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Abstract—In this paper, we investigate multiple unmanned
aerial vehicles (UAVs) enabled data collection system in Internet
of Things (IoT) networks with time windows, where multiple
rotary-wing UAVs are dispatched to collect data from time
constrained terrestrial IoT devices. We aim to jointly minimize
the number and the total operation time of UAVs by optimizing
the UAV trajectory and hovering location. To this end, an opti-
mization problem is formulated considering the energy budget
and cache capacity of UAVs as well as the data transmission
constraint of IoT devices. To tackle this mix-integer non-convex
problem, we decompose the problem into two subproblems:
UAV trajectory and hovering location optimization problems. To
solve the first subproblem, an modified ant colony optimization
(MACO) algorithm is proposed. For the second subproblem,
the successive convex approximation (SCA) technique is applied.
Then, an overall algorithm, termed MACO-based algorithm,
is given by leveraging MACO algorithm and SCA technique.
Simulation results demonstrate the superiority of the proposed
algorithm.

Index Terms—Time window, UAV trajectory, location optimiza-
tion, multi-UAV enabled system.

I. INTRODUCTION

INTERNET of Things (IoT) is being applied in many
fields for improving the system efficiency and performance,

including public safety, smart agriculture, smart grid, and
transportation [1], etc. In these IoT networks, the global
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controllers or gateways can be applied to connect massive
devices and collect data from them for further processing [2]
[3]. However, the increasing demand for data transmission and
the growing density of IoT devices lead to the exponential
growth of information exchange in IoT networks [4], which
causes great difficulty in data collection. Moreover, the wide-
spatial distributed nature along with the diverse requirements
of IoT devices also challenge the data collection in IoT
networks. Fortunately, the improvement of unmanned aerial
vehicle (UAV) makes it a promising technology to alleviate
above issues.

Owing to the great mobility and on-demand service ability
[5], UAV can serve as a supplement of traditional terrestrial
communication systems to improve the coverage range, device
access and transmission quality. Because of the significant
improvement brought by UAV to the performance of IoT net-
works, the UAV-enabled systems have received considerable
attention recently [6]–[8]. The UAV-enabled data collection
system is one of the important issues. In terms of the number
of UAVs, the researched systems can be divided into two types:
single-UAV and multi-UAV systems. In these two systems,
researchers mainly focused on energy efficiency [9]–[16],
throughput maximization [14], [17]–[19] and system operation
time minimization [14], [20]–[22]. From the aspects of these
research directions, the related work in single-UAV and multi-
UAV systems is described, respectively, as follows.

1) Single-UAV system: Considering the UAV energy budget
and data collection requirements, Zhan and Lai minimized
the maximum energy consumption of all devices [9]. In two
different data collection protocols, Zeng et al. minimized the
total UAV energy consumption via different methods [10]. In
[11], a new UAV-assisted IoT network was proposed to address
the high energy consumption issue, in which the UAV is not
only a data collector but also a device positioning anchor node.
While satisfying data collection and UAV traveling distance
constraints, Baek et al. maximized the minimum residual
energy of sensors after data transmission [12]. Through al-
locating the hovering and flying time of UAV, Ye et al.
optimized the sum-throughput of sensors, the total operation
time and the total energy consumption of UAV, respectively, in
a UAV-enabled wireless-powered IoT network [14]. In order
to optimize the network throughput, Feng et al. adopted a
composite channel model consisting of both large-scale and
small-scale fading to depict a typical propagation environment
from UAV to IoT devices [17]. Due to the high data volume
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in multimedia IoT networks, Jiang et al. took into account the
cache strategy and location placement of cache-enabled UAV
while maximizing the network throughput [19]. With regard to
time-constrained IoT networks where the data of IoT devices
needs to be uploaded before their expiry deadline, Samir et al.
maximized the number of IoT devices served by UAV [23].

2) Multi-UAV system: With regard to the data collection in
the IoT networks where UAVs serve as relays, Fu et al. mini-
mized the system power consumption by jointly optimizing the
UAV deployment and transmission power [13], and Kim and
Qiao proposed an energy-efficient cooperative multi-hop relay
scheme for UAVs [15]. For reducing the total transmission
power of IoT devices, Liu et al. studied the three-dimensional
(3D) placement and resource allocation of UAVs an in uplink
IoT network [16]. Regarding multi-UAV enabled nonorthog-
onal multiple access (NOMA) uplink transmission systems,
Duan et al. proposed an efficient subchannel assignment algo-
rithm to enhance the sum-rate of IoT devices [18]. Considering
the completeness of collected data and the energy budget
of nodes, Zhan and Zeng minimized the maximum mission
completion time in two proposed collection modes [20]. In
[21], a multi-UAV data collection framework was proposed,
in which the flight time for data collection was minimized.
Considering deterministic boundary and ambiguous boundary
scenarios for UAVs, Zhang et al. proposed two corresponding
algorithms to reduce the total flight time [22]. In order to
minimize the network costs for data collection, Zhan and Zeng
investigated the fundamental tradeoff between aerial cost and
ground cost [24].

In UAV-enabled data collection systems, the energy budget
of a UAV determines the number of IoT devices it can serve
and how far it can fly. Moreover, in practical applications,
multimedia data communication is widely applied in IoT
networks, which relies on videos and images with high data
volume [19] [25]. Therefore, the data size that UAV can store
is also an indispensable factor for IoT networks. Although
reference [9] minimized the energy consumption of UAV, the
energy budget of UAV is still ignored. In [26]–[28], the authors
considered content caching for the UAV, but the content is
precached and the focus is on the downlink systems. To the
best of our knowledge, there is no literature studying both the
energy budget and cache capacity of UAV in data collection
systems.

In addition, the timeliness of data collection is also vital
for some IoT applications demanding up-to-date information,
such as emergency rescue, disaster monitoring and target
tracking [23]. Moreover, some IoT devices only have limited
memory. The data would be overwritten by new data if it is
not extracted in time. Furthermore, the IoT devices may not
complete information gathering while the UAV arrives at them.
Therefore, the IoT device is assumed to have a time window,
within which the data transmission must be done. In [23], the
IoT devices are also time-constrained, but the UAV collects
data while flying. This is not an energy efficient mode. The
reason is as follows.

In the existing research, two UAV data collection schemes
are mainly adopted: fly-hover-collect scheme and fly-collect
scheme [20]. In fly-hover-collect scheme, the UAV only col-

lects data while hovering. In the other scheme, the UAV
collects data while flying. Hence, the IoT devices do not need
to wait for the arrival of the UAV, which may leads to less
data collection latency. However, they have to be operating
all the time since they do not know when the UAV flies over
and communicates with them. By contrast, the IoT devices in
fly-hover-collect scheme can stay off until the UAV reaches
them. Therefore, the fly-hover-collect scheme is more energy
efficient for IoT devices. In practical applications, most IoT
devices are deployed outdoor and battery powered. The huge
energy consumption of the synchronization between UAVs and
IoT devices will exhaust the device battery easily. Moreover,
the operation time of the IoT devices determines the network
lifetime. Hence, we adopt the fly-hover-collect scheme in this
paper.

In most of the research on UAV-enabled data collection
systems, the number of UAVs is fixed. However, in some
scenarios, the fixed number of UAVs may not be able to
complete the mission due to the energy and cache constraints.
Furthermore, from the perspective of network overhead, the
purchase and maintenance cost of UAV account for a large
proportion in practical applications. Therefore, unnecessary
UAVs will result in excessive cost. To the best of our knowl-
edge, no literature has taken into consideration the number of
UAVs while designing the UAV trajectory. Although Wang et
al. minimized the number of UAVs in [29], the locations of
UAVs are fixed.

Different from the above work, this paper investigates
the data collection in multi-UAV enabled systems with time
windows while considering both the energy budget and cache
capacity of UAVs, as well as the data transmission constraint
of IoT devices. The data collection is operated in the fly-
hover-collect scheme proposed by [20]. For reducing the
network overhead and data collection duration, we minimize
the number and the total operation time of UAVs jointly by
optimizing the UAV trajectory and hovering location. The
main contributions of this paper are summarized below.

1) We consider practical multi-UAV enabled systems where
the energy-and-cache-constrained UAVs fly among the
hovering locations corresponding to IoT devices to collect
data. Besides the UAV-related constraints, the time win-
dow constraint of IoT device is also considered. Under
this setup, an optimization problem is formulated to
jointly minimize the number and the total operation time
of UAVs. Our objective is to design the UAV trajectory
and the hovering location.

2) To tackle the formulated mix-integer non-convex prob-
lem, we propose an efficient algorithm to search a proper
solution by metaheuristic method and successive convex
approximation (SCA) technique. The problem is decom-
posed into two subproblems: UAV trajectory and hovering
location optimization problems. The number of UAVs
is determined by the binary trajectory variables in the
first subproblem. However, the first subproblem is NP-
hard, which is difficult to solve by exact optimization
approaches. We propose a modified ant colony optimiza-
tion (MACO) algorithm to solve it. As for the second
subproblem, we transform it into a convex problem and
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Fig. 1. Multi-UAV enabled data collection system in different IoT scenarios.

solve by SCA technique.
3) Extensive simulations are conducted to validate the per-

formance of the proposed algorithms. The results show
that the proposed algorithm outperforms other algorithms
in terms of the number and the total operation time of
UAVs.

The reminder of this paper is organized as follows. In
Section II, the multi-UAV enabled system model with time
windows is introduced and the optimization problem is formu-
lated. The decomposition method and the proposed algorithms
are presented in Section III. Section IV provides numerical
results to verify the performance of our proposed algorithms.
The conclusion is drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider K rotary-wing UAVs in set K are ready to be
dispatched to collect data from M IoT devices in set M on
the ground, as shown in Fig. 1. We aim to obtain the minimum
number and operation time of UAVs that can complete the
mission. For simplicity, K is assumed to be a greatly large
constant which is much greater than the number of UAVs that
are actually dispatched. The cardinalities of the UAV sets and
the IoT device sets are K and M , respectively, i.e. |K| =
K and |M| = M . The UAVs are assumed to take off from
the initial point, and then fly at a fixed altitude H to collect
data before landing back in a given time limit. The index of
the initial point is denoted as 0. It is also assumed that the
decision is made by the global controller in the initial point
before the UAVs take off, which knows the locations and the
time windows of the IoT devices, the energy budget and cache
capacity of the UAVs, as well as the channel state information
(CSI) between the UAVs and IoT devices in advance. For ease
of analysis, the initial point is seen as a special device with
no data to upload and the set of all the devices (initial point
and IoT devices) is denoted as D = {0, 1, 2, ...,M}.

In this system, we adopt the fly-hover-collect scheme pro-
posed by [20]. It is assumed that each IoT device has a
corresponding hovering location for UAVs. The UAVs fly
at maximum speed from one hovering location to another,
and only collect data from one device while hovering at the
corresponding hovering location. The association status and
sequence of the k-th UAV among the devices is denoted as
αi,j [k], which indicates that the k-th UAV flies from the i-
th hovering location to the j-th hovering location and then

communicates with the j-th device if αi,j [k] = 1; otherwise,
αi,j [k] = 0. In this case, the flow constraint can be expressed
as

αi,j [k] ∈ {0, 1} ,∀k ∈ K,∀i, j ∈ D, (1)
M∑
j=1

α0,j [k] = 1,∀k ∈ K, (2)

M∑
i=1

αi,0[k] = 1,∀k ∈ K, (3)

M∑
i=0

αi,h[k] =

M∑
j=0

αh,j [k],∀h ∈ D,∀k ∈ K, (4)

where constraints (2) and (3) state that the UAVs take off from
the initial point at the beginning and return to it at the end.
Constraint (4) guarantees that each UAV leaves a device if and
only if it arrives at that device. It is also assumed that each
IoT device only uploads its data to one UAV, then we have

K∑
k=1

M∑
i=0

αi,j [k] = 1,∀j ∈M. (5)

Without loss of generality, we consider a 3D Cartesian
coordinate in this model. The horizontal coordinate of the i-th
device and the corresponding hovering location are denoted
as si = (xgi , y

g
i ) and qi = (xhi , y

h
i ) (i ∈ D), respectively.

Obviously, the hovering location for the UAV at the initial
point is given by

q0 = s0, (6)

and the corresponding collection time is zero. By defining
the distance between the location of the i-th device and the
corresponding hovering location of UAV as di, we have

di =

√
H2 + ‖qi − si‖2. (7)

As illustrated in [30]–[32], the communication links between
the UAVs and the IoT devices are dominated by line-of-
sight (LoS) links. Furthermore, the Doppler effect due to the
UAV mobility is assumed to be perfectly compensated at the
receivers. Accordingly, the channel power gain from the i-
th device to the UAV at the corresponding hovering location
follows the free-space path loss model, which can be expressed
as

hi = ρ0d
−2
i =

ρ0

H2 + ‖qi − si‖2
, (8)

where ρ0 represents the channel power gain at the reference
distance d0 = 1m.

In the fly-hover-collect scheme, the distance between the
UAVs and the overlap of the UAVs’ data collection time
are changeable. This needs a dynamic bandwidth allocation
to avoid interference, which is unrealistic. Therefore, for
avoiding the interference between UAVs, we assume that the
UAVs equally share the same bandwidth B (in Hz) through
frequency division multiplexing (FDM) and thus operate at
non-overlapping frequency channel. Hence, the increase of the
number of UAVs will decreases the bandwidth of each UAV.
Since the fly-hover-collect scheme is adopted, the UAV only
communicates with one IoT device at each time. Therefore,
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the IoT device uses all the bandwidth of the connected UAV
to upload its data. In other words, optimizing the number
of UAVs is optimizing the bandwidth of each IoT device.
Moreover, it is also assumed that all the IoT devices are
allocated with an identical constant transmit power P . In this
case, the available transmit rate of the j-th device can be
expressed as

Rj =
B

U
log2

(
1 +

Phj
σ2

)
=
B

U
log2

(
1 +

γ0

H2 + ‖qj − sj‖2

)
,

(9)

where σ2 is the additive white Gaussian noise (AWGN) power
at the UAV receiver, γ0 = Pρ0

σ2 is the received signal-to-noise
ratio (SNR) at the reference distance. As mentioned above,
α0,j [k] = 1 means that the k-th UAV flies from initial point to
the j-th hovering location and then communicates with the j-
th device, i.e., the k-th UAV sets off to collect data. Therefore,

U =
M∑
j=1

K∑
k=1

α0,j [k] in (9) denotes the number of UAVs.

In practical applications, an IoT device may have several
pieces of data to upload. For the case that multiple pieces of
data have a same time window, they can be seen as a single
data stream. Furthermore, for the case that different pieces
of data have different time windows, each piece of data can
be seen as a uploading task. Then, the device can be seen as
multiple devices with different single task at the same location.
For easy of analysis, it is assumed that each IoT device has
only one piece of data that needs to be uploaded.

In order to ensure the integrity of the uploaded data, the
collection time τ ck,j of the k-th UAV at the j-th hovering
location can not be less than the transmission time. Therefore,
by denoting the size of data that needs to be uploaded by the
j-th device as Dj (D0 = 0), we have

Dj − τ ck,jRj ≤ 0,∀k ∈ K,∀j ∈ D. (10)

In addition, some IoT devices (e.g. camera) need to upload
multimedia data with big size (e.g. photograph and video)
which may exceeds the cache capacity of the associated UAV.
In this case, for guaranteeing the data of each IoT device is
collected completely, we consider the memory on the k-th
UAV as Ck and we have

M∑
i=0

M∑
j=0

αi,j [k]Dj − Ck ≤ 0,∀k ∈ K. (11)

Besides the cache capacity, the energy budget also needs
to be considered for UAV, since it restricts the flight time
of UAV. The energy budget of the k-th UAV in this model
is denoted as Ek. As for the power consumption of the
UAVs, it mainly consists of the communication related power
consumption and the propulsion power consumption. The
former one primarily includes circuitry, signal reception and
processing consumption, which is ignored in this paper since
it is negligible compared with the propulsion power con-
sumption. The later one is necessary for UAV to move and
keep aloft, which generally depends on the flying speed and
acceleration/deceleration of UAV. However, in this model, the

acceleration/deceleration duration of UAV accounts for only
a small part of the total operation time. Compared with the
constant speed phase, the duration of the acceleration phase is
negligible. Therefore, for the purpose of exposition, the energy
consumption caused by the acceleration/deceleration of UAV
is ignored in this paper, similar to [10] and [33]. Hence, the
propulsion power consumption is a function of flying speed
[10] [33] and given by

P (V ) =P0

(
1+

3V 2

U2
tip

)
+ PI

(√
1 +

V 4

4v40
− V 2

2v20

) 1
2

+
1

2
d0βsQV

3,

(12)

where P0 = δ
8βsQΩ3R3 and PI = (1+η) G3/2

√
2βQ

are constants,
with the profile drag coefficient δ, the air density β, the rotor
solidity s, the rotor disc area Q, the blade angular velocity
Ω, the rotor radius R, the incremental correction factor η, and
the aircraft weight G, Utip represents the tip speed of the
rotor speed, v0 denotes the mean rotor induced velocity in
hover, and V is the flying speed of UAV. For more details of
the propulsion power consumption parameters, please refer to
[10]. Obviously, while V = 0, equation (12) is the hovering
power consumption of UAV, namely Phk = P0 + PI . Since
the k-th UAV flies at a constant speed V maxk in the fly-hover-
collect scheme, the flying power consumption can be given
by P fk = P (V maxk ). As a result, the energy constraint can be
expressed as

M∑
i=0

M∑
j=0

αi,j [k]Phk
(
τ ck,j + wk,j

)
+

M∑
i=0

M∑
j=0

αi,j [k]τfk,ijP
f
k

− Ek ≤ 0,∀k ∈ K,
(13)

where τfk,ij =
‖qi−qj‖
V max
k

is the time that the k-th UAV spends
flying from the i-th hovering location to the j-th hovering
location, and wk,j is the duration in which the k-th UAV waits
at the j-th hovering location, which will be explained below.

In actual applications, some IoT devices have strict require-
ment for data collection time due to their characteristics or
high demand for up-to-data information. Each of these IoT
devices has a transmission time window. The open time of
it denotes the time that the device completes information
gathering, and the close time represents the time that the
information is outdated or overwritten. Therefore, the UAVs
can only collect the target data from these devices within their
time windows. In this paper, the time windows are denoted as
[Xm, Ym] (i ∈M), where Xm is the earliest time (ET) and Ym
is the latest time (LT) when the m-th IoT device is available.
Since the UAVs is requested to come back to the initial point
in a limited time, the initial point is also assumed to have a
time window which is denoted as [X0, Y0]. As all the UAVs
take off from the initial point, we let X0 = 0. Therefore,
for the devices without time limit, we set Xi = X0 = 0
and Yi = Y0. If the UAV arrives before the beginning time
of the device’s time window, it must wait until the device is
available. Meanwhile, the UAV also needs to ensure that the
data collection should be finished before the end time of each
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device’s time window. By denoting the arrival time of the k-
th UAV at the i-th hovering location as tk,i, the time window
constraints can be expressed as

max {Xj − tk,j , 0} − wk,j ≤ 0,∀k ∈ K,∀j ∈ D, (14)
tk,j + wk,j + τ ck,j − Yj ≤ 0,∀k ∈ K,∀j ∈ D, (15)

α0,j [k]
(
τfk,0j − tk,j

)
≤ 0,∀k ∈ K,∀j ∈ D, (16)

αi,j [k]
(
tk,i + τ ck,j + wk,i + τfk,ij − tk,j

)
≤ 0,

∀k ∈ K,∀i ∈M,∀j ∈ D. (17)

The last two constraints state that the k-th UAV can not arrive
the j-th hovering location before it finishes the data collection
of the i-th device if it flies from the i-th to the j-th hovering
location.

B. Problem Formulation

Due to the high operational cost of UAV, it is significant
to optimize the number and the operation time of the UAV
systems. In [34], the network overhead is defined as the energy
consumption cost of aerial and terrestrial base stations, but
the cost of UAV is ignored. In [24], the aerial cost is defined
as the energy consumption and the dispatching cost of UAV,
but the maintenance cost of UAV is ignored. In practical
applications, the energy consumption and maintenance cost
are mainly related to the operation time of UAV. Therefore,
we define the aerial cost as a function of the number and total
operation time of UAVs, which is given by

O = F1U + F2L, (18)

where L =
M∑
i=0

M∑
j=0

K∑
k=1

αi,j [k]
(
τ ck,j + τfk,ij + wk,j

)
is the to-

tal operation time of UAVs, F1 denotes the price for operating
one UAV, and F2 represents the price of UAV operation time
measured in price/second including maintenance and charging
prices.

For simplicity, the aerial cost is transformed into a nor-
malized form. Similar to [24], the cost function measured in
normalized price can be expressed as

O = λU + L, (19)

where λ = F1

F2
is a normalization factor for the aerial cost.

With the cost function, we aim to minimize both the number
of UAVs and the total UAV operation time via optimiz-
ing the UAV trajectory Λ = {αi,j [k],∀k ∈ K,∀i, j ∈ D},
the hovering location Q = {qj ,∀j ∈ D}, the arrival time
T = {tk,j ,∀k ∈ K,∀j ∈ D}, the waiting time W =
{wk,j ,∀k ∈ K,∀j ∈ D}, and the collection time H ={
τ ck,j ,∀k ∈ K,∀i, j ∈ D

}
. Thus, the optimization problem is

formulated as

P: min
Λ,Q,T,W,H

O, (20)

s.t. (1)− (6), (10), (11), (13)− (17).

It is worth noting that the objective function decreases as the
decrease of the collection time τ ck,j and the waiting time wk,j ,
hence the equality of constraints (10) and (14) must hold at

the optimal solution. Consequently, the collection time τ ck,j
becomes a function of αi,j [k] and qj , and the waiting time
wk,j becomes a function of tk,j , which are given by

τ ck,j =
Dj

Rj
,∀k ∈ K,∀j ∈ D, (21)

wk,j = max {Xj − tk,j , 0} ,∀k ∈ K,∀j ∈ D. (22)

Consequently, problem (20) can be reformulated as

min
Λ,Q,T

O, (23)

s.t. (1)− (6), (11), (13), (15)− (17).

In this problem, we can see that the UAV trajectory Λ are
binary variables and the hovering location Q as well as the
arrival time T are continuous variables. Moreover, {Rj} in
(13), (15)-(17) are non-convex functions with respect to qj ,
which results in the non-convexity of the constraints. There-
fore, problem (23) is a mixed-integer non-convex problem
which is difficult to solve. In next section, we propose an
efficient algorithm to obtain a proper solution of problem (23).

III. PROPOSED ALGORITHM

In this section, we decompose problem (23) into two sub-
problems. First, with given hovering location Q, we solve the
UAV trajectory optimization problem by the proposed MACO
algorithm. Then, given the UAV trajectory Λ, the hovering
location Q is optimized through SCA technique.

A. UAV Trajectory Optimization

Given any feasible hovering location Q, problem (23)
is simplified to a UAV trajectory optimization problem as
follows.

min
Λ,T

O, (24)

s.t. (1)− (5), (11), (13), (15)− (17).

Through solving problem (24), the number of UAVs can also

be obtained, since U =
M∑
j=1

K∑
k=1

α0,j [k]. However, owing to the

energy and time window constraints, the binary variables Λ
are coupled with the arrival time variables T in the objective
function and the constraints (13), (15)-(17). This makes the
problem still a mix-integer non-convex problem.

Theorem 1: Problem (24) is NP-hard.
Proof: Consider the special case that the number of UAVs

is fixed at K. In this case, the collection time τ ck,j is constant.



6

Therefore, problem (24) reduces to minimize the total flying
and waiting time as follows.

min
Λ,T

M∑
i=0

M∑
j=0

K∑
k=1

αi,j [k]
(
τfk,ij + wk,j

)
, (25)

s.t. (1)− (5), (11), (16),
M∑
i=0

M∑
j=0

αi,j [k]Phk wk,j +

M∑
i=0

M∑
j=0

αi,j [k]τfk,ijP
f
k

− Ek ≤ 0,∀k ∈ K, (25a)
tk,j + wk,j − Yj ≤ 0,∀k ∈ K,∀j ∈ D, (25b)

αi,j [k]
(
tk,i + wk,i + τfk,ij − tk,j

)
≤ 0,

∀k ∈ K,∀i ∈M,∀j ∈ D. (25c)

It is noted that problem (25) is equivalent to vehicle routing
problems with time windows (VRPTW) which is NP-hard.
VRPTW aims to design the least cost routes for a fleet of
vehicles to serve a set of customers. Similarly, this transporta-
tion model is established in such a way that each vehicle
departs from the depot at the beginning and return back to
it at the end. Each customer is served only once by exactly
one vehicle within a given period, and the customer demands
on one particular route must not exceed the capacity of the
vehicle. In this way, we have created a NP-hard instance of
problem (24). Therefore, problem (24) is also NP-hard. �

The difference between problem (24) and VRPTW is that
the number of UAVs is considered. Moreover, the number of
UAVs affects the duration of data collection, since the UAVs
equally share the same spectrum. The total operation time
of UAVs does not always decrease with the increase in the
number of UAVs. Therefore, the optimal solution of problem
(24) is more difficult to obtain.

Although VRPTW is NP-hard, high-quality approximate
solutions can be efficiently obtained by various heuristic
algorithms. Inspired by this, we propose a modified ant colony
optimization (MACO) algorithm to obtain an approximate
solution of problem (24). The details of the MACO algorithm
are summarized in Algorithm 1. In this algorithm, the route
of each ant represents the trajectories of all UAVs dispatched
in the data collection mission. For making the algorithm more
understandable, we divide it into two parts to explain. The first
part is the trajectory searching part of each ant, which designs
the trajectory of each UAV. The main steps of this part are
summarized as follows.
• Step 1: From the set of IoT devices that have not been

visited, select the devices that make constraints (11), (13)
and (15) satisfied.

• Step 2: If there is no satisfied device, add the initial point
to the end of the trajectory, as shown in lines 6-7 of
Algorithm 1. Then, the searching process is completed.

• Step 3: Calculate the visit probability of each satisfied
device based on the present pheromone.

• Step 4: Choose one of them as the next device to be
visited by the Roulette algorithm. Then, go to Step 1.

The second part is the main body of the algorithm, which
optimize the number of UAVs. The main steps of this part are

summarized as follows.
• Step 1: Each ant searches the trajectories for the existing

UAVs in order. If there is no device that have not been
visited, go to Step 3.

• Step 2: Add a new UAV into this mission. Due to the
FDM adopted in this model, recalculate the transmit rate
of each IoT device, as shown in lines 8-10 of Algorithm
1, and then go to Step 1.

• Step 3: After all ants finish their searches, choose the
route of the ant with the minimum objective value as the
optimal route of this iteration.

• Step 4: If the solution accuracy ε or the maximum
number of iterations is not achieved, update the global
pheromone, and then go to Step 1.

Given the solution accuracy ε, the computational complexity
of the algorithm is roughly given by O(log(1/ε)M2).

Algorithm 1 MACO algorithm for problem (24)
Input: The number of ants Na; Cache capacity Ck; Energy budget

Ek; Data size Dj ; ET of time window Xj ; LT of time window
Yj ;

Output: UAV trajectory Λ∗;
1: while stopping criteria are not satisfied do
2: for Ia = 1 : Na do
3: Initialize the Route set of ant Ia: RouteIa ← {0}, the

number of UAVs NoU ← 1, the UAV counter CU ← 1,
the number of visited IoT devices NoD ← 0;

4: while NoD < M do
5: Obtain the set of devices from the remaining IoT devices

that make all the constraints met;
6: if there is no satisfied IoT device then
7: Add 0 to RouteIa , update NoU ← NoU + 1;
8: if NoU > CU then
9: Update CU ← CU + 1, NoU ← 1, RouteIa ←

{0}, NoD ← 0;
10: Recalculate the transmit rate of each IoT device;
11: end if
12: else
13: Calculate the visit probability of the satisfied IoT

devices based on the present pheromone;
14: Choose one of them by Roulette algorithm and add it

to RouteIa ;
15: Update NoD ← NoD + 1;
16: end if
17: end while
18: end for
19: Obtain αk,ij for each ant according to RouteIa , then com-

pute the objective value VIa based on the objective function
in problem (P3);

20: Update α∗
k,ij by αk,ij of the ant with the minimum objective

value
21: Update the global pheromone.
22: end while

B. Hovering Location Optimization

With any given feasible UAV trajectory Λ, the number of
UAVs U is confirmed. It is assumed that the set of these UAVs
is N , and the cardinality |N | = U . Consequently, the cost
function is transformed into

L
′

=

M∑
i=0

M∑
j=0

U∑
n=1

αi,j [n]
(
τ cn,i + τfn,ij + wn,j

)
, (26)
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Therefore, the hovering location Q can be optimized by
solving the following problem.

min
Q,T

L
′
, (27)

s.t. (6),
M∑
i=0

M∑
j=0

αi,j [n]Phn
(
τ cn,j + wn,j

)
+

M∑
i=0

M∑
j=0

αi,j [n]τfn,ijP
f
n

− En ≤ 0,∀n ∈ N , (27a)
tn,j + wn,j + τ cn,j − Yj ≤ 0,∀n ∈ N ,∀j ∈ D, (27b)

α0,j [n]
(
τfn,0j − tn,j

)
≤ 0,∀n ∈ N ,∀j ∈ D, (27c)

αi,j [n]
(
tn,i + τ cn,i + wn,i + τfn,ij − tn,j

)
≤ 0,

∀n ∈ N ,∀i ∈M,∀j ∈ D. (27d)

It is readily to find that the waiting time wn,j in the objective
function is not smooth at zero value. To make problem (27)
more tractable, we relax it into

min
Q,T

L
′′
, (28)

s.t. (6), (27a)− (27d),

where L
′′

=
M∑
i=0

M∑
j=0

U∑
n=1

αi,j [n]
(
τ cn,i + τfn,ij +Xj − tk,j

)
.

Such relaxation implies that the objective value of problem
(28) serves as a lower bound for that of problem (27).

As can be seen from problem (28), the collection time τ cn,j
in the objective function and constraints are non-convex due
to the non-convexity of the transmit rate Rj with respect to
qj . Therefore, problem (28) is still non-convex. To make this
problem more tractable, we first introduce relax variables Θ =
{θn,j ,∀n ∈ N ,∀j ∈ D}, then problem (28) is reformulated as

min
Q,T,Θ

L
′′′
, (29)

s.t. (6), (27c),
M∑
i=0

M∑
j=0

αi,j [n]Phn

(
Dj

θn,j
+ wn,j

)

+

M∑
i=0

M∑
j=0

αi,j [n]τfn,ijP
f
n − E ≤ 0,∀n ∈ K, (29a)

tn,j + wn,j +
Dj

θn,j
−Bj ≤ 0,∀n ∈ N ,∀j ∈ D, (29b)

αi,j [n]

(
tn,i +

Dj

θn,j
+ wn,i + τfn,ij − tn,j

)
≤ 0,

∀n ∈ N ,∀i ∈M,∀j ∈ D, (29c)
Rj ≥ θn,j ,∀n ∈ N ,∀j ∈ D, (29d)

where L
′′′

=
M∑
i=0

M∑
j=0

U∑
n=1

αi,j [n]
(
Di

θn,i
+ τfn,ij +Xj − tk,j

)
.

Lemma 1: The optimal solution of problem (29) is equiva-
lent to that of problem (28).

Proof: It can be observed that the equality of constraint
(29d) must hold at the optimal solution. Otherwise, the ob-
jective function decreases as the slack variable θk,j increases
while the hovering location variable qj fixed, which still

satisfy all other constraints. Therefore, the optimal solution can
only be obtained while constraint (29d) is met with equality,
which makes problem (29) equivalent to problem (28). Thus,
the proof of Lemma 1 is completed. �

However, the newly introduced constraint (29d) is non-
convex due to the existence of the transmit rate Rj , which
makes problem (29) still difficult to solve. Although the
transmit rate Rj is neither convex nor concave with respect
to the hovering location qj , it is convex with respect to
‖qj − sj‖2. According to [35], the first-order Taylor expansion
of any convex function is its global lower bound. From this
point, SCA technique is applied to tackle this challenge. For
any given local hovering location Qr =

{
qrj ,∀j ∈ D

}
at the

r-th iteration, the global lower bound of the transmit rate Rj
can be expressed as

Rj =
B

U
log2

(
1 +

γ0

H2 + ‖qj − sj‖2

)
≥ Grj − Irj

(
‖qj − sj‖2 −

∥∥qrj − sj
∥∥2) = Rlj , (30)

where Grj = B
U log2

(
1 + γ0

H2+‖qr
j−sj‖2

)
and Irj =

Bγ0

U ln 2
(
H2+‖qr

j−sj‖2
)(
γ0+H2+‖qr

j−sj‖2
) are constants.

By replacing the transmit rate Rj in constraint (29d) with
its lower bound Rlj at the r-th iteration, problem (29) is
approximated as

min
Q,T,Θ

L
′′′
, (31)

s.t. (6), (27d), (29b)− (29c),

Rlj ≥ θn,j ,∀n ∈ N ,∀j ∈ D. (31a)

From (30), it can be seen that Rlj is concave with respect to
qj for the sake of the convexity of ‖qj − sj‖2. Therefore,
problem (31) is a convex optimization problem, which can be
efficiently solved by standard convex optimization tools such
as CVX [36]. Note that the lower bound applied in constraint
(31a) implies that the feasible solution of problem (31) is also
feasible for problem (29). That is, the optimal value of problem
(31) is a upper bound for that of problem (29). Therefore,
an iterative algorithm for solving problem (28) is obtained
by successively solving problem (31) with updated local
hovering locations. The algorithm is summarized in Algorithm
2. Besides the monotonic convergence of SCA technique [37],
the value and gradient of the lower bound in (30) are identical
to that of the original function. Thus, it is ensured that SCA-
based algorithm can converge to at least a locally optimal
solution that meet the Karush-Kuhn-Tucker (KKT) conditions
of problem (28) [20], [38]. As the SCA-based algorithm
alternately solves the standard convex problem (31) by interior
point method, the computational complexity is roughly given
by O(log(1/ε)((M + 1)(2N + 1))3.5).
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Algorithm 2 SCA-based algorithm for problem (31)
Input: Initial hovering location Q0

Output: hovering location Q∗;
1: Let iteration counter r = 0.
2: repeat
3: Solve problem (31) with given Qr , and denote the solution as

Q∗;
4: Update Qr+1 = Q∗;
5: Update r = r + 1;
6: until the discrepancy of the objective value between two succes-

sive iteration is below a given threshold ε.

Then, combining the solutions of MACO algorithm and
SCA-based algorithm, the overall algorithm for problem is
summarized in Algorithm 3. As mentioned above, the global
controller in the initial point is assumed to know the states
of UAVs and IoT devices, as well as the CSI between
them. This algorithm has been run in the global controller
before the UAVs take off. That is, it is an offline algorithm.
Therefore, when the UAVs is dispatched to collect data, the
number, trajectories and hovering locations of them are all
predetermined.

Algorithm 3 MACO-based algorithm for problem (23)
1: Initialize the hovering locations q0j = sj , ∀j ∈ D, and let the

iteration counter r = 0.
2: Solve problem (24) with given Q0 by Algorithm 1, and denote

the solution as Λ∗;
3: With the obtained Λ∗, Solve problem (31) by Algorithm 3, and

denote the solution as Q∗.

IV. NUMERICAL RESULTS

In this section, simulation results are presented to demon-
strate the effectiveness of the proposed algorithms. We assume
that the UAVs employed in this model have the identical cache
capacity, energy budget and flying speed which are denoted
as C, E and V max, respectively. As a result, the flying and
hovering power consumption as well as the flying time of the
UAV are given by P f = P (V max), Ph = P0 + PI and
τfij =

‖qi−qj‖
V max , respectively. We consider that IoT devices are

randomly and uniformly distributed within a 2-dimensional
area of size 1km × 1km. The location of the initial point is
set as q0 = (500m, 500m). The UAV flying altitude is fixed
at H = 100 m and the flying speed is V max = 20 m/s. Thus,
the flying power is P f = 178 W and the hovering power is
Ph = 169 W according to (12) [10]. The cache capacity and
energy budget of UAV are set as C = 2 Gb and E = 1.26 MJ,
respectively. The total communication bandwidth is B = 10
MHz and the transmit power of the IoT device is P = 0.01
W. The received noise power at the UAVs is assumed to be
σ2 = −110 dBm. The channel power gain at the reference
distance of 1m is set as ρ0 = −60 dB. Similar to [24], the
normalized constant is assumed to be λ = 10000. The main
parameter settings are summarized in Table I.

In this section, we compare MACO-based algorithm
with exhaustive-based algorithm, greedy-based algorithm, and
random-based algorithm. In these three overall algorithms, the
algorithms applied to solve the hovering location optimization
problem are also SCA-based algorithm. The algorithms used

TABLE I
MAIN PARAMETERS AND SETTINGS

Parameter Physical meaning Value
H UAV flying altitude 100 m
d0 Reference distance 1 m

ρ0
Channel power gain

at the reference distance -60 dB

B Total communication bandwidth 10 MHz
σ2 Additive white Gaussian power 110 dBm
P Transmit power of IoT device 0.01 W
C Cache capacity of UAV 2 Gb
E Energy budget of UAV 1.26 MJ
P f Flying power of UAV 178 W
Ph Hovering power of UAV 169W
Vmax Flying speed of UAV 20 m/s
A0 Taking off time of UAV 0 s
B0 Latest return time of UAV 1800 s
λ Normalization factor for the aerial cost 10000
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Fig. 2. Convergence of SCA-based algorithm.

to solve the UAV trajectory optimization problem in these
three algorithms are exhaustive algorithm, greedy algorithm,
and random trajectory algorithm, respectively. In exhaustive
algorithm, all feasible trajectories for UAVs are listed and
the optimal set of trajectories is chosen as the solution. In
greedy algorithm, while searching for the trajectory, each
UAV chooses the nearest qualified IoT device as the next
device to collect data. In random trajectory algorithm, each
UAV chooses the next qualified IoT device randomly. We
generate results on CPU with Intel Core i5-6500 CPU @ 3.2
GHz speed, 8 GB memory ram and 64-bit windows operating
system.

First, We study the convergence of SCA-based algorithm
with randomly generated IoT devices in Fig. 2. The result is
averaged over 30 runs. It can be observed that the objective
value optimized by the proposed algorithm decreases quickly
with the increase of the number of iterations and the algorithm
converges in a few iterations.

Then, for validating MACO-based algorithm and illustrating
the impact of time windows on the UAV trajectory, Fig. 3
shows the obtained UAV trajectory and hovering location
in the network of 10 IoT devices with and without time
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(b)
Fig. 3. UAV trajectory and hovering location optimized by MACO-based
algorithm in the network of 10 IoT devices: (a) with time windows; (b) without
time windows. ”×” denotes the location of IoT device, and ”◦” represents
the corresponding hovering location.

windows. As it is assumed above, the UAV flies straight from
one hovering location to another and collects data from the
corresponding devices. Hence, the trajectory is composed only
of line segments. We can see from Fig. 3(a) that intersections
occur in the UAV trajectory. There are two reasons for this
phenomenon. First, the time windows of IoT devices restrict
the UAV trajectory, which results in the intersections. For
reducing the total operation time, UAV prefers to collect data
from other IoT devices and then come back rather than waiting
for current IoT device’s time window opening. As shown in
Fig. 3(b), without time window constraint, no intersection
appears in the UAV trajectory. In order to further demonstrate
this, we also simulate exhaustive-based algorithm for the same
IoT network and depict the result in Fig. 4. It can be seen
that even for exhaustive-based algorithm applied in the IoT
network with time windows, the obtained UAV trajectory still
has intersections. This shows that the time window constraint
can generate the intersections. Second, the solution obtained
by MACO-based algorithm may not be optimal. That is, even
for the IoT network without time windows, the results may still

TABLE II
MISSION COMPLETION STATE OF THE IOT NETWORK WITH 10 IOT

DEVICES

IoT device
index

Data
size (Mb) ET (s) LT(s) Arrival

time (s)
Waiting
time (s)

0 0 0 1800 739.9993 0
1 5 30 92 18.5444 11.4556
2 0.08 283 344 223.1766 59.8234
3 500 665 1325 677.3488 0
4 0.3 479 522 408.7366 70.2634
5 3 725 786 697.8884 27.1317
6 300 651 1131 500.9318 150.0682
7 0.9 203 260 121.5107 81.4893
8 0.05 109 170 89.3912 19.6094
9 0.009 369 420 303.1769 65.8231
10 800 0 1800 47.3270 0

have trajectory intersections. Apart from the intersections, as
can be seen from Fig. 3, the distances between the hovering
locations and the corresponding IoT devices in the network
without time windows are farther than that in the network with
time windows. That is because the UAV in the IoT network
without time windows would rather hover far away from IoT
devices to reduce the flying time, since it does not need
to consider the waiting time and the corresponding energy
consumption. On the contrary, the UAV in the IoT network
with time windows prefers to fly closer to the devices rather
than waiting for the time windows opening, since the closer
distance leads to faster transmit rate which further reduces the
upload time.

For further analysis, we show some properties of the sim-
ulated IoT network and the timings of UAV in Table II. It
is noted that the UAV trajectory and hovering locations are
determined jointly by the data size and time windows of IoT
devices. For most of the IoT devices with high data volume
such as the 1st, 3rd and 10th IoT devices, UAV is more willing
to fly closer to them than that with little data volume such as
the 2nd and 8th IoT devices for reducing the transmission time.
However, for some IoT devices with small data size such as the
7th and 9th IoT devices, the distances between the locations of
them and the corresponding hovering locations are closer than
that of IoT devices with large data size such as the 5th and 6th
IoT devices. The reason is that the UAV arrives before the time
windows open, thus it has enough time to fly closer for faster
data rate which can reduce the operation time effectively.

Moreover, in order to analyze the the trajectories and
hovering locations of multiple UAVs, we also simulate the
MACO-based algorithm in the network with 15 IoT devices,
as shown in Fig. 5. As one can see, besides the intersections
within a trajectory, the intersections also exist between the
trajectories of different UAVs. There are two reasons. First,
the constraints of the problem cause the intersections. The
energy and cache constraints of UAVs and the time window
constraints of IoT devices restrict the IoT devices that the
UAVs can serve. Furthermore, the service order of the UAVs
is also restricted, since they have to collect data within the
constrained time of each IoT device. Second, the collision
avoidance between the UAVs is not considered in this paper
due to the high complexity of this problem. Since the trajectory
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Fig. 4. UAV trajectory and hovering location optimized by exhaustive-based
algorithm in the network of 10 IoT devices with time windows. ”×” denotes
the location of IoT device, and ”◦” represents the corresponding hovering
location.
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Fig. 5. UAV trajectory and hovering location optimized by MACO-based
algorithm in the network of 15 IoT devices with time windows. ”×” denotes
the location of IoT device, and ”◦” represents the corresponding hovering
location.

variable of UAV is discrete, the collision problem is difficult to
solve by convex optimization method. In addition, the insertion
of hovering location into the trajectory of any UAV may
make the subsequent trajectory unable to meet the constraints.
Therefore, it is also hard to design a heuristic algorithm.
Although the collision avoidance of UAVs is non-trivial in
this system model, it is still a significant and meaningful issue
especially for the systems with numerous UAVs, which is left
as our future work.

Next, we compare MACO-based algorithm with exhaustive-
based algorithm, greedy-based algorithm, and random-based
algorithm in small-scale IoT networks. The results with av-
erage over 400 runs are depicted in Fig. 6. Therefore, the
results of the number of UAVs in Fig. 6(b) are not integers.
As it can be seen, MACO-based algorithm and exhaustive-
based algorithm achieve similar performance both in the total
UAV operation time and the number of UAVs, and greedy-
based and random-based algorithms perform much worse. For
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Fig. 6. Performance comparison between different algorithms in small-scale
IoT networks: (a) total UAV operation time; (b) number of UAVs.

the performance of total UAV operation time, MACO-based
algorithm improves up to about 56.2% and 49.1% compared
with random-based and greedy-based algorithms, respectively.
As for the number of UAVs, MACO-based algorithm improves
up to about 71.4% and 63.4% compared with random-based
and greedy-based algorithms, respectively. In addition, from
Fig. 6, we can see that the proposed MACO-based algorithm
is much more stable than greedy-based and random-based
algorithms.

Furthermore, we also compare the running time of MACO,
exhaustive, greedy, and random trajectory algorithms in Fig.
7. It can be seen that when the number of IoT devices is not
more than 8, the running time of these four algorithms are
small and similar. However, when it is more than 8, the gap
between exhaustive algorithm and the other three algorithms
becomes large. In addition, we observe that the running time of
MACO algorithm is a little bit longer than greedy and random
trajectory algorithms. That is because there are not many
trajectory choices in small-scale IoT networks. Therefore, the
other three algorithms can finish searching quickly. However,
as an iterative algorithm, the MACO algorithm still has to
alternate until the stopping criteria are met. Nevertheless, the
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differences between the running time of MACO algorithm
and greedy as well as random trajectory algorithms are small.
In general, the proposed MACO-based algorithm can achieve
similar performance and stability with exhaustive-based algo-
rithm while spending almost the same time with other two
algorithms in small-scale IoT networks.

One can see from Fig. 7 that the computational complexity
of the exhaustive algorithm grows exponentially with the size
of the networks, which makes it unscalable for large-scale
IoT networks. When the number of IoT devices reaches 11,
the exhaustive algorithm already needs to run for 24 min.
Therefore, owing to the long running time of exhaustive-
based algorithm, we just compare the performance of MACO-
based algorithm, random-based algorithm and greedy-based
algorithm in large-scale IoT networks in Fig. 8. The results are
averaged over 10 runs, which may also cause the results in Fig.
8(b) to be not integers. From Fig. 8, we can see that MACO-
based algorithm performs better than the other algorithms
both in the total UAV operation time and the number of
UAVs, especially for greedy-based algorithm. As the number
of IoT devices increases, the number of trajectory choices for
UAVs becomes huge. However, the UAVs in random-based
algorithm choose the next IoT device randomly, and the UAVs
in greedy-based algorithm choose the currently best IoT device
as the next device. These properties make the performance of
these two algorithms deteriorate as the number of IoT devices
increases. By contrast, MACO-based algorithm searches for
the trajectories more comprehensively, leads to a better perfor-
mance. Compared with greedy-based algorithm, MACO-based
algorithm improves up to about 95.3% and 96.5% in the UAV
total operation time and the number of UAVs, respectively.
Meanwhile, MACO-based algorithm improves up to about
81.9% and 86.5 % in the total UAV operation time and the
number of UAVs, respectively, compared with random-based
algorithm. It can be observed that the solutions of random-
based and greedy-based algorithms are almost infeasible in
large-scale IoT networks. However, for MACO-based algo-
rithm, the results are still considerable. Even in the networks of
200 IoT devices, MACO-based algorithm only employs about
6 UAVs to collect data, and the average operation time per
UAV is about 15.4 min.

In summary, the performance of MACO-based algorithm is
close to that of exhaustive-based algorithm but it spends much
less time in small-scale IoT networks. As for the large-scale
IoT networks, MACO-based algorithm can still achieve con-
siderable performance compared with greedy-based algorithm
and random-based algorithm.

V. CONCLUSION

In this paper, we have studied the data collection in multi-
UAV enabled systems with time windows where the energy
budget, cache capacity of UAVs and the transmission time of
IoT devices are considered. To jointly minimize the number
and the total operation time of UAVs, an optimization problem
has been formulated to optimize the UAV trajectory and hover-
ing location. We have decomposed it into two subproblems and
proposed an efficient algorithm, which relies on the modified
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Fig. 8. Performance comparison between different algorithms in large-scale
IoT networks: (a) total UAV operation time; (b) number of UAVs.

ACO algorithm and SCA technique. Numerical results have
shown that the proposed MACO-based algorithm converges
fast and can achieve a better performance in acceptable time
compared with other benchmark solutions.
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Moreover, this paper can be extended in three directions.
Firstly, the machine learning may be applied as an online al-
gorithm to help with the real-time decision [39]. Secondly, the
collision avoidance between UAVs could be further considered
in our future work. Finally, after the data collection, how to
apply an UAV-enabled mobile edge computing (MEC) with
time window could be another interesting research direction.
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