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Abstract— The future sixth-generation (6G) network is 
expected to support both sensing and communications. Since the 
sensing performance will highly rely on the residual battery of 
smart devices, energy efficiency is one of the main concerns in the 
design of 6G. Motivated by these facts, we design an energy 
efficient data transmission rate allocation approach for 6G 
networks. To have a more realistic deployment, we assume that 
perfect channel state information is not available. Imperfect 
channel state information (CSI) might waste energy sources or 
degrade quality of service (QoS). Thus, we apply the maximum 
likelihood estimation (MLE) method to estimate the true channel 
characteristics for a given set of observations. The proposed 
approach is robust against unknown channel statistics and allows 
adapting UEs transmission rate to the channel quality which 
reduce energy consumption and guarantees QoS. Both 
numerical analysis and simulation results confirm the 
effectiveness of the proposed work in terms of energy efficiency 
and throughput maximization.  
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I. INTRODUCTION  
Recently, 6G wireless communication network has drawn 

considerable attention both from academia and industry [1][4]. 
6G seems to be a promising technology to overcome the major 
constraints of the previous generations of cellular network. 
Some of the motivating trends [5][6] of the 6G development 
include: higher date rate, higher spectral efficiency, higher 
energy efficiency, lower latency, higher reliability and more 
QoS guarantees. However, the performance of 6G network will 
depend on the available energy at limited battery life devices 
such as sensors and smartphones which are tightly integrated in 
this autonomous network. Although integration of battery-free 
smart devices and wireless information and energy transfer 
(WIET) is a new enabling technology for lowering the energy 
consumption however, energy efficiency in 6G network is still a 
critical issue. According to studies [7], every year, the 
information and communications technology (ICT) systems 
which consume energy sources for communication and data 
transmission increase the global world CO2 emissions by 5%. 
This amount will rapidly increase with the advent of 6G 
networks comprising of billions of connected devices in the near 

future. Therefore, an energy efficient power optimization 
approach needs to minimize overall energy consumption. Power 
allocation strategies are efficient techniques for energy 
efficiency enhancement in wireless communication networks. 
Many power optimization solutions were developed in the 
literature. Authors in [8] established a resource allocation 
method for multiple access edge computing (MEC)-enabled 
heterogeneous networks (HetNets) that reduces the energy 
consumption for power-limited wireless devices. Authors in [9] 
developed a machine learning-based mobility management 
scheme for 6G networks. They also proposed a 6G-based 
network in box (NIB) framework with high energy efficiency 
that guarantees users’ QoS, and QoE in 6G-based industrial 
NIB. Study [10] investigated a QoS-based energy optimization 
method for IoT devices in 6G networks. The authors also 
established a 6G-based multimedia data structure framework to 
evaluate QoE with acquisition time for energy-efficient 
transmissions. A successive interference cancellation (SIC) 
approach for multi-carrier multi-user 6G networks was 
investigated in [11]. The authors proposed a joint user 
association, SIC ordering and subcarrier assignment method to 
improve the worst-case network energy efficiency. The energy-
efficient power optimization problem for wireless 
communication was addressed in [12]. The authors proposed a 
monotonic lower-complexity framework based on sequential 
programming which obtains suboptimal transmit power 
strategies. They claimed that the proposed framework achieves 
global optimality transmit power for practical scenarios. 
Authors in [13] proposed a robust channel estimation method 
which optimizes energy consumption in downlink 5G 
communications. They modeled the optimization problem as a 
non-cooperative game to achieve the best energy consumption 
strategy under the worst-case channel uncertainty. An energy 
minimization problem was addressed for industrial 6G 
applications in [14]. Authors applied distributed artificial 
intelligence (DAI) to cluster the wireless devices for efficiently 
resource allocation and then used the back propagation neural 
network (BPNN) and convolutional neural network (CNN) for 
energy optimization. Study [15] analyzes energy efficiency 
optimization problem for multiple-input-single-output (MISO) 
communications. The authors used zero-forcing beamforming 
method to improve the network energy efficiency under power 



and energy consumption constraints. The authors in [16] 
developed dynamic resource allocation using the Vickrey–
Clarke–Groves auction game theory. They also consider both 
cross-tier interference and users’ QoS requirements in the 
resource allocation process.  

In this paper, we propose a robust data transmission rate 
approach in order to enhance energy efficiency in 6G network. 
As we know, optimal rate allocation requires exact information 
of channel parameters. On the other hand, we assume that the 
perfect channel state information is not available that is a more 
realistic scenario for wireless communications. Thus, we use 
maximum likelihood estimation method in order to obtain 
accurate information of channel characteristics. The proposed 
robust estimation approach minimizes the estimation error and 
obtains the accurate values of the channel parameters. We also 
design a distributed algorithm to achieve the solution of the 
optimization problem. In the proposed algorithm, each UE 
obtains true channel coefficients and then adjusts the optimal 
transmission power level. Then, the optimal transmission rate 
allocation strategy is derived as a solution of the problem. The 
performance evaluation prove the superiority of the proposed 
work in terms of high energy efficiency and throughput. 

The rest of this paper is organized as follows. Section II 
introduces the system description and problem formulation.. 
Section III provides the simulation analysis and performance 
evaluation of the proposed approach. Finally, the main 
conclusions are discussed in Section IV. 

II. PROBLEM DESCRIPTION  

A. System Model  
Consider a multiuser 6G network where there exists 𝑀 base 

stations (BSs), each equipped with 𝑁!" antennas and 𝐾 wireless 
user equipment (UE) with 𝑁#$ antennas. We assume that BSs 
and UEs are located based on two independent homogeneous 
Poisson point process (PPP) with intensity 𝜆!  and 𝜆# , 
respectively.  

Definition 1. Energy efficiency can be defined [17] as the 
ratio of bit rate to the total power consumption 
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Where 𝑊 denotes the total network bandwidth, 𝑃234 ∈ 	𝑃34 
is the transmission power of UE 𝑖 in which 𝑃34 ∈ ℝ5×756, 𝑔289 
identifies equalizing gain for UE 𝑖  from 𝐵𝑆8 , ℎ2 =
	1ℎ2,., ℎ2,;, … , ℎ2,7564

< , ℎ2 	 ∈ 	𝐻  denotes the fading channel 
coefficients between UE 𝑖  and its serving BS in which 
𝐻 ∈ ℝ5×756  describes Rayleigh fading channel, 𝐼2 ≈
	∑ (𝑃=34|𝑔=29ℎ=|;)=>2  is the received aggregate interference from 
all interfering users, 𝑛2  is the white Gaussian noise with 
𝑁~(0, 𝐈) and 𝑃2?+@ states the total power consumption of UE 𝑖. 
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H with 𝑅2(ℎ2) as the data transmission rate of UE 𝑖 in 

the rest of the paper. The main objective is to maximize the 
network energy efficiency (i.e.,  max

1%
&' ∫ 𝐸%&&(𝑡)

<
3GH ).  

Remark 1. According to (1), energy efficiency is maximized 
if 𝑅(𝐻) 𝑃?+@O 	→ ∞ . Thus, taking the power consumption 
𝑃?+@ 	→ 0 , the data transmission rate 𝑅(𝐻) → ∞ , or a 
combination thereof achieves the energy efficiency 
maximization. However, Energy efficiency maximization does 
not always mean minimizing the power consumption. Energy 
efficiency can be maximized by increasing data transmission 
rates. Thus, the optimization problem can be expressed as 
below: 
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Where 𝑅U(𝑃.34 , … , 𝑃B34); 𝐻9W =
	⋃ b(𝑅., … , 𝑅B):	∑ 𝑅2 	≤ 	 logc𝐼 +2∈BOP$%QH,<4RP$%ST1789,			∀2V
∑ ℎ29Σ12ℎ22∈B ce , ), 𝑅I2@ is the minimum data transmission rate 
for QoS guarantees, Σ12 = 𝑃234(𝑃234)9  and ΣD2 =
ℎ2(ℎ2)9identify the covariance matrices of transmission power 
and channel coefficients, respectively. It is obvious from 
remark1 that the data transmission rate strongly depends on 
channel characteristics (i.e., 𝐻9). On the other hand, the optimal 
data transmission rate can be allocated under known channel 
conditions. In the absent of perfect knowledge of channel state, 
we estimate the unknown parameters of channel (i.e., 𝐻f = 𝐻 +
∆9 ) using MLE method where ∆9~𝑁(0, 𝜉;𝐈)  identifies the 
estimation error and 𝜉;  states the error variance. Note that in 
estimation process, the objective is minimizing the estimation 
error ( ‖∆9‖; =	j𝐻f − 𝐻j; ≤ 𝜀 ). Therefore, the above 
optimization problem can be reformulated as below: 
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Thus, the optimal data transmission rate can be obtained by 
the solution of the optimization problem in (3) as below: 

                          𝐻f = 𝑎𝑟𝑔𝑚𝑎𝑥
1&',9
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Let 𝑓2U𝑦2|ℎr2W be as the probability density function where 
𝑦2(ℎ2) = 𝐹ℎ2√𝑃34𝑠 + 	𝜔 denotes the observed signal at UE 𝑖, 𝐹 
states the precoding matrix, 𝑠 ∈ 	ℝ756×. states the transmitted 
symbols vector and ω	 ∈ 	ℝ756×.  indicates Gaussian 
observation noise vector. As we know, MLE method obtains the 
perfect value of the unknown parameter through maximizing 
probability density on the observed data. Our goal is to find the 
optimal ℎr2

+W3  (i.e., jℎr2
+W3 − ℎ2j; ≤ 𝜖, ∀𝑖 ∈ 𝐾  ) that maximizes 

the probability density of the observed signal 𝑦2. Here, we define 
the likelihood function as follows: 

              𝐿2Uℎr2|𝑦2W = 𝑓2U𝑦2|ℎr2W                       (10) 

Without loss of generality, consider  𝑦2 ∈ 1𝑦28 , 𝑦28 + 𝛿4, 𝑗 =
1,… ,𝑁#$ in which 𝛿 > 0. Therefore, we have: 
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Consider 𝛿 is a constant. We can state that: 
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Then  
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Using L'Hôpital's rule, the following results can be explicitly 
expressed: 
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And 
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Hence, it can be said that 

   ℎr2
+W3 = 𝑎𝑟𝑔𝑚𝑎𝑥
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For the sake of simplicity, we use ℎr  instead of ℎr2 . Then we 
calculate ℎr for a typical UE as follows: 
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Where 𝑀UℎrW is Hessian matrix. 
Lemma1. For independent and identically distribution 

observations (i.i.d), the proposed estimator (𝐿Uℎr|𝑦W) uniformly 
converges to 𝐿(ℎ) on 𝑌 as: 

                 𝑠𝑢𝑝
D∈9

c𝐿Uℎr|𝑦W − 𝐿(ℎ)c
W
→0, ∀𝑦 ∈ 𝑌                   (18) 

Proof. According to the uniform law of large numbers, there 
exists the pointwise convergence since the following conditions 
are fulfilled:  

• 𝐻 is compact. 

• ∀ℎ ∈ 𝐻	𝑎𝑛𝑑	∀𝑦 ∈ 𝑌, 𝑓(𝑦, ℎ) is continuous. 

• There is a dominating function 𝑔(𝑦) where 𝔼[𝑔(𝑦)] <
∞, and ∀ℎ ∈ 𝐻, ‖𝑓(𝑦, ℎ)‖ ≤ 𝑔(𝑦). 

Clearly, 𝔼[𝑔(𝑦)]  is continuous in ℎ . Therefore, the 
following can be expressed:  
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D∈9
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B
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On the other hand,  𝐿Uℎr|𝑦W is uniform convergence on Y if 
∀ℎ ∈ 𝐻	𝑎𝑛𝑑	∀𝑦 ∈ 𝑌, ∃𝜀 > 0, c𝑓ZUℎrW − 𝑓(ℎ)c 	< 𝜀 . In other 
word, 𝑢𝑛𝑖𝑓	 lim

Z→c
𝑓Z =𝑓. 

Without loss of generality, we can express 

     𝑔Z = 𝑠𝑢𝑝
D∈9

c𝐿Uℎr|𝑦W − 𝐿(ℎ)c =	𝑠𝑢𝑝
Z∈d

c𝑓ZUℎrW − 𝑓(ℎ)c	     (20) 

Thus, it can be said that 𝑓ZUℎrW uniformly converges to 𝑓(ℎ) if 
and only if 𝑔Z → 0 when 𝑦 → ∞. 

B. Data Transmission Rate Allocation Algorithm 
Here, we introduce a distributed transmission rate allocation 

algorithm. In this algorithm, each UE estimate optimal channel 
coefficients and then adjust its transmission power to the 
channel quality. The UE calculate the received payoff in terms 
of data transmission rate per the total power consumption. UEs 
change their transmission power level if achievable transmission 
rate is less than the minimum UE transmission rate for QoS 
guarantees. The UE then updates the current channel state. Table 
I provides the pseudo-code for the energy efficient data 
transmission rate approach. 

 

 



TABLE I. TRANSMISSION RATE ALLOCATION ALGORITHM  

Initialize 𝐻, 𝑌, 𝐾, 𝑃!"#, 𝑅!$%, 𝜀  
Set 𝑖 = 1, 𝑁&', 𝑁() = 8  
Repeat  

Select a 𝐵𝑆 (e.g., 𝐵𝑆* ) 
Set  	𝑛$, 𝐼$, 𝑔$* 
 Adjust transmission power for user 𝑖 according to 
                 0	 ≤ 𝑃$+, ≤ 𝑃!"# 
Compute 𝑦$* ∈ 𝑌  
Calculate 𝑃$-.% 
Find an optimal channel coefficients ℎ7$

./+ ∈ 𝐻 for user 𝑖 as 
                  ℎ7$

./+ = argmax
01!

𝑓>𝑦$*|ℎ7$@ 

Calculate 𝑇𝑟>Σ0$@ and 𝑅$(ℎ$) 

If (∑ 𝑇𝑟>Σ0$@
2
$34 	≤ 𝜀) or (𝑅$(ℎ$) 	< 	𝑅!$%) go to step 9  
Observe payoff of user 𝑖 as 𝐸566>𝑃$+, , 𝑅$(ℎ$)@ 

Update 𝐻 
      𝑖 = 𝑖 + 1 
Until all users’ transmission power is adjusted 

 

III. SIMULATION RESULTS  
In this section, we provide the performance comparison of 

our proposed method with a ML-based energy-efficient 
mechanism in [9] and SIC ordering energy-efficient resource 
management scheme in [11]. The evaluation results were 
performed by the CVX package in MATLAB and averaged over 
1200 run. Simulation results were obtained based on geometric 
programming (GP) mode of CVX which accepts all the special 
functions and transforms them into convex form. CVX handles 
the problem directly, since the norms are part of the base library 
of it. We consider a multiuser 6G network consisting of 9 BSs 
that each is equipped with 𝑁!" = 8 antennas and 60 UEs with 
𝑁#$ = 4 antennas. Both BSs and UEs are distributed randomly 
in a 1600 m × 1600 m area. We set the transmission power of 
BSs to 45dBm and initialize UEs’ transmission power based on 
the distance to their serving BSs in the range of 7dBm to 30dBm. 
Without loss of generality, we also set 𝜉; = 0.01 as the identical 
error variance, 𝜎@; = 0.01 , 𝑃IJK = 35  dBm and 𝑃I2@ = 7 
dBm. The fading channel is modeled according to Rayleigh 
statistic and the channel matrix is obtained by averaging 800 
random channel realizations. 

Fig. 1 plots the impact of variation of transmission power on 
the energy efficiency of the network under different number of 
wireless users. We vary the transmission power of UEs from 
5dBm to 35dBm and change the number of users from 15 to 60.  
We observe that the energy efficiency first gives rise as the 
transmission power increases, then it is saturated when the 
transmission power reaches 35 dBm. The major reason behind 
the results is that our method adjusts the optimal transmission 
power based on the accurate CSI obtained by maximum 
likelihood estimator. We know that transmission data rate is 
increased as the transmission power of UEs is increased that 
leads to energy efficiency enhancement. However, in the absent 
of perfect information of channel conditions, UEs consume 
higher circuit power to transmit data causing energy efficiency 
reduction. The proposed approach effectively adapts the 
transmission power to the true channel propagation condition 
results in reducing circuit power consumption. However, as 

shown, the proposed approach enhances data transmission rate 
and outperforms the existing schemes in terms of energy 
efficiency.  

   
Fig. 1.  Network energy efficiency for different transmission power. 

 

We investigate the effect of estimation error on the average 
power consumption for all existing schemes in Fig.2. The figure 
clearly shows that all methods are oriented towards higher and 
faster power consumption at higher estimation error. For 
instance, in the proposed approach, the average power 
consumption is approximately 3800 W for 𝜉; = 0.01 while it 
reaches over 4650 W at 𝜉; = 0.1. The total power consumption 
for ML-based scheme and SIC-based algorithm are 4950 W and 
5215 W under 𝜉; = 0.1 ,  respectively. Consequently, the 
average power consumption increases under larger error 
variance. The reason is that, in high level of accuracy, smart 
devices can reduce their transmission power since they adapt the 
transmission power with true channel characterization. We also 
study the impact of estimation error on the energy efficiency 
performance in Fig. 3. 

Fig. 4 illustrates the data transmission rate under various 
transmission power for different values of error variances. The 
findings explicitly demonstrate that the data transmission rate is 
vulnerable to estimation error. For instance, the average data 
transmission rate of the proposed approach is almost 8.6 ∗ 10e 
bps at 𝜉; = 0.01 while it is about 5.6 ∗ 10e bps for larger error 
variance 𝜉; = 0.1 . Thus, we can deduct that the higher 
estimation error results in lower data transmission rate. In fact, 
As the size of error estimation is increased, the average 
transmission rate degrades dramatically. 

 
Fig. 2.  Average power consumption for different 𝜉7. 



 
Fig. 3.  Energy efficiency under different 𝜉7. 

 
Fig. 4.  Data transmission rate at different 𝜉7. 

Fig. 5 demonstrates the mean square error (MSE) 
performance of all the methods for comparison.   

The graph confirms that the superiority of our approach 
compared with the baseline methods. It can be seen that 
approximately MSE < 0.27 for our method whereas it is nearly 
0.45 in SIC-based scheme and 0.37 in ML-based algorithm. 
Therefore, it is evident that the proposed approach provides high 
accuracy estimation that leads to lower power consumption and 
higher energy efficiency. 

      
Fig. 5.  MSE analysis for the existing methods under different iterations. 
 

IV. CONCLUSION 
In this study, we proposed a robust energy-efficient data rate 

allocation method for a multiuser 6G system that is less sensitive 
to the channel uncertainty. We considered time-varying channel 
model since the performance of the rate allocation process 
extremely depends on the channel state. Due to the perfect CSI 
is not available in realistic scenarios, we used maximum 
likelihood estimator to obtain accurate estimation of channel 
characterizations. The proposed estimation approach obtained 
accurate channel coefficients for optimal rate allocation. We 
then established a distributed algorithm to adapt data 
transmission rate to true channel conditions and solve the 
optimization problem. Eventually, simulation findings revealed 
that the proposed method enhances the network energy 
efficiency and achieves higher data transmission rate comparing 
to the existing schemes. As a future work, we are planning to 
develop an antenna selection algorithm in order to switch off a 
number of receive antennas based on the channel conditions. 
Antenna selection methods emphasize activation of only a few 
number of antenna while keeping bit resolution on high. This 
reduces circuit power consumption and enhances energy 
efficiency in massive MIMO systems while the channel capacity 
remains the same. Also, we intend to design an efficient user-
antennas scheduling scheme as it provides higher data 
transmission rate and more energy saving for 6G 
communications with large number of users. 
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