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Abstract
Nucleosome positioning is involved in many gene regulatory processes happening in the cell, and it may change as cells 
differentiate or respond to the changing microenvironment in a healthy or diseased organism. One important implication of 
nucleosome positioning in clinical epigenetics is its use in the “nucleosomics” analysis of cell-free DNA (cfDNA) for the 
purpose of patient diagnostics in liquid biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin of 
the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of DNA in body fluids reflect the positions of 
nucleosomes in the cells of origin. Here, we report a systematic nucleosomics database — NucPosDB — curating published 
nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free DNA (cfDNA) that reflect nucleosome 
positioning in situ in the cells of origin. Users can select subsets of the database by a number of criteria and then obtain 
raw or processed data. NucPosDB also reports the originally determined regions with stable nucleosome occupancy across 
several individuals with a given condition. An additional section provides a catalogue of computational tools for the analysis 
of nucleosome positioning or cfDNA experiments and theoretical algorithms for the prediction of nucleosome positioning 
preferences from DNA sequence. We provide an overview of the field, describe the structure of the database in this context, 
and demonstrate data variability using examples of different medical conditions. NucPosDB is useful both for the analysis 
of fundamental gene regulation processes and the training of computational models for patient diagnostics based on cfDNA. 
The database currently curates ~ 400 publications on nucleosome positioning in cell lines and in situ as well as cfDNA 
from > 10,000 patients and healthy volunteers. For open-access cfDNA datasets as well as key MNase-seq datasets in human 
cells, NucPosDB allows downloading processed mapped data in addition to the regions with stable nucleosome occupancy. 
NucPosDB is available at https:// gener egula tion. org/ nucpo sdb/.
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Background

Genomic nucleosome positions are non-random and unique 
for each cell, reflecting many biological processes that 
require the access of regulatory molecules to the DNA 
(e.g. reviewed in Clarkson et al. 2019; Baldi et al. 2020; 
Parmar and Padinhateeri 2020)). Previously, we assem-
bled a comprehensive collection of experimental datasets 
of nucleosome positioning across many organisms and cell 
lines as well as software tools for the analysis and predic-
tion of nucleosome positioning (Teif 2016). After the initial 

focus on nucleosome positioning in organisms such as yeast 
(Yuan et al. 2005; Ioshikhes et al. 2006; Segal et al. 2006), 
many studies focused on human cells (Schones et al. 2008; 
Valouev et al. 2011; Gaffney et al. 2012; Kundaje et al. 2012; 
Diermeier et al. 2014; Ho et al. 2014; Teif et al. 2017; Mallm 
et al. 2019). Furthermore, more recently, the field has moved 
towards clinical applications of nucleosome positioning to 
cell-free DNA (cfDNA), as will be explained below. There 
is a strong need for an integrative database that connects 
both fundamental and clinically focused “nucleosomics”. 
Here, we report a systematic database, called NucPosDB, 
which integrates classical nucleosome positioning studies 
with a new direction of nucleosome positioning landscapes 
reconstructed from cfDNA from human patients.

The shift of the focus of the research from fundamen-
tal roles of nucleosome positioning in gene regulation 
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to patient diagnostics is happening due to the fact that 
nucleosome positioning can provide a valuable diagnostic 
marker offering unique features not available in other clini-
cal tests. There are two main arguments for this. Firstly, 
the timescale of the change of nucleosome positioning 
landscape is comparable to the timing of gene activation 
or the cell cycle (Schones et al. 2008; Teif et al. 2012) 
which is between the quick changes of gene expression 
and concentrations of disease-related small molecules and 
the much slower changes reflected by DNA mutations or 
aberrant methylation happening in cancer (Dawson and 
Kouzarides 2012; Pich et al. 2018; Li and Luscombe 2020) 
(Fig. 1A). Thus, differences in nucleosome positioning can 
be in principle suitable for monitoring a patient’s response 
to therapy in this intermediate time range. While very 
informative, determining genome-wide nucleosome posi-
tioning maps in tumour tissues of cancer patients would 
be an expensive and invasive procedure. Here, the second 
argument comes into play: luckily, nucleosome position-
ing in tissues is directly reflected in cfDNA circulating in 
blood and other body liquids. This is because nucleases, 
which shred the chromatin of dying cells to form what 
later becomes cfDNA, preferentially cut the DNA between 
nucleosomes (Chandrananda et  al. 2015; Kustanovich 
et al. 2019; Serpas et al. 2019; Han et al. 2020; Heitzer 
et al. 2020) (Fig. 1B). Since the half-life of cfDNA in 
blood is about 15 min (Volik et al. 2016), cfDNA extracted 
at any given time point represents a very recent snapshot 
of nucleosome positioning in the cells of origin.

Medical tests based on cfDNA are sometimes called “liq-
uid biopsies” because this promising approach allows avoid-
ing tissue biopsy in the case of solid tumours (Volik et al. 
2016; Wan et al. 2017; Peng et al. 2021; Ignatiadis et al. 
2021; Lo et al. 2021). The history of cfDNA research can 
be traced back to 1944 when it was first reported (Mandel 
and Metais 1948). cfDNA source was correctly interpreted 
as the products of apoptotic cleavage of chromatin subunits 
as early as 1970 (Williamson 1970; Henikoff and Church 
2018). However, the active use of cfDNA for medical pur-
poses using next-generation sequencing (NGS) started only 
in the recent years (Ignatiadis et al. 2021) with many diverse 
applications ranging from prenatal testing (Kitzman et al. 
2012; Sun et al. 2018), cancer (Frenel et al. 2015; Phallen 
et al. 2017; Cristiano et al. 2019; Zviran et al. 2020), ageing 
(Teo et al. 2019), inference of patterns of gene expression 
(Snyder et al. 2016; Ulz et al. 2016) and transcription factor 
binding (Ulz et al. 2019), to even monitoring astronaut’s 
health on spaceflights (Bezdan et al. 2020). While the field 
of liquid biopsies is expanding dramatically, it is still in the 
search of methods balancing sensitivity and cost (Abbosh 
et al. 2017; Wan et al. 2019; Peng et al. 2021).

Historically, the first class of genomics-based cfDNA 
diagnostic methods relied on mutation analysis (Frenel 
et al. 2015; Abbosh et al. 2017; Dudley and Diehn 2021; 
Zviran et al. 2020). Related approaches involve analyses of 
gene fusions (Palande et al. 2020) or copy number variations 
(CNVs) (Mouliere et al. 2018b). In all these cases, assay 
sensitivity critically depends on the sequencing depth as well 

Fig. 1  The motivation for the 
use of nucleosome position-
ing in situ and cfDNA as a 
diagnostic marker. A) Nucleo-
some positioning acts as the 
cell memory at intermediate 
timescales between faster 
changes of gene expression 
and reaction metabolites and 
long-term changes such as the 
accumulation of mutations 
and changes of DNA methyla-
tion. B) cfDNA extracted from 
blood plasma or other body 
liquids reflects the nucleosome 
positioning landscape in the 
cells of origin. This is because 
enzymes that shred chromatin 
into pieces in processes such as 
apoptosis, necrosis or NETosis 
preferentially cut DNA between 
nucleosomes
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as on the abundance of cfDNA derived from tumour cells 
(ctDNA) which usually correlates with the severity/stage 
of disease (Abbosh et al. 2017; van der Pol and Mouliere 
2019; Zviran et al. 2020). In fact, a recent report showed 
that elevated cfDNA levels correlate with all-cause mortal-
ity (Kananen et al. 2020). Thus, many assays use cfDNA 
concentration as a marker of disease severity without 
sequencing.

However, if the detection method is based on few genomic 
regions that are not represented in cfDNA, then even increas-
ing the sequencing depth would not help the diagnostics. To 
overcome this problem, it is possible to base cfDNA analysis 
on a larger number of genomic regions with more subtle epi-
genetic changes, hence, departing from the idea of mutation 
analysis and focusing the analysis, for example, on changes 
in DNA methylation (Shen et al. 2018; Erger et al. 2020; Liu 
et al. 2020; Nassiri et al. 2020) or hydroxymethylation (Song 
et al. 2017) of multiple genomic locations that reflect disease-
specific changes in the cells of origin. cfDNA methylomics 
is being actively used in a growing number of applications. 
The main challenge with this class of approaches is that the 
detection of DNA modifications requires at least moderate 
sequencing depth which drives up the cost of the assay. In 
addition, changes in DNA modifications (as well as DNA 
sequence) accumulate at a long-term timescale and may not 
be prevalent at the onset of disease or as a response to therapy 
(see Fig. 1A). To address these problems, one can consider 
assays that are based on the detection of smaller changes at 
a larger number of genomic loci. The most straightforward 
solution is to look at nucleosome positioning per se, which 
is reflected in cfDNA localisation patterns.

New types of liquid biopsy tests based on nucleosome 
positioning-inspired analysis of cfDNA are sometimes 
termed “fragmentomics” and “nucleosomics” (Im et al. 
2021). Fragmentomics analyses have been focused on the 
distribution of sizes of cfDNA fragments (Snyder et al. 2016; 
Underhill et al. 2016; Mouliere et al. 2018a; Sun et al. 2018; 
Markus et al. 2021; Guo et al. 2020; Zukowski et al. 2020) 
as well as the nucleotide patterns at their cut sites (Chan-
drananda et al. 2015). Sizes of cfDNA fragments reflect 
the contributions of different biological processes such as 
apoptosis, necrosis and NETosis. For example, apoptotic 
enzymes tend to cut out DNA fragments which are slightly 
smaller than mononucleosomal DNA (Serpas et al. 2019; 
Han et al. 2020). Such short cfDNA fragments tend to be 
enriched in cancer patients (van der Pol and Mouliere 2019). 
On the other hand, ultra-long cfDNA fragments may result 
from NETosis — a process in which neutrophils release nets 
of chromatin called neutrophil extracellular traps (NETs) 
in order to catch and destroy pathogens (Kustanovich et al. 
2019). Such long cfDNA fragments can be associated with 
NETosis in different types of inflammation, for example, in 
diabetes (Wong et al. 2015) and COVID-19 (Ng et al. 2021). 

Necrotic cell death is also usually associated with longer 
DNA fragments (> 10 kb) (Kustanovich et al. 2019). Thus, 
each type of cell death has its distinct pattern of cfDNA 
size distribution. cfDNA size may also differ for different 
body fluids, e.g. urine usually harbours shorter cfDNA than 
blood plasma (van der Pol and Mouliere 2019). The situa-
tion is further complicated by the fact that cell senescence 
opposes cfDNA release (Rostami et al. 2020). Several stud-
ies in fragmentomics suggested using a simple ratio of the 
amount of short/long cfDNA fragments as an estimate of 
ctDNA/cfDNA fraction (Mouliere et al. 2018a; van der Pol 
and Mouliere 2019) but, given the complexity of different 
cell death pathways mentioned above, it is not always easily 
interpretable. We will show below that even within a nar-
row group of medical conditions, the distribution of cfDNA 
sizes is quite heterogeneous. Another type of fragmentomics 
analysis is based on the fact that DNA nucleases have dif-
ferent sequence preferences (Serpas et al. 2019; Han et al. 
2020) and therefore the distribution of nucleotide patterns 
at the ends of the cfDNA fragments may provide valuable 
diagnostic information (van der Pol and Mouliere 2019).

cfDNA nucleosomics is very promising since it elimi-
nates the need of specific genomic markers and pre-set 
hypotheses about the underlying medical condition, and 
the bottleneck is now on the computational side. Recent 
studies have used machine learning to distinguish the cells 
of origin or perform binary classification healthy/cancer 
based on cfDNA patterns in gene promoters (Snyder et al. 
2016; Wan et al. 2019) or cfDNA density in megabase-size 
genomic windows (Cristiano et al. 2019). Another suc-
cessful approach combined several features in the PCA 
analysis including the amplitude of cfDNA oscillations 
with 10-bp periodicity, gene copy number variation and the 
relative abundances of cfDNA fragments with sizes in cer-
tain ranges (Mouliere et al. 2018a). One of the directions 
actively pursued by the cfDNA community is creating tar-
geted sequencing assays based on nucleosomics of a small 
number of genomic regions — as small as just 6 regions in a 
recent publication (Zhu et al. 2021). The smaller the number 
of regions in the targeted nucleosomics assays, the better. 
However, this also has to be balanced with the sensitivity 
and ability to recognise more than one medical condition. 
Currently, the “holy grail” of liquid biopsies — the abil-
ity to diagnose an arbitrary medical condition — is still far 
from reach. Notably, achieving this aim requires access to 
as many as possible published cfDNA datasets to train the 
models. Few web sites started appearing that allow visuali-
sation and download of a limited number of cfDNA data-
sets (Yu et al. 2020; Zheng et al. 2021), but a centralised 
resource which systematically collects cfDNA datasets from 
the dozens (and increasing towards hundreds) of currently 
available cfDNA publications is desperately needed. Here, 
we have developed such a resource — NucPosDB — which 
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aims to curate all published datasets of sequenced cfDNA, 
nucleosome positioning maps in  vivo and software for 
nucleosomics analysis. NucPosDB also intends to provide 
our integrative analysis to quantify the genome in terms of 
regions with differential nucleosome occupancy and stability 
(Vainshtein et al. 2017), connecting cfDNA and nucleosome 
maps in healthy (Schones et al. 2008; Gaffney et al. 2012) 
and cancer cells (Mallm et al. 2019).

Construction and content

Database structure NucPosDB curates open- and restricted-
access datasets of nucleosome positioning in vivo and sequenced 
cfDNA, as well as computational software for cfDNA/nucleo-
some positioning analysis and modelling. The structure of the 
database is summarised in Fig. 2. It contains the following sec-
tions: (1) nucleosome positioning in vivo, (2) sequenced cfDNA, 
(3) database of regions in the human genome with stable nucleo-
some occupancy for a given condition, and the repository of 
software for nucleosomics, further separated into three subsec-
tions devoted to (4) analysis of nucleosome maps in vivo, (5) 
prediction of nucleosome formation preferences based on DNA 
sequence and (6) cfDNA-specific analysis.

The section of nucleosome positioning in vivo contains 
datasets from > 250 publications in > 16 biological spe-
cies, dominated by Saccharomyces cerevisiae (28.6%), Mus 
musculus (25.9%), Homo sapiens (20.1%) and Drosophila 
melanogaster (14.3%). Figure 3 demonstrates relative abun-
dances of different model organisms used for nucleosome 
positioning analysis. This section of the database features 
more than 18 experimental techniques, dominated by 
MNase-seq, complemented by methods such as histone H3 
ChIP-seq, MH-seq, MPE-seq, MiSeq, NOME-seq and RED-
seq (detailed in our previous publications Teif 2016; Teif 
and Clarkson 2019) as well as newer techniques based on 

long single-molecule reads, Nanopore-seq (Baldi et al. 2018) 
and Fiber-seq (Stergachis et al. 2020), and nucleosome-scale 
mapping of 3D genome contact, Micro-C (Hsieh et al. 2015). 
Techniques such as ATAC-seq, which map nucleosomes 
only in a limited number of “open” genomic locations, are 
currently not included in NucPosDB.

The repository of sequenced cfDNA represents a recent 
addition to NucPosDB and currently features more than 
75 studies. cfDNA processing is complicated by the fact 
that many datasets dealing with patient data have restricted 
access, e.g. where the raw data is stored in the European 
Nucleotide Archive (ENA) or the database of Genotypes 
and Phenotypes (dbGaP). The application for access to each 
such dataset is considered individually by the corresponding 
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Fig. 2  The structure of NucPosDB containing six major sections 
(listed left to right in the scheme): (1) nucleosome maps measured 
in  vivo in different cell types, (2) sequenced cfDNA datasets, (3) 
regions with stable nucleosome occupancy in the human genome for 

different conditions based on (1) and (2), (4) software for analysis of 
nucleosome mapping experiments, (5) software for predicting prefer-
ences of nucleosome formation from the DNA sequence and (6) soft-
ware for cfDNA-specific analysis

Fig. 3  The distribution of nucleosome positioning datasets across dif-
ferent biological species
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data access committee, and the time required to receive reg-
ulatory approval may reach several months. On the other 
hand, when the raw data is stored in databases such as GEO, 
such datasets are available without restrictions. NucPosDB 
curates both open-access and restricted-assess datasets, but 
only open-access datasets are supplied with the processed 
data including the locations of all mapped nucleosomes and 
stable-nucleosome regions (see below). Table 1 shows exam-
ples of cfDNA datasets from NucPosDB that have no access 
restrictions. cfDNA datasets included in NucPosDB can be 
browsed by organism (e.g. human, mouse or dog). Currently, 
the majority of cfDNA datasets included in NucPosDB are 
of human origin. For patients, it is possible to select medical 
condition (currently around 50 conditions), source of cfDNA 
(blood, e.g. serum/plasma, cerebrospinal liquid or urine), 
experimental method (at present 12 methods) and access type 
(restricted or not).

A special NucPosDB section is devoted to the regions 
of the human genome with stable nucleosome occupancy. 
It contains condition-specific coordinates of genomic loca-
tions where nucleosome occupancy has low relative standard 
deviation across all samples within the same condition. This 
is defined with NucTools (Vainshtein et al. 2017) using a 
window-based approach as detailed below and arranged in 
tab-separated BED files with the following columns: chro-
mosome, region start, region end, normalised nucleosome 
occupancy, standard deviation, relative deviation. In addi-
tion, for a number of open-access cfDNA entries, our data-
base provides access to the uniformly processed BED files 
with locations of all mapped nucleosomes (based on paired-
end cfDNA reads). We have mapped these cfDNA reads to 
the human genome assemblies hg19 and hg38 as detailed 

below. These were further processed with NucTools (Vain-
shtein et al. 2017) to generate tab-separated files with the 
following columns: chromosome, fragments start, fragment 
end, fragment size. Each patient sample has been processed 
separately. The links from the interactive database tables 
lead to the file repository with directories separated by pub-
lication and further split into different medical conditions.

The repository of software for analysis of nucleosome 
positioning experiments currently contains 31 entries rep-
resenting different classes of software ranging from nucleo-
some array visualisers and nucleosome peak callers to pre-
dictors of specific parameters such as the nucleosome repeat 
length (Vainshtein et al. 2017). The repository of algorithms 
for prediction of DNA sequence-dependent affinity of nucle-
osome octamer currently contains 23 entries, as described 
previously (Teif 2016; Teif and Clarkson 2019). The reposi-
tory of software specific for the analysis of cfDNA currently 
includes 32 entries.

Data collection and curation The datasets were searched in 
NCBI GEO as well as in peer-reviewed publications and pre-
prints from bioRxiv and medRxiv servers. Initial search was 
conducted using the keywords “nucleosome positioning”, 
“MNase-seq” and “cfDNA”. Further relevant studies were 
extracted through publication chaining. Over 300 papers 
reporting relevant datasets and software were arranged into 
five sections: nucleosome maps in vivo, cfDNA datasets, 
computational tools for nucleosome positioning analy-
sis, DNA sequence-based modelling and cfDNA analysis. 
The criterion for the dataset inclusion was the ability to 
reconstruct a nucleosome positioning profile with single-
nucleotide resolution based on a given dataset. Dataset 

Table 1  Example open-access datasets from NucPosDB reporting whole genome sequencing of cfDNA

Description Medical conditions N patients

Generation of highly biomimetic quality control materials for non-invasive prenatal 
testing based on enzymatic digestion of matched mother–child cell lines (Zhang 
et al. 2019)

Prenatal testing 2

Sequencing of cfDNA derived from the plasma of individuals of different ages (Teo 
et al. 2019)

Ageing 12

Very short mitochondrial DNA fragments and heteroplasmy in human plasma 
(Zhang et al. 2016)

Sepsis, tissue transplantation 7

Cell-free DNA comprises an in vivo, genome-wide nucleosome footprint that 
informs its tissue(s)-of-origin (Snyder et al. 2016)

Healthy, lupus, Crohn’s disease, colitis, cancer 60

Cell-free DNA provides a good representation of the tumour genome despite its 
biased fragmentation patterns (Ma et al. 2017)

Cancer 5

The next-generation sequencing (NGS) technologies related assessments of circulat-
ing tumour DNA (ctDNA) in both primary brain tumours and metastatic brain 
tumours (Liang et al. 2020)

cancer 28

WGS of human pooled plasma cfDNA sampled from GI diseased individuals 
(PRJEB1791)

Healthy, cancer, inflammatory bowel disease 24

Decoding the evolutionary response to prostate cancer therapy by plasma genome 
sequencing (Ramesh et al. 2020)

Cancer 23
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reporting methods such as ChIP-seq and microarrays were 
normally excluded unless the corresponding publications 
provided specific nucleosome positioning analysis. ATAC-
seq was excluded since it maps nucleosomes only in a lim-
ited number of “open” genomic locations. cfDNA datasets 
were included when they were obtained using any varia-
tion of a sequencing technique that involves whole-genome 
or targeted sequencing and thus allows partial or complete 
reconstruction of nucleosome profiles. This includes meth-
ods determining DNA methylation and hydroxymethylation, 
but not microarray-based techniques/assays.

User interface The user interface of NucPosDB is realised in 
PHP. The search and keywords selection is currently enabled 
with the help of the TablePress plugin for WordPress (table-
press.org, author Tobias Bäthge, Magdeburg, Germany). 
Datasets can be searched by typing a query into the search 
box or using multiple-item selection in drop-down menus 
such as “Organism” and “Experiment type”. Additionally, 
the repository of cfDNA datasets contains drop-down menus 
“Medical condition”, “cfDNA source” and “Access” (open/
restricted). The interactive tables with experimental datasets 
can be ordered or sub-selected by the combination of the fol-
lowing criteria: “Description” (typically includes the title of 
the original publication and a clickable link), “Organism”, 
“Cell type” (only in the section nucleosome maps in vivo), 
“Experiment type/method”, “Raw data” and “Processed 
data”. The cfDNA repository allows additional selection/
ordering criteria: “Medical condition”, “cfDNA source”, 
“Access” (open/restricted) and “Number of patients”.

Data processing The calculation of the histogram of DNA 
fragment size distribution was carried out using R. The 
calculation of nucleotide frequencies was performed with 
HOMER (Heinz et al. 2010). Raw paired-end reads were 
aligned to the human genomes hg19 and hg38 using Bow-
tie (Langmead et al. 2009), reporting only uniquely aligned 
reads with up to two mismatches. Normalised nucleosome 
occupancy was calculated genome-wide with 100-bp win-
dows by dividing the average nucleosome occupancy in a 
given window by the average chromosome-wide nucleo-
some occupancy. Stable-nucleosome regions were deter-
mined with NucTools with 100 bp sliding window and the 
threshold 0.5 applied to the relative deviation of nucleo-
some occupancy across all samples with a given condition, 
as described previously (Vainshtein et al. 2017). The relative 
deviation was defined as the ratio of the standard deviation 
to the normalised nucleosome occupancy in a given window.

Utility and discussion

One of the main purposes of having a centralised reposi-
tory of nucleosome positioning/cfDNA datasets is to be 
able to assess the data heterogeneity within conditions and 
the variability between different conditions and experi-
mental protocols. While a systematic analysis of such vari-
ability of all datasets in NucPosDB is beyond the scope of 
the current work, let us demonstrate the typical distribu-
tions of two basic characteristics of cfDNA, namely the 
GC content and the DNA fragment sizes.

Firstly, let us consider the nucleotide frequency as a 
function of the distance from the cfDNA fragment end 
(Fig. 4A). This type of analysis is motivated by previous 
findings that endogenous nucleases have distinct prefer-
ences for DNA cut sites, and these preferences are differ-
ent from artificial cut sites observed in MNase-seq experi-
ments (Serpas et al. 2019; van der Pol and Mouliere 2019; 
Han et al. 2020). Apoptosis in different types of cancer 
may involve the same set of nucleases; therefore, based 
on this metric, different types of cancer may not be eas-
ily distinguishable from each other. Indeed, this is what 
we observe for the distribution of GC frequencies near 
cfDNA fragment ends in Fig. 4A. On the other hand, dif-
ferent biological processes such as NETosis may employ 
a different combination of enzymes; thus, it may be pos-
sible to distinguish medical conditions that are charac-
terised by inflammation (inflammation triggers NETosis). 
Indeed, Fig. 4A shows that nucleotide profiles of cfDNA 
from patients with lupus (systemic inflammation) differ 
quite significantly from those in cancer or healthy controls.

Next, let us consider the distributions of DNA frag-
ment sizes. Previous studies reported that cancer cfDNA 
appears to have shorter fragments that are more strongly 
digested (Snyder et al. 2016; Underhill et al. 2016; Mouli-
ere et al. 2018a; Sun et al. 2018; Markus et al. 2021; Guo 
et al. 2020; Zukowski et al. 2020). Our results do show 
differences in cfDNA fragment size distributions, most 
notably for lupus (Fig. 4B). The difference of cfDNA in 
lupus from cancer and healthy samples may be explained 
by the different DNA digestion processes undergoing in 
this systemic inflammatory condition (Fig. 1B). However, 
special care is required to normalise the data and take into 
account different protocols (e.g. the lupus samples in the 
study considered above may have been clinically processed 
in a different way than the cancer samples).

The differences in the experimental protocols used in 
different labs for cfDNA processing as well as comorbidi-
ties of patients may play major roles in the data interpreta-
tion. To demonstrate this, Fig. 4 C and D compare samples 
from different subgroups of healthy people. Figure 4 C 
shows that the average GC content of cfDNA extracted 
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for whole-genome sequencing by different methods differs 
dramatically. In one case, Teo et al. collected cfDNA from 
three age groups (25, 70 and 100 years old) and the differ-
ences of GC profiles between these age groups are pretty 
minor (Teo et al. 2019). On the other hand, in another 
group of healthy people where sequencing was performed 
by the method of Snyder et al., the average GC content is 
about 3% lower (Snyder et al. 2016). Such difference may 
lead to biased representation of different types of genomic 
regions and needs to be taken into account when compar-
ing datasets across different laboratories. Indeed, Fig. 4D 
shows that the distribution of cfDNA fragment sizes varies 
quite substantially between datasets reported by three dif-
ferent labs even when all of these refer to the same condi-
tion (breast cancer in this example), and when samples 
within one lab’s dataset are consistently similar to each 
other. This probably reflects differences in experimental 
protocols and needs to be taken with special care when 
performing nucleosomics analysis for cancer diagnostics. 
Similar care is needed when comparing MNase-seq data-
sets obtained in different laboratories, because it is known 
that parameters such as the degree of chromatin digestion 
greatly affect nucleosome maps due to differential sen-
sitivity of partially unwrapped nucleosomes to digestion 
level (Teif et al. 2014; Chereji et al. 2016; Ramachandran 
et al. 2017). In such situations, it may be helpful to adjust 

clinically relevant analyses taking into account the loca-
tions of regions with stable nucleosome occupancy in a 
given condition as reported by NucPosDB.

Finally, the examples shown above demonstrate that 
the development of a robust clinical diagnostics based on 
cfDNA nucleosomics will require many datasets across dif-
ferent laboratories and types of wet lab assays. This is where 
NucPosDB may be particularly helpful, allowing the use of 
data from more than 10,000 patients.

Conclusions

NucPosDB offers a user-friendly interface and curates 
published in vivo nucleosome positioning datasets includ-
ing > 18 types of experimental techniques in > 16 different 
species and distinct cell types, supplemented with the reposi-
tory curating cfDNA datasets for more than 10,000 patients 
as well as the software packages for “nucleosomics” analy-
sis. For many open-access datasets, we also provide sys-
tematically calculated condition-specific stable-nucleosome 
regions which are useful in comparison between different 
conditions. In the future, NucPosDB can serve as a central-
ised resource for the nucleosomics community, providing a 
platform for the annotation of cfDNA datasets and storage 

Fig. 4  Aggregate characteristics 
of cfDNA datasets across differ-
ent medical conditions (A, B) 
and ages of healthy people (C, 
D). A GC content as a function 
of the distance from the end of 
cfDNA fragment (Snyder et al. 
2016). B Distribution of lengths 
of cfDNA fragments (Snyder 
et al. 2016). C GC content as a 
function of the distance from 
the end of cfDNA fragment for 
25-, 70- and 100-year-old peo-
ple (Teo et al. 2019), compared 
with pooled healthy people from 
another study (Snyder et al. 
2016). D Differences of cfDNA 
fragment sizes for cfDNA of 
breast cancer patients collected 
in three different studies (Sny-
der et al. 2016; Song et al., 2017 
and Butler et al., 2015)
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of processed data required for training models for patient 
diagnostics with liquid biopsies.
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