupy additional RAM access ports. The refresh
controller can share the same ports with the original user
modules, hence it can be adapted to various systems.

Fig. 1. Adding refresh circuit in memory cell (SA indicates voltage-sense
amplifiers) [22].

2) The proposed design will not affect the timing sequence
of the original user modules. When it is applied in RAMs
system, there is no need to modify to the original user
modules. Hence, it is very convenient to implement this
scheme, especially when the user modules are dedicated
circuits [e.g., finite-state machine (FSM)] that cannot be
modify easily.

3) The proposed SEU mitigation design can achieve high
SEU correction rates in various conditions. The results of
the simulation and the radiation environment test follow
the same trend. In simulation, the proposed design can
correct more than 99.97% of SEU’s errors at the SEU
injection rate 6.25× 104 bit/s. In the neutron radiation
experiment, the SEU correction rate achieves 100%, when
the flux of neutron radiation is 5× 106 cm2s−1.

The rest of this article is organized as follows. Section II
provides a brief overview of related works, including some
scrubbing designs. Section III presents the architecture of the
self-refresh ECC RAM. Section IV presents the design of it’s
state machine and the scanning strategy. Section V presents
the results of the hardware simulation platform. Section VI
presents the results of the neutron radiation experiment designs.
Section VII concludes this article.

II. RELATED WORKS

There is a plethora of error mitigation techniques for RAM.
For example, researchers have employed redundancy, correcting
code, and scrubbing to detect and correct errors. Those designs
can be divided into three categories.

1) Redesigning the RAM cell circuits so that there is no
separate controller.

2) Internal scrubbers for refreshing data, which are normally
based on the built-in dedicated circuits.

3) External scrubbers, which access memory as ordinary
modules with reading and writing operations.

A. Refresh Memory Cells

Tosson et al. [22] presented a refresh circuit for resolve the
soft-error failures for memory cell. Two voltage-sense amplifiers
are added to detect errors in bits lines. When errors occur,
voltage-sense amplifiers can trigger data refreshing operations.

Fig. 1 shows the architecture of refreshing memory cell. The
refresh circuit consists of SA1 (1-input), SA2 (2-input), and error
detection unit. SA1 and SA2 are the voltage-sense amplifiers
used to detect the RAM state of register cell. By comparing the
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Fig. 2. Refreshing the configuration memory in FPGAs by using external
scrubber and PROM.

voltage of different locations, different states of the memory
device can be recognized.

Compared to separate scrubber, the RAM circuits are re-
designed in this scheme, which brings lower detection time
and performance loss. It takes less than 100 pico second to
detect errors with less than 10% increase in the memory power
consumption. However, the usage of this method is limited due
to the higher prices and lower flexibility.

B. External Scrubber

Kumar et al. [19]–[21], [23] presented the external scrubber
schemes where the external scrubber was independent of target
devices. For example, in [19], a separate FPGA was programmed
as the external scrubber for Geostationary Mission. In this
article, there is a PROPM used to save initial program. By
overwriting the contents of configuration memory on periodic
basis, it can prevent system failure due to error accumulation.

It’s a postconfiguration write operation in the configuration
memory of Xilinx FPGA without disturbing the system oper-
ation. Basic block diagram of the system is shown in Fig. 2;
there are two FPGAs in this scheme: 1) a targeted SRAM FPGA
needed to be hardened and 2) an external scrubber implemented
in a separate FPGA.

During power stage, the configuration parameters of Xilinx
FPGA are first initialized to their default value. Configuration
happens after the proper initialization of the configuration pa-
rameters. Read-back test is then performed immediately post-
successful configuration to make sure that there is no hard error
in target devices. Scrubbing operation on the FPGA resources
is done only after successful read-back test. The contents of
configuration memory are refreshed every 6 min on periodic
basis.

C. Internal Scrubber

Another method is to internal scrubber in the scrubbing
scheme. Zhang et al. [24], [25] proposed scrubbing methods for
FPGA configuration RAM. They adopted the internal scrubbing
method by using internal configuration access port (ICAP) to
read and write configuration RAMs.

A basic architecture [24] of scrubbing platform is shown in
Fig. 3. The FRAME_ECC logic calculates the syndrome value
according to the bits in one frame including the ECC bits by
reading frames from the configuration RAMs. The majority
voter designed to detect the unexpected outputs in the user
design. Once the errors are detected, the FSM in the srcubber are
triggered to refresh the configuration RAMs. This method are
suitable for configuration RAMs. In the configuration RAMs,

Fig. 3. Internal refresh scheme by using ICAP to access the configuration
memory [24].

Fig. 4. Using dual-port RAMs to implement scrubbers in BRAM systems [26].

bits are static, so there is no additional read or write (R/W)
operations to occupy the access ports.

However, scrubbing methods can be an challenging in
BRAMs, if all available ports are in use. Keller and Wirthlin
[26] proposed a scheme combining with TMR and scrubbing
methods as shown in Fig. 4. In this article, dual-port BRAM
modules are used for hardening the RAM in LEON3 proces-
sor. The processor use only one port or the BRAM modules,
which leaves the other port left for scrubbing operations. In this
scheme, BRAM and scrubber are tripled and the correct value is
determined by voting between the redundant copies. However,
this method will still occupy the BRAM access ports. In order to
apply this method, single-port BRAMs are replaced by dual-port
BRAMs. If the dual-port BRAM are already in use, the method
in [26] will be limited.

In our case, there are a number of predesigned hardware mod-
ules using BRAMs in FPGAs. We want to update the RAM parts
to improve the stability of the system. However, there are some
difficulties to apply scrubbing methods in the system. First, due
to the predesigned FSM in the hardware modules, modifications
in time sequence of the hardware modules will be difficult, which
means that we cannot just add the correction programs. Second,
considering the usage of the dual-port BRAMs, there will not
be enough RAM access ports for us to connect scrubbers. Third,
because the TMR methods will need triple resources to work,
the available RAM space will be limited.

To address these problems, we propose a self-refresh architec-
ture with ECC techniques to enhance the RAM. The proposed
scheme falls in the category of internal scrubbers, so that the
design can be implemented in the FPGAs, without redesigning
memory cells or using external chips. Compared to other meth-
ods, the proposed scheme requires no additional RAMs, so that
it can be applied in a wide range of hardware systems.
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Fig. 5. Scheme of the external scrubber platform. User module will run at 1×clock speed, while the controller and RAMs will run at 2×clock speed.

III. ARCHITECTURE OF THE SELF-REFRESH ECC RAM

Fig. 5 shows the system block diagram of self-refresh ECC
RAM. Unlike the scrubbing scheme with dual-port RAMs where
scrubbers use separate ports, the self-refresh controller and user
modules share the same RAM ports in proposed system. In
this scheme, the self-refresh controller is not only a scrubber
to “clean” errors in RAMs, but also a transmitter for the passing
of data from the user module. In addition, in order to minimize
the effect on the read and write timing sequence of user module.
The controller and RAMs operate at double frequency of the
user clock, which means that the ECC refresh controller runs
faster than user modules, and is thus, able to utilize extra clock
cycles to perform additional tasks (e.g., fault detection and error
correction) without interrupting the normal operations.

A. Switcher for Operations

As mentioned, the purposes of the controller are: 1) trans-
mitting operations from user modules and 2) scrubbing RAMs.
When the proposed scheme is applied in the system, the user
module will access the controller with original read and write
operations. For user modules, the controller will work just as a
simple configured BRAM. The switcher will pass all controller
signals from the user module to RAMs. By using classic RAM
control circuits, the multiple features (e.g., enable signal and
mask function) can be easily implemented for various hardware
systems.

To achieve this purpose, the operations from user modules
and the scrubber should be carefully arranged to make sure the
timing sequence unchanged. Assuming that the outputs are ready
in the next user clock cycle in the original timing sequence,
the controller should also follow the same timing sequence. In
the controller, a switcher module is designed to rearrange the
sequence of operations from two directions: 1) user module and
2) refresh controller. As shown in Fig. 6, the external operations
from user module and the refreshing operations are interlaced by
the switcher. Considering that the controller is actually working
at the double frequency of user clock. There will be one clock
cycle left (in 2×clock domain) to transmit and return data.

Fig. 6. Sequence of input operations stream. Operations from the user module
and refresh controller will be placed one by one.

However, one clock cycle is still very limited to conduct
transmission and ECC coding. Therefore, in this scheme, we
use Hamming code as the correcting code. Because of its simple
calculations, the decoder and coder can be designed fully based
on logic gates. In this way, the coding processes will not require
additional cycles.

B. Refresh Controller

The refresh controller is a core module of the proposed self-
refresh ECC RAM. It has two operating modes: 1) the scan mode
and 2) the refresh mode. When the system is working, the refresh
controller continuously generates reading commands to read
all memory units in the RAM periodically. Simultaneously, it
checks the outputs of the ECC decoder, which is a combinational
logic module to decode the outputs of the RAM. When SEUs
occur, the ECC decoder can detect and fix the errors per byte.
An error flag will also be asserted to indicate the occurrences of
SEU. Then, the refresh controller will switch to refreshing mode
and generate a writing command to refresh memory units.

C. Output Buffer

In order to resolve the timing problems, a buffer module
is set between the ECC decoder and output port. Because the
operations sent to the RAM are interlaced, the output data stream
is also interlaced. To ensure that the external module will not be
affected, the sequence of the output data stream needs to be
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Fig. 7. Sequence of output data stream. The read data of the user module will
be buffered, while the read data of the refresh controller will be blocked.

rearranged accordingly. As shown in Fig. 7, the output buffer
module will block the outputs of refreshing operations. In other
words, the output buffer allows only the outputs of external
operations to go through in order to prevent the external module
access to the data of refreshing operations.

In this architecture, the external operations (e.g., reading and
writing) and internal operations (e.g., refreshing) execute in
parallel, hence the performance of the systems will therefore
not be affected.

IV. HARDWARE IMPLEMENTATION

As mentioned in the last section, as all operations from exter-
nal modules (i.e., CPU) and the refresh controller are interlaced,
the controller must arrange the sequence of the operation stream
carefully. We will discuss the details of the FSM that enables
this and how to handle the conflicts between external modules
and internal modules.

A. Design of FSM

In order to distinguish from user module operations, in this
article, “R/W operation” indicates read and write operations
from user modules, while “scrubbing operation” indicates op-
erations from the refresh controller. Considering the different
clock domains of user module and the refresh controller, the
operation sequence needs to be carefully arranged. In this article,
the cycles (2×clock domain) used by the refresh controller
are called “refresh cycles,” while the rest cycles are called
“user cycles”. The refresh operations will be distributed into
the “refresh cycles”.

The state machine diagram of the refresh controller is shown
in Fig. 8. The progress of refreshing starts from the rising edge
of the user clock (1×clock domain), in this way, the output
sequence can be synchronized with the user clock domain.

The refresh progresses start from S0, indicating that it is in
refresh cycles. In S0, the RAM input port is occupied by refresh
controller for reading data from the target address (address A).
Then, in the next cycle (S1), output data from address A (DA)
will be ready at the RAM output port. Because the decoder is
combinational logic, the correcting results is also ready in the
same clock cycle. If there is no error in the current address, the
address controller will just move to next address and the FSM
will move to the next round and return to S0. If the decoding
results show the data from the target address is incorrect (DW),
the FSM will switch to the error processing state (S2). In this
state, corrected data will be written back to the target address.

Fig. 8. There are four states in this FSM: state 0 (S0) (start, next), S1 (check),
S2 (refresh), and S3 (synchronize). The R/W operations from refresh controller
can only be conducted in S0 and S2, because the RAM access port is occupied
by user module operations in S1 and S3.

Fig. 9. Example of timing diagram without address conflicts. The addresses
1, 2, and 3 are different with addresses A and B. The refresh processes will not
affect user operations.

After writing back, the target memory unit will have been
refreshed. Finally, in state 3, the controller will be synchronized
to make sure that S0 start from the next rising edge of the user
clock.

Fig. 9 shows examples of the timing sequence of refreshing.
The CHK addr is the checking address, which is read by refresh
controller. The R/W addr represents the address operated by
the user module. RAM addr represents the actual RAM address
in operation. The CHK addresses and the R/W addresses are
represented by alphabet and numbers, respectively, to indicate
that the user module and refresh controller are accessing the
different addresses.

In this figure, addr A represents an address with correct data,
while addr B represent an address with incorrect data. FSM start
from S0 to read the addr A. The output data and checking result
are ready in the next state S1. Because there is no error, FSM
move back to the S0 to read address B. If there is an error in
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Fig. 10. Errors caused writing address conflicts. The user module is writing
ND to addr 6, while the refresh controller is writing the “corrected” data (DW
is corrected to be D6) to the same address. The ND is overwritten by D6.

address B, FSM will move to S2 to overwrite corrected data to
address B. Finally, FSM is synchronized in S3 to make sure the
S0 start from refresh clock cycles.

On the other hand, the buffer module will block the RAM
outputs used by refresh controller. The outputs of the buffer
(D1, D2, and D3) will correspond to the sequence of user
module operations (addresses 1, 2, and 3). All the refreshing
operations are invisible to the external modules. Following the
shown timing sequence, the user R/W operations will not be
interrupted by either reading or rewriting processes. Hence,
for user modules, the self-refresh ECC RAM works just like
a normal single port RAM.

B. Conflicts of Operations and Strategy of Scanning

Typically, the FSM works as shown in Fig. 9, the refreshing
progress without errors lasts for two RAM cycles and the re-
freshing progress with errors lasts for four RAM cycles. It is
possible that user module writes new data (ND) to the same
address that refresh controller are rewriting. In this case, the
ND may be covered by the out-of-date “corrected” data. In this
article, the cases that user module and refresh controller access
the same address are called “address conflict”.

Fig. 10 shows the time sequence of the address conflict in the
refreshing processes. In this figure, the user module and refresh
controller are accessing the addresses 5 and 6 at the same time.
In the shown case, the data in address 6 is incorrect. The user
module is writing ND to address 6 (ND6), while the refresh
controller is reading the old data from address 6 (D6). In the S1
for address 6, ND6 is written to address 6, however, out-of-data
D6 is written subsequently in S2 due to the previous checking
results.

In order to solve this problem, the refresh controller has
to monitor the address of user operations to ensure that there
is no address conflict. In the proposed design, if the refresh
controller accesses the address that is being written to by user
module, it will give up the current operation and move to the

Fig. 11. Actual timing diagram of the proposed scheme. In address conflicts,
the refresh controller gives up overwrite operations. Error bits are still corrected
by the ECC decoder. Scan order of the address is also reversed to reduce address
conflicts.

next address directly, whether there is an error or not. In this
way, refresh controller will not write out-of-date data back to the
address in address conflicts by the costs of two cycles. However,
considering that most external modules will access memory
devices by the order of address, there is a good chance that the
refresh controller and the user module will continue accessing
the same address. Thus, in order to lower the probability of the
address conflict, the refresh controller accesses the memory units
by reverse order.

An example of actual timing sequence of the proposed scheme
is shown in Fig. 11. The user module accesses memory units
by order of addresses 5, 6, and 7, while the refresh controller
accesses memory units by order of addresses 7, 6, and 5. When
there is an address conflict, the refresh controller will skip the
current address (address 6) and check the next address (address
5), while the user module will access a different address (address
7) in the next user clock cycles. In this way, there will be no
continuous address conflicts.

C. Parallel Architecture

Due to the difference between error refreshing and no error
refreshing processes, the time of scanning all memory units is not
constant. In this system, scanning time is based on the memory
size, clock frequency, and number of detected errors. In a RAM
where N memory units are under detection, the frequency of the
controller working clock is f and the scanning time T , can be
represented by

T =
2n1 + 4n2

f
=

2(N + n2)

f
(1)

where n1 represents the number of memory units without errors
and n2 represents the number of memory units with errors.

In order to correct errors before the occurrence of the se-
quential error, the scanning time should be less than the error
generation time. Therefore, the maximal scanning time (Tmax)
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Fig. 12. Architecture of multirefresh controllers.

for stable executing can be represented by

Tmax =
1

NR
(2)

where R represents the generation rate of bit flips and N repre-
sents the number of memory units under detection. For example,
if the given generation rate of bit flips in an environment is
1× 10−3 bit/(N·h), the scanning time for 1 MB RAM should
be less than 1× 10−3 h.

As aforementioned, the scanning time depends on the fre-
quency of the RAM clock and the RAM size under detection.
Normally, the frequency of RAM is fixed during the running
time. Therefore, the scanning time can be easily calculated by
the size of RAMs.

Similar to the ordinary RAMs, the refresh controllers can
also be connected in parallel by allocating different addresses
to different controllers. Therefore, we can divide a large RAM
into a set of smaller RAMs. Each refresh controller only needs
to check a smaller memory size. Hence, the scanning time for
each small RAM can be represented by

T =
2(N + n2)

mf
(3)

where m represents the number of refresh controllers, n2 repre-
sents the number of memory units with errors, and N represents
the number of total memory units under detection.

In this way, we can change the number of units under detection
to change the scanning time. By using such multirefresh con-
trollers, we can lower the time of scanning significantly, which
decides the system’s performance of SEU mitigation.

The architecture of multirefresh controllers is shown in
Fig. 12, the large RAM is divided into a set of smaller RAMs,
the external module can access each small RAM by different
addresses. Hence, we can use different architecture according to
different environments. In high-radiation environments, we can
use additional refresh controllers to compensate and achieve
higher performance. On the other hand, we can also reduce the
number of refresh controllers in order to save hardware resources
at the cost of lower performance.

In addition, using small RAMs rather than a large RAM
means that the size of the refresh controller can also be small.
Considering that RAMs run at twice the frequency of the system
clock, it can also help to resolve the setup time problems.

Fig. 13. Architecture of hardware fault injection platform.

V. FAULT INJECTION PLATFORM AND HARDWARE SIMULATION

In order to verify the performance of the self-refresh ECC
memory technology and to conduct functional tests, a hardware
simulation platform was built to carry out hardware SEU fault
injection. The self-refresh ECC RAM was implemented in this
platform to evaluate the performance.

A. Design of Hardware Fault Injection Platform

This platform includes an FPGA part, performing SEU hard-
ware simulation, and a PC software part for data analysis and
human–computer interaction. Those two parts communicate via
UART. The PC client part is mainly responsible for the operation
control of SEU simulation platform and the display of error
correction results. The FPGA part is designed to implement SEU
fault injection and ECC verification.

The main architecture of the hardware platform is shown in
Fig. 13. The operations communicated from the PC are stored in
a buffer. There are two RAMs under test: 1) a reference RAM,
which is a RAM without injection and 2) a injection RAM, where
we carry out the SEU injection. In this article, both reference
RAM and the injection RAM will be replaced by the proposed
design.

When a simulation test starts, the reference RAM and the
injection RAM will be read or written simultaneously according
to the pregenerated operations. At the same time, the injection
controller will inject the error bits into the memory units of the
injection RAM to simulate the occurrence of SEU. The platform
can also simulate the intensity of radiation by adjusting the
probability of the occurrence of the single particle effect and
the frequency of SEU injection. This allows it to evaluate the
effects of different factors and performance of hardening design
in different situations. By using the equivalent circuit without
the injection, the simulation platform can simulate the state of
the module in both radiation and nonradiation environments.

In this article, the errors that may affect the system are called
functional errors. In the unhardened RAMs, all the errors read by
the system are functional errors, while in the proposed systems,
functional errors are the errors not corrected by the refresh
controller. In the simulation, different outputs between the in-
jection RAM and the reference RAM suggest functional errors.
We evaluate the SEE mitigation performance by comparing the
functional error rates. All data generated in the RAM operation
is exported to the PC to analyze the capability of SEU mitigation
of the tested module in real time.
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Fig. 14. Injection controller will bypass the refresh controller and write error
bits into RAMs directly. The BRAM module is modified to accept data from
both refresh controller and injection controller.

B. Fault Injection in Hardware Platform

Unlike the software simulation, the hardware simulation can-
not simply simulate the occurrence of SEU by just specifying
bit flip. The hardware simulation platform has incorrect bits
written into the target memory units to simulate SEUs. To ensure
that the RAM logic function will not change during execution,
we adopted the idea of self-refresh ECC RAM and double the
system clock to make the injection controller operate at a higher
frequency. Hence, the proposed simulation system can make use
of extra clock cycles to perform SEU injections.

Also, to detect the effects of SEUs on different instruction
sequences in RAM, another RAM is used to store instructions.
By reading or writing the RAM with a specific operation order,
this platform can also simulate the code execution of different
software programs. Hence, we can also evaluate the capability
of SEU mitigation of different programs.

Fig. 14 shows the block diagram of the injection modules
for evaluate the proposed design. In the simulation the injection
controller is connected to the BRAM module directly. BRAM
modules are not just BRAMs. It is a module with BRAMs inside
and can conduct operations from refresh controller and injection
controller. By using the similar method (e.g., double frequency),
the operations refreshing controller will not be affected.

During hardware simulations, the refresh controller should
keep sending R/W operations to BRAM module. The read/write
controller will work as the user module and keep sending
operation to refresh controller. In the meantime, the injection
controller writes error bits into BRAMs from time to time. Inside
the injection controller, there is random number generator. After
each injection, it will generate a random interval time for the next
injection. The random seed, average injection time, and floating
range can be set by users. The actual interval will float randomly
within the range around the average time.

C. Results of Simulations

Table II gives the main technical specifications of the SEU
hardware simulation platform, which is built on an Xilinx Virtex-
5 XC5VLX110 T FPGA. The system works at a frequency of
100 MHz and has ability of SEU injection at maximal frequency
of 50 MHz. The executor programming simulated by the hard-
ware platform works at frequency of 25 MHz, which equals
the frequency of R/W operations. Hence, according to (1), the

TABLE II
SPECIFICATIONS OF HARDWARE FAULT INJECTION PLATFORM

Fig. 15. Results of simulations with 80-µs injection time.

scanning time is approximately 160 µs and the SEU rate is
6.25× 104 bit/s.

There are following three simulation modes to satisfy different
requirements.

1) Single mode means performing all saving R/W opera-
tions for one round, which is designed to test certain
programmes.

2) Loop mode means repeating R/W operations for specified
times rounds, which is designed to test the performance
of the systems in a specified time.

3) Unlimited mode means continuously R/W operations, un-
til it is stopped by users, which is designed to evaluate the
error rate.

Fig. 15 shows the performance of the self-refresh ECC RAM
and an unhardened RAM in hardware simulation. The injection
time represents the average interval time between two SEUs.
In this simulation, all the operations are generated by PC in a
random generated order. Because the number of operations is
much higher than the number of memory units, the injection
controller may access the same unit multiple times, before the
errors in this memory unit are covered or refreshed by ND. In
other words, the number of detected functional errors may be
greater than the number of SEU injections. As we can see, after
using the self-refresh ECC technique, the number of functional
errors is reduced to almost 0, which validates that the proposed
design effectively avoids functional errors caused by SEU. Error
rates of different average injection time are shown in Fig. 16.
When the average injection time is more than 100 µs, which
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Fig. 16. Error rates of different average injection time.

means that the SEU rate is 1× 104 bit/s, the self-refresh ECC
RAM can handle 99.9% of errors. When the injection time is
equal to the scanning time which is 160 µs, the self-refresh
controller can handle 99.97% of errors.

The injection RAM and the reference RAM are changeable in
this platform. By replacing the injection RAM and the reference
RAM with other hardened RAMs, this platform can also be
used to evaluate the performance of other SEU reinforcement
design. By this platform, we verify the reliability, functionality,
and effectiveness of self-refresh ECC RAM. However, hardware
simulation is not equivalent to test with real radiation. Therefore,
it is necessary to test the proposed systems in real radiation
environments.

VI. NEUTRON RADIATION EXPERIMENTS

In order to evaluate the real world performance of the sys-
tem, we conducted experiments with neutron radiation. Neu-
tron radiation was used to create extreme environment to
evaluate the SEU mitigation performance of self-refresh ECC
RAM [27]–[29].

A. Setup of the Neutron Experiment

Radiation experiments were conducted at the ChipIr facility
at ISIS, Didcot, U.K. [30]. ChipIr provides a neutron spectrum,
which is suitable to emulate the effects of terrestrial neutrons
in electronic devices and systems. The ChipIr neutron flux
(with En > 10 MeV) has been measured to be approximately
5× 106 cm2s−1. The neutron flux at ChipIr is about eight to nine
orders of magnitude higher than the terrestrial flux at sea level.
Calculated by the scientists from ISIS, the radiation dose on
water (human body) is about 20 000 mSv/h in our experiments.

We design two experiments to evaluate the proposed design:
1) comparison between unhardened RAMs and the self-refresh
RAMs and 2) comparison between the conventional ECC RAMs
and the self-refresh RAMs. In the experiments, the systems are
placed under the neutron beams for several hours, that amounts
to a neutron yield of 6.5× 1010 per hour considering a 7 × 7

Fig. 17. Setup of neutron radiation experiment.

TABLE III
SPECIFICATIONS OF HARDWARE IMPLEMENTATION

∗Number of the 36-kB BRAM used in the FPGA.

cm beam. This is equivalent to more than half a million years of
natural exposure.

The setup of the neutron experiment is shown in Fig. 17. The
devices under test (DUT) are placed in the radiation room. Be-
cause of the strong penetration of neutron beam, it can penetrate
all test boards. The DUTs in the radiation room are connected to
the PC in control room by long USB cables. In order to reduce the
impact from other electronic components, the communication
modules and power supplies used in the experiment were kept
outside of the radiation range.

B. Hardware Implementation of the Self-Refresh ECC RAM

In the radiation experiment, the self-refresh ECC RAM is
implemented on Digilent Cmod A7-15 T, which is a low-price
entry-level FPGA development board. The chip on this board is
an Artix-7 XC7A15T-1CPG236 C FPGA with 112.5-kB block
RAM inside.

The basic architecture of DUT is similar to the abovemen-
tioned hardware injection platform but no injection controller
and reference RAMs. The design of experiment circuit includes
two parts: 1) the UART controller and 2) the target RAM. When
the boards are working, the PC client sends compressed write or
read commands to the FPGA part via UART periodically. Sub-
sequently, the UART controller operates target RAMs according
to those commands. All outputs of the read operations will be
sent to the PC immediately, to avoid the impacts of radiation.

The specification of the hardware of the whole design is
given in Table III. Both the reference RAM and the target
RAM have the same available memory size, which is 32 kB
and the same available bandwidth for external modules. Hence,
the self-refresh ECC RAM consumes slightly more memory and
requires a higher frequency of the RAM clock. The unhardened
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Fig. 18. Scheme of the external scrubber platform.

Fig. 19. Hardware costs with the scale of the design.

design and hardened design consume 16 and 21.5 BRAM units,
respectively. The operating frequency of the unhardened RAM
and the self-refresh ECC RAM are 50 and 100 MHz, respec-
tively. The number of the LUTs for the entire design included
UART and operation parts, the unhardened design and hardened
design use 562 and 681 LUTs, respectively. The additional 121
LUTs are used to build the self-refresh controller.

The scalability of the proposed design is shown in Fig. 19.
It shows the trends of the utilization of LUTs and BRAM with
available RAM size. When the available RAM size is 8 kB, the
unhardened and hardened designs consume 560 and 688 LUTs,
respectively. When the available RAM size was 256 kB, the
unhardened and hardened designs consume 720 and 932 LUTs,
respectively. The additional utilization of the LUTs scales up
slightly for wider bandwidths. The refreshing controller itself
does not scale up. The utilization of BRAM grows linearly with
the available RAM size.

Fig. 20. Power consumption with the scale of the design. (a) Power consump-
tion of the RAM part. (b) Power consumption of the system.

The power analysis generated by the Vivado analysis tool is
shown in the Fig. 20. Compared to the unhardened RAM, the
power consumption of the hardened systems also slightly scale
up with the RAM size. There are two parts to the additional
power consumption. First, the dynamic power consumption of
the self-refresh ECC RAM increases for operating at higher
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frequency. Second, hardened design consumes more power for
the additional control circuits.

When the available RAM size is 8 kB, the unhardened RAM
and the hardened RAM consume 0.001 and 0.003 W, respec-
tively. When the available RAM size is 256 kB, the unhardened
RAM and the hardened RAM consume 0.02 and 0.038 W,
respectively. However, the RAMs consume much less power
than the processor in the designs. The total chip power con-
sumption does not increase significantly. When the RAM size is
256 kB, the hardened system consumes 1.4% more power than
unhardened system.

C. Analysis of the Return Data

In the radiation experiments, the entire FPGA board was
placed in the radiation room, hence the communication and
control modules implemented in FPGAs were also be irradiated.
It is possible that the detected error bits are false positive results
instead of the actual errors in BRAMs. Fortunately, it is possible
to identify the errors types in the systems. In the experiments,
the PC will read back all the raw data from the FPGAs in every
5 s. We can compare the current read back data with the next data
to see if there are some changes. According to our experiment,
we find that the error bits can be categorized into following
three types: 1) bit flips that can be read back continuously,
2) transient bit flips show up once, and 3) a large number of
unexpected error bits in line. In the proposed design, if there are
too many multiple error bits in a byte unit for controller to fix, the
refresh controller will leave it alone and rewrite the correcting
codes to avoid repeating detection. Hence, if there are errors
in BRAMs that refreshing cannot correct, behaviors of errors
should fall in the first category. Because the communication
modules keep receiving and send data. It is more likely that errors
in communication modules are refreshed by the ND instead of
showing up in the location of the read back data continuously.
Finally, if there are a large number of unexpected errors, it is
most likely that a failure happened in the controller systems.
Therefore, the errors in the proposed design can be identified if
the errors are repeatedly presented in the read back data.

D. Comparison Between Unhardened RAMs and the
Self-Refresh RAMs

The results of the neutron radiation experiments of the com-
parison between unhardened RAMs and the self-refresh RAMs
are shown in Fig. 18. The number of bit flips in self-refresh
ECC RAM remains at zero during the entire experiment, while
the number of bit flips in unhardened RAM rises to 32 in the
initial 1.5 h. As both RAMs are working in the same radiation
environment, it proves that the design of self-refresh ECC RAM
is effective for SEU mitigation.

As aforementioned, the size of the unhardened RAM was
32 kB, therefore, the generation rate of bit flips in this device
in this radiation environment was about 1 bit/(kB ·h) or 1×
10−3 bit/( N·h), where N represents the number of memory
units.

Fig. 21. Comparison between the conventional ECC RAMs and the self-
refresh ECC RAMs.

TABLE IV
SEU CROSS SECTIONS OF SRAM ON ARTIX-7 FPGAS IN NEUTRON

RADIATION ENVIRONMENTS

∗SR indicates self-refresh.

E. Comparison Between the Conventional ECC RAMs and the
Self-Refresh RAMs

The comparison results between conventional ECC RAM and
self-refresh RAM is shown in the Fig. 21. In this experiment, the
conventional ECC RAM is the RAM hardened by Xilinx official
ECC modules [31], which is used as the reference RAM. After
the 360 min radiation experiment, the total number of observed
errors in the conventional ECC RAM is five, whilst the number
of the errors in the self-refresh RAM is only one.

Table IV gives the SEU cross section of BRAMs on Artix-
7 FPGAs in different neutron radiation experiments. Despite
the experiments were performed in different radiation environ-
ments, the SEU cross section of unhardened RAMs is about the
same order of magnitude. Compared to the unhardened RAMs
and conventional ECC RAMs, the self-refresh RAMs achieve
better error mitigation performance in neutron radiation envi-
ronments. In our experiment, the error rates of the self-refresh
RAMs are 8.7× 10−5 bit · (kB·h)−1 and the calculated SEU
cross section is 1.16× 10−16cm2 · bit−1, which is one-fifth of
the error rate of the ECC RAM.

VII. CONCLUSION

This article proposed a scheme that combines ECC and
refreshing methods to mitigate SEUs for the devices that are
supposed to work in extreme radiation environments. Compared
with the conventional refreshing method, it can refresh memory
units separately with high frequency without interrupt operations
from user modules. The proposed scheme requires no additional
RAM ports, so that it can be applied in a wide range of hardware
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systems. In addition, by modifying parallel architecture accord-
ing to the density of radiation, this design can achieve a balance
between performance and hardware costs.

The experiments were conducted in the neutron radiation
environments. It is shown that the error rates remain robust
irrespective of the RAM size. The comparison of the radiation
experiments also shows that the self-refresh scheme is an effec-
tive strategy for hardening embedded system and the error rate
of the self-scrubbing RAM is one-fifth of the conventional ECC
RAM.
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