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Abstract: This paper presents a novel methodology to fuse signals from multiple ultrasonic sensors
and detect cracks in the reinforced concrete reference structure using nondecimate discrete wavelet
transform. The behaviour of a reinforced concrete structure subjected to operational changes is
considered. The changes/damage detection procedure is based on a novel sensor fusion method.
Several advantages of the proposed approach using the sensor fusion method with respect to features
from single pair of sensors were shown and discussed based on the tested objects. A CWT feature-
based approach is considered to extract damage-sensitive features. Experimental results using the
proposed approach show a probability of detection greater than 94% when detecting cracks due to
quasistatic load. Due to the comprehensive effectiveness and low computational complexity, the
proposed approach could be performed in large real structural damage assessment problems as well.

Keywords: ultrasonic NDT; signal processing; signal level fusion; reference reinforced concrete
structures; damage detection; wavelet transform
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1. Introduction

The ambitions of humans to conquer new spaces has always led us to imagine, draw
and design a great magnitude of civil structures. This induces the development of appropri-
ate materials to reach this goal. Today, concrete is one of the most common materials used
to build superstructures. However, concrete is a material that shows changes over time.
Thus, several factors lead these changes, such as the mechanical loading of the structure,
the environment or attacks sustained over time, to degrade the material. These can lead
to variations in the mechanical properties of the structure. Hence, how can we ensure
the safety of this structure, which is under the heavy traffic and harsh environmental
conditions? The answer is preventive maintenance, but how can we optimize it? An
approach is given through the long-term monitoring of structures, named Structural Health
Monitoring (SHM) [1]. The SHM system uses measurement technologies located in the
different geometric areas to detect these changes in structures.

Applications such as traffic controls, security and monitoring systems are an integral
part of superstructures. Monitoring system is a significant requirement for today’s civil
structure under the name Structural Health Monitoring (SHM). Several Non-Destructive
Testing (NDT) measurement techniques have been used for SHM system [2]. The quality
problems encountered in the concrete structures appear at different stages of the realization
of the work; for this reason, increased demand for more precise measurement techniques
and, at the same time, more flexible evaluation of the quality of the concrete can be observed.
Thus, to address these problems, a range of in situ tests called “non-destructive tests” have
been developed. Many parameters play an important role here, however, the main thing
which restricts the performance of these systems in many cases is the limited measurement
areas of the sensors. In fact, sensors have some characteristics which the limit range of their
measurement area.
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In civil engineering, the available NDT techniques are listed as follows: ultrasound;
impact-echo; acoustic emission; strain gauges; fiber optics; and, more locally, rebound
hammer, etc. [2–7]. Among them, ultrasonic testing (ultrasonic pulse velocity), impact
echo, acoustic emission and rebound have been the most common techniques for many
years. It is well known that several NDT techniques possess different advantages and
disadvantages [8]. However, the main disadvantages are their cost and capability for
long-term monitoring (for most of the techniques). In spite of that, ultrasonic echo and
pulse velocity techniques are used frequently in civil structures (as they are not bulky
or expensive). Ultrasonic measurement technique is based on the analysis in time or in
frequency of the signal coming from an ultrasonic mechanical wave, typically less than
200 KHz, which propagates inside or on the surface of a structure. The propagation of
mechanical waves makes it possible to follow the maturity of the material, to determine
the degree of its homogeneity, and to detect defects (cracks, voids, etc.). They are sensitive
to the mechanical properties such as resistance to compression, tension, the modulus of
elasticity, and also to certain physical properties (e.g., cracks) [9,10]. Usually, ultrasonic
equipment is placed on the surface of the structure. Here, the contact between the surface
and the ultrasonic sensors are usually coupled with vaseline or glycerin, but these are not
always equal or of a stable quality [10].

New doors for civil structural health monitoring based on coupled embedded ultra-
sonic methodology (without contacting surface) are in the development phase. And this
methodology does not need a trained operator to carry out the test. According to this,
BAM (Bundesanstalt für Materialforschung und -prüfung) developed a novel ultrasonic
transducer, which can be permanently embedded in concrete. The measurement techniques
used there are based on at least two transducers (one transmitter and one receiver). The
main benefit of these embedded ultrasonic sensors are the constant coupling inside the
concrete, and the sensors are also suitable for the permanent investigations of concrete
structures [11]. The good coupling increases the sensitivity of the sensors to farther events,
the consistency of the coupling allows monitoring for longer periods of time, and the
embedding in deeper areas of a component offers the opportunity to monitor areas that are
no longer observable from the surface.

A wide range of studies has been presented on the application of embedded ultra-
sonic sensors to evaluate structural changes, such as during crack opening and closing,
in particular, or velocity changes due to damage in the form of an artificial crack [11–16].
The majority of these research studies used more than two embedded sensors which were
located in different geometric areas. However, the detection from each pair of the sensors
has been investigated. Yet, the combination of the multiple pairs of sensors located in same
geometrical area remains a great challenge for this technique, despite the special interest in
making such degradation detection, since these decisions may lead to early crack detec-
tion. Employing multiple pairs of sensors and combining the two sets of signal, a fused
representation is generated which illustrates different aspects of the object at once and,
thus, offers clarified interpretability. The primary goal of the data fusion is to improve and
simplify the interpretability of the measurement results. For this purpose, the individual
measurement results are superimposed by means of various signal processing operations.
Depending on the choice of operations, it then leads to an integration of the information
that is essential for the postprocessing of the data. Several data-fusion methods have
been proposed in recent years. An introduction and comprehensive survey to the area of
fusion is provided in [17,18]. In [19], the analysis from multiple NDT techniques (by X-ray
radiography, ultrasonic C-scan) were fused to construct a complete map of the damage
region in the fiber-reinforced composite material. The authors intend to take advantage of
both these methods by fusing the two methods. In [20], ultrasonic image was fused with
electromagnetic testing images through the AND logic operation to detect simulated defect
on an aluminium plate. Mendoza et al. [21] combined data from four NDT techniques
for the evaluation of apples’ firmness and sugar concentration. The authors used a linear
regression technique to disclose the nondestructive prediction between sensor data and
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apple characteristics and concluded that prediction was improved over single sensor analy-
sis. In [22,23], the Bayesian inference and wavelet-based methods were applied to fuse the
acquired images from ET C-scan and infrared (IR) thermographic testing. In [24], different
methods for fusion were reviewed, including the Kalman filter [25], Bayesian estimation
theory, statistical decision theory, Dempster–Shafer evidential reasoning theory and fuzzy
logic. In the above-cited works, most of the researchers worked on combining different
NDT methods to obtain comprehensive results. Each NDT technique has advantages and
limitations. In [26], sensitivity kernel was used to generate three-dimensional images
that show multiple cracks in the concrete structure. In another study ([27]), the authors
showed the benefit of multiple features for concrete structures. Although it indicates the
benefits of using sensor fusion, still more work should be focused on the potential of sensor
fusion technology. So it can invade precisely detecting damage, as well as the location
of the damage. However, there is limited work focusing on combining multiple sensors
for same NDT techniques, that are located in different geometrical areas. Indeed, each
sensor pair measures specific physical properties due to their fixed position and reveals
only a specific feature of the tested structure. On the other hand, combining the sensors can
gather additional information about the size or location of a damage and reduce false alarm
rate. This extra information may help the owners of structures to assess the repair time.

This paper focuses on the monitoring of a concrete reference structure subjected
to tensile loading resulting in failure. The monitoring is conducted with use of wave
propagation generated and measured by the multiple embedded ultrasonic transducers.
By using these transducers, the crack initiation and propagation can be identified by using
time–frequency method damage index (DI). The embedded transducers are installed on the
top and bottom of the concrete reference structure. The combining of these multiple sensors
located on the top and bottom of the specimen and the analysing of time and frequency
characteristics of the ultrasonic signals propagating through the whole element are used to
detect concrete cracking and for the evaluation of the element’s condition. In this paper,
the cracks are caused by static load application on a reinforced concrete beam equipped
with four embedded ultrasonic sensors in a four-point arrangement.

2. Methodology
2.1. Fusion Algorithm

Signal-level fusion is one of the significant procedures used to combine information
and acquired meaningful features from the sensors located in different positions (geometri-
cally). There are different techniques which have been used in image fusion, such as Simple
average, Intensity and Saturation (HIS), Principal Component Analysis (PCA), Discrete
Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), etc. Here, we describe
some of their advantages and disadvantages.

In HIS fusion method, the IHS space is converted from the Red, Green and Blue (RGB)
space of the Multispectral image. The intensity factor I is replaced by the panchromatic
image (PAN). Then, the reverse transform is applied to obtain an RGB image as an output.
HIS used the intensity part by reversing to RGB colour for fused image. However, saturation
is dependent on luminance value [28].

The PCA method is a statistical method which is mainly used to dimension reduc-
tion studies [29]. In SHM, PCA has been used to distinguish between changes due to
load/damage from environmental changes. PCA extracts the information with highest
influence and reduces redundant information, and, in so doing, increases the signal-to-noise
ratio. In PCA, high- and low-frequency components are obtained separately by filtering
and finally added together as a fused outcome. However, PCA results are not sensible if
the feature components do not follow the linear combination.

In DCT, the sum of cosine functions of different frequencies is used to produce the
fused image. DCT coefficients are obtained from different blocks, and then averaged to
obtain fused DCT coefficients. The limitation of DCT is the loss of time information [30].
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The DWT provides a structure, where analysed input signals pass through a filter
with different cut-off frequencies at different scales [31]. Hence, signals are converted to a
frequency domain. The output comes as a set of detail coefficients from the high-pass filter
and a set of approximation coefficients from the low-pass filter. Using the fusion rule and
inverse wavelet transform, one can produce a fused output. The limitation of DWT is that
when the signal is shifted slightly, the amplitude of the wavelet coefficients changes due to
the lack of shift invariance.

There is a simple approach to overcome this problem, named Non-Decimated Wavelet
Transform (NDWT) [32]. The NDWT is an undecimated form of a conventional DWT based
on Mallat’s multiresolution algorithm. It is performed by the insertion of zeros in the filter
for upsampling and suppressing the downsampling step of the decimation algorithm. Its
main advantage is translation invariance with respect to DWT, since the main signal is not
decimated, so the resolution can be maintained, and signal-to-noise ratio increases [33].
These characteristics make this algorithm suitable for change detection, signal fusion, and
feature extraction.

The NDWT decomposition uses the scaling function (low-pass filter) and the wavelet
function (high pass filter) [34]. These functions satisfy the two-scale relation:

2−
1
2 φ(

t
2
− k) =

∞

∑
n=−∞

h(n− 2k)φ(t− n) (1)

2−
1
2 ψ(

t
2
− k) =

∞

∑
n=−∞

g(n− 2k)φ(t− n) (2)

where hn and gn are the impulse responses of low-pass and high-pass mirror filters. The jth
level of decomposition is shown in Figure 1. The decomposition formulas of NDWT are
as follows:

Aj+1[l] = ∑
n=k

h[k]Aj[l + 2jk] (3)

Dj+1[l] = ∑
n=k

g[k]Aj[l + 2jk] (4)

where Aj+1[l] and Dj+1[l] are the low-frequency and high-frequency components of the
NDWT respectively. h[k] and g[k] are upsampled by 2j when the j-level is processed, which
results in a constant length of Aj and Dj. The inverse formulas of NDWT (INDWT) are
as follows:

Aj[l] =
1
2
[(∑

l
(h′j ∗ Aj+1)[l] + g′j ∗ Dj+1)[l]] (5)

Figure 1. NDWT wavelet decomposition of a signal Sj.

2.2. Fusion Methodology

As summarized in Figure 2, the signal-processing approach consists of three steps.
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Figure 2. Procedure of signal-based fusion.

Figure 2 illustrates the proposed methodology for signal level fusion, which is com-
posed of three stages, namely, preprocessing, NDWT, feature extraction, and feature fusion.
The preprocessing stage is divided into two steps: remove temperature effect, then cross
talk and normalization. In the first step, the temperature effect was detected from input
signals with the help of general baseline subtraction. In the second stage, the normaliza-
tion of the signal in a proper manner is performed in order to align the signal for fusion.
The process of feature extraction is shown in Figure 2. The preprocessed signal is firstly
decomposed into different sub bands using NDWT as shown in Section 2.1. The types
of wavelet and their order have crucial influence on the effectiveness and accuracy of
change/damage detection during the analysis. However, there are no strict rules for the
selection of wavelets for damage or change detection in SHM. In previous studies, the
author has shown that low-order wavelet gives the best results [35]. Therefore, we selected
a low-order biorthogonal wavelet to extract features from the signals. With the level L
and wavelet selected appropriately, based on NDWT coefficient sets, Aj[l], Dj[l], the prin-
cipal features at different scales were extracted. Therefore, the characteristics of changes
(damage) in both geometric locations in the material were preserved and transformed into
NDWT domain. Let the two ultrasonic signals from two pairs of sensors be F1 and F2, and
F will be the the fused signal. Simple fusion rules were applied to these coefficients.

The fusion rule plays a vital role in signal-level fusion algorithms. The fusion rule is
the main processing step that determines the formation of fused multiscale representation
from source signals. Most of information (changes, damage) content will be available in
low-frequency and high-frequency coefficients; hence, the average with baseline modulated
fusion rule has been used for fused multiscale representation. Here, F2 is less influenced
by cracks and noise (when the two pair of sensors perpendicular and close to each other) ;
therefore, the baseline is modulated with signals from F2 to obtain an optimal fusion output.
Equations (6) and (7) are used to compute weighted-averaging fusion rules.

Aj[l] = (Aj[l]F1 + ((1− Aj[l]Fm) ∗ Aj[l]F2))/2 (6)

Dj[l] = (Dj[l]F1 + ((1− Dj[l]Fm) ∗ Dj[l]F2))/2 (7)

where F1 represents the signal from sensor pair 1, F2 represents the signal from the sensor
pair 2, and Fm represents the baseline signal from undamaged condition. Based on (5), the
inverse non-decimated discrete wavelet transform was performed to reconstruct the fused
signal from the combined new feature set Aj[l], Dj[l].

3. Experimental Program

The four-point bending test on the benchmark RC structure was used as a test of the
quality and sensitivity of the proposed fusion techniques for embedded ultrasonic sensors.
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3.1. Experimental Apparatus

To perform the four-point bending test, the hydraulic jack and a load cell ZR DIORA®—
model 25 set to transfer two-point force (Figure 3) were mounted in middle of the beam.
To maintain a controlled schedule, an analogue controller was used to operate the loading
machine. Since the main purpose of these studies is to evaluate the proposed fused
signals for cracks evolution and the damage level with the increasing load using ultrasonic
techniques (see Figure 4), we are presenting also the force and deflection. The loading
schedule was steady at the beginning on 1 kN/min till 108 kN, and then schedule changed
to 5 kN/min (Figure 5), that initiated suitable stress/strain state in the tested RC structure.

Figure 3. Measuring stand and beam load position.

During the preparation of the benchmark RC beam, the sensors were concreted. The
embedded ultrasonic sensors were attached with a special ring connected with rebar, and
vibrating wire strain gauges were attached with top and bottom reinforcement. These new
ultrasonic sensors specially suitable for RC structure for monitoring purposes (see [18] for
more details), were attached on four vertical stirrups. The position of ultrasonic sensors are
shown in Figure 4.

Figure 4. Ultrasonic sensor position.

The data acquisition from ultrasonic measurement system was made seven times per
minute and customized software used to store the acquired signals in the local disk (for
more information see [36]). During the loading schedule, ultrasonic waves were transmitted
and propagated through the benchmark RC structure (e.g., sensor 1 transmitted the signal,
and, after propagation, sensor 2 registered that signal). Figure 5 shows the loading schedule
and deflection corresponding to number of ultrasonic measurements. It can be observed
that cracking initiated around at 42 kN.
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Figure 5. Loading schedule and number of ultrasonic measurements vs. deflection.

The examples of the ultrasonic signals acquired from sensor pairs 01 and 03 are shown
in Figure 6. It can be seen that at the initial stage, no significant differences were visible in
the measured time signals (e.g., for the interval of 0–10 kN). Then, the amplitude started to
decrease with the increase of the external loading.

Figure 6. Ultrasonic signals from sensor pair 01-03 for different load levels.

However, one can see that it is difficult to conclude damage/change detection from
these raw signals. Therefore, we used a signal processing method to extract meaningful
features from the signals registered from both pairs of the sensors (top and bottom). As the
sensors were installed at the top and bottom of the benchmark structure, the influence due
to changes in the structure could be different. For this reason, we analysed signals from
two sensor pairs located in a cross of each other (same distance), and then compared them
with proposed fusion techniques.
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3.2. Time-Frequency Feature Extraction

The interpretation of measured signals in the frequency domain was performed by
the Continuous Wavelet Transform (CWT). The CWT function was used since CWT is
an effective signal processing approach, used to detect changes/cracks in many appli-
cations due to its very high sensitivity to even tiny disturbances in the time-domain
signal. CWT-based methods are used for the detection and localization of damages in
many applications [37–39]. A CWT-based change matrix is developed to evaluate the
changes in the structure and propagation of crack. The main procedures to compute the
change/damage index matrix is the following:

CWTe =
i=n

∑
i=1

xj,i
2, (8)

CWTc =

√√√√∑n
j=1(CWTe,j − CWTe,1)2

∑n
j=1 (CWTe,1)2 . (9)

where the matrix element CWTc represents the CWT-based index of changes associated
with the time histories of each pair of the sensors.

4. Test Results and Discussion
4.1. CWT-Based Signal Processing

Figures 7 and 8 show the CWT coefficient values of the signals registered at sensor
pairs S01-R03, and S02-R04, for the benchmark RC structure. The energy of a signal is
derived from the CWT transform from the consecutive measurements of propagating ultra-
sonic waves. The extracted feature from ultrasonic signals analysing the time–frequency
domain is more meaningful than time domain analysis. An energy vector is introduced by
evaluating the energy of each time interval from the resulting scalogram to show the energy
diffusion towards the frequency bands. The first energy coefficient index corresponds
to the first stages of wave traveling in the benchmark structure, which is of 0.20% with
respect to unloaded state of the tested structure. The results indicate that the coefficients
fluctuating as the bending tensile level increases between 36 kN to 48 kN in the beam, and
then it ultimately decreases as the load increases between 49 kN to 60 kN. This is because
the most of the cracks appear in the general direction of the concrete surface. In the second
stage, with the loading schedule between 80 kN to 120 kN, the coefficient is steady, which
was obvious as no new cracks appear. Ultrasonic wave propagates in such a direction,
therefore, it may miss propagating cracks. The wavelet coefficients are low in general,
since the benchmark structure has been destroyed by the horizontal splitting cracks that
discontinued the propagation of ultrasonic waves through the concrete.

It is difficult to find the difference of the coefficient between both pairs of the sensors.
As from the previous studies, the results show that CWT has a poor performance in
detecting the damage from undamaged states [37,40]. Therefore, we are evaluating the
proposed signal level fusion technique to improve damage detection.

4.2. Signal Level Fusion

The 1-D ultrasonic signals from both pairs of sensors attached in the benchmark RC
structure were processed by using the proposed fusion algorithm presented in Section 2.1.
The example of the fused ultrasonic signals is shown in Figure 9.

To evaluate the SNR for a fused signal, the following formula was used.

SNR =
Ps

PN
(10)

The results of fusion clearly show (see Table 1) that the fused signal reveals less noise
influence than the signals from both pairs of transducers before the application of the fusion
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procedure. One should remember that here we are considering a diffused signal, which is a
strong reflection dependent on the particles of material.

Figure 7. Values of CWT coefficient feature from ultrasonic pair S01R03 time histories.

Figure 8. Ultrasonic signals from sensor pair S02R04 for different load levels.

Table 1. Evaluation of fusion results by SNR.

Signal S01R03 S02R04 Fused

SNR −6.8 −7.85 −6.5

To evaluate the fused signal, CWT feature is extracted from the fused signal time
histories. From Figure 10, it can be observed that the coefficient decreases with the bending
as the level increases between 30 kN to 40 kN in the beam. Then coefficient was fluctuating
due to energy attenuation, which indicated microcracks. The coefficient was much more
steady compared to results from both pairs of sensors, which reduces the false alarm rate.
As depicted in Figure 10, the fused signals based on averaging rules enhanced the damage
detection to some extent.
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Figure 9. Exemplary ultrasonic signal after fusion.

Figure 10. Values of CWT coefficient feature from fused ultrasonic signal time histories.

4.3. Feature Comparison Using ROC

The performance of these features is analysed also using ROC curve (for more infor-
mation see [41]). For each of the features, a predetermined threshold is swept over the
range of the feature values of each of the transducer pairs (computed at several times in the
experiment), and the probability of detection (true positive rate) is plotted versus the false
alarm rate (FAR). A perfect detector, one that calculates the features accuracy to classify the
two states, measures the value area under the curve (AROC). The CWT features from the
ultrasonic signals (for both pairs) are compared with the fused signal in Figure 11 via their
ROC curves. The results indicate that all the features performed well in their capability
to detect crack opening and propagation as well as several states in the appearance of
noise. However, after using the proposed fusion algorithm, the coefficient performed
better (AUC = 0.979 see Figure 11) to classify damage from the undamaged state in this
benchmark structure. Since most of the cracks appeared in the middle part of the beam
and few in the side, this result is not unexpected from the sensor pair S01-R03, because
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signals had strong effects compared to the signals recorded in the top pair (S02R04). After
averaging the NDWT coefficients of ultrasonic signals by the baseline signal set, the crack
information was highlighted more obviously than the other two pairs.

Figure 11. Overall results for signals from different pairs of sensors and fused signals.

4.4. Digital Image Correlation

This result can be verified using another NDT (DIC) technique applied during the
test. One can see from Figure 12 that the strain level increased in the benchmark RC beam
during 0–50 kN of loading, and circulated through the most of the region and stress became
noticeable, as is noted by the red colour. The first small crack could be recognised at 40 kN.
Then, one propagating crack together with multiple cracks (Figure 12) was noticeable. The
first small crack at 42 kN is comparable with the results from our fusion methodology. At
42 kN, the surface of the benchmark structure was examined with the naked eye, but the
cracks were not visible.

However, from the analysis of DIC results, the propagation of deformation is noticeable
toward the direction of load. At 52 kN, cracks forming became observable by the naked eye.
However, in the second stage (80–170 kN), the results of the DIC indicate crack propagation,
and the formation of new cracks through different parts of the specimen (see Figure 12B)
were not visible. Some of the cracks were not visible by the naked eye during the test. At
120 kN, all the cracks were visible, correlating well with the fused coefficient index.

Figure 12. Crack images and strain distribution for different load levels of benchmark structure, first
stage (A) and second stage (B).
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5. Full Scale Experiment

The purpose of the field test was to reveal the sensitivity of the presented fusion
methodology to detect internal changes in the reference real structure (tensile and com-
pressive stresses). The primary experimental object (BLEIB) was located in Horstwalde,
Berlin, which allows us to demonstrate the real bridge, and reveal the sensitivity of our
fusion methodology considering all the influences of a real structure [5,42]. The BLEIB
object is a 25 m-long continuous beam (see Figure 13A). There are two cross sections. It
was selected to detect the changes in real structure due to high static and dynamic loads.
The embedded sensors (ultrasonic) were installed in both of the cross sections of this object
during the erection period. The location of the sensors is marked in Figure 14. In this
reference structure, a control crack was created to produce certain moderated damage in
one of the beam. Therefore, during the load test, most of the cracks became noticeable
between sensors no. 11–13, marked with a marker pen in Figure 13B. However, if the
structure is reloaded, then all the cracks became closed.

A total of 14 embedded ultrasonic transducers were used for active monitoring, and
controlled by an external BAM data acquisition system. This data acquisition system
controlled the active monitoring through the transmission pulse, acquired signal, and
repetitive duration successively to the selected transducers. Furthermore, it stored the
acquiring signals to the local storage system, e.g., pairs 1 and 2, where sensor 1 transmits
the pulse and sensor 2 receives the response, and stores these signals to the local disk.

The aim of installing the sensors in this reference structure is to detect similar types
of changes in the bridge due to quasistatic load. To assess the changes in this reference
structure, a test load was performed. Four tons of load was used as a quasistatic load
during the test (Figure 15). The load was slowly moved from one side, A, to another side of
the structure, B. Therefore, the temporal change of the elastic parameters or microcracking
in the influence area of structure could be detected.

Figure 13. BLEIB structure (A) and crack images (B).
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Figure 14. Sensor position and load direction in the structure.

Change/Crack Detection

In order to illustrate the effectiveness of the fusion methodology described above,
CWT features are computed from the time-domain signals collected from two pairs of
ultrasonic sensors located on cross section A in the BLEIB structure during the quasistatic
load experiment depicted in Figure 15. Cross section A was chosen due to location of
control cracks in one of the beams (near to sensor S11-R13). However, the increase of
ultrasonic wave velocity and attenuation is an indicator of initiating cracks, and can be
considered as damage index [43–45]. Therefore, the interpretation of the CWT feature
was compared with the reference signal, and if there were no operational effects in the
structure, then the coefficient of the feature remains low; however, a sudden decrease of
coefficient during different loading stages due to attenuation of the signal is considered as
a crack opening.

Figure 15. Schedule of quasistatic load position in the two cross section (A) and (B) of BLEIB structure.
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During the loading stage, a quasistatic load (39.85 kN) was slowly driven (12 : 55 ≤
t ≤ 14 : 00) in several positions of the structure (schedule of the quasi-static loads and
positions in the structure are shown in Figure 15). The load was driven from the edge of
the structure (edge means where we marked 25 m). It can be observed that CWT features
from both pairs of the sensors located in the structure performed well in their ability to
detect the load. From sensor pair S11-R13, one can observe the coefficient changes due
to load moving toward the sensor position and even when the load is in cross section B
(see Figure 16). The CWT coefficient from sensor pairs S12-R14 (see Figure 17) increased
up to a highest value in cross section A, when the load moved to top of the sensor pair.
On the other hand, the CWT coefficient suddenly drops when the load comes near to the
sensor pair (sensor pair S11-R13). The energy of the signal drops due to attenuation of the
recorded signals. Therefore, anomalies are detected that indicate a crack opening. However,
when the load driven to cross section B, the coefficient is still lower compared to sensor
pair S12-R14 due to location of the cracks.

Figure 16. CWT coefficient index for S11R13.

Figure 17. CWT coefficient index for S12R14.

One can observe the results from both pairs of sensors. The evaluation from a single
pair of sensors is not comprehensive, as pair S12-S13 do not indicate any signature of cracks,
and S11-R13 show the crack opening but the coefficient does not increase even when the
crack is closed. Therefore, it can be useful to use the proposed fusion methodology detailed
in Section 2.1 to obtain a comprehensive result. The signal from both pairs of sensors is
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fused using fusion rules indicated in Figure 2. To evaluate the fused signals, CWT feature
is computed from the same time histories. One can make three observations from Figure 18:
the coefficient increases (load moves towards the sensors); then suddenly drops (load is
on top of both sensor pairs) where the crack is visible; and the coefficient increases when
the cracks are closed (specially load in cross-section B). From the CWT coefficient, one can
observe the changes due to the tension and compression of the structure.

Figure 18. Fused coefficient index (S11R13&S12R14).

6. Conclusions

In this paper, the application of fusion methodology to combine ultrasonic signals
and extract damage-sensitive features for the inspection of a reinforced concrete structure
has been presented. A novel sensor fusion approach was presented to improve damage
detection capability based on NDWT. The ability of the sensor fusion to detect cracks in the
tested structure was verified.

The obtained experimental results from both structures show that the sensor fusion
has the capability of early damage detection, and the performance is better compared to
single pairs of the sensors. The SNR and damage-detection interpretation increased and
verified through the ROC curve. The experiment also shows that a fusion algorithm can be
beneficial to damage/change detection in a real structure. This methodology can be used in
the SHM system due to its simple computation and capacity to reduce noise. The proposed
fusion methodology can be applied in long-term monitoring systems.

Although features extracted from single pair of the sensors provide suitable detection
results, they are not an optimal approach for the quantifying of structural damage due
to the different influences in the real structure. Therefore, a large-scale bridge structure
will be tested to verify the presented fusion methodology. The influence of sensor fusion
for a long-term SHM system will be investigated. In addition, data from more than two
transducer pairs located in the same area will be investigated to study the boundaries of
signal-level fusion.
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36. Chakraborty, J.; Stoliński, M.; Katunin, A. Addressing the detection capability for scalable energy consumption using primary

data acquisition system of embedded ultrasonic sensors in SHM. In Proceedings of the 5th International Conference on Advances
in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; IEEE: Piscataway, NJ, USA, 2019.

37. Berriman, J.; Hutchins, D.; Neild, A.; Gan, T.; Purnell, P. The application of time-frequency analysis to the air-coupled ultrasonic
testing of concrete. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 768–776. [CrossRef]

38. Chakraborty, J.; Wang, X.; Stolinski, M. Damage Detection in Multiple RC Structures Based on Embedded Ultrasonic Sensors and
Wavelet Transform. Buildings 2021, 11, 56. [CrossRef]

39. Fröjd, P.; Ulriksen, P. Frequency selection for coda wave interferometry in concrete structures. Ultrasonics 2017, 80, 1–8. [CrossRef]
40. Chakraborty, J.; Katunin, A.; Klikowicz, P.; Salamak, M. Early Crack Detection of Reinforced Concrete Structure Using Embedded

Sensors. Sensors 2019, 19, 3879. [CrossRef]
41. Metz, C.E. Receiver Operating Characteristic Analysis: A Tool for the Quantitative Evaluation of Observer Performance and

Imaging Systems. J. Am. Coll. Radiol. 2019, 3, 413–422. [CrossRef] [PubMed]
42. Wang, X.; Niederleithinger, E. Coda Wave Interferometry used to detect loads and cracks in a concrete structure under field

conditions. In Proceedings of the 9th European Workshop on Structural Health Monitoring Series, Manchester, UK, 10–13 July
2018; pp. 10–13.

43. Zhang, Y.; Abraham, O.; Grondin, F.; Loukili, A.; Tournat, V.; Duff, A.L.; Lascoup, B.; Durand, O. Study of stress-induced velocity
variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave
Interferometry. Ultrasonics 2012, 52, 1038–1045. [CrossRef] [PubMed]

44. Zhang, Y.; Abraham, O.; Larose, E.; Planes, T.; Duff, A.L.; Lascoup, B.; Tournat, V.; Guerjouma, R.E.; Cottineau, L.M.; Durand, O.;
et al. Following stress level modification of real size concrete structures with coda wave interferometry (CWI). AIP Conf. Proc.
2011, 1335, 1291–1298.

45. Stähler, S.C.; Sens-Schönfelder, C.; Niederleithinger, E. Monitoring stress changes in a concrete bridge with coda wave interferom-
etry. J. Acoust. Soc. Am. 2011, 129, 1945–1952. [CrossRef]

http://dx.doi.org/10.1109/7.913685
http://dx.doi.org/10.1177/1475921719834045
http://dx.doi.org/10.1016/j.prostr.2020.04.037
http://dx.doi.org/10.1109/TGRS.2006.869923
http://dx.doi.org/10.1016/j.advengsoft.2006.06.002
http://dx.doi.org/10.1364/OE.19.024023
http://www.ncbi.nlm.nih.gov/pubmed/22109426
http://dx.doi.org/10.1109/TIP.2012.2226045
http://dx.doi.org/10.1109/TUFFC.2006.1621504
http://dx.doi.org/10.3390/buildings11020056
http://dx.doi.org/10.1016/j.ultras.2017.04.012
http://dx.doi.org/10.3390/s19183879
http://dx.doi.org/10.1016/j.jacr.2006.02.021
http://www.ncbi.nlm.nih.gov/pubmed/17412096
http://dx.doi.org/10.1016/j.ultras.2012.08.011
http://www.ncbi.nlm.nih.gov/pubmed/22989948
http://dx.doi.org/10.1121/1.3553226

	Introduction
	Methodology
	Fusion Algorithm
	Fusion Methodology

	Experimental Program
	Experimental Apparatus
	Time-Frequency Feature Extraction

	Test Results and Discussion
	CWT-Based Signal Processing
	Signal Level Fusion
	Feature Comparison Using ROC
	Digital Image Correlation

	Full Scale Experiment
	Conclusions
	References

