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Abstract—The emergence of Intelligent Connected Vehi-
cles (ICVs) shows great potential for future intelligent traffic
systems, enhancing both traffic safety and road efficiency. How-
ever, the ICVs relying on data driven perception and driving
models face many challenges, such as the lack of comprehensive
knowledge to deal with complicated driving context. In this
paper, we investigate cooperative knowledge sharing for ICVs.
We propose a secure and efficient blockchain based knowledge
sharing framework, wherein a distributed learning based scheme
is utilized to enhance the efficiency of knowledge sharing and a
directed acyclic graph (DAG) system is designed to guarantee the
security of shared learning models. To cater for the time-intense
demand of highly dynamic vehicular networks, a lightweight
DAG is designed to reduce the operation latency in terms of
fast consensus and authentication. Moreover, to further enhance
model accuracy as well as minimizing bandwidth consumption,
an adaptive asynchronous distributed learning (ADL) based
scheme is proposed for model uploading and downloading.
Experiment results show that the DAG based framework is light-
weight and secure, which reduces both chosen and confirmation
delay as well as resisting malicious attacks. In addition, the
proposed adaptive ADL scheme enhances driving safety related
performance compared to several existing algorithms.

Index Terms— Knowledge sharing, DAG blockchain, intelligent
connected vehicles, distributed learning.

I. INTRODUCTION

ITH the development of communications and artificial
Wintelligence, Intelligent Connected Vehicles (ICVs) is
receiving increasing interest as a promising technology for
tackling the challenges faced by intelligent transportation
systems [1], [2]. Served by ubiquitous Vehicle to Everything
(V2X) technologies, ICVs is capable of sharing sensing
data and driving information with other vehicles and traffic
infrastructures to improve traffic safety and efficiency.
Equipped with intelligent on-board modules, ICVs support
intelligent vehicular applications and various levels of driving
automation. Several advanced driving use cases (including
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Advanced Driving Assistance System (ADAS), extended
sensors and cooperative driving) have been specified in the
fifth generation (5G) standards. However, the perception
and driving models behind the ICVs are mainly data driven
(e.g., trained by huge sensing and driving data). They are
lack of knowledge to deal with unseen and complex driving
scenarios. To address these problems, we are motivated to
extend the sharing of raw sensing data to the sharing of
knowledge for ICVs.

Knowledge sharing is defined as the activities of transferring
or disseminating knowledge among a group of people or
organizations [3]. Semantic webs and knowledge graphs have
been widely used for knowledge sharing in many applications,
such as Question and Answer (Q&A) systems and webpage
searching systems. With the aid of emerging Distributed
Learning (DL) technology, knowledge sharing for ICVs can
provide great benefits to enhance road safety and driving
experiences. ICVs can train their own sensing or driving data
by the on-board computing devices, and obtain correspond-
ing parameters (e.g. models/policies) as refined knowledge.
Various levels of knowledge (such as traffic statistics, traffic
control, driving rules, sensing and driving models, and crowd
sourced maps) can be shared among the ICVs and the roadside
infrastructures. In this case, DL based knowledge sharing
enhances the perception and comprehension of the driving
environment, and support driving decision making [4].

Despite the great potentials held by knowledge sharing
of ICVs, several critical issues remains to be addressed.
On the one hand, in the DL based knowledge sharing process,
attackers could manipulate the shared knowledge or spread
misleading knowledge. While central entities such as roadside
units (RSUs) could be employed to manage knowledge shar-
ing, they are subjected to various attacks such as single point
of failure. On the other hand, existing DL based knowledge
sharing shows weakness in sharing efficiency. There is a lack
of efficient management and cooperation of the distributed
knowledge that is shared by ICVs. For example, conventional
federated learning enforce workers to train and share their
models in a synchronous manner, resulting in a long delay
due to the intermittent links among ICVs [5].

To address the above problems, we resort to emerging
DAG blockchain and asynchronous distributed learning (ADL)
technologies, aiming to achieve secure and efficient knowledge
sharing in highly dynamic vehicular networks. Compared to
existing blockchains such as Bitcoin and Ethereum, utilizing
mining process with Proof-of-work and Proof-of-Stake that
incur huge computation and communication loads, there is no
concept of blocks in DAG, and the fundamental unit of DAG
is called site that includes a micro-transaction. The new site
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can be directly appended on the DAG without block mining,
thus realizing the lightweight and resource-saving. From the
perspective of ADL, the updating schemes of ADL support
ICVs to upload their models in an asynchronous way. ICVs
can obtain the on-the-fly updated model without waiting for
others, that is suitable for highly dynamic vehicular networks.

However, large-scale and time-intensive ICV networks still
hinder the application of existing DAG and ADL based
schemes. For DAG, conventional system such as /OTA utilizes
Markov chain Monte Carlo (MCMC) algorithm as tip selection
algorithm (TSA) to reach consensus, wherein ICV needs to
trace and verify previous W sites (W is called particle deep and
its value is large [6]) that increase the latency of consensus.
For ADL, each ICV is required to broadcast its local trained
models to ADL servers. Under the large scale circumstance,
it will significantly increase communication load and degrade
the efficiency of knowledge sharing of ICVs. Consequently,
supporting secure and efficient knowledge sharing with both
DAG and ADL is a challenging problem.

To fill this gap, in this article, we propose a lightweight
DAG and adaptive ADL based knowledge sharing framework,
wherein ICVs collect data and train corresponding models as
knowledge to be shared. RSUs continuously aggregate and
update the distributed models to obtain an on-the-fly and
comprehensive model that provides guidance for subsequent
ICVs, such as the suggestion of driving speed. The lightweight
DAG is designed to ensure the security and tamper-proof of the
shared ADL models. Moreover, an adaptive ADL algorithm is
proposed to further reduce bandwidth consumption during the
model-sharing process in the highly dynamic ICV networks.
The contributions of the paper can be summarized as follows:

o We propose a secure and efficient knowledge shar-
ing framework for ICVs, wherein both local and
cross-regional knowledge sharing are integrated. ADL is
adopted to train raw data as refined knowledge to enhance
sharing efficiency and DAG blockchain can guarantee the
security and tamper-proof of the shared ADL models that
is important for ICV safety and driving applications.

o To cater for the time-critical demand of highly dynamic
ICV networks, a lightweight DAG is designed with a
reversed two-hop TSA and a fast identity authentication
scheme. The proposed TSA achieve fast confirmation
rate and consensus by taking account of driving style
of ICVs. Based on the proposed algorithm, we propose
fast identity verification scheme for cross-region ICVs
without introducing additional storage costs, in which two
special sites are designed to accelerate the authentication
process. The feasibility of the proposed lightweight DAG
system is proved with mathematic analysis.

o In order to minimize bandwidth consumption as well
as improving model accuracy, we further propose an
adaptive asynchronous distributed learning scheme for the
uploading and aggregating processes of shared knowl-
edge. The convergence of the proposed ADL is proved,
and the optimal model weight and ICV driving style are
analyzed based on the optimal convergence point.

The remainder of this paper is organized as follows.

We present related works of knowledge sharing, blockchain
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and distributed learning in Section II. The overview of the
proposed DAG based knowledge sharing framework is pre-
sented in Section III. In Section IV, the lightweight DAG
system is elaborated, together with the feasibility and security
analysis. The design and convergence analysis of the ADL
algorithm is presented in Section V. In Section VI, experiment
and simulation results for the blockchain knowledge sharing
and ADL algorithm are presented and discussed. Finally, the
paper is concluded in Section VIIL.

II. RELATED WORK

Knowledge sharing among intelligent connected vehicles
has been studied recently. By utilizing the information of
vehicular trajectories, a clustering scheme was proposed based
on the semi-Markov process [7]. Rula et.al proposed a data
fusion algorithm to realize vehicular context awareness [8].
A joint rate control and resource allocation scheme was
developed with the information of channel states and delay
constraints [9]. During the information sharing process, it is
crucial to guarantee the security and reliability, which has
not been addressed in these works. Tampered or malicious
knowledge can cause severe safety issues and degrade system
performance. In this case, the emerging blockchain technol-
ogy shows strong resistance to malicious attacks, and it has
attracted increasing attention.

In literature [10], a user-centric blockchain (UCB) frame-
work was proposed to preserve the reliability of edge data,
in which a lightweight consensus mechanism was developed.
To maintain the traceability of data, Lin et al. presented
a consortium blockchain [11]. For ICVs, a service-oriented
public blockchain was proposed for ride-sharing that aims
to guarantee trust and fair payment during the sharing
process [12]. Cui et al. proposed a blockchain-enabled pay-
ment paradigm in which the data is encrypted and outsourced
decryption is payable [13]. However, most existing works
utilized “block” data structures to store data in blockchains,
which introduces additional packing expenditure and mining
consumption. Moreover, the “chain” structure leads to a
time-consuming consensus process and a slow data recording,
which is not suitable for large-scale ICV networks. Therefore,
the existing blockchain frameworks are not readily applicable
to the ICV network.

To further enhance the efficiency of knowledge sharing,
DL has been studied for vehicular networks. A DL framework
was developed to maintain the communication efficiency of
IoV, and packet loss probability and throughput were analyzed
under the framework [14]. Zhang et al. proposed a two time
scales DL algorithm to implement mode selection and resource
allocation for vehicular networks [15]. Although the above
studies have made great efforts on knowledge sharing, they
are either insecure or inefficient for dynamic ICV networks.

III. DESIGN OF THE KNOWLEDGE SHARING FRAMEWORK

The knowledge sharing framework is shown in Fig. 1.
By utilizing DL based schemes, ICVs continuously collect
data and extract knowledge from environment that is set
as DL model in this article. The whole ICV network is
divided into multiple traffic regions. In each region, there is a
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consortium-based DAG blockchain, where RSUs act as DAG
nodes to cache the DAG ledger. The basic workflow of the
knowledge sharing process can be described by the following
four steps.

(1). Knowledge Extracting and Site Generation: ICVs
extract valuable knowledge from the original raw data by
utilizing DL based scheme, and the knowledge is set as DL
models ®,. Then, ICV encapsulates @, together with the
signature of the vehicle Sig that is generated by its private
key, and the hash value H into a site. The typical format of a
site S, 18

Sy ={H,®y,m,c,, W, Sigy}, (D

where w is the vector of its own weight and cumulative
weight of one site. m is driving style indicator of ICVs
that is utilized to develop a lightweight DAG blockchain and
adaptive ADL scheme. The specific design will be elaborated
in Section. IV and V. ¢, is a simple proof-of-work to prevent
the Sybil Attack.

(2). Knowledge Verifying and Appending: The encapsulated
site is then broadcast to surrounding RSUs that cache the
DAG ledger. The issuing ICV will choose and verify two
existing tips on the DAG ledger according to the tip selection
algorithm. To verify the correctness of the on-chain knowl-
edge, ICVs will download the two chosen models and test the
models with its own testset. The absolute error (denoted by e)
is leveraged to quantify the performance of the models [16],
which can be denoted by the gap between the real output and
the predict output, that is

N
1
. E [Vite, = J (Kije)1, (2)
i=1

where f(x;|¢,) is the predict output of the target model over
the testset ¢, and y;, is the actual output. If the testing
performance gap is smaller than a certain value, i.e. e < ¢,
the verification process is deemed as valid, so that the ICV
can append the new site on the DAG ledger.

(3). Local Knowledge Sharing: Within each traffic region,
a consortium based DAG architecture is adopted. RSUs act as
blockchain nodes to cache and synchronize local DAG ledger.
At the same time, the RSUs can aggregate DL models that
are cached in the DAG ledger, and act as the ADL servers
to update the knowledge to obtain a comprehensive model.
ICVs can check the aggregated model that is stored at their
surrounding RSUs, and exploit it to make decisions.

(4). Cross-Region Knowledge Sharing: For an ICV driving
across the regions, the RSUs will decide whether to deliver
the cross-region knowledge to the vehicle for cross-regional
sharing. The impact scope of the knowledge will be used
for the delivery decision. The idea is that the knowledge
with a small impact range does not need to be transmitted
to nearby regions. It is noted that the RSUs will transmit to
cross-regional ICVs not the total ledger, but the cross-region
knowledge that is encapsulated as sites.

There are two characteristics of the proposed framework:
(a) for local sharing, the RSUs have two identities at the same
time: the DAG ledger maintainers and the ADL servers. The
RSUs can load the knowledge cached in the ledger, and imple-
ment corresponding updating schemes according to different
applications, which strengthen the cooperation between the
independent, distributed knowledge in DAG ledger. Compared
with conventional ADL updating schemes, the comprehensive
knowledge obtained by RSU is updated with the tamper-proof
distributed knowledge that is cached in the ledger, which
is essentially reliable and traceable. This can prevent the
single point of failure and malicious ADL servers, since other
RSUs or ICVs can check the tamper-proof ledger to verify
the comprehensive knowledge. (b) for cross-region sharing,
existing blockchain based systems utilize global consensus
mechanism to realize cross-region sharing that will introduce
heavy communication cost. The proposed framework enables
cross-regional ICVs to carry the knowledge, and issue the
knowledge as a new site in other regions. Since there is
no block packing and mining process in the DAG based
framework, the new site with cross-region knowledge can be
directly appended to the ledgers of other regions that realizes
fast sharing of cross-region knowledge.

IV. LIGHTWEIGHT DAG FOR KNOWLEDGE SHARING

While DAG  blockchain  shows  potentials  for
micro-transaction based ICV networks, it is not directly
applicable to the efficiency-demanding ICV networks.
Recalling the Knowledge Verifying step in Section. III, the
issuing ICV will verify two existing tips on the DAG ledger
by its own testset. The “random verification” manner used in
the traditional DAG blockchain will degrade the verification
rate of new sites and hinder the issue of new site, thus
degrading the efficiency of knowledge sharing. Besides,
traditional DAG utilizes MCMC algorithm as TSA, in which
the vehicles is required to trace and verify multiple previous
W sites that will increase operation latency.

To address the challenges above, we are motivated to
develop a lightweight DAG system for ICVs. Specifically,
we design a lightweight tip selection algorithm to enhance the
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knowledge sharing efficiency, and a lightweight identity veri-
fication scheme to facilitate cross-regional knowledge sharing.

A. Lightweight Tip Selection Algorithm

In order to realize the lightweight of DAG, we define
a parameter that is related to ICVs, namely driving style
indicator, which is denoted as m. The driving style can
characterize the features of ICVs during their driving period,
and it can be the single property such as velocity, controlling
parameters and routes, etc., as well as the combination of
several control-related factors, such as m = f(a, b, ¢), where
a, b, ¢ are the vehicular throttle, steering and braking, and f ()
is the function of the parameters above. Since the models are
trained with datasets that are collected by ICVs during their
driving periods, the trained model is also related to the driving
style of ICVs. Based on the observation, the conventional TSA
of DAG can be accelerated by utilizing m.

Reversed Tow Hop TSA (RTH-TSA): The proposed
RTH-TSA is illustrated in Fig. 2. Specifically, the tip selection
probability of traditional DAG depends on a biased random
walk that can be expressed as Py = ZQXSX{;{K(KC(VCV;VXC‘Z‘M)%)},
where CW is the cumulative weight of the tips. However,
in the knowledge sharing of vehicular context, the selection
and verification of tips are related with model accuracy,
as indicated in Eq. (2). It is inaccurate to verify tips by only
referring to cumulative weight. Consequently, we combine the
driving style m of ICVs into the selection probability, which
can be expressed as

exp{=a(CWy + CWy1) = B(my —my)?}
MY crexpl—a(CWs + CWy)—Blme —m)?)

where T represents the set of current tips of the DAG ledger
and a, f are both positive weight parameters. C W, ! and CW; 1
are cumulative weights of two sites that are approved by tip y 1

my and m, are the corresponding driving style of tip x and y.
Besides, we reverse the tracing order of site to develop fast
tip selection. As indicated by C Wsll and C ng in (3), when a
new site chooses tips to append, it does not have to trace from
particle deep like traditional MCMC algorithm. Conversely,
it directly chooses two existing tips from its side to connect.

3)
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The proposed RTH-TSA achieves lightweight of DAG from
two aspects: 1). fast selection speed; 2). high confirmation
rate. For the first feature, traditional DAG utilizes MCMC
based algorithm to select tips, in which the verifier (i.e. the
ICVs in our article) is required to trace and verify previous
W particle deep. While the proposed RTH-TSA only needs to
trace a two-site deep, i.e.y1 and s in Fig. 2, which will greatly
reduce the selection speed of tip selection.

For the second feature, the confirmation rate is accelerated
with the help of driving style-classified ledger (DC-Ledger).
Since the tip selection algorithm defines how a new site
connects to the DAG ledger, i.e., how the site is verified by
others. The TSA will determine the ledger structure and how
the sites are appended on the DAG. In this case, the proposed
RTH-TSA enforces the new sites to verify and append behind
those tips with similar driving styles. The total DAG ledger
will eventually evolve to multiple sub-ledger,each of which
records the sites with similar driving styles. In the DAG
system, a site is deemed as confirm when its cumulative weight
reaches a certain threshold. At a certain moment, the driving
style of ICVs within a single traffic region are often similar.
For example, there are few fast vehicles on a congested street,
and most vehicles have similar driving speeds. Accordingly,
the sites published by these ICVs will also be appended
to the same sub-ledger based on the DC-Ledger. Therefore,
compared with other sub-ledgers, the sites in this sub-ledger
will also be chosen and verified by a large number of new sites,
and the corresponding cumulative weight will grow rapidly,
thus realizing quick confirmation.

B. Fast Identity Authentication Scheme

In the proposed framework, we utilize moving ICVs to
exchange the knowledge among different traffic regions, rather
than using global consensus. To ensure trust and reliability
of the shared knowledge, cross-regional knowledge needs to
be carried by authenticated ICVs. Therefore, it is crucial
to design an identity verification scheme for those cross-
regional ICVs. Existing schemes utilize identity tokens for the
verification process [17], which will introduce extra storage
consumption and communication cost for knowledge sharing.
Therefore, we design an efficient identity verification scheme
for cross-regional ICVs that does not use identity tokens.

Specifically, we design two special sites during the authen-
tication process: one is cross-regional site S¢, and the other
is IdentityStone S;s. As illustrated in Fig. 3, considering a
cross-regional scenario that ICV y leaves region A to B.
If RSUs of A decide to share the knowledge with B, they send
to y the cross-regional site S¢. Meanwhile, RSUs of region B
will issue a IdentityStone S;s, which is signed with its private
key Sig,. The formats of the two special sites are expressed as

:{H9(D5m’WZ09Sigr} (4)

SiS :{H»m»WZO,Sigr} (5)

The reason for setting w = 0 is to avoid affecting the current
weight of the DAG ledger, which is inspired by the Project

Tangle [6]. When a vehicle y issues the first site in the new
region B, it must approve the two specific sites S;; and S;.
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After that, y is deemed to have completed identity verification.
Noting that the cumulative weight of both sites is 0, the newly
coming sites of other ICVs in region B will first verify the
site of the cross-regional vehicle y according to Eq. (3), which
completes the fast authentication of vehicle y.

C. Feasibility and Security Analysis

To ensure the feasibility and effectiveness of the proposed
DAG system, it must remain convergent and fast consensus.
In this subsection, the feasibility of the proposed lightweight
DAG will be analyzed.

1) The Ledger Convergence: The ledger convergence indi-
cates that the total number of tips of the DC ledger cannot
escape to infinity. Assume that the ICVs issue new sites
independently with the distribution I,. Let us denote 7, as
the number of tips in the proposed DAG at the n-th approval
round. In this case, the total number of tips in the network
can be expressed as T, = T,—1 + I, — A,, where A, is the
number of approved tips by /,,. Assume that the range of m is
divided into K discrete intervals Ml = {M, ..., My, ... Mg},
and the mobility distribution of vehicles is m(r) with respect
to time . For one specific sub-ledger k that locates on the
mobility interval My € M, the expectation of 7,7 is

E[TM] = E[TM ]+ E[1M] — E[AM4]. (6)

In order to obtain the value of E [TnM" ], the distribution
of IM and AM* should be specified. The incoming tips can
follow the poisson, uniform and gamma distributions, etc.
Here we only select one ordinary poisson distribution with a
incoming rate A and prove the convergence. More distribution
examples will be investigated in the snnulatlon part. Hence, the
Eq. (5) can be expressed as E[TnM 1= E[T ]—i—/th{m(t) €
My} —E [A,I:/I k], where h is the average time of each approval.

For an arbitrary incoming site x, the probability Pg{k (s) that
site x) approves the tip y with mobility k at time s is shown
in Eq. (3). For simplicity, the cumulative weight CW can be

omitted since various sites have similar weights from a long-
exp(=pIM—m(s)I*)
Xy et expi=BLMi—m(s)1}

term perspective. Hence, PVt (s) ~

According to Theorem 5.2 in [18], tip approval occurs at a
certain time uniformly distributed in (0, #). Therefore, the
probability that one site will approve those tips with driving
style indicator M} is computed by

1 h
PMe — E/o PMk(s)ds, 7

and is independent of the other tip approval events. Hence,
the conditional probability is a multinomial distribution with
parameters PM1 pM>  PMx and the joint probability can
be expressed as

P(AY (h)

=n1, AM(h) =ny..., AMK(h) = ng)

_ (Zk L)Y My pMan My yni y—2h (Jh) 2"

T onin!. . ong! (P YHETEYE - (P an)!

= ﬁff“”mk Lpﬂ?)nk. ®)
k=1 M-

From the above analysis, it can be obtained that the variable
A% (h) follows a Poisson distribution with parameter Ah PMk
Therefore, the expectation of 7, can be obtained

Z E[TM] =

K
[Th1]+ D (E[LM]

k=1

E[T,]

_/1/ exp{—pIMy — m(1)]*} dr)
> imem expi—pIM; — m(1)1%)
= E[Ty—1]+ 2h - 1—,1/ ldt = E[T,—1]. (9)

Consequently, during each approval round, the total number
of tips of all sub-ledgers is the same as that of the previous
round. Although the number of tips of each sub-ledger in each
round may be different, the total number of their tips remains
constant, which proves the convergence of the ledger.

2) Confirmation Delay: The confirmation delay is defined
as the time it takes for the CW of one sites to reach a certain
threshold. In this subsection, we will analyze the confirmation
delay of sites within one specific sub-ledger of DC-ledger.

Let s, denote the target site that is located in DC sub-ledger
with driving style My, and Wy (t) be the CW of s;, at time ¢.
Assume that the number of tips remains constant within the
time interval (¢, f + ) when the ¢ is small enough. The prob-
ability of one newly site approving at least one of the target
sites can be calculated by Ps =1 —[1 — 3 T pMy (s)ds1>.

Similar to the Birth and Death Process in [6] the increment

140 oM
of CW at time ¢ can be expressed as W[ (1) = AM .

140
2— W] 24 PMi (1) — A[PM (1)]2, where PMi (1)

depicted in the last subsection can be further simplified as
PMi(r) = AT — Mzk)[M,+Mk =7 Let fz BMy — M) *
(M; + My — 2m,) then the growth speed of CW yields

22 A
Iy 1 I -
PICANED YD YRS

W) = (10)
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Therefore, given the confirmation threshold Wy, the confirma-
tion delay can be calculated by

Wo

== 11
fst=() W'(s)ds. (b

T,

It can be deduced that the cumulative weight is related to
driving interval M; and instantaneous driving style m,. Based
on Eq. (10), the confirmation delay of target site s;, is proved
to yield the following corollary.

Corollary 1: Given the driving style m; of new site, the
target site syq with My has the fastest confirmation delay if
m; € M.

proof: To prove the corollary, we first evaluate the
monotonicity of the growth speed of CW in Eq. (9). By cal-
culating the second derivation, it yields

W (1) =24 — 24PMk(1) > 0, (12)

where the above inequality holds due to the PMi(r) < 1.
Hence, the growth speed of CW is monotonically increasing
with PMk (t). Let Wy denote the confirmation threshold, then
the final confirmation delay can be expressed as WL(‘;) Given
a deterministic time period (0, ) and driving style input m;,
the confirmation delay is only related to the driving style of
target site s;,, i.e. M, as indicated in Eq. (10). in this case,

we only need to prove PM () reaches the maximal value when
!
My = my. Equivalently, it is only to prove that the ZIO eh’

I
reaches its minimal value with M; = m;,. Let R = Zlo efto,
by calculating the first order derivation of R, it follows

R =" BUM, + My —2m0) + (My, — Mp)le””

lo

= > 2p(M; — m)el.

lo

13)

Consequently, R reaches the minimal value when R’ = 0,
i.e., M = my. |

Following Corollary 1, the CW increasing speed of target
site within different driving style intervals My is related to the
distribution of new site driving style m;. Given the distribution
of m; in a certain time interval (0, t), it can be inferred that the
closer the interval M is to m;, the faster the CW increment
will be. Within the same time period, the driving styles of ICVs
within the same traffic region are often similar to each other’s.
In this case, the new sites issued by these ICVs will firstly
append to the relative concentrated intervals M} in DC-ledger
according to the RTH-TSA, then being quickly verified by
subsequent sites. Moreover, based on the Corollary 1, it can
be proved that the proposed lightweight DAG has a faster CW
increment rate compared to conventional DAG, that is,

Corollary 2: Compared with conventional DAG, the pro-
posed lightweight has a faster site confirmation rate.

Proof: According to the definition of confirmation delay
in Eq. (10), the final delay is related to the growth speed
of CW, i.e., W/(t). From the monotonicity proof in (11),
W/’ (t) is monotonically increasing with PM#(z). In the conven-
tional DAG that leverages random walk based TSA, each tip
has approximately equal probability being selected, therefore,
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given the total number of driving style intervals as M| =
K, the tips being selected by upcoming new sites can be
expressed as PC[ZI,k, ) = % In the proposed lightweight RTH-
TSA, the probability equals PMk(r) = Kl T Based on the

e’t
Corollary 1, the confirmation delay of ta%éoet site sy, will reach
the minimal point when My = m,. Hence, the probability

yields
1 1
PMk ([) = < m = 7 Ty 5
Zlo eli Z:IOZ1 ¢ o
1 1
- Zlﬁ:l 1 K c()n( ) ( )
Hence, the CW increment rate of target site is higher than
that of conventional DAG, which proves the corollary. |

3) Security Analysis: As the proposed lightweight DAG
shows great time-efficiency than conventional DAG, it is
essential to discuss the security performance.

Malicious Attackers:The attacks can be categorized into two
types: intra-region attack and inter-region attack. For intra-
region attack, attackers tend to issue malicious site to sur-
rounding ICVs. While the verifying process in Eq. (2) makes
sure the correctness of the site. After the site verification, new
sites will choose not to append behind the malicious site, and
the malicious site eventually becomes an orphan. For inter-
region attack, attackers modify the cross-region knowledge of
step. (4) in Section. III, trying to launch an “immediate” attack
by its new identity in the new region. While the attack can be
eliminated by the fast identity authentication scheme. Since
the weight of both S¢ and S;s are equal to 0, according to the
RTH-TSA, other ICVs will firstly verify the cross-region site,
and quickly discover the modified site.

Lazy Workers: The lazy workers refer to those ICVs directly
append their sites behind those “old” sites rather than tips,
which reduces the throughput of DAG network. According to
Eq. (3), if the lazy sites are appended to the existing old sites,
the probability of the lazy sites being appended will be largely
reduced and they will eventually become the “orphan” sites.

Confirmation Issues: Although we have proved that the
target site s;, with My = m; has a faster confirmation rate
than conventional DAG, those sites with deviated driving styles
shows weakness in confirmation delay. While in vehicular
networks, the driving style of most ICVs on the same traffic
region at the same time period is similar. This condition
ensures that most of the issued sites will be quickly confirmed.
For those very few “deviated” sites, we can utilize RSUs to
periodically issue confirmation sites, similar to S¢ and S;s in
Eq. (4), to assist sites to be quickly confirmed.

V. ADAPTIVE ASYNCHRONOUS DISTRIBUTED LEARNING

Although the proposed lightweight DAG provides light-
weight and security for ICV network, there could still be
accuracy and communication related issues: (a). As DL mod-
els cached in the DAG ledger are trained independently by
individual ICVs, they could be far away from the optimal
one obtained by joint training; (b). For large-scale vehicular
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networks, ICVs continuously broadcasting local models sig-
nificantly increase the communication load.

To tackle the above issues, we exploit an adaptive ADL
to enhance the knowledge sharing system, aiming to enhance
model accuracy and reduce bandwidth consumption.

A. Adaptive Asynchronous Distributed Learning Scheme

Considering the disparity of ICV training ability, one core
idea of the proposed adaptive ADL is that there is no need
to enforce all ICVs to upload their local models. Some local
models with lower learning performance may even degrade
accuracy of final model. Following this viewpoint, the specific
workflow of the adaptive ADL scheme is described as follows.

1) Initialization: The RSUs cache a global model (GM) in
advance with model version Vs = 1, and the initial GM
can be obtained by offline learning methods. Each RSU
caches an identical and periodically updated test dataset.

2) GM Broadcasting: The RSUs periodically broadcast
the reference gap eg of current GM that is evaluated
by RSUs’ test dataset as Eq. (2), current version Vg,
together with its signature Sig, to surrounding ICVs.

3) Judging the Reliability of GM: Upon receiving informa-
tion from RSUs, ICVs check the received versions and
signatures of GM, which can prevent the single point
failure of RSUs. The ICVs will choose the version sent
by most RSUs as the credible GM version.

4) Adaptive Site Issuing: After verify the reliability of the
GM, the ICV will compare the test gap e, of its own
local model with reference gap eg. If e, < eg, the
ICV believes that its local model outperform the current
GM, and it will encapsulate its model and driving styles
indicator m into new site S, as indicated in Section III.
(1). Else, the ICV will not issue a new site and will
download the current GM from RSUs as its model.

5) Asynchronous Updating GM: By receiving a new model
from ICV, the RSUs will first utilize testset to evaluate
the received model. If the test gap e, < € (e, is the test
gap of the received local model tested by RSUs), the
model is deemed as valid and can be appended to the
DAG ledger. Then, the RSUs update the current version
V = V + 1, and update the GM by a driving style
based asynchronous updating algorithm, which will be
discussed in the next subsection. Else, the RSUs will
send a fail signal to ICV, and back to step (2).

With the adaptive scheme, those local models with low
accuracy will not be appended on the DAG ledger, which will
enhance the quality of global model GM. Furthermore, with
less uploaded models the communication loads between ICVs
and RSUs can be significantly reduced.

B. Driving Style Based Asynchronous Updating Algorithm

In this subsection,the updating algorithm in Step (5) will
be presented. Driving style is the reflection of interaction
between ICVs and external environment, which contains the
knowledge of context and driving feature. For example, on the
same road segment, ICVs with different driving velocities will
have diverse safe braking distance. Hence, it is inappropriate

Algorithm 1 Driving Style Based Asynchronous Updating
Algorithm

Initialization: N ICVs with driving style indicators {mq, ..
Global Training Time T

forn=1:N

Local Model Training:

0L — @

B;, < Local training batch of vehicle n

for each local epoch in L

for batch b € By,

training model 0,1, <« 0,1, -y Vv F! ((9,11|b)

return Local model 0,1,, Local Completion time #;
Model Aggregation:

ft, < ell%

atn = e_mln

O (1) = (1 = ay, f,)OG) + ag, f1,0]

Output Global model GM @ (T)

., mpy},

to aggregate local models regardless of their driving styles.
Therefore, we propose a driving style based asynchronous
updating scheme, which combines both driving styles of ICVs
and the freshness of local models.

Considering a DL process that N ICVs succeed in issuing
sites within 7 time, each ICV utilizes stochastic gradient
descent (SGD) algorithm to implement local training 6 (r) =
0l(t — 1) — y VF(r), where 6! represents local model and F'
is the local optimization function. Then, the global model GM
@ at time ¢ can be expressed as

() = (1 —ar f)O7) + ar fi6]

where ¢~ is defines as the time index of last asynchronous
updating, and f; is the function of computing the freshness
of local models that is utilized to describe the decay of old
weights over time. The freshness is computed as

ff = e% - 5
and a; in Eq.(14) represents the driving-related weight, which
is defined as

5)

(16)

A7)

OC;ZI—II”;’T;

where term m; is the relative driving style indicator of ICV
at time ¢, that is described as m; = |m, — M,|, and M, is the
average driving style indicator.

The proposed updating algorithm is concluded by
Algorithm 1. The computational complexity is mainly deter-
mined by the process from Line 2 to Line 13. According
to [19], the time complexity of sampling and updating from
Line 7 to Line 9 is O(log Niyee), Where Nype is the number of
nodes in the sum-tree used to compute the priority probability.
As the time complexity of model aggregation scheme in
Line 11 to Line 13 is O(1), the total time complexity is
O(NlogNiree). It can be found that the proposed updating
algorithm differs from the traditional DL process. The global
model is updated with an adjustable weight o, f;, which is
related to the freshness of local model and driving style
indicator of ICVs.

C. Analysis of Optimal Model Weight and ICV Driving Style

Since we adopt a driving style based updating algorithm,
it is essential to discuss the impact of the weight on training
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accuracy. The convergence bound of DL is utilized that
characterizes the gap between the optimal performance and
actual training performance [20], [21]. The specific proof of
convergence of the updating algorithm is similar with the work
of [21]. For the sake of limited space, we will directly give
the convergence bound.

Convergence Bound: Under two assumptions: for all v and
w: L-smooth: f{v)—f(v) < (v — w)v f(w)—i—L v — w3,
u-strong convex: f(v)—f(v) > (v — w)l'v f(w)—i—” v — wl2,
the proposed ADL within 7 global epoch converges to a
critical point:

T 1
P= mlnE FO)P? <O ——
Il v F@)ll ( Ty el Homn
+ max+aKHmaX+ sz max+yK2 max (18)
€Hpyin ’

where @ is the expectation of driving style indicator based
weight within period (0, T), i.e. & = NLTZ?’:TI ay, where
Nr is the total number of ICVs in T time. y is the learning
rate, € > 0 is a small constant. H,,;, and H,,;, are the local
minimum and maximum iteration rounds, respectively. K is
the maximal interval between two updating of ICV models,
ie.t—t" <K.

Now we can utilize P to determine the optimal weight

. We appr0x1mately simplify the convergence bound as

~ 1 yHmaX+aKHmay+a yK Hma,(+yK Hmax _
P ay €T Hyin + € Hiin TherE
fore, the bound can be expressed as a function of weight a.

Letting x denote @, the bound can be transformed as

1
—+Bx+Cx + D

Px) = (19)

— ; — K_& VszHmax _

where A = y €T Hpin > B = €’ ¢ = € ’ D =
H 'K 2 Hynax

M 0= Z’”‘” By obtaining the first derivation

of P(x) it yields P’(x) = _A_x2 +2CX + B. Since A > 0,

by letting P’(x) = 0, we can obtain a cubic equation

2ACx® + ABx> — 1 =0. (20)

Hence, the extreme values of function P can be obtained
by solving Eq. (20). In order to solve the cubic equation and
obtain a feasible solution, Cardano’s formula [22] is utilized
and Corollary 1 is proposed.

Corollary 3: The convergence bound P reaches its minimal
value at point

e Il 21
* T\ 22k2 @
1
= WITKEZSHD,

min

Proof: For an arbitrary cubic equation aX> +bX? 4+ cX =
d = 0, we define three auxiliary variables

if y3

Ao = b> —3ac; By =bc—9ad; Co=c*—3bd. (22)

By substituting the equation above into Eq.(20), a discrim-
inants can be obtained that
7263
4I'Imin

27T Hp

—4A0Co=12A%(

A=B] ) (23)

€? ye€
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According to [22], there are one real root and two equal
real roots if A = 0. By letting A = 0, it can be obtained that

y3 = m, and an auxiliary parameter is defined as
min
B 1sac _ Y70t 2,272
o — — €
K = i = WE = -5 = 18y“e“H,. T. Then, the

}"3Hmm
three real roots of Eq.(19) can be represented as

AB Ko 1
Xj=K- " =€ K- ——

AC 2y K*6Hpax 2)) T Hpax

€
27 2 2 2 9 22 2 3, GZT
=K—-—ey“H, T= 2y eH,. T= 252K2
-K

Xo=X3=—== —9y2?H?2, T. (24)

Obviously Xo = X3 < 0, since o is the expectation
value of a; > 0, thus @ = X|. By substituting X into the
second derivation of P(x), and P”(X) > 0. Consequently,
the convergence bound P reach its minimal point at X;. WM

Based on Corollary 3, we have two remarks with respect to
model weight @ and driving style indicator m.

Remark 1: Compare with precious GM, the new uploaded
local model should have a higher weight. Corollary 3 gives the
optimal weight @* that is associate with learning time 7. With
the increase of T, the value of o™ will also increase, hence,
considering a long-term training process, the weight of new
updated model @ is greater than the previous model (1 — ).

Remark 2: On the basis of reducing communication cost as
well as not affecting the accuracy of final model, those ICVs
with indicator m; far away from the average M should choose
not to upload their local model. As indicated in Remark I, the
optimal a* will increase with learning tlme T. Since o can
be expressed as a = NLT ﬁV:TI o = Nl = 1(l — |m; — V,D,
we can decrease the number of those ICVs with m, that are
far away from the average M;, so that the value of @ will not
decrease. The remark can be explained by the fact that the local
models trained by those ICVs with a deviated driving style
cannot reflect the accurate global context, and we can reduce
the use of models from those ICVs to reduce the uploading
communications while maintaining the global training quality.

VI. SIMULATION RESULTS

In this section, we evaluate the proposed DAG based
knowledge sharing framework and adaptive ADL scheme by
simulation experiments.

A. Simulation Setup

To investigate the proposed knowledge sharing framework,
it is essential to firstly specify the driving style indicator m
of ICVs. In this article, we will base our investigation on the
open source autonomous driving environment, Airsim, which
was developed by Microsoft AI & Research team [23]. In the
Airsim environment, driving style is characterized with three
parameters: vehicular throttle @, wheel steering b and braking
c. According to the Airsim project, we formulate m as m =
Lﬁ;Lbz , the driving style indicator can reflect the following
facts: whether throttle @ = 0 or braking ¢ = 1, the ICVs will
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Fig. 4. Testing Environment.

remain stationary, and either a large a or a sharply steering of b
will give a large value of driving style indicator m. It should
be noted that the definition of driving style indicator is not
unique, and we only adopt the equation above to demonstrate
the effectiveness of the proposed schemes.

We evaluate the lightweight DAG system in Matlab, wherein
new sites are generated following three distributions: uniform
distribution (Uni) within (400, 500), poisson distribution (Poi)
with 4 = 700 and gamma distribution (Gam) with a =
200, p = 1. The new site selects two tips according to Eq.
(4). We further control ICVs by Logitech G29 Driving Force
Steering Wheel and Pedal to simulate real driving style of
ICVs. Three types of driving styles are adopted: m-type
for ICVs has throttle a = 0.5, steering b € [—0.3,0.3],
braking ¢ = 0, and the corresponding driving style indicator
m1 € [0.25,0.3]; ma-type hasa = 0.6, b € [-0.2,0.2], c = 0,
and my € [0.3, 0.35]; m3-type has a = 0.7, b € [-0.4,0.4],
¢ =0, and m3 € [0.35, 0.45].

Then the ADL is investigated with an autonomous driving
scenario based on Airsim. We adopt the city scenario of
Airsim, in which 35 vehicles are utilized for evaluation of
ADL. The vehicles are controlled by Logitech G29 to drive
around the city and collect their surrounding images to build
a dataset. The convolutional neural network (CNN) model is
adopted as our local model. The driving style indicator m
and the collected images are chosen as the input of the CNN
model, and the output is the steering value of vehicles. Three
existing algorithms are chosen as the comparison groups: the
standard federated learning (FedAve) [24] that aggregates
the local models from all vehicles synchronously and ignores
the driving style, an autonomous driving algorithm (cook-AD)
proposed by Project Road Runner at Microsoft Garage [25]
that only exploit the local view of vehicles without referring
to other vehicles, and the centralized CNN that trains on
the whole centralized dataset. The simulation environment
is illustrated in Fig. 4 and the main parameters used in the
simulations are summarized in Table 1.

B. Numerical Results and Discussion

The proposed lightweight DAG system is evaluated first
in terms of five following aspects: features of ledger, chosen
delay, authentication delay and confirmation delay. As shown
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Fig. 5. Performance of the Lightweight DAG.
TABLE I
SIMULATION PARAMETERS
Parameters Value
Number of Vehicles 35
Dataset size of distributed learning 3000

Driving Style Indicator m m € [0.25,0.3], my € [0.3,0.35],
m3 € [0.35,0.45]

[0, 1]

Driving Throttle, Braking a, ¢
Driving Steering b [-1, 1]
Local model & GM network models CNN
Own weight of each site w 1
Uniform (Uni) in (400, 500)
Poisson distribution (Poi) with =700
Gamma distribution (Gam) with & =200,8 =1

Sites Generation Distribution

in Fig. 5 (a), y-coordinate of the point in the figure represents
the value of the driving style indicator m. The driving style
indicator value of the bottom point is close to 0, and the
indicator value of the top point is close to 1. We set the
value of the driving style indicators of genesis sites (i.e.
points in the leftmost column) in a descending order, then
we input incoming sites with different value of m in each
transaction round, which choose tips according to Eq. (3).
With transaction rounds, the total DAG ledger is logically
divided into multiple sub-ledgers, which verifies the design
of DC-ledger, as indicated in Section. IV. A. Then, the
convergence results of the proposed DC-Ledger are shown
in Fig. 5 (b). Three tip-arrival distributions are considered,
as indicated in Section. VI. A. Two initial number of sites are
set, i.e. high genesis sites=1000 and low genesis sites=10.
It can be found that no matter what the genesis number is,
the final tip number will become stable, which shows the
convergence of DAG.

Then, both chosen delay and authentication delay are
investigated in Fig. 5 (c) and (d). The chosen delay is
defined as the time it takes for new sites to choose tips.
The authentication delay is defined as the time consumption
for a new cross-region site to be fully trusted by the new
region. It can be figured that the proposed RTH-RST achieves
fast chosen delay towards standard DAG. Since the proposed
algorithm only needs to verify two old sites, rather than



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

w
=]
S

n
a
S

@

£

200 v

2 M
—m2-type

§10 —-mi-type

T Standard DAG

E 100 - - Standard PoW

”CE> ~+PoD

O 50 = PoS
——

0
2 4 6 8 10

Transaction Rate (\)

Fig. 6. Confirmation Delay of Sites.

—e— Adaptive ADL with e=0.0156

Adaptive ADL with 5=0.0160
—o— Adaptive ADL with e=0.0168
000081 —+— Non-Adaptive ADL

0.0006 7\\’\0’/‘%

0.0004 -

0.0002 ‘\T\“\—'—k

Round(+100)

0.0012

0.0010 f,

Loss Value

Fig. 7. Loss Value of Final GM.

tracing back particle deep W, thus it realizes time-efficient.
Moreover, the proposed lightweight DAG also support fast
authentication of cross-region sites. It can be explained by
the proposed authentication scheme utilizes the identityStone
with cumulative weight w = 0, as indicated in Section. IV. B.
Sites in new region will firstly choose the cross-region site
according to Eq. (3), thus completing fast authentication.

In fig. 6, the confirmation delay is elaborated investigated.
We adopt four existing blockchains with different consensus
algorithms as the comparison groups: Standard DAG with
MCMC algorithm, Standard PoW, Proof-of-Driving (PoD)
with a simplified PoW difficulty [26] and Proof-of-Storage
(PoS) [27] that is essentially a Delegated Proof-of-Stake
algorithm [28]. The driving style indicators of incoming sites
are set as the uniform distribution between (0.3, 0.35). It can
be figured that the chain-based systems (Standard PoW, PoD
and PoS) have high confirmation delay than the DAG systems.
This is due to that the chain-based system is required to collect
enough transactions to issue one block, while the DAG system
supports node to directly issue the site, thus reducing the
confirmation delay. Moreover, with the transaction rate, the
DAG systems obtain ever increasing advantages on confir-
mation delay towards chain-based systems, which proves the
superiority of DAG in micro-transaction scenario. More impor-
tantly, compared with standard DAG, the proposed lightweight
DAG with m2-type shows even shorter delay, which verifies
Corollary 2 in Section IV. Although sites with m1-type have
longer delay than standard DAG, we can leverage RSUs to
periodical issue auxiliary site to shorten confirmation delay,
similar to the design of IdentityStone.

Next, the proposed ADL is evaluated in terms of loss func-
tion, test gap and bandwidth consumption. We choose three
different reference gaps eg = 0.0156,0.0160 and 0.0168.
As can be seen in Fig. 7, all the three adaptive ADL schemes
outperform the non-adaptive ADL ones. This is due to that the
reference gap eg filters some ICVs with poor local models.
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Only those ICVs with a local test gap e, > eg are allowed
to upload their local models to the RSUs, which will improve
the quality of global model. Besides, with the decrease of f
eg, the global loss value will be further reduced: a lower eg
means that the RSUs have a better GM. Thus, in order to
upload local models, the ICVs should also train a better CNN
model, which will promote the entire network to evolve in a
better direction. It is also noted that when the reference gap eg
is updated to a sufficiently small value, there may be no more
ICVs to upload their local models. In this case, the global
model can be deemed as converged and optimal.

Test gap is defined as the gap between real output and model
output calculated by test dataset. As shown in Fig.8, compared
to non-adaptive scheme that enforces all ICVs to upload their
models, the adaptive based schemes have a smaller gap. As the
output of our CNN model is the steering value of ICVs, which
is one of the crucial parameters for driving control, by utilizing
the adaptive based ADL, the RSUs can obtain a more accurate
global model to implement autonomous driving.

The results of communication cost measured by the band-
width consumption are presented in Fig. 9, where the band-
width consumption refers to the volume of uploading models.
The CNN model is 120.9 MB with two convolution layers,
two pooling layers, one linear layer, one flatten layer and
three ramp layer. Since the adaptive ADL scheme utilizes the
reference gap eg to control the number of updated models,
the consumed bandwidth will be reduced. As shown in Fig. 9,
the adaptive ADL with eg=0.0156 can achieve a more than
30 % reduction towards the non-adaptive scheme. By reducing
the communication cost, the final leaning quality of the GM
does not degrade, which proves that the proposed scheme is
suitable for the large-scale ICV networks.

Then, we investigate the impact of freshness on the model
learning loss. The results are presented in Fig. 10 (a). The per-
formance of the CNN model trained in a centralized approach
is adopted here as the optimal training result. It can be seen
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that the proposed ADL has a loss very close to the optimal
one, while that of FedAve is much deviated. According to the
definition of freshness in Eq. (15), the weight of subsequent
models is higher than the earlier ones. Therefore, from the
perspective of global model training process, increasing the
weight of new local model will enhance the final training
accuracy, which is consistent with Remark 1.

The results on the impact of driving style indicator on the
model quality are shown in Fig. 10 (b). The specific numbers
of the ICVs with these three types are set as Ny, = Ny, = 10,
Np; = 15, and the m3-type vehicles can be regarded as those
ICVs with indicators far away from the average M. The loss
values of both 12 ICVs with m3-type and 7 ICVs with m3-type
are very close to that of full participants scenario. By reduce
the number of those “deviated” ICVs, we can reduce the
communication cost of model updating,meanwhile ensuring
the learning quality of global model, which verifies the claim
in Remark 2. Moreover, if we keep decrease the number of
ICVs to the 0 m3-type scenario in the figure, the learning loss
will increase. This can be explained that although the deviated
ICVs have little impact on the global model, their models do
contain some information that other ICVs don’t have. In order
to obtain an accurate model, the final comprehensive model
should aggregate some models from those deviated ICVs.

The violation rate results are presented in Fig. 10 (c). Here
the violation rate is defined as the percentage of bad behav-
iours of new vehicles autonomous driving with the trained
CNN models in Airsim, such as retrograde motion or driving
to pedestrian lanes. With the iteration process, the proposed
ADL algorithm achieves a 20% reduction in violation rate
over the cook-AD and FedAve algorithms, which demonstrates
the effectiveness of the proposed algorithm. It can also be
found that both the proposed ADL and the FedAve algorithms
converge faster than the cook-AD. It can be explained by that

Iteration Rounds (x100)

(b) Impact of Driving Style Indicator
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(c) Driving Violation Rate of different Sharing
Schemes

utilizing the updating schemes, the DL-based algorithms can
collect local models from multiple ICVs. The DL algorithm
accelerates the cognition of global context. Although the
cook-AD algorithm utilizes a preprocessing method of flipping
images that enlarges the training set, it will increase the
complexity of training data and reduce the convergent speed.

At last, the security of the proposed knowledge sharing
framework is investigated in Fig. 11. Two scenarios with dif-
ferent proportions of attackers are considered with 0.2 and 0.4
attackers, respectively. The attackers share malicious models
with biased driving style indicators, attempting to affect the
final learned model. It can be found from the figure that the
proposed framework achieves a lower loss value than that
of the original knowledge sharing system. The proposed one
reduces the loss function value by an average of 30%, which
is mainly due to the use of DAG blockchain. The proposed
knowledge framework utilizes the verification process e < €
to judge if the knowledge is legal, which can prevent the
malicious data of attackers from being appended to the ledger.

VII. CONCLUSION

In this paper, we propose a knowledge sharing framework
to provide security and efficiency under dynamic and mobile
ICV networks. In order to enhance sharing efficiency, ADL
is adopt to transfer raw data sharing to knowledge sharing.
A lightweight DAG is designed to ensure the security of shared
knowledge and to tackle the time-efficient issues in traditional
DAG systems. A RTH-TSA is proposed for tip selection in
DAG to achieve lightweight consensus and fast cross-region
identity authentication. Furthermore, we propose an adaptive
ADL scheme to enhance quality of shared knowledge as well
as reducing communication cost during the learning process.
Experiment results demonstrate the efficiency and stability of
the proposed knowledge sharing framework. The proposed
framework reduces a 30% loss value against malicious attacks.
In addition, the proposed adaptive ADL algorithm is effective
and efficient, with more than 20% reduction in terms of driving
violation rate compared with existing algorithms.
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