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Abstract 

Non-genetic variability in gene expression is an inevitable consequence of 

the stochastic nature of processes driving transcription and translation, as well 

as the epigenetic modifications of the genome. This phenomenon has been 

observed in both unicellular and multicellular organisms. Largely thought to be 

deleterious to cell fitness, it is not uniform across the transcriptome. This 

implies the existence of mechanisms regulating expression variability, 

although they, and the role played by inter-individual expression variability, 

remain poorly researched in multicellular systems. I utilised multiple 

Arabidopsis thaliana time series expression datasets to identify variable genes 

and analyse their cellular functions.  

I show that variable genes are enriched for Gene Ontology terms related to 

biotic and abiotic stress response and that, inversely, low variability genes are 

enriched for housekeeping terms. Moreover, I also investigated DNA 

methylation as a potential mechanism buffering expression variability by 

analysing methylation of Arabidopsis genes and promoters, and by comparing 

wild type plants with CG methylation reduction and CG methylation loss 

methyltransferase mutant specimens. I found that variable genes are less 

methylated in the CG context in wild type Arabidopsis. Loss of CG methylation 

alters expression variability of some genes. Of those, significantly greater 

portion of genes gained variability, compared to those that lost it. These 

results are an important step towards greater understanding of these 

processes in multicellular organisms, and their role. 
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1.  Introduction 

1.1. Background 

By 2050, the human population is expected to reach 9.7 billion (United Nations, 

2019). However, close to 750 million people were exposed to severe food insecurity 

in 2019 - a number that, should we remain on our current course, is expected to 

grow (FAO et al., 2020). As such, tackling global hunger remains one of humanity’s 

top priorities. It is, however, vital, that it be done in a sustainable manner – already 

one-third of Earth’s land not covered by ice is occupied by either settlements or 

agricultural areas (Ellis and Ramankutty, 2008). The additional danger posed by 

worsening climate caused by global climate change (Rahmstorf and Coumou, 2011) 

suggests that understanding of plant stress tolerance will be vital in addressing these 

issues. Indeed, an analysis by Boyer (1982) indicates that majority of theoretical 

yield for plants grown in the United States is lost due to imperfect adaptation to the 

environment they are grown in.  

Essential to improving our understanding of stress tolerance is improving our 

knowledge of mechanisms involved in plant stress response. For many species, 

numerous genes involved in stress response have been identified. Almost 5000 

Arabidopsis proteins have been assigned “response to stress” Gene Ontology 

(Ashburner et al., 2000) (Gene Ontology Consortium, 2019) term based on 

experimental evidence alone. This does not mean that our understanding of stress 

response is complete, even just for Arabidopsis. The traits responsible for response 

to stress, especially abiotic stress, are multigenic (Wang et al., 2003) and, as such, 

response to stressors involves multiple transcription factors and signalling 

molecules. These gene-networks are complex – some gene products are conducting 
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response to only specific stresses, whereas others are involved in multiple signalling 

pathways (Chinnusamy et al., 2004). 

One phenomenon with potential role in management of plant stress response is 

inter-individual gene expression variation, here defined as variability in gene 

expression between organisms. The effects of variation in genome upon 

transcription are well understood, particularly as they contribute to diseases like 

cancer (Budinska et al., 2013), yet non-genetic expression variation has also been 

observed, even in models like cancer (Inde and Dixon, 2018).  

 While non-genetic expression variability appears to be exploited by immune 

response of complex organisms like animals (Hagai et al., 2018), and plays a role in 

survival under stress in Eukarya like yeast (Bishop et al., 2007), the role of gene 

expression variability in Arabidopsis is largely unknown, with the exception of seed 

germination times (Johnston and Bassel, 2018) (Abley et al., 2021). 

1.2. Gene expression variation 

1.2.1. Genome-based variation 

Of the three main sources of gene expression variation, the one discovered first, 

before the advent of genetics itself, is genetic variation, which encompasses 

differences in expression between two organisms of the same species caused by 

differences in their genome (Fay et al., 2004). Among the forms it may take are 

single nucleotide polymorphisms (Ranjith-Kumar et al., 2007), copy-number 

variations (Stranger et al., 2007) and polyploidy (Wang et al., 2006). Importantly, the 

inheritance of genome state of germline cells is heritable (Rahbari et al., 2016), 

meaning variation caused by de-novo mutations is perpetuating across generations. 

The influence of genome variation on expression is an axiom of genetics, with 
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extensive genotype-phenotype linkages (Lehner, 2013). For instance, plants of 

varying genotypes may differ in their stress response genes, leading to different 

transcriptomes and phenotypes under stress (Carlson et al., 2017). This type of 

variation may even appear in cell populations descendant from a single cell (Liu et 

al., 2019). 

The sources of genetic variation are as varied as the forms it takes and range 

from errors in DNA replication (Kunkel, 2000), to flawed repair of DNA damage 

(Cooke et al., 2003), to transposon insertion (Tsugeki et al., 1996). These alterations 

to the genome may then go on to alter transcriptome in a number of ways. The most 

significant of them are changes to structure of the gene itself. An insertion or a 

deletion may shift the reading frame of the gene in a so-called frameshift mutation 

(Ripley, 1990), which drastically changes the content of RNA produced downstream 

of the mutation. Another example is a mutation which introduces a stop codon, which 

shortens the gene product (Vidal et al., 1999). Mutations not affecting the sequence 

of the gene itself may still alter its expression, however, by altering the way gene 

expression machinery interacts with its promoters, altering the frequency of 

transcription (Donald and Cashmore, 1990). 

1.2.2. Non-genetic variation 

Genome is not the only source of expression variation. That two cell lines derived 

from the same genotype may grow to possess distinct phenotypes could be 

explained by mutation (Liu et al., 2019), yet same phenomenon also appears within 

isogenic populations (Inde and Dixon, 2018). Within these populations, by definition, 

the influence of the genetic variation is next to null. Therefore, it must be assumed 

that an alternative source of gene expression variability exists.  
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The phenomenon of non-genetic variation has been known since before the DNA 

was modelled (Green, 1941). For the purposes of this work, non-genetic variation in 

gene expression is defined as any variability in gene expression patterns between 

genetically identical cells or organisms that do not result from alterations to their 

genome. Broadly, sources non-genetic variability can be categorised to belong to 

one of two categories. 

1.2.2.1. Cell state variation 

A major source of variation is epigenetics which, in this work, is defined as 

inheritable modifications of chromatin that do not change the underlying sequence of 

nucleotides, yet alter gene expression (Bird, 2007). The influence of epigenetics is 

most clearly defined in determination of cell fate, where it plays a crucial role in 

development of multicellular organisms (Tollervey and Lunyak, 2012). Differentiation 

is driven by two factors – noise, which in biological context is defined as random 

fluctuations in biological activities such as transcription rates, and dedicated 

biological processes such as hormonal signalling (Serra et al., 2018). Epigenetic 

changes are not only responsible for maintenance of cell fate, but also other types of 

cellular memory, such as stress memory (Liu et al., 2014), although they share this 

role with various proteins (Thirumalaikumar et al., 2020). 

Epigenetic regulation can be separated into four mechanisms: DNA modification, 

chromatin modification, non-coding RNA-based regulation, and RNA modification 

(Aristizabal et al., 2020). DNA modification takes the form of DNA methylation. In 

Arabidopsis thaliana, cytosine methylation is the most common type of DNA 

methylation, although adenine methylation also plays a biological role (Liang et al., 

2018). 
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In Arabidopsis, Cytosine methylation occurs in CG, CHG, and CHH contexts, 

where H stands for C, T, or A (Stroud et al., 2014). CG-context methylation is more 

frequent than CHG and CHH (Lister et al., 2008), and is maintained through different 

mechanisms (Stroud et al., 2014) (Zabet et al., 2017). The first, and the one most 

relevant to this work, relies on Methyltransferase-1 protein (Finnegan and Dennis, 

1993) (Kankel et al., 2003), which is primarily responsible for the inheritance of CG-

context methylation. The second mechanism, responsible for methylation of cytosine 

in CHG and CHH contexts, relies on action of SUVH4 in conjunction with CMT2 or 

CMT3 proteins (Du et al., 2014). Lastly, CHH methylation is asymmetric, and cannot 

be maintained by CMT2 alone. As such, RNA-directed DNA methylation processes 

play a crucial role in re-establishing it de-novo (Law and Jacobsen, 2010). RNA-

directed DNA methylation is not limited to CHH context (Mathieu et al., 2007). 

However, while this mechanism is capable of immobilising some transposable 

elements in mutants with deficient Methyltransferase-1 (Marí-Ordóñez et al., 2013), it 

cannot compensate for the loss of methyltransferase function, as suggested by 

significant drop in methylation in these mutants (Catoni et al., 2017). 

 One role played by cytosine methylation in all contexts in Arabidopsis is 

immobilisation of transposable elements, by preventing their transcription (Kato et 

al., 2003). Importantly, loss of CG methylation maintenance is not lethal in 

Arabidopsis, as it leads to activation of a number of alternative epigenetic expression 

control mechanisms (Mathieu et al., 2007), although it still results in development of 

abnormalities in the phenotype ranging from altered rosette shape to lowered fertility, 

which over several generations may eventually result in sterility (Finnegan et al., 

1996). 
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Chromatin modification covers modification of histones, and inclusion of histone 

variants. Histones are multi-unit proteins, which play a role in regulation of gene 

expression by regulating the form of chromatin (Littau et al., 1965). As histones are 

composed of multiple sub-units, different variants may be expressed by the cell – for 

instance, in response to stress (Ascenzi and Gantt, 1997). Histones may be modified 

by methylation, acetylation, phosphorylation or ubiquitination of amino-acid residues 

that make them up (Zhang et al., 2007), among other means. Histone modification is 

not exclusive with DNA methylation, and the two may co-occur (Cedar and Bergman, 

2009). 

The roles played by ncRNAs in gene expression regulation are as varied as 

ncRNAs themselves. They may silence genes, preventing transcription, or interfere 

with mRNAs, preventing translation (Matsui et al., 2013). RNA molecules may even 

generate de-novo DNA methylation (Aufsatz et al., 2002). It is thought that this is the 

mechanism that allows CG methylation maintenance-impaired Arabidopsis mutants 

to survive (Mathieu et al., 2007). Moreover, the RNA-mediated silencing is also 

implicated in post-transcriptional gene silencing, which is a mechanism used by plant 

cells to provide virus resistance (Mourrain et al., 2000). 

Much like DNA, mRNA molecules too can be subject to modification, forming the 

epitranscriptome (Fray and Simpson, 2015). In Arabidopsis, methylation of 

adenosine in mRNA influences gene expression by regulating transcript abundance 

(Parker et al., 2020) by, among other means, inhibiting cleavage of mRNA molecules 

(Anderson et al., 2018). This type of mRNA methylation functions in regulation of 

differentiation as well (Shen et al., 2016), and mutants without the protein necessary 

for its application are lethal in embryo (Luo et al., 2014).  
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Epigenetics is not the only factor in determining the cell state. Chemicals 

secreted by other cells, such as transcription factors (Santuari et al., 2016), or other 

signalling molecules (Rentel et al., 2004), may alter cellular behaviour. Moreover, 

genetically identical cells or organisms may, when exposed to different 

environmental conditions, express different phenotypes, in a phenomenon known as 

phenotypic plasticity (Schlichting, 1986). Phenotypic plasticity is well-documented in 

both plants (Schmitt et al., 2003) and animals (Miura, 2005), and it is indeed thought 

to play a role in some plant response to stress (Campbell et al., 2019). Various 

environmental stresses may alter gene expression of an organism in a diverse array 

of pathways, ranging from activation of transcription factors (Gao et al., 2008) or 

RNA-binding proteins (Marondedze et al., 2019), to interaction with epigenetic 

markers like histone modification (Yan et al., 2019) and DNA methylation (Chen et 

al., 2018).  

How do these mechanisms contribute to variation? Difference in environment, 

even when minor, can generate variation (Trontin et al., 2011). But even in absence 

of environmental differences, a genetically homogeneous population may develop 

phenotypic heterogeneity. Much like mutation leads to changes in the genome, 

spontaneous epimutation gives rise to changes in the epigenome (van der Graaf et 

al., 2015). Non-genetic differences, such as variation in methylation (Shahryary et 

al., 2020), may lead to differences in phenotype (Denkena et al., 2021). 

1.2.2.2. Stochastic variation 

Variation in expression can, however, be attributed to one additional source – 

stochastic nature of gene expression itself (Roberfroid et al., 2016). To understand 

the source of this effect, one must first examine the processes responsible for gene 
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expression, the first of which is transcription. In eukaryotes, gene expression is a 

complicated process which involves regulatory DNA regions both close and distant 

to the gene, and promoter sequences, and requires formation of a transcription 

preinitiation complex (Roeder, 1996) by various types of transcription factors and 

cofactors, RNA polymerase, as well as other molecules (Li et al., 2016).  

Because the concentrations of enzymes involved in transcription are low and the 

process very often takes place on the scale of single molecules, transcription itself is 

to some degree random, as a result of random behaviour of individual molecules 

(McAdams and Arkin, 1997). Therefore, transcription occurs infrequently and 

sporadically, in form of transcriptional bursts (Tunnacliffe and Chubb, 2020). This 

randomness can be expressed in terms of “noisiness” of gene expression – 

variability inherent to the system (Raj and van Oudenaarden, 2008). Evidence of 

bursting has been found in bacteria (Golding et al., 2005), eukaryotes (Quintero-

Cadena et al., 2020), and even viruses integrated into human genome (Skupsky et 

al., 2010).  

Transcriptional bursting is not entirely random, however – by changing factors 

related to genetic environment of the gene, such as local epigenetic state, identity of 

regulatory elements, and availability of transcription factors, the cell can alter the 

frequency and magnitude of expression bursts between genes (Nicolas et al., 2017). 

Another potential source of variation is the rate at which produced mRNA 

degrades (Cao and Grima, 2020) – the process of mRNA decay, like mRNA 

synthesis, is stochastic (Elgart et al., 2010). As with transcriptional bursting, mRNA 

half-lives are thought to vary depending on their susceptibility to decay pathways 

(Beelman and Parker, 1995) and potentially epitranscriptomic modifications 
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(Anderson et al., 2018). While this doesn’t impact noisiness of transcription, it does 

affect the other stochastic process involved in gene expression – translation. While 

not all gene products are made through translation (Mattick, 2003), those that are it 

represents another stochastic process on the way to creation of functional product. 

Lastly, degradation of gene products too is stochastic (Komorowski et al., 2013). All 

the stochastic processes compound onto each other, which leads to an increase in 

noise.  

Gene expression noise has a deleterious effect on the cell, with increases in 

noise leading to decreased fitness (Schmiedel et al., 2019). A too large departure 

from the optimal expression value of a gene can be deleterious to the cell’s fitness 

(Dykhuizen et al., 1987), though tolerance varies between genes (Keren et al., 

2016). Not all genes are subjected to noise equally. Cells possess mechanisms in 

place that allow them to modulate the effects of noisy expression on a gene-by-gene, 

and network-by-network basis (Barroso et al., 2018). Noise propagates through gene 

networks, meaning high-noise genes pass on some of their noisiness downstream. 

Moreover, the ability to suppress noise is both limited (Lestas et al., 2010), and 

comes with a cost that increases as intended degree of precision does (Voliotis and 

Bowsher, 2012). 

Nonetheless, noise need not lower the cell fitness. In situations where expression 

level of a gene is not optimized for fitness of the cell, more noise can be beneficial, 

as it allows a subset of the population to express the optimal amount of the gene 

(Duveau et al., 2018). An optimal noise range exists for expression of each gene, for 

which fitness of the organism is the highest. Housekeeping genes, for instance, are 

enriched within low-noise gene set (Barroso et al., 2018), as variance in their 

concentrations has deleterious effects on cell variability. 
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One important aspect of stochastic variation is that it impacts on smaller and 

simpler organisms to a significantly greater degree than larger and more complex 

ones. In populations of single cell organisms, noise resulting from stochastic nature 

of biological processes is significant enough to have measurable impact on the 

phenotype. Bacteria (Elowitz et al., 2002) and S. cerevisiae (Blake et al., 2003) are 

commonly used models for study of these phenomena. Non-genetic heterogeneity in 

E. coli in particular has been well studied. Choi et al. (2008) found that the 

expression of the lac operon, the model of an inducible operon, is stochastic in 

nature when levels of inducing molecule are medium, leading to a heterogeneity in a 

population. What’s more, Kotte et al. (2014) discovered that isogenic E. coli cell lines 

split into distinct phenotypes, and that in the event of the environmental change the 

subset of the population well suited to the new environment begins replicating, while 

the subset poorly adapted to new conditions ceases growing, though remains viable. 

This proves that, while noise is not optimal for individual organisms, it is 

beneficial to the population as a whole. Moreover, it has been reported that, when an 

alternate, inferior respiratory substrate is present, a subset of the population will 

stochastically differentiate to make use of it, thus allowing it to remain viable should 

oxygen levels be depleted (Carey et al., 2018). Stochastic switching between states 

is not limited only to stresses, however – it is also present in altruistic production of 

colicin by a subset of a population, within which cells stochastically switch between 

energetically intensive process of production and rest (Bayramoglu et al., 2017). 

The above examples represent a bacterial risk mitigation strategy known as “bet 

hedging”. Cells that are ill-suited to the environment are unable to grow, as they 

enter persistence state (Balaban et al., 2004), yet, should the conditions change, 

they ensure part of the population survives. While bet hedging is most apparent in 
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bacterial populations, it is present in more complex organisms as well. Freshwater 

fish, for instance, faced with harsh conditions, opt to produce a larger number of 

smaller eggs (Morrongiello et al., 2012). While this negatively impacts chances of 

survival of any individual offspring, it increases the chances that one of the group 

survives. The form this strategy takes can vary between kingdoms, but the principle 

– lowering risk to the population while increasing individual risk – is maintained 

between bacteria and eukaryotes. In plants this phenomenon is present in the form 

of varying seed germination times (Johnston and Bassel, 2018). 

In more complex, multicellular organisms, the impact of noise of individual 

transcription events on the organism as a whole is lessened. Stochastic events still 

play an important role, particularly in early development (Dietrich and Hiiragi, 2007). 

Gene expression noise is responsible for some of the decision-making in regard to 

cell speciation and differentiation (Serra et al., 2018), meaning it is fundamental in 

development of complex organisms. It even plays a role in “life” cycles of viruses, as 

it determines whether or not latency should be engaged (Weinberger et al., 2005). 

The effects of stochastic nature of gene expression, however, become less relevant 

at greater scales – when averaged out across thousands of cells, the impact on the 

organism is reduced. While processes that drive determination and formation of 

organs are inherently stochastic, they result in development of morphologically 

distinctive organs whose shape is largely conserved between individuals of the same 

species (Hong et al., 2018).  

The changes caused by stochastic processes may persist well into plant 

development, however. Both mutation (Uphoff et al., 2016) and epimutation 

(Johannes and Schmitz, 2019) are stochastic processes, and both genome and 

epigenome (Hofmeister et al., 2017) are heritable, whereas gene expression noise 
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itself is not. Seed germination times and seed dormancy are both traits that vary 

within populations (Simons and Johnston, 2006), affected by the genome and the 

epigenome (Han et al., 2019). 

1.2.3. Measuring gene expression variation 

Two main categories of methods exist for measurement of gene expression, 

which are measurement of mRNA contents of the cell, and measurement of gene 

product concentration. The first method relies on existing DNA sequencing 

technologies – mRNA is extracted, exploiting poly-A tails (Wang et al., 2007), and 

converted to cDNA using reverse transcriptase (Nagalakshmi et al., 2010). As a 

result, this method allows for study of expression of all protein-coding genes in the 

cell, with only limitation on genes studied being that of DNA sequencing used. There 

exist two main avenues for analysis of transcriptome. The first avenue requires 

sequencing of a larger population of cells, which are typically flash-frozen to capture 

the expression profile (Rayirath et al., 2009). This method, while unable to capture 

differences between cells in the sequenced population, has seen much use in 

analysis of expression profiles under stress (Matsui et al., 2008), or as a part of 

development-focused time series (Klepikova et al., 2015). The alternative is single 

cell transcriptomics. Unlike the previous avenue, this allows for measurement of 

stochastic noise within cell populations (Alemany et al., 2018). 

 These techniques do, however, suffer from a number of caveats. Both multi-cell 

and single-cell approach, depending on starting amount of RNA, require 

amplification, in order to provide enough material for sequencing tools. 

Unfortunately, amplification (Parekh et al., 2016), reverse transcription (Conn and 

Conn, 2019), and fragmentation (Roberts et al., 2011) may all introduce biases into 
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the data – either as a consequence of the enzymes used, or because of the 

stochastic nature of the processes involved. Because single cell RNAseq involves 

less starting material, the impact of the amplification bias is much greater, thus 

lowering reliability of resulting data (Parekh et al., 2016). A number of methods exist 

that can help quantify, or reduce, the amount of uncertainty (Sun et al., 2019), such 

as use of unique identifiers. New sequencing methods are currently in development. 

Long-read sequencing platforms, such as Nanopore and SMRT sequencing (Cui et 

al., 2020), too can potentially be used for scRNA-seq (Lebrigand et al., 2020). 

Moreover, both of these techniques only consider mRNA, which means that even on 

scale of a single cell noise and variability associated with translation is lost. 

The second category of methods instead relies on measuring concentration of 

gene product. In case of proteins, this can be accomplished by a variety of assays 

should the cell be lysed, such as colorimetric assay (Sapan et al., 1999). One 

method that is particularly advantageous relies on tagging relevant proteins with 

GFP (Tsien, 1998), and then subjecting the cells to flow cytometry, as demonstrated 

by Blake et al. (2003). Fluorescence-based analysis creates a system sensitive 

enough to pick up gene expression noise (Elowitz et al., 2002), which does not 

require cells to be lysed, allowing for continuous monitoring, and which can be 

scaled up much more robustly than scRNA-seq. This does, however, come with 

caveats. To employ the tagging method, genome must be modified to tag relevant 

proteins with GFP, and the number of potential tagged proteins is limited.   

For both methods, analysis of high variability genes within expression dataset 

can be carried out in a number of ways. One approach, used for analysis of cell-to-

cell variability in expression, relies on calculation of distance to median – a metric 

where coefficient of variation for each gene is compared to running median of 
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coefficient of variation values (Newman et al., 2006). This method can be used to 

analyse both protein (Newman et al., 2006) and transcript abundance (Hagai et al., 

2018). Another solution instead relies on squared CV, but otherwise follows the 

steps above (Kolodziejczyk et al., 2015). 

Measuring underlying causes of variation, meanwhile, heavily depends on the 

exact phenomenon analysed. Differences in the genome can be identified by DNA 

sequencing (Li et al., 2008). Differences between states of analysed organisms too 

can be analysed, yet such analysis is more difficult than that of nucleotide sequence, 

owing to the large number of epigenetic markers, which often must be examined 

individually. DNA methylation of cytosines can be quantified down to single 

nucleotide resolution by use of bisulfite sequencing (Smith et al., 2009). Analysis of 

adenosine methylation of DNA, however, requires wide assortment of methods 

ranging from single-molecule real-time sequencing to immunoprecipitation of 

fragmented reads (Liang et al., 2018). Histone modifications, or histone variants, can 

be analysed using methods based on chromatin immunoprecipitation as well 

(Kimura, 2013), provided a specific antibody is identified. ncRNA sequencing is 

possible, though identifying individual types of ncRNA requires a wide array of 

computational tools (Veneziano et al., 2015). Analysis of mRNA modification, 

meanwhile, cannot currently be performed on the scale of the entire transcriptome, 

and relies on immunoprecipitation (Fray and Simpson, 2015). 

Gene expression noise is difficult to analyse. It is typical for studies to analyse a 

single GFP-tagged protein at a time (Elowitz et al., 2002), which permits 

measurement of changes in the protein’s concentration. While the effects of gene 

expression noise may persist well past single-cell scale, and can thus be studied 
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using the methods above, the contribution of noise to variability within multi-cellular 

organisms decreases with the amount of cells. 

1.3. Plant stress response 

Plants are sessile organisms, meaning they are unable to change habitats on 

their own. This has forced them to develop various ways of coping with alterations to 

the environment. These are typically separated into biotic stress, which is caused by 

other organisms, and abiotic stress, which is caused by inorganic environmental 

changes. Examples of originators of biotic stress include infections by pathogens, 

such as viruses, fungi, bacteria, and oomycetes, which can be separated into 

necrotrophs and biotrophs (Oliver and Ipcho, 2004), but also damage caused by 

insects, and presence of other, competing plants (Widdicombe and Thelen, 2002). 

Abiotic stresses, meanwhile, cover a wide range of changes such as increases or 

decreases in temperature, presence, abundance or absence of specific chemicals in 

the soil, overabundance or scarcity of light, and/or physical damage to the plant 

(Kilian et al., 2007) (Yan et al., 2019). 

Two specimens of the same species subjected to the same stress can vary in 

their response. The most obvious cause here is genetic variation, as differences 

found inside loci associated with response to a given stress naturally result in 

difference in response (Vallejo et al., 2010). It is also vital to note the role of 

acclimation - plants, including A. thaliana, possess a degree of phenotypic plasticity 

that allows them to, after an exposure to certain stresses, alter their metabolism in 

ways that allow them to alleviate the effects of that stress (Hannah et al., 2005). Age 

of the specimen too is a factor that influences not just stress resistance response, 

but also acclimation process itself (Leuendorf et al., 2020). 
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There exist a number of methods to ascertain whether or not an organism has 

initiated a stress response pathway. The one most relevant to this study is analysis 

of its transcriptome – much of the response to stress is directed by transcription 

factors (Gao et al., 2008), and the alterations of the expression profile of cells 

caused by their activity can be quantified (Golem and Culver, 2003). Therefore, it 

stands to reason that by analysis of upregulated and downregulated groups of genes 

the activity of stress response pathways can be analysed. The same applies to 

acclimation, although only to some degree – it has been discovered that effects of 

acclimation, such as increased stress resistance, may persist longer than expression 

of the genes responsible for causing these changes (Leuendorf et al., 2020), albeit 

the extent of the effect is not fully known. 

1.4 Conclusion, and rationale 

 Gene expression variability leads to variability in the phenotype. Moreover, as 

discussed before, the phenomenon is partially a result of the scale at which 

biological processes take place, rendering it unavoidable. Phenotypic variability may, 

however, have its benefits. In animals, gene expression variability is thought to play 

a role in immune response (Hagai et al., 2018). Within plants, variability is present in 

the form of seed germination times (Abley et al., 2021), where it is a part of a bet-

hedging strategy. Within yeast, it was found that higher heterogeneity was linked to 

improved survival of individual specimens under stress (Bishop et al., 2007). What 

role it plays in Arabidopsis thaliana, beyond seed germination, is largely unknown. 

Existing research indicates that it has a connection to stress response (Cortijo et al., 

2019) – but, importantly, our understanding of mechanisms controlling it is limited.  
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What are the possible causes for variation in gene expression? Naturally, first 

and foremost, variation in the genome itself (Li et al., 2017), as changes in structure 

of regulatory proteins alters expression. Research indicates, however, that even 

isogenic populations exhibit variation in gene expression (Cortijo et al., 2019). Within 

these populations, there exist two main mechanisms of note to explain variation in 

gene expression – cell state-based variation, and variation arising from stochasticity 

of gene expression itself. 

Different influences on gene expression can be reduced by experimental 

design. Genetic variation, naturally, can be greatly reduced by measuring expression 

variability within an isogenic population. While mutations within the organism 

continue to occur, spontaneous mutation rate is low enough (Ossowski et al., 2010) 

to all but ensure genetic homogeneity. This work relies on expression data from 

ground whole leaves, resulting in resolution at which stochastic differences between 

individual cells become subsumed into the mean expression value of the whole 

organ. That is not to say that stochastic processes are not potentially responsible for 

variation observed between samples, however – epimutation is a stochastic process 

(Johannes and Schmitz, 2019). 

What remains is cell state variation. Of this category, the last source of 

variation that has been accounted for is large-scale environmental variation. While 

microvariations, which too can impact expression (Trontin et al., 2011), would be 

difficult to identify and remove, more significant environmental impacts can be 

removed by both experimental design and principal component analysis, to discard 

plant samples that depart too significantly from the majority.  
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 Curiously, previous research indicates that chromatin environment of highly 

variable genes in Arabidopsis is not supportive of expression (Cortijo et al., 2019), 

which may support the hypothesis it is epigenetic changes inherited from earlier 

development that are responsible for higher expression in individual specimens.  

The main hypotheses behind this work are that inter-individual variation in 

gene expression does indeed play a biological role in biological processes, including 

stress response, and that gene methylation is one of the mechanisms used to buffer 

gene expression variability. As such, it is predicted that loss of methylation should 

result in an increase in gene expression variability. 

1.5 Objectives 

In order to conduct a thorough analysis of inter-individual gene expression 

variability, two expression time series of Arabidopsis thaliana Col-0 ecotype 

specimens grown in identical conditions were selected – long term (Bechtold et al., 

2016), and short term (Alvarez‐Fernandez et al., 2021). The aim of this analysis is to 

identify genes with high expression variability within the two expression series, and 

to determine the biological processes enriched within this gene-set through Gene 

Ontology. Additionally, a similar analysis is intended to be carried out with regards to 

low expression variability gene-set. 

The second objective is to analyse gene expression variability in the context 

of gene and promoter methylation to identify if an association exists between the 

two. This analysis will use bisulfite sequencing series of Arabidopsis thaliana Col-0 

ecotype (Stroud et al., 2012) (Stroud et al., 2013), and compare expression to 

methylation in three contexts. An additional Gene Ontology analysis of genes 

categorised by expression and methylation shall be carried out. 
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The third objective is to further explore the findings of previous analyses in 

regards to linkage between gene expression variability and methylation. Separate 

paired gene expression and methylation series of WT Arabidopsis and 

hypomethylated methyltransferase mutants (Catoni et al., 2017) shall be used to 

identify if changes in methylation of genes and promoters are associated with 

changes in gene expression variability. 
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2.  Methods 

All scripts for the analysis are available on Github, at 

github.com/ZastaJak/athaGE_variation_and_buffering. 

2.1 Input and normalisation of microarray data 

Publicly available microarray mock expression data was imported into R (R Core 

Team, 2020). Two series were utilized. The first was mock drought series (Bechtold 

et al., 2016), accessible at GSE65046 as control and zero measurements, 

composed of 4 bio-replicates at each time point, with measurements performed 

every day for 14 days, resulting in 56 measurements. The second was mock data 

from high light series (Alvarez‐Fernandez et al., 2021), accessible at GSE78251 as 

control and zero measurements, composed of 4 bio-replicates at each time point, 

with measurements performed every 30 minutes for 6 hours, resulting in 52 

measurements. In both series tissue from Arabidopsis thaliana leaf 7 of a separate 

plant for each bio-replicate was harvested, and sequenced using CATMA 

microarrays (Sclep et al., 2007). The plants in both series were 5 weeks old at the 

start of measurement series. 

The two control time series differed in CATMA microarray version and their set of 

probes. A consensus probe-set was constructed, featuring only probes present in 

both series. The joined datasets were normalized together, using cyclic loess 

normalization method, as proposed by Bolstad et al. (Bolstad et al., 2003), carried 

out using normalizeBetweenArrays function of the limma (Ritchie et al., 2015) 

package. 

2.2 Microarray probe processing and gene assignment 
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Each CATMA probe was referenced to a pre-generated assignment table, in order to 

match them with genes, in the form of TAIR IDs. Probes that did not match with any 

known genes, or that matched to multiple genes, were discarded.  

To assign chromosomal location to each probe-gene pair, gene information was 

extracted from a TxDb (Lawrence et al., 2013) object, supplied by the 

TxDb.Athaliana.BioMart.plantsmart22 package (Carlson, 2015), generating a 

Genomic Ranges (Lawrence et al., 2013) object containing chromosomal location 

and strand of all Arabidopsis genes. Probes-gene pairs were matched to this object 

and assigned chromosomal locations. Genes absent in TxDb object were compared 

to TAIR changelog, to identify replacements. Probes matched to that could be 

replaced were assigned new IDs and chromosomal locations, whereas those that 

could not were discarded. 

Genes that were assigned multiple probes were coerced into single entry. For each 

bio-replicate of such a gene, a mean value was calculated from the expression 

values of assigned probes.  

A Genomics Ranges object was formed from the single-probe and corrected multi-

probe data. The gene information was used as the main body of the object, with 

strand, chromosome, name and location, while expression values were assigned to 

metadata columns. 

2.3 Data exploration - Principal Component Analysis 

Principal Component Analysis was performed separately for mock drought and mock 

high light samples. PCA was carried out using prcomp function of the stats (R Core 

Team, 2020) package. PC1 with PC2 were plotted and depicted as a scatterplot 

generated using ggplot2 (Wickham, 2016) package, using custom colour palette 
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(Martin Krzywinski, 2020), to allow for visual inspection of the data. Bio-replicates 

that differed significantly from others within their time point were removed.  

2.4 Computation of mean and variability measures 

A number of variables was calculated for each gene between bio-replicates within 

each measurement. Variance, standard deviation and mean were computed, using 

var, sd and mean functions – first two of stats package, the second of base. These 

were used to derive coefficient of variation (standard deviation divided by mean), 

squared coefficient of variation, and Fano factor (variance divided by mean). Lastly, 

Distance to Median was computed using adopted version of the Distance-to-median 

function from the scran (Lun et al., 2016) package. All these variables were also 

computed between all bio-replicates for both drought and high light mock data sets, 

disregarding time-points, resulting in a single value for drought and high light mock 

datasets respectively, henceforth referred to as drought mock (DM) and high light 

mock (HLM). Four potential measures of gene expression variability were selected 

for further analysis, based on their capacity to measure variability between samples 

of differing magnitude. 

2.5 Selection of gene expression variability measures, and cut-off value 

Coefficient of variation (CV), squared coefficient of variation (CV2), Fano factor and 

Distance to Median were compared in order to select the most suitable metric of 

variation and a cut-off value by which to filter variable genes. The four were selected 

because each is corrected by mean value directly (CV, CV2, Fano factor) or indirectly 

(Distance to Median), which ensures that highly expressed genes are not assigned 

higher variability. Histograms of the distribution of these variables were generated for 

DM and HLM using the ggplot2 package, which were annotated with p-values 
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generated by use of the wilcox.test function of the stats package that compared 

values of DM and HLM. A threshold value was assigned to each measure of 

variability, determined in each of the four individually by comparing their HLM and 

DM distributions, to ensure a sufficient amount of genes would overlap between the 

distributions to allow for further analysis, yet no greater than 5% of the analysed 

geneset in size.  

2.6 Analysis of distribution of coefficient of variation across mock data 

Histograms comparing coefficient of variation values between filtered and unfiltered 

genes were generated following the previous method. Afterwards, heatmaps of the 

genes passing the threshold value in one or both of the series were made, using 

ggplot2 package. The columns, corresponding to measurement time points, as well 

as DM and HLM, were clustered together based on similarity between their values. 

The clustering was generated using hclust function of the stats package, using 

“complete linkage” method to identify similar time points. This information was also 

used to generate a dendrogram, which has been appended to the heatmap. Similar 

heatmaps were generated for other variables, in addition to the ones that featured 

CV of all genes, including those not passing the threshold value. An additional plot 

was generated using ggplot2 package depicting the relationship between the mean 

value of gene expression and coefficient of variability in DM and HLM. 

2.7 Gene Ontology analysis of high variability geneset 

In order to identify Gene Ontology Biological Process terms enriched within high-

variability dataset, three methods were selected. The first two make use of external 

tools – Panther Overrepresentation Test (Released 20210224) (Thomas et al., 2003) 

(Mi et al., 2010), and DAVID version 6.8 (Huang et al., 2009a) (Huang et al., 2009b). 
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The third is carried out by go_enrich function of the GOfuncR (Grote, 2020) package, 

using the Wilcoxon rank-sum test method, which ranks the genes based on the 

submitted values – in this implementation, coefficient of variation – and analyses for 

enrichment the top and bottom-ranked genes. GOfuncR does not by itself contain 

GO term annotation for Arabidopsis genes, so it was supplied separately by TAIR-

generated gene association (Berardini et al., 2004). 

Panther and DAVID were supplied with three gene lists: the genes passing the CV 

threshold value in DM, the genes passing CV threshold in HLM, and those that 

passed the CV threshold in both DM and HLM, termed the “consensus list”. For 

Panther, the output was specified to feature False Discovery Rate for correction, and 

Fisher’s exact test type. 

Panther and DAVID analyses of the consensus geneset were conducted twice, using 

two backgrounds – first, the “all Arabidopsis genes” background, built into both tools, 

and, second, the custom background, generated from all genes that were made into 

the Genomic Ranges object. All other Panther and DAVID analyses made use of the 

custom background, and no background was required for Wilcoxon analysis.  

The results of enrichment analysis were compared using p-value and q-value 

metrics. Go_enrich results used a different method of p-value correction, and were 

corrected to match the output of Panther and DAVID manually, using p.adjust 

function of the stats package. P-value and q-value thresholds of 0.05 were used to 

signify relevant terms, in accordance with convention. 

2.8 Generation of visual representation of Gene Ontology data 

The results were plotted in two ways. First, they were used to determine what terms 

were enriched in high coefficient of variation subset of genes. Panther and DAVID 
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results for the analysis of the consensus genelist using custom background were 

compared to results of Wilcoxon rank-sum tests. To identify enriched GO terms, 

relevant (q < 0.05) results of these four tests were plotted, using ggplot2. A second 

plot was generated, made of terms that featured in output of both Panther and 

DAVID, and Wilcoxon rank-sum tests analysis of either DM or HLM. GO IDs were 

translated to term names using GO.db package (Carlson, 2021). GO terms absent 

from GO.db annotation were removed. 

The results were used to establish difference between HLM and DM datasets. The 

output was filtered as before, to select relevant terms, and then manually inspected 

to select differing terms relevant to differences between the two.  

2.9 Gene Ontology analysis of low variability geneset 

A histogram of distribution of coefficient of variation in DM and HLM was generated, 

as described before. A second threshold value was assigned to signify genes with 

low expression variability, determined by the analysis of DM and HLM distributions, 

not to exceed 10% of the analysed geneset in size. 

As in analysis of high variability geneset, three lists were used – genes below the 

threshold in HLM, those below the threshold in DM, and those below the threshold in 

both.  

An analysis was performed using a variation of the previous protocol – the only 

background used was the custom background. Results of the same Wilcoxon 

analysis as conducted earlier were used, reversed. As before, first, a plot of all terms 

with q < 0.05 was generated using ggplot2, but instead depicting terms that 

appeared in output of at least 3 GO methods. 
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Figure 2.1: Workflow cartoon representing steps taken in analysis of the two mock 

microarray datasets. 

A: Matching data by probes. Due to differences between CATMA microarray versions, a 

difference existed between mock high light and drought probesets. In this step, probes not 

present in all experiments are removed. 

B: Probe processing. This step represents a variety of processes necessary to create a 

Genomic ranges object. These include normalisation, matching probes to genes, matching 

probe-gene pairs to genetic locations, calculating mean values for genes matched to multiple 

probes, and forming the GRanges object itself. 

C: Principal component analysis. In this step, high light and drought mock datasets were 

separately subjected to PCA, in order to remove outlying biological replicates. 

D: Calculations. Bioreps were grouped by time point. For each gene, variables were 

calculated within bioreps: mean, variability, standard deviation, coefficient of variation, Fano 

factor, and distance to mean. Moreover, same variables were calculated for all genes within 

each analysed mock dataset, generating DM and HLM.  
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E: Gene ontology. GOfuncR, using Wilcoxon rank-sum test, used HLM and DM lists 

separately, whereas Panther and DAVID were supplied genes with CV higher than 0.04 in 

both HLM and DM. Gene Ontology analysis was also performed on low-noise dataset, using 

threshold value of 0.018 for CV in HLM and DM. 
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2.10 WT bisulfite sequencing data pre-processing. 

Publicly available bisulfite-converted sequencing data for 3-week-old leaves 

harvested from three wild type Columbia ecotype Arabidopsis thaliana bio-replicates 

was downloaded from NCBI Sequence Read Archive database. Bio-replicate 1, 

SRR501624 was generated as part of a separate study (Stroud et al., 2012) from 

bio-replicate 2, SRR534177, and bio-replicate 3, SRR534193 (Stroud et al., 2013). 

The data was processed following protocol outlined by (Catoni et al., 2018). The 

imported reads were trimmed, using Trimmomatic (Bolger et al., 2014) version 0.39. 

The tool was supplied with merged file containing all standard Trimmomatic 

adapters, as well as two specific Illumina ones. The trimming was performed in 

paired end mode, with suggested default values, aside from headcrop of 6, and 

conversion of quality scores to phred33.  

2.11 Bisulfite alignment and methylation extraction 

Bismark (Krueger and Andrews, 2011) script was used to perform alignment and 

methylation call, using trimmed reads. The reads were aligned to Arabidopsis 

thaliana genome sequence TAIR 9 release (Lamesch et al., 2012). Default settings 

were used, aside from number of mismatches set to 1 for greater sensitivity, and 

Bowtie 2 (Langmead and Salzberg, 2012) score_min parameter set to L,0,-0.6, to 

allow for less stringent alignment. The output was processed using 

deduplicate_bismark script of Bismark in paired end mode, in order to deduplicate 

the file and remove unnecessary reads. Methylation was extracted using 

bismark_methylation_extractor script. 
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2.12 Per-gene methylation proportion assignment 

The generated CX_report files were imported into R separately using the 

readBismark function of the DMRcaller package (Catoni et al., 2018). The data was 

corrected by chloroplast methylation, based on the assumption that the chloroplast 

chromosome should not contain any methylation, as described by (Catoni and Zabet, 

2021). Corrected data was analysed with analyseReadsInsideRegionsForCondition 

DMRcaller function using two separate Genomic Ranges objects. The first object 

contained locations of genes analysed previously (see 2.4), and the second was 

composed of coordinates of promoters for these genes, here defined between 1000 

bp upstream and 50 bp downstream of gene start. The analysis was conducted 

separately for each of the three methylation contexts.  

2.13 Low-resolution analysis 

Resulting 18 objects were loaded into a single R session, alongside CX reports for 

each bio-replicate. Methylation profile of chromosome 1 was calculated using CX 

reports for each methylation context by computeMethylationProfile DMRcaller 

function with default parameters aside from window size of 500000 bp. Similarly, 

spatial correlation of methylation levels was calculated for each methylation context 

using computeMethylationDataSpatialCorrelation function, with distances of 1, 10, 

100, 1000 and 10000. Lastly, coverage of methylation was calculated using 

computeMethylationDataCoverage function for CG context only, with minimum 

numbers of reads of 0, 5, 10, 15, 20, and 25. The profiles were plotted using ggplot2 

package and merged together using the patchwork (Pedersen, 2020) package. 

2.14 Methylation proportion mean calculation 
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Methylation proportions of each gene body and promoter were extracted, and 

combined. Genes that were not annotated for methylation proportion were excluded 

from further analysis. For each gene, mean value of methylation proportions 

between the three bio-replicates was calculated for each context, for both the gene 

body and the promoter region. Additionally, gene expression coefficient of variation 

and mean expression values for high light mock (HLM) and drought mock (DM) 

calculated previously (see 2.4) were imported and attached to methylation proportion 

data. 

2.15 Mean expression analysis, and gene splitting 

HLM and DM mean expression data was analysed to determine threshold values for 

further analysis. A histogram was plotted, using ggplot2. Based on the distribution of 

expression values, 8.4 and 12.05 were selected as cut-off values for, respectively, 

low expression and high expression genes. Both values correspond to approximately 

top or bottom 10% expressed genes in both DM and HLM. Data for gene methylation 

was split into two categories based on their methylation – gene-body methylation 

(gbM), and transposable-like methylation. The latter was composed of genes with 

CHG or CHH context methylation proportion higher than 0.05, while the former 

contained all other genes. Promoter data was not split. 

2.16 Analysis of gene expression magnitude and gene and promoter 

methylation 

To analyse relationship between expression magnitude and methylation, all analysed 

genes were categorised based on their expression and methylation. For CG 

methylation, the threshold between methylated and un-methylated genes was set to 

0.1 methylation proportion for the whole gene body or promoter. For CHG and CHH 
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methylation, the threshold was set to 0.05, to accommodate for lesser frequency of 

methylation in these contexts. For each context and for each form of methylation 

(gbM, transposable element-like, and promoter), genes were split into methylated 

and unmethylated, and then into lowly-expressed, medium-expressed, and highly-

expressed. Relationship between gene expression magnitude and methylation 

proportion was plotted using ggplot2, with separate expression values for HLM and 

DM. 

To analyse statistical significance of the relationship between gene expression 

magnitude and methylation of genes and promoters, methylation values of genes 

split into lowly expressed, medium expressed and highly expressed categories were 

plotted on a boxplot. Only genes which fit into the same category in both HLM and 

DM were analysed. p-values between the groups were calculated using the Wilcoxon 

rank-sum test method, using wilcox.test function of the stats (R Core Team, 2021) 

package. 

2.17 Analysis of gene expression variability and gene and promoter 

methylation 

In order to determine connection between gene methylation and gene expression 

variability, analysed genes were split into a separate set of categories. The 

thresholds used for methylation proportion were the same as for the previous 

analysis, while coefficient of variation threshold was set to 0.04, as used in the 

previously (see 2.7). The data was plotted separately for HLM and DM for each form 

of methylation and for each context using ggplot2. As before, to determine 

significance of the relationship the methylation proportion values of genes which 

matched variability category between HLM and DM were plotted on a boxplot, with p-

values calculated using the Wilcoxon rank-sum test method. 
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Gene Ontology Biological Process analysis of the four categories was conducted 

using PANTHER (Released 20210224) (Thomas et al., 2003) (Mi et al., 2010). Only 

genes with gbM methylation were analysed, and only CG methylation proportions 

were used. Genes that matched category between DM and HLM were split into 4 

lists. Background list was created from all genes with assigned methylation values. 
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Figure 2.2: Gene expression mean comparison. 

The histogram depicts HLM and DM distribution of mean expression values, with x axis 

representing gene expression mean. Vertical lines represent selected cut-off values, at 8.4 

and 12.05, which correspond to approximately the lower 10% of genes sorted by expression 

value and the upper 10% of genes sorted by expression value. p-value was calculated using 

Wilcoxon rank sum test. 
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Figure 2.3: Workflow cartoon representing steps taken in analysis of mutant microarray and 

bisulfite sequencing data. 

A: Analysis of microarray expression data (see 2.18-2.19, 2.24). The four expression series 

were loaded into R and transformed and normalised together. Genes which were obsolete, 

or which were duplicates of other genes, were removed. Per-gene expression data was used 

to calculate mean, sd and CV between bio-replicates for each series, and also to determine 

whether a gene was differentially expressed between WT and respective met1 mutant, 

represented by p-values, which were FDR-corrected. Additionally, genomic coordinates of all 

analysed genes were extracted. 

B: Analysis of bisulfite-sequencing data (see 2.20-2.23). BS-seq data for WT, met1-1, and 

met1-3, was used to calculate per-cytosine methylation proportion for the entire genome. 

Cytosine data was used to calculate proportion for entire gene bodies, using previously 

extracted gene location data, and to identify differently methylated regions genome-wide.  
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C: Dataset filtering and merger (see 2.24). Expression data and methylation data were 

merged into WT1 to met1-1 dataset and WT3 to met1-3 dataset. The two gene-sets were 

filtered to eliminate genes with low sequencing coverage and those overlapping methylation 

gain DMRs. The merged datasets contain mean expression value, CV of expression, 

expression fold change, p-value and q-value measuring differential expression, overlaps with 

DMRs for both gene bodies and promoters and methylation proportion data for gene bodies 

and promoters in both WT and met1 mutant for all genes. 
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2.18 WT and mutant gene expression data pre-processing and statistical 

analysis 

Raw gene expression data for met1-1 mutant, wild type for met1-1 mutant, met1-3 

mutant and wild type for met1-3 mutant, were used, composed of three bio-replicates 

each, generated by (Catoni et al. 2017). The data was entered into R using ReadAffy 

function of the affy (Gautier et al., 2004) package, using athtiling1.0rcdf probe 

annotation (Naouar et al., 2009). The data was further processed using Robust Multi-

Array Average expression algorithm, without normalisation component, which was 

carried out separately, using normalize.ExpressionSet function of the affyPLM 

(Bolstad, 2004) (Bolstad et al., 2005) (Brettschneider et al., 2007) package, with 

loess method and antilog transformation. Expression values for all bio-replicates 

were extracted into a separate object. A design matrix was constructed with stats 

package and used to fit a linear model for expression data using lmFit function of 

limma (Law et al., 2014) (Ritchie et al., 2015) package. A contrasts matrix was 

constructed with makeContrasts function and used to compute contrasts for linear 

model fit between wild type for met1-1 (WT-1) and met1-1 and wild type for met1-3 

(WT-3) and met1-3 with contrasts.fit. The linear model fit was processed to compute 

Bayesian statistics for the comparison using eBayes function. p-values were FDR 

corrected using p.adjust function of stats package. 

2.19 Obsolete gene removal, and gene location extraction 

The list of analysed genes was extracted and compared to TAIR 10 changelog to 

identify obsolete and replaced genes. Genes that were obsolete without 

replacements were removed, and genes that were obsolete with replacements were 

updated with their new TAIR IDs. Entries that were found to be duplicates of other 
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genes were removed. Chromosomal coordinates of analysed genes were extracted 

from TxDb.Athaliana.BioMart.plantsmart22 (Carlson, 2015) package, and were made 

into a genomic ranges object, together with coordinates of their promoters, defined 

between 1000 bp upstream and 50 bp downstream of gene start. Genes absent from 

the annotation file were discarded. 

2.20 WT and met1 mutant Bisulfite sequencing data pre-processing 

Bisulfite-converted sequencing data for 2-week old leaves harvested from wild type 

Columbia ecotype Arabidopsis, met1-1, and met1-3 from (Catoni et al. 2017) was 

selected for analysis. The SRR files were processed as before, using newly written 

gene and promoter location lists, generating three CX report files, and 18 objects 

containing methylation proportion data. CX reports were corrected by chloroplast 

methylation and plotted for methylation coverage, spatial correlation, and low-

resolution profiles, as described before.  

2.21 Differently methylated region identification 

An analysis was carried out to identify differently methylated regions (DMRs). 

Methylation data was corrected by chloroplast methylation, as described before, and 

processed using computeDMRs function of the DMRcaller package. The parameters 

used for analysis of CG context DMRs were the default, aside from method, where 

“bins” was selected due to its suitability to all three methylation contexts and 

statistical test, which was set to “score”. Moreover, for analysis of CHG and CHH 

context DMRs, minimum proportion difference was lowered to 0.1, in accordance 

with lower magnitude of methylation in those contexts. For all three, the p-value 

threshold was set to 0.01, to increase confidence in detected DMRs. The DMRs 

were calculated between WT and met1-1 mutants, WT and met1-3 mutants, and 
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between met1-1 and met1-3, in three contexts separately, for the entire Arabidopsis 

genome. 

2.22 Gene DMR assignment 

In order to assign DMRs to genes, findOverlaps function of the IRanges (Lawrence 

et al., 2013) package was used to locate overlaps between DMR ranges object and 

gene locations, with minimum overlap size set to 50. Genes were split into three 

groups – those overlapping only loss DMRs, those overlapping only gain DMRs, and 

those overlapping loss and gain DMRs both. The overlaps were identified for all 

three contexts, and between WT and met1-1, WT and met1-3, and met1-1 and met1-

3. This step was repeated for promoter locations. 

2.23 Categorising genes by methylation, and filtering genes with few 

reads 

Gene methylation data was split into three categories, based on their methylation in 

WT – genes with transposable element-like methylation, here defined as CHG or 

CHH context methylation proportion higher than 0.05, genes with gene-body 

methylation, defined as CG context methylation proportion above 0.1 and CHG and 

CHH below 0.05, and non-methylated genes, that did not fit into one of the previous 

two groups. Genes without methylation proportion value in one or more contexts 

were excised. For each gene, WT methylation and met1-1 methylation proportion 

data were compared. If the number of total reads for a cytosine for either 

measurement was less than 25, both measurements were discarded. This was done 

for each bio-replicate separately, and for both gene-bodies and promoters. This step 

was repeated for WT and met1-3, generating a separate list. 
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2.24 Expression value calculation, and unification of expression and 

methylation data 

Mean, standard deviation, and coefficient of variation of expression were calculated 

between bio-replicates for each gene separately for each of the 4 expression series. 

Gene expression and gene methylation data were combined. Non-CG context 

methylation measurements were discarded. In CG context, genes overlapping with 

“gain” or “both” DMRs were discarded. 

2.25 WT and mutant gene expression comparison, and differently 

expressed gene filtering 

Mean WT expression values were plotted against methylation proportion, using 

ggplot package, with points categorised based on their DMR overlap. Additionally, 

WT-1 expression was plotted against met1-1, and WT-3 against met1-3, with genes 

categorised based on their expression change and overlap with DMRs. Genes with 

significant expression change, here defined as FDR higher than 0.05, and log2 of 

expression fold change higher than 1 or lower than -1, were excluded from further 

analysis, in order to avoid bias caused by expression difference. 

2.26 Classification of genes by coefficient of variation, and comparison 

between WT and mutants, and mutants and mutants 

Log2 of coefficient of variation of expression fold change between WT-1 and met1-1 

and WT-3 and met1-3 of remaining genes was calculated. Genes were assigned into 

three categories – “decreased CV”, for genes with log2 of fold change lesser than -1, 

”increased CV”, for genes with log2 of fold change greater than 1, and “no change”, 

for all other genes. Coefficient of variation values in WT against mutants were plotted 

for genes that overlapped CG methylation loss DMRs. A barplot was drawn, to show 
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relative sizes of the three groups for each category for these genes, as well as a 

venn diagram showing overlap between genes found in the same group in WT-1 to 

met1-1 and WT-3 to met1-3. Significance between sizes of overlaps between groups 

within gene categories were calculated using Fisher's Exact Test, which plotted as a 

matrix using ggplot2. 

A gene ontology analysis of genes with “increased CV” overlapping between met1-1 

and met1-3 for gbM genes was conducted using PANTHER with FDR correction, 

with background list generated with all analysed genes, including non-methylated 

and differentially expressed ones, but without genes with unknown methylation 

value, less than 25 reads in BS-seq for WT and met1-1, or overlapping with DMRs 

other than methylation loss. As before, p-value and q-value threshold of 0.05 was 

used, following convention. 
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3.  Results 

3.1 Identification and analysis of variable genes. 

This study was carried out using two publicly available microarray time series (see 

2.1), one short-term and one long-term, which allowed for analysis of a large number 

of bio-replicates, with the goal of identifying variable genes. As a consequence, 

however, a series of steps was necessary to address both the discrepancies 

between the datasets, such as different microarray versions and lack of 

normalisation, and ensure only genes for which expression values are accurate were 

analysed. 

As a result of consensus probeset creation, 77 probes present in mock high light 

dataset were removed, leaving 32501 probes for normalization. In the following 

steps, 11138 probes that could not be matched to a gene, matched to multiple 

genes, or were assigned to obsolete IDs, were discarded. After computation of mean 

values for genes matched to multiple probes, this resulted in the list of 19239 genes 

that were analysed (figure 3.1) 

Of 52 analysed HLM bio-replicates, 2 were removed, and 4 were removed from the 

56 analysed DM bio-replicates, as a result of Principal Component Analysis, based 

on their divergence from remaining bio-replicates (figure 3.2A-B). In HLM, 

bioreplicates B of 1.5 h measurement and C of 3.5 h measurement clearly diverge 

from the overall distribution of values. In DM, the bio-replicates are not distributed in 

a distinguishable pattern, and as such bio-replicates were selected for removal 

based on their divergence.  

Coefficient of variation was selected as the metric of gene expression variability, due 

to its ease of implementation in the analysis of other datasets and a distribution that 
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allows for simple implementation of the cut-off. Based on the distribution of values 

across the two series (figure 3.2C), 0.04 was chosen as the cut-off value, in order to 

categorise enough genes as variable to allow for further analysis. 

To ensure coefficient of variability was the suitable metric that was not affected by 

mean value to a significant degree, CV and mean values of genes in HLM and DM 

were compared (figure 3.2D-E). In both samples, CV of the majority of genes was 

not strongly affected by the mean value of expression, although those with very low 

or very high expression show some differences, however. Genes with the lowest 

mean values seem to have higher CV than the distribution of other genes would 

suggest, although not high enough to pass the 0.04 threshold. Inversely, genes with 

the highest expression values have much lower CV than other highly-expressed 

genes. 

3.1.1 Expression variability patterns change over time both within the 

day, as well as on a developmental timescale. 

In order to estimate how the coefficient of variation changes over time, the coefficient 

of variation was plotted for mock drought measurements with DM, mock high light 

measurements with HLM, and both together (figure 3.3). The similarity-based 

clustering of time points, represented by columns, shows that terms that were close 

temporally tended to be clustered as well. This is seen within both mock high light 

(figure 3.3B) dataset, and the mock drought dataset (figure 3.3A). For mock high 

light, the furthest amount of “steps” separating two time points clustered immediately 

together was 2, with each step representing a measurement step, equal to 0.5 h for 

mock high light. In mock drought, this amount was significantly higher, equal to 4 

(representing 4 days between the two measurements clustered together). When the 
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two datasets were joined (figure 3.3C), this difference became more apparent, with 

mock drought 0 hour, 2 hour and 4 hour time points clustered together with mock 

high light. This shows that, as plants develop, even within the same environment, 

differences in expression grow between them. Indeed, it is also evident when looking 

at the results of principal component analysis (figure 3.2A-B). Within mock high light 

dataset, covering 6 hours total, only two bio-replicates were found to significantly 

differ from the others (figure 3.2A). In mock drought dataset, covering 13 days, there 

were four (figure 3.2B) – twice as many as in mock high light, despite having only 

one more time point. Additionally, three of these four belonged to measurements 

taken late into plant development. Importantly, while these were removed as invalid, 

on the plot representing all CV values (figure 3.3C), all mock drought timepoints past 

the 8-day mark, aside from day 11, are clustered away from the remaining 

timepoints. The effect persists in genes whose DM or HLM values passed the 0.04 

CV threshold (figure 3.4, figure 3.5A-B). 

3.1.2 Distribution of coefficient of variation differs between the samples. 

Visual inspection of heatmap comparing variability between mock high light and 

mock drought samples (figure 3.3) reveals that mock drought dataset displayed 

higher variability within time points, represented by brighter colours. A statistically 

significant difference was observed between the two samples (figure 3.5A), with 

mean of mock drought CV values higher than that of high light.  

The trend remained present after filtering for genes whose CV passes the 0.04 

threshold in DM or HLM (figure 3.5.B), and its intensity, measured by difference in 

means, increased significantly. The difference between means was lesser, through 
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still statistically significant, in genes that pass the CV threshold in both DM and HLM 

(figure 3.5C), and less apparent on visual inspection (figure 3.4C). 

A possible explanation for the difference between DM and HLM lies in the nature of 

the two datasets. Because HLM is calculated between mock bio-replicates measured 

at different times across 6 hours, an additional source of variation is present, in the 

form of the circadian rhythm. As such, significant amount of genes that appear 

variable in HLM are not variable in DM (figure 3.6), which was calculated over a 

much longer period of time, and is not influenced by the circadian rhythm. DM 

features a source of variation absent from HLM as well, in the form of developmental 

expression differences, yet it is lesser in effect, as evidenced by smaller fraction of 

DM genes that are not variable in HLM. Additionally, genes variable as a result of the 

circadian rhythm would not be variable between bio-replicates at each individual 

time-point. Therefore, the difference between CV distribution of genes which pass 

the threshold in either of the samples, and the CV distribution of genes which pass 

the threshold in both DM and HLM, is likely explained by genes variable in HLM only 

due to the circadian rhythm, as opposed to DM or individual high light mock series 

time-point measurements. 
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Figure 3.1: Microarray data processing. 

Sankey diagram representing the steps taken to process the merged high light mock and 

drought mock microarray data. Bars in red represent rejected probes, bars in blue represent 

probes or genes passed on to further analysis. Each “flow” represents a quantity of genes or 

probes passed on to the next node, the size of which is represented by the text above it. 
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Figure 3.2: Principal Component Analysis and metric of variance comparison. 

A: High light mock dataset principal component analysis, carried out using prcomp function 

of the stats package. Datapoints highlighted in red circles were recognized to be too 

dissimilar from others in their group and removed. Each datapoint corresponds to a single 

bio-replicate. Bioreplicates from the same time points, in groups of four, are grouped by 

colour. Relevant bio-replicates are labelled. 

B: Drought mock dataset principal component analysis, carried out using prcomp function of 

the stats package. Datapoints highlighted in red circles were recognized to be too dissimilar 

from others in their group, and removed. Each datapoint corresponds to a single bio-

replicate. Bioreplicates from the same time points, in groups of four, are grouped by colour. 

Relevant bio-replicates are labelled. 

C: Comparison between DM and HLM values for various metrics of variance calculation. 

Vertical line represents 0.04 cutoff point for CV, its derivative 0.0016 for CV2, or alternative 

cutoff values for Fano factor and Distance to Median. 

D, E: Comparison between mean expression values and CV in HLM (D) and DM (E). Each 

datapoint corresponds to a gene. Datapoints are coloured by their CV values, with more 

variable genes assigned brighter colours. Horizontal line represents the 0.04 cutoff point for 

CV. 
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3.1.3 Gene ontology analysis indicates enrichment of stress response-

associated Biological Processes within high variability geneset. 

For GO analysis, 1542 genes passed the threshold value in DM, 1895 in HLM, and 

680 in both DM and HLM, termed the “consensus list”. Gene ontology results of 

DAVID, Panther, and GOfuncR using Wilcoxon rank-sum test method, were plotted. 

Without filtering, the most terms by far were returned by GOfuncR (figure 3.7A), 

which is consistent with its method of operation in contrast to the other two methods, 

as it analysed a much larger number of genes. A more reliable overview was given 

by filtering the output. Figure 3.7B, which depicts the output filtered so that a term 

must feature in both DAVID and Panther, in addition to at least one GOfuncR 

analysis, depicts a number of gene ontology terms relevant to stress response. 

Majority of these terms covered genes responding directly to a stimulus – be it an 

abiotic change to the environment, like water deprivation or cold, a biotic stress, like 

bacterium or fungus, or a chemical involved in stress response, like karrikins, 

abscisic acid, and jasmonic acid. The remaining terms were either processes 

involved in stress response – “toxin catabolic process”, “defence response”, or in 

regulation of defence response, like “regulation of systemic acquired resistance” and 

“regulation of defence response”. The lone exception was “leaf senescence”, which 

is linked to stress response in Arabidopsis. The same trend of terms associated with 

stress response being enriched in high variability gene-set remains present in 

unfiltered GO results as well (appendix 1). 

Interestingly, analysing HLM and DM results passing the threshold separately, 

instead of together in the consensus list, shows the differences between the two. 

While a number of terms differing between output for DM and HLM is not relevant 
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(appendix 2), and two terms present, GO:0009816 and GO:0055114, have been 

marked as obsolete, a few could clearly be linked to the circumstances behind the 

two datasets (figure 3.7C). Two of the terms unique to HLM, “circadian rhythm”, and 

“cellular manganese ion homeostasis”, are an example. The first is directly related to 

the circadian rhythm, while the second may be present because of the role of 

manganese in photosynthesis, the intensity of which varies over time. In DM, there 

were three differing terms relevant to experimental design, which are “leaf 

senescence”, “xyloglucan metabolic process” and “cell wall macromolecule catabolic 

process”. All three represent processes involved in plant growth and development – 

the first because senescence is an important fixture of these processes, while the 

latter two both concern processes altering the cell wall. 

3.1.4 Cell housekeeping genes are enriched within the low-variability 

dataset. 

In order to contrast results of high variability geneset gene ontology biological 

process analysis, a similar process was carried out to analyse low variability genes 

(figure 3.8). 6151 genes were below the threshold for the HLM list, 4490 genes for 

the DM list, and 2625 genes for the negative consensus list. Due to a different 

distribution of low-variability genes against high-variability genes, a different 

proportion of the total geneset was analysed (figure 3.8A). As before, vast majority of 

results were obtained by use of the GOfuncR method (figure 3.8B). However, the 

previous method of filtering was insufficient, as DAVID results featured only one GO 

term in output, “covalent chromatin modification” (appendix 3). As a result, terms that 

appeared in output of at least three methods were considered for analysis (figure 

3.8C). Biological process terms present within the low variability geneset 

overwhelmingly relate to the so-called “cellular housekeeping functions”, which are 
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necessary for survival of the cell, as well as other processes, such as “meiosis I” and 

“cell cycle”, that are consistently present within a significant portion of cells in the 

leaf. Additionally, the few terms that were identified as depleted within the low-

variability geneset all are, themselves, involved in response to environmental factors. 
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Figure 3.3: Comparison of coefficient of variation across series. 

All heatmaps depict distribution of coefficient of variation within their samples. Each column 

represents a distinct time point, or CV calculated between all bio-replicates in a series (HLM 

and DM). Columns have been clustered by similarity. Mock drought has been abbreviated as 

“Dro”, whereas mock high light has been abbreviated as “Hili”. “DPS” stands for “days past 

start”, and “HPS” starts for “hours past start”. Samples coloured green or in brighter colours 

represent CV values passing the threshold of variability, those coloured blue and purple 

represent CV values below the threshold. 

A: Clustered heatmap of all CV values for all genes in timepoints of mock drought dataset 

and DM and HLM, ordered by CV of genes in DM. 
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B: Clustered heatmap of all CV values for all genes in timepoints of mock high light dataset 

and DM and HLM, ordered by CV of genes in HLM. 

C: Clustered heatmap of all CV values for all genes in timepoints of both datasets combined, 

and DM and HLM, ordered by CV of genes in DM.  
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Figure 3.4: Comparison of coefficient of variation across series after filtering. 

All heatmaps depict distribution of coefficient of variation within their samples. Each column 

represents a distinct time point, or CV calculated between all bio-replicates in a series (HLM 

and DM). Columns have been clustered by similarity. Mock drought has been abbreviated as 

“Dro”, whereas mock high light has been abbreviated as “Hili”. “DPS” stands for “days past 

start”, and “HPS” starts for “hours past start”. Samples coloured green or in brighter colours 

represent CV values passing the threshold of variability, those coloured blue and purple 

represent CV values below the threshold. 

A: Clustered heatmap of CV values for genes in mock drought dataset, and DM and HLM, 
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for which CV > 0.04 in DM, ordered by CV of genes in DM. 

B: Clustered heatmap of CV values for genes in mock high light dataset, and DM and HLM, 

for which CV > 0.04 in HLM, ordered by CV of genes in HLM. 

C: Clustered heatmap of CV values for genes in both datasets, and DM and HLM, for which 

CV > 0.04 in HLM and CV > 0.04 in DM, ordered by CV of genes in DM. 
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Figure 3.5: Comparison between distribution of coefficient of variation values for mock 

drought and mock high light. 

The three histograms each compare distribution between CV values of selected genes for 

timepoints in mock drought dataset and of selected genes for timepoints in mock high light 

dataset. High light has been abbreviated as “Hili”. HLM and DM have been excluded. P-

value is calculated using Wilcoxon test, carried out by wilcox.test function of the R stats 

package, with the null hypothesis that the distributions of mock drought and high light CVs 

differ by a location shift of 0. 

A: Histogram comparing CV between mock drought and mock high light for all genes within 

all time-points. Mock drought sample represents data shown in figure 3.3A, whereas mock 

high light sample represents data shown in figure 3.3B. 

B: Histogram comparing CV between drought and high light for genes whose CV passes the 

0.04 threshold in DM or HLM respectively. Mock drought sample represents data shown in 

figure 3.4A, whereas mock high light sample represents data shown in figure 3.4B. 

C: Histogram comparing CV within bio-replicates between mock drought and mock high light 

for genes whose CV passes the 0.04 threshold in both DM and HLM. Both samples 

represent data depicted in figure 3.4C. 

  



66 
 

 

Figure 3.6: Comparison between genes passing the CV threshold in both control datasets. 

The Venn diagram shows correlation between genes passing the CV threshold of 0.04 in 

HLM and DM. The numbers represent the amount of genes within each group—genes 

present in just HLM, just in DM, or in both. 
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Figure 3.7: High-variability gene ontology analysis. 

A, B: Comparison between Gene Ontology Biological Process (GO BP) results from DAVID, 

Panther, and GOfuncR utilizing Wilcoxon rank-sum test. Both DAVID and Panther were 

supplied with the consensus list (list of genes with CV higher than 0.04 for DM and HLM), 

and with list of all analysed genes as background. GOfuncR was supplied with CV values for 

DM and HLM separately. The q-value was used for DAVID and Panther results, and 

calculated from p-value for GOfuncR results using p.adjust function of stats package. Only 

results with q-value lower than 0.05 are represented. 

A: An unfiltered heatmap of all GO terms returned by DAVID, Panther, and GOfuncR 

analysis. Terms shown in green are enriched within the high variability subset of genes, 

whereas terms in orange are depleted. DAVID results only feature enrichment information. 

B: Heatmap of GO terms that are present in output of both DAVID and Panther, and in 

output of GOfuncR for at least one dataset, DM or HLM. As a result, only enriched terms are 

present. 
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C: Comparison between selected differing terms between DAVID GO BP results for HLM or 

DM. For both gene lists, genes with CV values higher than 0.04 in their respective 

measurement group were included, and analysis was carried out using background of all 

analysed genes. Only terms with q-value lower than 0.05 were analysed. Terms were 

selected based on their relevancy to the nature of the two experiments. 
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Figure 3.8: Low-variability gene ontology analysis 

A: Histogram depicting coefficient of variation values present in DM and HLM. Vertical line 

represents the selected threshold, genes below which were selected. p-value was calculated 

using wilcox.test, with the null hypothesis that the distributions of mock drought and high 

light CVs differ by a location shift of 0. 

B,C: Comparison between Gene Ontology Biological Process (GO BP) results from DAVID, 

Panther, and GOfuncR utilizing Wilcoxon rank-sum test. Both DAVID and Panther were 

supplied with the negative consensus list (list of genes with CV lower than 0.018 in DM and 

HLM), and with list of all analysed genes as background. GOfuncR was supplied with CV 
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values for DM and HLM separately. The q-value was used for DAVID and Panther results, 

and calculated from p-value for GOfuncR results using p.adjust function of stats package. 

Only results with q-value lower than 0.05 are represented. 

B: Unfiltered gene ontology Biological Process results for low-variability geneset. Terms in 

green are enriched, terms in orange are depleted. 

C: Filtered GO BP results for low-variability geneset. Only terms featuring in output of at 

least three analyses are shown. 
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3.2. Methylation analysis of variable genes. 

The 19239 genes analysed in Chapter 3.1 were subjected to methylation analysis, 

using publicly available bisulfite sequencing data of A. thaliana Col-0 ecotype 

generated by (Stroud et al., 2012) and (Stroud et al., 2013), accessible through the 

Gene Ontology Omnibus (SRR501624, SRR534177 and SRR534193). Of those, 20 

could not be assigned methylation proportions, leaving 19219 successfully 

annotated. Additionally, gene expression mean and coefficient of variation values for 

each gene as calculated between all mock drought bio-replicates over 14 days (DM) 

and all mock high light bio-replicates over 6 hours (HLM) were imported (see 2.1-

2.5). 

The low resolution profiles and base analysis of wild type BS-seq data showed that 

the three bio-replicates were largely similar (figure 3.9A-C). For all three methylation 

profiles, the area of the centromere was highly methylated compared to the rest of 

the chromosome. Additionally, while the samples diverge in methylation magnitude, 

the pattern of methylation they follow is largely similar. The spatial correlation of 

methylation in samples in all three contexts is similar as well (figure 3.9D-F), with 

negligible differences. In sequencing coverage, the differences are greater. 

Bioreplicate 3 displayed consistently lower coverage for all minimum numbers of 

reads compared to bioreplicates 1 and 2 (figure 3.9G). 

 

3.2.1 Genes with high expression variability in both long and short-term 

samples are less methylated compared to non-variable genes. 

The comparison of expression coefficient of variation and mean of methylation 

proportions (figure 3.10, figure 3.11) revealed significant differences between 
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variable and non-variable genes. The magnitude of difference was different between 

gbM genes, genes with transposable element-like methylation, and promoters. For 

the purposes of this analysis, genes were classified as having transposable element-

like methylation if their methylation percentage in CHG or CHH contexts was higher 

than 0.05. Remaining genes were classified as gene body methylation (gbM) genes. 

Promoters were analysed based on their methylation and expression of their 

downstream genes.  

For CG context, more methylated genes appeared variable in HLM than in DM 

(figure 3.10). In spite of this, the methylation of genes that were variable in the two 

datasets was significantly lesser than that of genes that were non-variable in both 

samples (figure 3.11). The difference was greatest in magnitude in genes with 

transposable element-like methylation – however, there were only 34 transposable 

element-like methylated genes in DM, and 36 in HLM, of which 15 featured in both. 

Between promoter methylation and gbM genes, the effect was more significant for 

gene body methylation. The difference between methylation proportions of genes 

non-variable and variable in both samples was 0.081 for gbM genes, and 0.042 for 

promoters, and both were statistically significant (figure 3.11). 

For CHG and CHH contexts, the difference between methylation proportions 

remained statistically significant for both the methylation of promoters, as well as 

genes with transposable element-like methylation. The magnitude of the difference 

was much smaller for transposable elements, however, with the difference of means 

at 0.01 in CHG context and 0.005 in CHH context. Due to previous filtering step, 

measurements of gbM genes in CHG and CHH contexts intentionally did not include 

any genes with high methylation proportion in these contexts. 
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Because the coefficient of variation can be sensitive to minor changes in expression, 

methylation proportions were compared to mean of expression. The results showed 

that genes with transposable element-like methylation had predominantly low or 

medium expression (figure 3.12). The statistical analysis (figure 3.13) revealed that 

the relationship between expression intensity and methylation proportions varied 

significantly between the two gene methylation types, and promoter methylation. For 

gbM genes, those with medium expression were statistically the most methylated. 

Genes with high expression are second, and genes with low expression have the 

lowest methylation. For promoters, genes with low expression were more strongly 

methylated, while there was no statistical difference between those with high and 

medium expression (figure 3.13). For genes with transposable element-like 

methylation, genes with low expression had highest methylation compared to 

medium-expression and the high-expression genes (figure 3.13).  
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Figure 3.9: Genome-wide methylation trends and base analysis of three wild type bio-

replicates. 

A, B, C: Line chart depicting low resolution methylation profiles of Arabidopsis chromosome 

1, in 500000 bp resolution, in CG (A), CHG (B) and CHH (C) contexts. 

D, E, F: Line chart showing the spatial correlation of methylation of cytosines calculated for 

the entire Arabidopsis genome, in CG (D), CHG (E) and CHH (F) contexts. 

G: Line chart showing the sequencing coverage per cytosine methylated in the CG context 

for selected minimum numbers of reads for the entire Arabidopsis genome. 
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Figure 3.10: Relationship between coefficient of variation for gene expression and 

proportion of methylation. 

For each scatterplot, x-axis represents the coefficient of variation (CV) of gene expression 

for a gene in the expression sample, and y-axis represents the mean of methylation 

proportion values in the selected context. Genes are categorised based on proportion of 

methylation and CV of expression. 

Each dot represents a gene or a promoter. Red dots represent non-variable and methylated 

genes, purple represent variable and methylated genes, blue represent variable and non-

methylated genes, and grey represent non-variable and non-methylated genes. 

The scatterplots are split into columns by methylation types – gbM genes, genes with 

transposable element-like methylation, and promoter methylation. Each row shows 

methylation proportion in a different methylation context. These are, sequentially, CG, CHG, 

and CHH. 

A: Methylation proportion compared to CV of expression values across all mock drought bio-
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replicates (DM) 

B: Methylation proportion compared to CV of expression values across all mock high light 

bio-replicates (HLM) 
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Figure 3.11: Statistical analysis of the relationship between gene expression coefficient of 

variation and methylation proportion. 

For each boxplot, the x-axis represents CV of expression, while the y-axis represents 

methylation proportion in the selected context. The plots are split into columns by 

methylation types – gbM genes, genes with transposable element-like methylation, and 

promoter methylation, and into rows by methylation contexts – CG, CHG, and CHH. 

“Neither variable” contains genes where  CV <= 0.04 in both HLM and DM, “both variable” 

contains genes where CV > 0.04 in both HLM and DM. P-values were calculated using 

Wilcoxon rank-sum test, with null hypothesis that the distributions differ by location shift of 0. 
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Figure 3.12: Gene expression mean and methylation proportion comparison between 

methylation contexts, methylation types, and two expression samples.  

For each scatterplot, x-axis represents the mean of gene expression for a gene in the 

expression sample, and the y-axis represents the mean of methylation proportion values in 

the selected context. Genes are categorised based on methylation proportion and mean of 

expression. 

The scatterplots are split into columns by methylation types – gbM genes, genes with 

transposable element-like methylation, and promoter methylation. 

Each dot represents a gene or a promoter. Red dots represent the approximately 10% least 

expressed genes, blue dots represent the approximately 10% most expressed genes, and 

grey dots represent genes with medium expression. Lighter colours represent methylated 

genes, darker colours represent non-methylated genes. 

Each row shows methylation proportion in a different methylation context. These are, 

sequentially, CG, CHG, and CHH. 
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A: Methylation proportion compared to mean of expression values across all mock drought 

bio-replicates (DM) 

B: Methylation proportion compared to mean of expression values across all mock high light 

bio-replicates (HLM) 
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Figure 3.13: Statistical analysis of the relationship between gene expression magnitude and 

methylation proportion in different methylation contexts and methylation types. 

For each boxplot, the x-axis represents expression value, while the y-axis represents 

methylation proportion in the selected context. The plots are split into columns by 

methylation types – gbM genes, genes with transposable element-like methylation, and 

promoter methylation, and into rows by methylation contexts – CG, CHG, and CHH. 

“Low” – expression values < 8.4; “medium” – expression values between 8.4 and 12.05; 

“high” – expression values > 12.05. Only genes falling into the same category in HLM and 

DM were analysed. P-values were calculated using Wilcoxon rank-sum test, with null 

hypothesis that the distributions differ by location shift of 0. 

The colour of the line between two boxes indicates the statistical relationship between the 

two distributions as calculated by Wilcoxon rank-sum test. Blue is p<0.001; purple is p 
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between 0.001 and 0.01; orange is p between 0.01 and 0.05, and red is non-significant. In 

descending order, the lines represent the relationships between low-to-medium, low-to-high, 

and medium-to-high distributions. 
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Table 3.1: Comparison of selected Gene Ontology Biological Process terms enriched in CG 

methylation gene groups. 

Each column represents a different set of genes, based on expression variability and 

methylation proportion.  

Variable genes – CV > 0.04; non-variable genes – CV <=0.04 

Methylated genes – proportion of methylation > 0.1; non-methylated genes: proportion of 

methylation <= 0.1 

Only genes with gbM methylation are analysed. Lists are composed of genes that are in the 

same category in both DM and HLM. 

Lists were analysed for Gene Ontology BP terms using PANTHER. Only selected output 

terms are present on the table. All terms have FDR-adjusted p value less than 0.05. 

  

  Non-variable, 
methylated 
in both HLM 
and DM 

Variable,  
methylated 

Variable,  
non-methylated 

Non-variable,  
non-methylated 

Enriched Endosomal 
transport; 
Protein 
acylation; 
Gene silencing; 
Cell cycle 

Response to 
organonitrogen 
compound; 
Regulation of 
defence response 

L-pipecolic acid 
biosynthetic 
process; 
Regulation of 
defense response to 
insect; 
Response to 
salicylic acid 

Regulation of 
transcription, DNA-
templated; 
Regulation of RNA 
biosynthetic 
process; 

Depleted Cellular 
response to 
hypoxia; 
Detoxification; 
Cell wall 
modification; 
Response to 
water 

N/A Chromosome 
organization; 
ncRNA metabolic 
process; 
RNA processing; 
translation 

Regulation of RNA 
splicing; 
DsRNA processing; 
Protein acylation; 
Histone 
modification; 
Regulation of 
response to stress 
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3.2.2 Gene categories derived from methylation and variability vary in 

enriched and depleted Gene Ontology Biological Process terms. 

Genes were split into 4 categories and analysed through PANTHER Gene Ontology 

Biological Process analysis (table 3.1). The genes were split based on their 

methylation proportion, and on their variability in HLM and DM, generating four 

categories. 

For CG methylation of gbM genes, 7223 genes were non-variable and methylated, 

118 genes were variable and methylated, 547 genes were variable and non-

methylated, and 8670 genes were non-variable and non-methylated (appendices 4-

7). 

Similarities between the GO terms enriched between groups have emerged, which 

help identify the role played by both the expression variability and methylation. The 

two non-variable groups are more similar to each-other than the two variable groups. 

Both variable groups, methylated and unmethylated, were enriched for GO terms 

involved in stress response, which is consistent with the previous analysis (3.1.3-

3.1.4), and both non-variable groups were depleted for some terms related to stress 

response.  

One similarity present between variable and non-variable non-methylated genes is 

that both were depleted for terms related to RNA processing. While the non-variable 

non-methylated gene group was enriched for “regulation of RNA biosynthetic 

process”, both non-methylated groups were depleted for “RNA metabolic process” 

and its child term, “mRNA metabolic process”. This was reversed in non-variable 

methylated gene-set, where both of these terms were enriched, and regulatory 

genes were depleted. The difference between the methylation of genes regulating 
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RNA metabolism and those responsible for that process is consistent with past 

research (Zhang et al., 2006). The significantly higher degree similarity between 

groups sharing variability status compared to groups sharing methylation status 

confirms that, while methylation and gene expression variability may be correlated, 

methylation plays varied roles in regulation of transcription beyond just determining 

variability, which too is in line with existing knowledge (Yang et al., 2015). 

In summation, these analyses demonstrate that a relationship exists between 

methylation and gene expression variability where highly methylated genes are less 

variable, which is particularly significant for gbM genes. The results of gene ontology 

analysis indicate that both play functions within the organism, although those of gene 

expression variability are more limited in scope. 

3.3. Comparison of variation in wild type and methylation loss mutants. 

To analyse the relationship between gene expression variability and CG methylation, 

separate gene expression and methylation datasets were used, containing data for 

wild type (WT), methyltransferase mutant-1 (met1-1) and methyltransferase mutant-3 

(met1-3), generated by (Catoni et al., 2017), accessible through the GEO 

(GSE89592). In both mutants, CG methylation is reduced – partially in met1-1 

(Kankel et al., 2003), and near totally in met1-3 (Saze et al., 2003) (Baek et al., 

2011). 29670 genes in total were identified in the expression arrays used.  

527 genes were removed for met1-1 measurement because of lack of sufficient 

methylation data, incorrect gene assignment, or low number of reads, and 570 genes 

were removed for met1-3 measurement. 

The chromosome-wide profiles and base analysis of WT and methyltransferase 

mutant BS-seq data show that only CG methylation levels were significantly 
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decreased between the WT and both met1 mutants (figure 3.14A-C). Likewise, in 

CHG and CHH contexts, there was little difference between the spatial correlation of 

methylation (figure 3.14D-F) of WT and met1 mutants. Methylation coverage in CG 

context for the three samples was similar, with met1-3 displaying slightly higher 

coverage than met1-1 and WT (figure 3.14G). Spatial correlation in the CG context 

differed significantly, with highest degree of correlation for WT, and lowest for met1-3 

(figure 3.14D). This implies that, in met1 mutants, existing methylation patterns have 

been disturbed. 

3.3.1 Methyltransferase-1 mutants differ from wild type in gene 

expression and CG methylation. 

In order to establish differences between methyltransferase mutants and WT, an 

analysis was carried out to identify differently methylated regions (DMRs), and to 

identify any genes overlapping these DMRs. For the purposes of this analysis, genes 

were classified as having transposable element-like methylation if their methylation 

percentage in CHG or CHH contexts was higher than 0.05. Remaining genes were 

classified as either gbM methylated, if their CG methylation proportion was higher 

than 0.1, or non-methylated, if it was equal to or below 0.1. Promoters were analysed 

based on their methylation and expression of their downstream genes. Non-

methylated genes were analysed separately from gbM genes to aid in GO analysis. 

For gbM genes in WT and met1-1 comparison, 8663 genes overlapped with CG 

methylation loss DMRs, meaning they lost methylation, and 358 did not. (figure 

3.15A). For gbM genes in WT and met1-3 comparison, 8730 genes overlapped with 

CG methylation loss DMRs, and 294 did not. 
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The differences between WT and mutants are not limited to methylation, but also 

affect gene expression. Some genes, both among those that lost methylation, and 

among those that maintained methylation, changed their expression significantly 

between WT and mutant (figure 3.15B). In order to identify the impact of change in 

methylation on gene expression variability, only genes that both lost methylation and 

did not significantly differ in expression between WT and mutants were analysed. 
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Table 3.2: Methylation and expression data processing outcomes. 

This table contains information about the genes that were removed from the analysed 

geneset, as described in methods (see 2.19 to 2.24). It contains two types of rows – 

“removal” rows, and “information” rows. 

Removal rows have 3 cells. The leftmost column describes the amount of genes before 

removal, and the rightmost column describes the amount of genes after removal. The details 

column in the middle describes how many genes were removed, and the reason for removal. 

After the second information row, the removal is conducted separately for WT-met1-1 and 

WT-met1-3 lists. 

Information rows contain information about the genes at their current analysis step. 

  

Starting 

gene 

number 

Details Post-

filtering 

gene 

number 

29670 genes extracted from sequencing data. 29575 with correct gene IDs, 93 with 

updated gene IDs, and 2 with obsolete gene IDs. 

29670 Removal of 2 obsolete gene IDs 29668 

29668 Removal of 93 genes that had their IDs updated, 92 of which 

were duplicates of other genes  

29575 

29575 Removal of 46 genes for which methylation proportion 

information could not be extracted in one or more contexts 

29529 

Of 29529 genes analysed, 4693 have transposable element-like methylation, 9038 have 

gbM, and 15798 are non-methylated 

29529 For met1-1: 420 genes were removed because of very low 

bisulfite sequencing coverage of less than 25 reads over the 

entire gene 

29109 

29109 For met1-1: 9 genes were removed because they overlapped 

gain DMRs 

29143 

29529 For met1-3: 386 genes were removed because of very low 

bisulfite sequencing coverage of less than 25 reads over the 

entire gene 

29100 

29100 For met1-3: 0 genes were removed because they overlapped 

gain DMRs 

29100 



88 
 

 

Figure 3.14: Genome-wide methylation trends and base analysis of wild type and met1 

mutants. 

A, B, C: Line chart depicting low resolution methylation profiles of Arabidopsis chromosome 

1, in 500000 bp resolution, in CG (A), CHG (B) and CHH (C) contexts. 

D, E, F: Line chart showing the spatial correlation of methylation of cytosines calculated for 

the entire Arabidopsis genome, in CG (D), CHG (E) and CHH (F) contexts. 

G: Line chart showing the sequencing coverage per cytosine methylated in the CG context 

for selected minimum numbers of reads for the entire Arabidopsis genome. 
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Figure 3.15: Comparison of changes between met1 mutants and wild type. 

A: The comparison between expression in wild type for met1-1 (WT-1) and CG methylation 

proportion in WT, with points coloured based on their overlap with DMRs between WT-1 and 

met1-1.  

Each dot represents a gene or a promoter. Genes were split into 3 groups— genes with 

transposable element-like methylation, which have either CHG or CHH methylation 

proportion higher than 0.05, gbM genes, which have CG methylation proportion higher than 

0.1 but CHG and CHH methylation proportion equal to or below 0.05, and non-methylated 

genes, which have CG methylation proportion below or equal to 0.1, and CHG and CHH 

below or equal to 0.05. x-axis represents WT expression, y-axis represents proportion of 

methylated cytosines in CG context. Each point represents a gene. 

B: The comparison between WT-1 and met1-1 gene expression (left), and WT-3 and met1-3 

gene expression (right). Genes are separated into four groups: No DMR overlaps and 

maintained expression (green), no DMR overlaps and significantly altered expression 

(yellow), overlap with loss DMRs and maintained expression (blue), and overlap with loss 

DMRs and significantly altered expression (red). x-axis represents expression in WT, y-axis 

represents expression in met-1 mutant. Each point represents a gene. 
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3.3.2 Expression variability of genes overlapping with loss DMRs 

changes in CG methylation loss mutants.  

In this analysis, only genes and promoters that overlapped DMRs where CG 

methylation was lost and with unchanged expression between WT-1 and met1-1 and 

WT-3 and met1-3 were analysed, in order to analyse the effect of methylation loss 

on variability. Differentially expressed genes were excluded because their 

expression changes render coefficient of variation calculation unreliable.  

In total, 14136 genes were analysed between WT-1 and met1-1. The change in 

expression coefficient of variation varies significantly between genes (figure 3.16A). 

The coefficient of variation of most genes was not significantly altered (figure 3.16B). 

For all three categories of genes, more genes increased in variability rather than 

decreased as a result of methylation loss. Likewise, more hypomethylated promoters 

were associated with increased variability. The ratio of genes with increased 

variability to decreased variability was highest in gbM genes, and lowest in genes 

with transposable element-like methylation. 

For WT-3 and met1-3, the trend is reversed (figure 3.16B), with greater amount of 

hypomethylated genes and promoters decreased in CV than increased. A smaller 

amount of genes was analysed here than for met1-1, 13262. As before, the 

variability of most genes was not significantly altered. The ratio of genes with 

decreased variability to increased variability was highest in genes with transposable 

element-like methylation, and lowest in gbM genes.  

The changes in variability observed in methylation loss mutants support the theory 

that a connection between gene expression variability and methylation exists. 

However, the difference between the direction of the trend in met1-1 and met1-3 
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mutants shows that the changes are highly varied, and implies that a closer 

examination is necessary. 

3.3.3 Increase in expression coefficient of variation of hypomethylated 

gbM genes is statistically significant. 

The gene contents of groups identified in previous analysis were compared, to 

determine overlaps between met1-1 and met1-3 mutants (figure 3.17). For no group 

was the amount of genes overlapping between groups greater than 50% of the sum 

of the groups (figure 3.17A). The fraction of genes shared between the two samples 

is lowest for gbM genes with decreased variability, and highest for gbM genes with 

no significant change in variability. 

Statistical analysis (figure 3.17B) shows that the overlap between genes without 

significant change in variability in met1-1 and met1-3 was significantly greater than 

that of genes with increased CV or decreased CV in all four groups. For gbM and 

non-methylated genes, and for promoters, the size of overlaps of increased CV 

genes was statistically significantly greater than that of decreased CV genes in these 

groups, with greatest difference for gbM genes. Within transposable element-like 

methylated gene group, there was no significant difference between the sizes of 

increased CV and decreased CV overlaps. 

The results of this analysis show that the increase in variability as a result of 

methylation loss is more consistent than decrease in variability across the two 

mutants. This suggests that gene expression variability buffering is indeed one of the 

functions of methylation of gbM genes and, to a lesser extent, in genes with low 

methylation and promoters. The significant overlap in genes with unchanged 
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variability implies that this mechanism is not universal, however. Because of the 

greatest size of the gbM overlap, it was selected for a Gene Ontology analysis. 

3.3.4 RNA-related Gene Ontology BP terms are enriched in analysis of 

gbM genes with increased expression variability overlapping between 

met1-1 and met1-3.  

The analysis of 605 genes with increased expression coefficient of variation in both 

the met1-1 and met1-3 mutants was carried out using PANTHER. 169 IDs were 

unmapped, and 1 gene was mapped to another, leaving 436 uniquely mapped IDs. 

Of the significant (FDR lesser than 0.05) terms, the most highly enriched was 

“ribosomal small subunit export from nucleus”, at 30.07 fold enrichment. “Ribosome 

localization”, “RNA metabolic process”, “nucleic acid metabolic process” and “cellular 

macromolecule metabolic process” to were among enriched terms. No terms were 

significantly depleted within the geneset (appendix 8). The results of the gene 

ontology analysis partially match the terms enriched in non-variable methylated 

genes (see 3.2.2).  

Of the two families of GO terms enriched in gbM genes that gained variability in both 

hypomethylated mutants, the RNA metabolic process is the more interesting one. As 

the measurements of gene expression used throughout this work rely on mRNA 

sequencing, it is feasible that the significant disparity between variability gain and 

loss gene-sets is the result of variance in processes that play a role in production 

and degradation of RNA molecules.  
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Figure 3.16: Comparison between coefficient of variation of expression in WT and met1 

mutants. 

A: Comparison of WT-1 coefficient of variation against met1-1, and WT-3 coefficient of 

variation against met1-3. Only genes without significant expression change between WT and 

mutant which overlap with loss DMRs are analysed. Each dot represents a gene or a 

promoter. The x-axis represents CV of expression in WT, and the y-axis represents CV of 

expression in met1 mutant. The diagonal line represents 1:1 ratio. Genes are categorised 

based on their coefficient of variation change: increased for genes with CV fold change 

greater than 1, decreased for genes with CV fold change less than –1, and no change for 

those in-between. 

B: Relative sizes of each gene category shown in panel A. The top barplot depicts the sizes 

of categories between WT1 and met1-1, and bottom one between WT-3 and met1-3. 



94 
 

 

Figure 3.17: Comparison between coefficient of variation changes in met-1 mutants. 

A: Venn diagrams, depicting relative sizes of each category as shown in figure 3.16A, as 

well as overlaps between them. The number shows the amount of genes in either the 

overlap or in the mutant alone. Red circles represent WT-1 to met1-1 comparison, blue WT-

3 to met1-3 comparison. Percentage amount represents the fraction of genes shared 

between the two samples. Genes are split into 4 categories, and comparisons are made 

separately for each of the three CV states (decreased, increased, or not significantly 

changed). 

B: The statistical relationship between overlaps for each category in panel A, calculated 

using Fisher’s Exact Test. Numbers on the matrix depict p-values. 
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4. Discussion 

 

4.1 Gene expression variability patterns. 

Within both the long-term measurement, mock drought (DM), and the short-

term measurement, mock high light (HLM), genes were identified to greatly vary in 

the CV calculated between biological replicates across different time-points. This 

behaviour was expected in both series. The data suggests that, for short term 

measurements, gene expression was altered between time points as a result of the 

circadian clock (Salomé and McClung, 2004), as shown by clustering together of 

measurements taken closely to each-other in time (figure 3.3B, figure 3.4B). 

Additionally, previous research has already identified that inter-individual gene 

expression variability of genes can vary between specific times of day (Cortijo et al., 

2019). Similarly, while the long-term measurements did not suffer from differences in 

variation introduced by the circadian rhythm as they were not sampled at different 

times, they, in turn, included effects caused by plant development (Schmid et al., 

2005).  

As such, in both mock drought and mock highlight, the coefficient of variation 

value calculated between all bio-replicates also captured differences in expression 

resulting from sources other than inherent variability. This effect can be analysed 

more closely by comparing CV of genes variable in DM or HLM against their CV 

within individual measurements. This comparison showed that many genes were 

variable in both DM and their individual measurements (figure 3.4A), albeit in HLM 

this percentage was smaller (figure 3.4B). To correct this, only genes variable in both 

DM and HLM were analysed (figure 3.4C). This way, the gene expression variability 
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caused by differing timescales and the presence of circadian rhythm should be 

removed, leaving “true” underlying variability. The effectiveness of this is evidenced 

by significantly increased average CV within the measurement of genes from the 

short timescale sample (figure 3.5C). 

The use of microarray sequencing data, as opposed to RNA-seq, imposes 

certain limitations. RNA-seq is more accurate in analysis of genes with low or very 

high expression (Zhao et al., 2014), and therefore provides a greater range of 

readings, which would allow for much greater accuracy in calculation of variation. In 

spite of this advantage, microarray-based datasets were selected for this analysis, 

as, historically, microarrays have been less costly than RNA-seq. As such, a larger 

amount of bio-replicates can be analysed with the same amount of resources, 

meaning the availability of microarray-based time series is greater. Moreover, the 

two series selected were grown in identical conditions, which enabled analysis based 

on consensus-list approach. 

Indeed, it is highly likely that microarrays are responsible for the anomalous 

distribution of CV values for genes with lowest and highest mean expression values 

(figure 3.2D-E). The fact that only genes at extremes of the expression scale are 

affected suggests that it is not a consequence of CV metric alone – and, as stated 

above, it is those genes that microarrays have trouble analysing. Genes with high 

expression magnitude can reach the upper intensity limit of microarrays, at which 

point they are assigned very similar expression values, resulting in significantly lower 

CV. Genes with very low expression, meanwhile, are more susceptible to noise 

when analysed using microarrays, which is responsible for increasing their CV. The 

amount of genes affected is low enough, however, that the benefit of analysing these 

large datasets outweighs the limitations placed upon them by use of microarrays. 
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While some other design elements of the datasets used impose certain 

limitations upon this work, such as low number of biological replicates measured at 

individual time-points, their use does come with a significant positive as well. 

Because both mock high light (Alvarez‐Fernandez et al., 2021) and mock drought 

(Bechtold et al., 2016) are accompanied by stress series, they could be used to 

investigate variable genes in abiotic stress conditions in a future work. 

4.2 Gene Ontology analysis of high variability and low variability genes. 

The results of gene ontology analysis indicate that, in the high variability 

gene-set, every enriched term present in output of both DAVID and Panther, as well 

as Wilcoxon analysis of either HLM or DM, is related to stress response either 

directly, like “response to wounding”, or indirectly, like “leaf senescence” (figure 

3.7B). This is consistent with previous research, which has identified that genes 

responsible for stress response are highly variable (Bar-Even et al., 2006) in yeast 

and in Arabidopsis in short timescales (Cortijo et al., 2019). 

Some of the terms related to stress response were found to be depleted in 

low variability gene-set (figure 3.8C). This gene-set was enriched for terms related to 

cellular housekeeping, and reproduction – cell cycle, proteolysis, cellular localisation, 

DNA recombination, chromatin modification. This, too, is in line with past research, 

which has identified that low noise genes are enriched for housekeeping functions in 

Mus musculus single-cell data (Barroso et al., 2018), in S. cerevisiae (Fraser et al., 

2004), and, indeed, in Arabidopsis, in short timescales (Cortijo et al., 2019). 

The effect of noise on fitness has been found to vary significantly between 

genes in yeast (Keren et al., 2016). Because housekeeping genes are responsible 

for basal functions of the cell, it stands to reason that disruptions to their 
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concentrations would have a significant effect on functioning of the cell. Moreover, 

noise has the ability to propagate through gene networks (Pedraza and van 

Oudenaarden, 2005) – meaning that variability in genes involved in processes such 

as RNA splicing, DNA metabolism and histone modification, all of which are closely 

related to transcription, could significantly alter the phenotype. An important caveat, 

however, is that the research cited above focuses not on inter-individual variability, 

but instead on noise, which is variability not across individuals, but across time. 

Additionally, varied mechanisms exist that suppress propagation of noise (Singh and 

Hespanha, 2009) (Siciliano et al., 2013). Nonetheless, while the causes and 

mechanisms may be different, the outcomes of gene product concentration departing 

from the norm maybe be similar both events.  

Likewise, the enrichment of biological process terms related to stress 

response in high variability gene-set can be theorised to be the result of separate 

evolutionary drive. In bacteria, stress survival strategies are not only a result of 

actions in response to environmental difference, such as expression of stress 

response genes. An alternative strategy is bet hedging (Veening et al., 2008) - even 

within isogenic populations, within uniform environments, a subset of cells exhibits 

alternative phenotypes that, in the event of a sudden environmental change, can 

survive. A similar mechanism has been identified in yeast (Levy et al., 2012). In 

principle, this method can be advantageous over switching phenotypes in response 

to environmental changes in environments that are more constant (Kussell, 2005), 

although it has not been documented in plants aside from seed dormancy. 

The fact that the biological process terms enriched within high variability 

gene-set are related to each-other, and that the same is the case in the low 

variability gene-set, suggests that the organism does indeed control variability of 
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gene expression – although the exact reasons for this control are unknown, and the 

mechanisms used are poorly understood.  

One significant limitation of this work lies in the fact that concentration of 

mRNA is, by itself, incapable of accurately predicting concentration of protein (Gygi 

et al., 1999). Protein concentration is a function of rate of translation, which itself a 

result of multiple factors that include mRNA concentration, and protein decay rate 

(Brockmann et al., 2007). As such, it is possible that post-transcriptional 

mechanisms could exist that would moderate the effects of variation in mRNA 

concentrations. Indeed, extensive regulation networks exist between various stages 

of gene expression (Dahan et al., 2011). However, since mRNA concentration is 

connected to protein concentration (Brockmann et al., 2007), it stands to reason that 

significant expression variability can result in protein concentration variation. 

4.3 Methylation of variable and non-variable genes. 

Existing research has uncovered some potential sources of variation in gene 

expression between isogenic populations. Certain histone modifications were found 

to be correlated with high variability and low variability genes (Cortijo et al., 2019), 

yet the finer details, and other factors responsible for regulation of variation, are 

currently unknown. 

The analysis conducted here focuses on two relationships – that between 

gene expression magnitude and methylation, and that between gene expression 

variability and methylation. The comparison of expression magnitude and 

methylation shows that, in CG context, gbM genes with medium expression tend to 

have a statistically higher methylation than genes with low or high expression (figure 

3.13). This is consistent with existing research, which has reported the same trend 
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between overall cytosine methylation, which is largely composed of CG-context 

methylation, and gene expression (Zilberman et al., 2007). 

The results of analysis of promoter methylation in the CG context too are in 

accord with our current knowledge. Not only did research find that the majority of 

genes are unmethylated in their promoter regions (Zhang et al., 2006), which is 

consistent with the low median on the boxplot for all three expression level 

categories (figure 3.13), but promoter methylation is also associated with tissue-

specific expression and, overall, with lower transcription (Zhang et al., 2006). Here, 

this may be represented by the statistically significant difference between 

methylation of promoters associated with low expression genes, and those of genes 

with medium or high expression. The larger distribution range of methylation 

proportion of promoters of low expression genes suggests that, unlike the other two 

categories, it contains genes with both low and high methylation (figure 3.13).  

The statistical analysis of genes with transposable element-like methylation is 

less reliable, due to very low amount of genes with high expression in this group 

(figure 3.12). This is a result of the filtering step that ensured only genes with non-

negligible CHG or CHH classified into this group – therefore, one can conclude that 

this type of methylation is rarely found in highly expressed genes, which suggests 

they play a role in repression of gene expression.  

The comparison between coefficient of variation and methylation shows that 

genes that are variable in DM and HLM tend to have lower methylation (figure 3.11). 

The effect is stronger in genes with gbM rather than in promoters. For CHG and 

CHH methylation, the magnitude of the effect is lesser, but it remains significant for 

genes with transposable element-like methylation, and for promoters. 
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In context of the previous analysis, the lower CG methylation of promoters 

associated with variable genes helps address one of the issues with use of CV. 

While coefficient of variation is a useful metric, it can potentially be sensitive to 

comparatively minor changes in expression. As such, its potential downside could be 

that the analysis might have preferentially selected genes with low expression, rather 

than those with high physiological variability. If that were the case, however, 

promoters of variable genes would have higher methylation than those of non-

variable genes, which is not the case here. Moreover, if that error were present, 

genes with transposable element-like methylation would show large variability, since 

a significant number of them has low expression (figure 3.12), whereas this analysis 

indicates that significant majority are non-variable (figure 3.10). 

The fact that variable genes appear to have very little CG methylation is 

intriguing, and so it was followed up by a gene ontology analysis to identify enriched 

and depleted terms among gene-sets created by splitting analysed genes by their 

methylation and expression variability. Both variable groups are enriched for genes 

responsible for stress response, which is consistent with the previous GO analysis. 

There is some similarity between variable non-methylated genes and non-variable 

non-methylated genes as well. Both of these groups are depleted for genes 

responsible for RNA processing. These terms, meanwhile, are enriched in non-

variable methylated gene-set. This is in line with existing research, which suggests 

that gene body methylation is associated with constitutively-expressed genes (Zhang 

et al., 2006), which encode housekeeping functions such as processing of RNA. 

Importantly, however, non-variable non-methylated genes include “regulation of 

DNA-templated transcription” and “regulation of RNA biosynthetic process” as 

enriched BP terms. This, too, matches previous analyses, as transcription factors – 
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which are partly responsible for regulation of transcription - were found to be one of 

the most undermethylated categories of genes (Zilberman et al., 2007).  

One potential limitation of this analysis lies in mismatch between the age of 

plants used for expression analysis and the age of plants used to determine 

methylation – both mock high light (Alvarez‐Fernandez et al., 2021) and mock 

drought (Bechtold et al., 2016) were 5 weeks old at the start of the measurement, 

while plants used for bisulfite sequencing were 3-4 weeks old (Stroud et al., 2012). 

As such, while both samples were gathered from the same tissue, it is feasible that 

methylation of some genes might differ between these times.  

To summarise, the results of these analyses support the conclusion that gene 

expression variability and gene body CG methylation are linked to each-other. What 

they can not establish, however, is whether methylation and expression variability 

merely co-occur, or if gene methylation is responsible for moderating expression 

variability. 

4.4 Gene expression differences between WT and met1 mutants. 

In light of previous analysis identifying correlation between CG gene body 

methylation and gene expression variability, this relationship was investigated 

further. Arabidopsis thaliana serves as a particularly useful organism for such an 

investigation, as genome-wide methylation loss mutants are not lethal (Kankel et al., 

2003), meaning that effects of methylation loss can be examined on the scale of the 

whole genome. 

As such, WT plants were compared to met1-1 mutants, where CG methylation 

was significantly reduced, and met1-3 mutants, where CG methylation was almost 

entirely lost. Unlike the previous analysis, plants sequenced for expression and 
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plants sequenced for methylation are of the same age (Catoni et al., 2017). Genes 

were split into 3 categories based on methylation, instead of just 2 - genes with 

transposable-like methylation were isolated as before, but what was previously 

termed as gbM genes was split into genes with significant gbM-only methylation and 

non-methylated genes.  

The analysis of expression data indicates that loss of methylation significantly 

affected the expression of some genes (figure 3.15B), which is consistent with past 

analyses of mutant met1 specimens (Zhang et al., 2006). These genes were 

excluded from gene expression variability analysis, because a significant portion of 

gene expression change seen in methylation loss mutants is the result of reactivation 

of transposable elements (Lister et al., 2008), which by their nature would not be 

uniform across bio-replicates. As such, their inclusion would potentially inflate 

measured coefficient of variation values of analysed genes. Even for upregulated or 

downregulated genes unrelated to transposable elements, major change in 

expression implies action of mechanisms which would not be present in majority of 

other genes. 

Overlaps with loss differently methylated regions (DMRs) were used to 

identify genes that lost methylation, as opposed to calculating differences in 

methylation proportion. As such, even genes that have been classified as 

unmethylated using methodology of previous analyses may still be catalogued as 

having lost methylation, since while majority of the gene in WT might be 

unmethylated, some small region of it might have methylation that is then lost in 

met1 mutants. Moreover, the gene-set analysed between WT and met1-3 is different 

than that analysed between WT and met1-1, as the two differ for the amount genes 

that are differentially expressed or overlap loss DMRs. 
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The analysis comparing CV of genes in WT against CV of genes in met1 

mutants indicates that, for a majority of genes, CV is not significantly changed for 

any of the three gene groups or for promoters (figure 3.16B). Curiously, while in 

met1-1 a larger amount of genes has gained variability than lost it, in met1-3 this 

trend is reversed, with more genes losing variability than gaining it. In order to 

reconcile the differences between the two samples, gene groups sorted by CV 

change were compared (figure 3.17A).  

The statistical analysis of the results revealed that the size of overlaps for 

genes with increased CV was greater than that for genes with decreased CV for gbM 

and non-methylated genes and promoters, and that for genes with transposable 

element-like methylation there was no statistically significant difference (figure 

3.17B). This is partially explained by existing research – transposable elements that 

were not mobilised by loss of CG methylation might be kept redundantly demobilised 

by CHG and CHH context methylation (Kato et al., 2003), which, in this context, 

could plausibly also redundantly buffer gene expression variability in CG methylation 

loss mutants.  

While the increase in CV is statistically significant, there remains the question 

of why so many genes do not match category between groups, and why both 

increases and decreases in CV are seen, even in genes with significant non-CG 

methylation. One potential explanation lies in the fact that noise is transmitted 

through gene networks (Pedraza and van Oudenaarden, 2005). If the assumption is 

made that variability can be treated in a similar manner to noise, then change in 

variability of some genes, such as those that were not analysed because of their 

changed expression, could have a wide-ranging impact on variability of other genes 

that themselves are not affected by loss of methylation.  
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In order to identify any similarities between genes that had their CV increased 

in both met1-1 and met1-3, a GO BP analysis was carried out. The results indicate 

that genes related to ribosomal localisation, as well as RNA metabolic process, were 

enriched. In particular, enrichment of “RNA metabolic process” fits the previous GO 

analyses – while a different gene-set was used previously, this term was enriched in 

non-variable methylated gene-set, and depleted in both the variable and non-

variable non-methylated gene-sets, fitting the profile of a gene group that was 

methylated and non-variable in WT, but lost methylation and gained variability in 

met1 mutants. Additionally, this does support the hypothesis that some of the 

variability is not a result of genes losing methylation, but of cascading effect through 

regulatory networks. Because RNA metabolism is a housekeeping function, and one 

that is tied to transcription, it’s not implausible that variability in genes responsible for 

carrying it out would translate into cell-wide effects. 

4.5 Conclusion. 

This study has explored inter-individual gene expression variability in 

Arabidopsis thaliana. It has found that this variability is to some degree controlled by 

the organism, and that distinct functions are associated with both the high variability 

and low variability gene-sets. Additionally, it has analysed variable genes, and found 

a statistically strong relationship between CG methylation and variable genes. 

Comparison of WT and hypomethylated mutants has shown that, among genes 

without differential expression, loss of methylation leads to a variety of outcomes, 

with statistically greater amount of genes increasing expression variability rather than 

decreasing. This suggests that gene body methylation is one of the mechanisms 

buffering gene expression variability. The results of this study could be further built 

upon in the future by investigating genes with individually removed methylation to 
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isolate the effect from transcriptional changes resulting from genome-wide 

hypomethylation. These could potentially be complemented by gene network 

analyses to confirm whether wide-ranging gene expression variability changes are 

the result of small numbers of variable genes, and if so, which genes they are. 

What are the reasons for the relationship between gene expression variability 

and methylation? One option that was considered was that low methylation is 

associated with chromatin state that is in some way conducive to gene expression 

variability. However, past research has discovered that variable genes are 

associated with compact environments (Cortijo et al., 2019), and that, in Arabidopsis, 

CG-context methylation is associated with chromatin condensation (Zhong et al., 

2021), which conflicts with the findings presented here which find variable genes are 

less methylated. As such, it is unlikely that methylation’s effects upon chromatin 

state are responsible for expression variability. While other potential reasons exist, 

the amount of genetic mechanisms interacting with methylation necessitates follow-

up studies to identify the ones responsible for changes in expression variability.  
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