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Abstract: The wireless transmission of patients’ particulars and medical data to a specialised centre
after an initial screening at a remote health facility may cause potential threats to patients’ data
privacy and integrity. Although watermarking can be used to rectify such risks, it should not degrade
the medical data, because any change in the data characteristics may lead to a false diagnosis. Hence,
zero watermarking can be helpful in these circumstances. At the same time, the transmitted data must
create a warning in case of tampering or a malicious attack. Thus, watermarking should be fragile in
nature. Consequently, a novel hybrid approach using fragile zero watermarking is proposed in this
study. Visual cryptography and chaotic randomness are major components of the proposed algorithm
to avoid any breach of information through an illegitimate attempt. The proposed algorithm is
evaluated using two datasets: the Digital Database for Screening Mammography and the Mini
Mammographic Image Analysis Society database. In addition, a breast cancer detection system using
a convolutional neural network is implemented to analyse the diagnosis in case of a malicious attack
and after watermark insertion. The experimental results indicate that the proposed algorithm is
reliable for privacy protection and data authentication.

Keywords: breast cancer; computer-aided diagnostic system; deep learning; chaotic randomness;
privacy protection; content authentication

1. Introduction

Rapid development in image processing techniques has significantly increased the im-
portance of digital images because of their enhanced usage in various applications, ranging
from computer-aided diagnostic (CAD) systems to biometric recognition systems [1–4]. At
the same time, due to the availability of sophisticated tools, images can be tampered with
easily and are facing the problems of content authentication and copyright protection.

Unlike authentication systems, tampering with medical images may prove to be life-
threatening [5,6]. If a medical image is tampered with, then the CAD system may lead to
a false diagnosis. Ultimately, a healthy person may face mental disturbance and spend
money and time to follow up on the misdiagnosed condition. If a patient is suffering from a
disease, then the delay due to a false diagnosis will make his or her condition severe to the
point that it cannot be cured. Therefore, authenticating medical images before diagnosis
using CAD systems is crucial.

In addition to data tampering, the privacy of patients becomes highly vulnerable when
the data are stored offline in their original form or transmitted through wireless communi-
cation for centralised processing or expert opinions using cloud-based environments and
edge or fog computing [7,8]. The protection of patients’ particulars, such as names and social
security and medical numbers, should be the top priority of health care providers [9–11];
otherwise, they may face consequences in the form of regulatory fines, legal fees and a bad
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reputation in the market. To avoid such situations, digital watermarking is one of the potential
solutions for privacy protection and data integrity.

Digital watermarking embeds patients’ information (watermark) into medical signals
to ensure privacy, and only authorised health care staff with a relevant secret key can dis-
close patients’ identities. One of the common approaches in watermarking is the insertion
of patients’ information in the region of noninterest (RONI). This region is unaffected by
the lesion, and the insertion of the watermark will not have any negative impact on the
decision of CAD systems. However, the detection of RONI becomes challenging when an
image contains more than one region of interest (ROI) [2], and an erroneously detected
RONI may lead to a false diagnosis [12,13]. Another difficult situation is if ROI annotations
are unavailable in images. Therefore, approaches based on RONI and ROI are unsuitable
for privacy protection and data integrity.

Similarly, conventional digital watermarking distorts the characteristics of the host
image after inserting the watermark and may lead to a false diagnosis [14–17]. Nevertheless,
in the reversible watermark, the watermark is extracted before the diagnosis; hence, it does
not affect the diagnosis. However, the major drawback of this approach is that medical
images become vulnerable after identity extraction [18–21].

To avoid the limitations of such types of watermarking, various algorithms for zero
watermarking have been proposed in the literature [22–24]. Zero watermarking does not
degrade the host image after inserting the watermark. Therefore, the diagnosis results are
unaffected.

Image encryption is also a prime concern for protecting data from illegal usage. In
a recent study [25], mammograms are encrypted through visual cryptography. Multiple
secret shares are generated from the original mammograms to protect them from unau-
thorised access. Mammograms can be decrypted only when all secret shares are available
simultaneously.

Finally, image authentication is extremely critical for the accurate detection of lesions.
In the case of a malicious attack, an image of a normal person may exhibit irregular patterns
and look like a patient’s image due to the complex and transient behaviour introduced by
the attack. In [26], the effect of a noise attack is discussed by adding the noise of different
signal-to-noise (SNR) ratios to the medical signals. Different performance measures are
computed to compare the original and extracted watermarks (retrieved from attacked
host signals). The results indicate that the recovered identity becomes more distorted as
the SNR increases. As a result, the diagnosis system fails to detect the disease correctly.
This suggests that patients’ identities and mammograms should be authenticated before
diagnosis.

Therefore, watermarking should not only provide privacy protection but also authenti-
cate the medical image content. This scenario leads to fragile watermarking, as any change
in an image distorts the watermark [27], and the health care staff will be alarmed over its
authenticity.

Normally, watermarking and authenticity fall under two different categories of image
forensics [28]. Fragile watermarking is one of the examples of active forensics [29], and
authenticity detection is categorised as passive forensics [30]. In this study, we propose a
hybrid solution to protect privacy and content authentication. A watermark can be public
or secret. As patients’ identities should not be revealed, watermarking will not be visible
in the proposed solution. Most importantly, the proposed solution inserts the watermark
in a secret key instead of the host medical image to avoid any distortion. Therefore,
zero watermarking is considered. The main contribution of this study is to provide a
hybrid solution containing new embedding and extraction processes with the following
capabilities:

• Content authentication using fragile watermarking;
• Privacy protection using zero watermarking;
• Dual protection for privacy through visual cryptography;
• Intractable chaotic randomness.
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Although various components of the proposed solution such as Shamir’s secret sharing
scheme, logistic maps and local binary patterns (LBPs) have been explored in the domain
of watermarking and other scientific areas, these components are used in an entirely
different way in embedding and extraction processes, which makes the proposed fragile
zero-watermarking algorithm a novel approach. A patient’s identity is encrypted using
one of the visual cryptography schemes (i.e., Shamir’s secret sharing scheme). Then, the
embedding and extraction processes of the proposed algorithm are used to insert and
recover the watermark, respectively. To enhance the reliability of protection, a logistic
map is implemented. The proposed algorithm is evaluated using two datasets of digitised
mammograms. The baseline results for the detection of breast cancer in these datasets
are obtained by developing a system using a convolutional neural network (CNN). These
results help in determining any negative impact of the proposed algorithm on the detection
of breast cancer.

The rest of the paper is organised in the following manner. Section 2 describes the
main components of the proposed algorithm. Section 3 illustrates the core processes of
the newly proposed algorithm: watermark embedding and extraction. Section 4 evaluates
the algorithm and provides its analysis using experimental results and discussion. This
section also highlights the comparisons with existing works. Finally, Section 5 draws some
conclusions.

2. Components of the Proposed Algorithm

In this study, the digitised mammograms were taken from the Digital Database for
Screening Mammography (DDSM) [31] and the Mini Mammographic Image Analysis
Society (Mini-MIAS) database [32]. The necessary components of the proposed fragile
zero-watermarking algorithm are briefly described in this section.

As zero watermarking does not embed the watermark in a host image, the image
characteristics or features are still crucial to observe. Without these characteristics, the
secret key carrying the watermark cannot be generated. Figure 1 shows that mammograms
have a consistent black background, which is an unwanted area for feature extraction.
Therefore, it is removed by applying an automatic method.
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Figure 1. An original mammogram with unwanted areas (consistent black background) indicated by
labels 1 and 3.

Moreover, the process to generate the secret shares of the watermark and the use of
chaotic randomness are illustrated in the following subsections.

2.1. Removal of Background from Mammograms

Region 2 represents the breast in the mammogram, and an appropriate edge detection
algorithm is required to determine its outer edges (i.e., the borders between the three
regions). In Figure 1, the breast contains various types of vessels, and the algorithm must
avoid them when detecting the outer edges. To perform this task, the Sobel operator was im-
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plemented, which has been a widely used edge detection algorithm. Its overall performance
is better than other contemporaneous operators, such as the Prewitt operator [33].

The Sobel operator comprises two convolutional kernels, Ox and Oy, as given by
Equation (1). They are applied on the mammogram for the gradient approximation of each
pixel in the horizontal and vertical directions [34]. This operator enhances the edges, where
the gradients are usually larger than the homogeneous regions in the mammogram:

Ox =

 1 0 −1
2 0 −2
1 0 −1

 and Oy =

 1 2 1
0 0 0
−1 −2 −1

. (1)

For each pixel, the gradient approximations are combined using the following relation
to obtain the gradient magnitude:

O =
√

Ox2 + Oy2. (2)

The operator was first applied on the original grey scale image (illustrated in Figure 1).
The resultant image is depicted in Figure 2a, showing that the vessels (edges) inside the
breast were also detected but were undesired. To solve this issue, the original image was
first converted to a black and white image, and then the operator was applied. The obtained
image is displayed in Figure 2b, clearly highlighting the borders between the three regions.
Then, the features of this region are computed and analysed.
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Figure 2. Detection of the outer edges of the breast (region 2) (a) after applying the operator on
the original grey scale mammogram and (b) after applying the operator on the black and white
mammogram.

2.2. Feature Extraction for the Insertion Process

In this study, the features were extracted using the local binary pattern (LBP) from
the extracted region of the mammograms (only the breast without the background). The
LBP is a simple yet efficient texture operator [35]. To compute the LBP, the extracted area is
divided into 3 × 3 blocks. Then, the centre element is compared with its eight neighbours.
If the centre element is equal to or greater than a neighbour, the neighbour is replaced by 1;
otherwise, it is 0. Similarly, the centre element is compared with all eight neighbours, and
an eight-bit binary number is generated. The range of these binary numbers in equivalent
decimal numbers is from 0 to 255. This process is repeated for each 3 × 3 block of region 2.
Hence, every pixel in the selected regions is represented by equivalent decimal numbers,
which are also referred to as LBP codes.

The generated LBP codes were grouped as uniform and nonuniform patterns based
on the number of 1-to-0 and 0-to-1 transitions in a binary number. The codes with two
or fewer transitions were designated to be uniform, and all other codes with three or
more transitions were referred to as nonuniform. For instance, 10101011 with 6 1-to-0 and
0-to-1 transitions represents a nonuniform code, whereas 00001100 is a uniform code with
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two transitions. In the range from 0 to 255, 58 uniform and 198 nonuniform codes were
recorded. Each uniform code was represented by a unique bin in a histogram. However,
all nonuniform codes were grouped in the last bin (i.e., the 59th bin). This part explains
why nonuniform codes were chosen for the watermark insertion process, as they would be
good in the context of randomness.

The distribution of LBP codes for region 2 of a mammogram is illustrated in Figure 3.
The total number of nonuniform codes was around 55,000, and they were sufficient to
accommodate the watermark. The same number of nonuniform codes was observed in all
mammograms of both datasets.
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After removing the unwanted background from the mammograms and the computa-
tion process of the LBP, the next important component was the generation of secret shares
of the watermark and the creation of random numbers for the insertion and extraction
processes.

2.3. Generation of Secrete Shares of Patients’ Identities

The watermarks in this study are patients’ identities, which are six-character-long
alphanumeric strings and represented by I. They are converted into black and white images
that are 20 × 108. The image of one of the patient’s identities is depicted in Figure 4a.
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by overlapping (bitwise AND operation) of S1 and S2.

One of the objectives of the proposed algorithm is to protect patients’ particulars,
which should not be transmitted to the recipients or stored in their original form to avoid
a breach of privacy. To provide double the security, two secret shares of I (say S1 and S2)
were created using Shamir’s secret sharing scheme as shown in Figure 4b,c, respectively.
These generated shares were used in the embedding process of the proposed algorithm
and embedded into the watermark key.
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The method to generate secret shares is as follows. Every pixel of I is replaced by one
of the 2 × 2 matrices given in Figure 5. If the pixel is white, then it is replaced by the same
matrix (say V2) in both shares S1 and S2. In the case of a black pixel, if it is replaced by V3
in S1, and then its complement (V6) replaces the corresponding pixel in S2. The matrices
V1–V6, are selected randomly for each pixel using the random numbers in the range [1–6].

Electronics 2022, 11, x FOR PEER REVIEW 6 of 20 
 

 

One of the objectives of the proposed algorithm is to protect patients’ particulars, 
which should not be transmitted to the recipients or stored in their original form to avoid 
a breach of privacy. To provide double the security, two secret shares of I (say S1 and S2) 
were created using Shamir’s secret sharing scheme as shown in Figure 4b,c, respectively. 
These generated shares were used in the embedding process of the proposed algorithm 
and embedded into the watermark key. 

The method to generate secret shares is as follows. Every pixel of I is replaced by one 
of the 2 × 2 matrices given in Figure 5. If the pixel is white, then it is replaced by the same 
matrix (say V2) in both shares S1 and S2. In the case of a black pixel, if it is replaced by V3 
in S1, and then its complement (V6) replaces the corresponding pixel in S2. The matrices 
V1–V6, are selected randomly for each pixel using the random numbers in the range [1–6]. 

1

1 0
0 1

V  
=  
 

2

0 0
1 1

V  
=  
 

3

1 0
1 0

V  
=  
 

4

0 1
1 0

V  
=  
 

5

1 1
0 0

V  
=  
 

6

0 1
0 1

V  
=  
 

 
Figure 5. Each pixel of I is replaced by one of these blocks to generate two secret shares. 

As each pixel of I is replaced by a 2 × 2 matrix, the dimensions of each generated share 
are doubled (i.e., 40 × 216). Thus, the total number of bits required to insert these shares 
was 17,280 (8640 + 8640). Every pixel of S1 and S2 was embedded randomly in the secret 
key using the computed features of the selected region. 

The simplicity in retrieving the identity (I) using the generated shares (S1 and S2) was 
a prime reason to use Shamir’s scheme. The overlapping of shares printed on the trans-
parencies or bitwise AND operation between them would reveal I as shown in Figure 4d. 
This step is described in the extraction process of the proposed algorithm. 

Before explaining the proposed algorithm, the process of creating deterministic ran-
domness is discussed in the following section. 

2.4. Deterministic Randomness 
Random numbers can be generated in different ways. Normally, the length of a se-

quence of random numbers is equivalent to the watermark. Sometimes, it also needs to be 
transmitted to the recipient with the host image for the watermark extraction. Depending 
on the watermark, the length of the sequence can be very long. However, this can be 
avoided by using chaotic systems due to their deterministic nature of randomness. The 
same sequence of random numbers can be regenerated using the initial conditions re-
ceived from the sender, and the recipient does not need the sequence. 

One of the simplest chaotic systems, known as the logistic map, was implemented to 
generate random sequences in the proposed algorithm. It was introduced by P. F. Verhulst 
and belongs to the family of first-order difference equations, which can be represented 
mathematically using Equation (3): 

( )1 1x x xL L Lμ+ = − , (3) 

where μ ∈ [0,4] is a system parameter and L0 ∈ (0, 1) is the initial condition. The behaviour 
of the logistic map is chaotic when μ ∈ (3.5699456,4), except for a narrow window near 
3.8284 [36]. For every value of the system parameters in this range, the generated chaotic 
sequences (Lx; x = 1, 2, 3, ...) are unique. The logistic map is highly sensitive to μ. A small 

Figure 5. Each pixel of I is replaced by one of these blocks to generate two secret shares.

As each pixel of I is replaced by a 2 × 2 matrix, the dimensions of each generated
share are doubled (i.e., 40 × 216). Thus, the total number of bits required to insert these
shares was 17,280 (8640 + 8640). Every pixel of S1 and S2 was embedded randomly in the
secret key using the computed features of the selected region.

The simplicity in retrieving the identity (I) using the generated shares (S1 and S2) was
a prime reason to use Shamir’s scheme. The overlapping of shares printed on the trans-
parencies or bitwise AND operation between them would reveal I as shown in Figure 4d.
This step is described in the extraction process of the proposed algorithm.

Before explaining the proposed algorithm, the process of creating deterministic ran-
domness is discussed in the following section.

2.4. Deterministic Randomness

Random numbers can be generated in different ways. Normally, the length of a
sequence of random numbers is equivalent to the watermark. Sometimes, it also needs to be
transmitted to the recipient with the host image for the watermark extraction. Depending
on the watermark, the length of the sequence can be very long. However, this can be
avoided by using chaotic systems due to their deterministic nature of randomness. The
same sequence of random numbers can be regenerated using the initial conditions received
from the sender, and the recipient does not need the sequence.

One of the simplest chaotic systems, known as the logistic map, was implemented to
generate random sequences in the proposed algorithm. It was introduced by P. F. Verhulst
and belongs to the family of first-order difference equations, which can be represented
mathematically using Equation (3):

Lx+1 = µLx(1− Lx), (3)

where µ ∈ [0,4] is a system parameter and L0 ∈ (0, 1) is the initial condition. The behaviour
of the logistic map is chaotic when µ ∈ (3.5699456,4), except for a narrow window near
3.8284 [36]. For every value of the system parameters in this range, the generated chaotic
sequences (Lx; x = 1, 2, 3, . . . ) are unique. The logistic map is highly sensitive to µ. A small
variation in the value of µ generates an entirely different sequence, and it is uncorrelated
statistically. The values of µ ∈ (3.8284, 3.8510) will not be used in this study due to oscillation
among the specific values in this range.

The random numbers were generated for the creation of a watermark key during the
embedding process of the proposed algorithm, which is discussed in the following section.
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3. Proposed Fragile Zero-Watermarking Algorithm

Two major processes of the newly proposed fragile zero-watermarking algorithm are
illustrated step by step for embedding and extracting patients’ identities I in the following
sections and in Figures 6 and 7, respectively.
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3.1. Embedding Process

The patients’ identities were disguised using the following steps of the embedding
process:

1. Create two secret shares, S1 and S2, for I using Shamir’s secret sharing scheme. The
dimensions of each share are s × t.

2. Read a host image and detect region 2 (as shown in Figure 2) by removing the
background with the Sobel operator. The indices A of the desired region are given in
Equation (4):

A =


a11 a12 . . . a1N1
a21 a22 . . . a2N2
...

...
. . .

...
aM1 aM2 . . . aMNn

 (4)

where M indicates the number of rows. For each row, the columns are varying and
represented by N = N1, N2, N3, . . . , Nn.

3. Using these indices, segment the region into overlapping 3 × 3 blocks (without
zero padding) such that each element is the centre of a block. Moreover, during
segmentation, if the rows have varying numbers of columns, consider a small index.
To keep the remaining process simple, ascending sequential indices are assigned to
the blocks after concatenating them horizontally. An index Q is assigned to a 3 × 3
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block B(i, j) starting from the ith row and jth column according to the relationship in
Equation (5):

Q = j +
i−1
∑

l=1
ψl

where
i = 1, 2, 3, . . . , M− 2
j = 1, 2, 3, . . . , ψi
and ψi = min(Ni, Ni+1, Ni+2)− 2

(5)

4. Compute the LBP code of each block B(Q), and if it is nonuniform, then store index Q
as given by Equation (6):

NUP(α) = [Q|LBP(B(Q)) is non-uniform ] (6)

In addition, to detect the malicious attack, a histogram HM using all LBP codes is
generated, where the frequency of each LBP code from 0 to 255 is represented by a
single bin.

5. Randomly determine two integers, say f 1 and f 2, in the range [1–1000] to set an offset
for choosing nonuniform blocks randomly.

6. Using the initial conditions (µ, L0) in the logistic map (form the range discussed in
Section 2.4), produce a sequence of length greater than α to introduce the randomness
in the secret key. The generated numbers are up to four decimal places and are
normally between 0 and 1. As the index of a block is always an integer, the number is
transformed into an integer using Equation (7):

T(i) =
(

RiD1 + RiD2

)
mod5 (7)

where D1 and D2 are the digits at the first and second decimal places, respectively, in the
ith random number R. The transformed number in the sequence T(i) is ignored if it is zero,
as the intention is not to repeat the same nonuniform block. Each element of T(i) guides
toward skipping the number of nonuniform blocks in selecting the next block from NUP.
Ultimately, a sequence T(β) is obtained, where β = 1, 2, 3, . . . , α > [2 × (s × t)/8].

7. Partition T(β) into two subsequences, Y and Z, where each of them provides the
random locations of blocks with nonuniform LBP codes. These subsequences are
mathematically defined in Equation (8):

Yγ = f1 + cumsum
(
T(1) to T

( s×t
8
))

Zγ = f2 + cumsum
(
T
( s×t

8 + 1
)

to T
(
2× s×t

8
)) (8)

8. Generate two intermediate patterns P1 and P2. For P1, take the first index from Y.
Assume that this index is 205, which means select the 205th block with a nonuniform
LBP code. Then, convert the code to an eight-bit binary number and store it in P1.
Mathematically, this step is expressed in Equation (9):

P1 = convertTObinary(LBP(B(NUP(Yγ)))) (9)

Now, determine the binary digit for the next block according to Y and append it at the
end of P1. Repeat this process for all values of Y. Later, delete all these indices from
NUP and repeat the process to determine pattern P2 by using Z.

9. Finally, create secret watermark keys by performing bitwise exclusive OR operator
between intermediate keys (P1 and P2) and the secret shares (S1 and S2), as given by
Equation (10):

WS1 = S1 ⊕ P1
WS2 = S2 ⊕ P2

(10)

Now, the host image, histogram HM, secret key WS1, offset f 1 and initial conditions
(µ, L0) are sent to health care staff 1. Likewise, the image, secret key WS2, both offsets and
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the initial conditions (µ, L0) are sent to health care staff 2. Both secret keys are depicted in
Figure 8a,b, respectively.
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3.2. Extraction Process

The identity of a patient will not be revealed unless staff members do not have relevant
secret keys. After extracting the secret shares with relevant keys, they must combine them
to obtain the identity.

To reveal I using the transmitted information, the health care staff repeats steps 1–7
of the embedding process to reconstruct random sequences Y and Z. Then, the following
steps of the extraction process are followed:

1. Staff 1: Reconstruct intermediate pattern P1 by using random sequence Y and perform
bitwise exclusive OR operator with the transmitted secret key WS1 to recover the first
share rS1 of I as given in Equation (11):

rS1 = WS1 ⊕ P1 (11)

2. Staff 2: Delete the block pointed out by Y and reconstruct P2 by using Z. Then, perform
bitwise exclusive OR operator with the transmitted secret key WS2 to recover the
second share rS2 of I as given in Equation (12):

rS2 = WS2 ⊕ P2 (12)

3. Finally, combine both recovered shares to reveal identity using the bitwise AND
operator expressed in Equation (13). Figure 9a shows the retrieved identity, say rI,
which is obtained using the following equation:

rI = rS1 AND rS2 (13)

If the recovered identity should be with the white background as shown in Figure 4a,
then proceed to step 4.

4. When the corresponding 2 × 2 blocks are the same in S1 and S2, then the recovered
pixel will be 1. Similarly, if the corresponding blocks complement one another, then
the recovered pixel will be 0. Ultimately, the identity (e.g., wI) will be retrieved with a
white background.
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Now, various aspects of the proposed algorithm will be evaluated, such as the achieved
imperceptibility after inserting the watermark, the detection reliability of a watermark with
a nonrelevant secret key, and data integrity in the case of a malicious attack.

4. Experimental Results of the Proposed Algorithm and Discussion

Two datasets were used to investigate the key aspects of the proposed algorithm.
Obtaining their baseline results was important. These results helped in analysing any
negative impact on the detection of breast cancer caused by the proposed algorithm.

The first dataset was the Curated Breast Imaging Subset of DDSM (CBIS-DDSM) [37],
which is the latest version of DDSM [31]. CBIS-DDMIS was converted into the standard
DICOM format, whereas the format of digitised film mammograms in DDMIS is a lossless
JPEG, which is obsolete. CBIS-DDMIS contains 2478 mammography images of 1249 women,
and most of the cases include both views (i.e., mediolateral and craniocaudal). The baseline
results of this dataset for the classification of malignant and benign images were obtained
using the same set-up that was used in [2]. Two structures, a deep neural network 16 layers
deep (VGG16) and a residual neural network 50 layers deep (ResNET50), were imple-
mented. The CNN was trained in two steps. First, a patch classifier was trained. Second,
the whole image classifier converted from the patch classifier was trained. An average
accuracy of 91% with a sensitivity and specificity of 86.1% and 81%, respectively, was
achieved.

The second dataset was mini-MIAS, which comprises 322 digitised mammograms
collected from 161 women. The baseline results for mini-MIAS were also obtained with
VGG16 and ResNet50 for the classification of malignant and benign images. The obtained
accuracies were 73.47% and 68.76%, the sensitivity was 76.42% and 74.46%, and the speci-
ficity was 68.78% and 61.29%, respectively. In both datasets, the dimensions of all the
mammograms were 1024 × 1024.

Different metrics were used to evaluate the performance of the proposed algorithm for
privacy protection and data integrity: the mean square error (MSE), peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM). The formulae for the MSE, PSNR and
SSIM are given by Equations (14)–(16), respectively. Using these measures, the quality of
the identities when retrieved using a relevant secret key, a nonrelevant secret key and in
the case of an attacked mammogram was determined by comparing them with the original
identities:

MSE(im1, im2) =

d1
∑

g=1

d2
∑

h=1
[im1(g, h)− im2(g, h)]2

d1 × d2
(14)

PNSR(im1, im2) = 20 log10

(
2NBP − 1√

MSE

)
(15)

SSIM(im1, im2) =
(2µim1 µim2 + c1)(2σim1im2 + c2)

(µ2
im1

+ µ2
im2

+ c1)(σ
2
im1

+ σ2
im2

+ c2)
(16)

where d1 × d2 represents the image’s dimensions, NBP stands for the number of bits per
pixel and µim1, µim2, σim1, σim2 and σim1im2 indicate the local means, standard deviations
and cross-covariances for images im1 and im2. In addition, c1 and c2 are regularisation
constants given by c1 = (0.01 × u)2 and c2 = (0.03 × u)2, where u = 2NBP − 1.

All experiments for the embedding and insertion processes were performed with
MATLAB (version R2021b), whereas Python (version 3.8.10) was used for the CNN-based
CAD system and installed on a computer with an Intel Core i7-45000U CPU @ 1.80 GHz
processor, 16 GB of memory, a 1-TB hard disk, and a Windows 10 Pro operating system.
With these specifications, the average time taken by the embedding and extraction processes
to secure and retrieve an identity was 1.81 s and 2.42 s, respectively.
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4.1. Insertion and Extraction Reliability of the Proposed Algorithm

The first step in the evaluation of the proposed algorithm was to observe the perfor-
mance of its embedding and extraction processes. By following the steps of the embedding
process, the secret shares S1 and S2 with dimensions of 40 × 216 each (Figure 4a,b) were
generated, and the indices A were determined after removing the background of the mam-
mogram of dimensions 1024 × 1024. Two offsets (f 1 = 100 and f 2 = 200) were randomly
generated. Then, a chaotic sequence with initial conditions µ = 3.6 and L0 = 0.1 was pro-
duced to yield subsequences Y and Z for the random selection of blocks with nonuniform
LBP codes. Only 1080 (out of 55,000) LBP codes were used in this process. Finally, the
intermediate patterns P1 and P2 were computed, and the secret shares S1 and S2 were
embedded into them to obtain the secret keys WS1 and WS2. The secret keys were in fact
embedded secret shares, and they are shown in Figure 8. To measure the difference between
the original shares (S1 and S2) and the embedded shares (WS1 and WS2) the MSE, PSNR
and SSIM were computed, and they are given in Figure 8.

The computed MSE of 0.42 for share 1 indicates that the original and embedded shares
were significantly different from each other. The low values for the PSNR and SSIM also
suggest the same. A similar trend was exhibited in the case of share 2; patients’ identities
remained unknown even after combining these embedded secret shares. This factor could
be verified by performing the bitwise AND operation between the embedded shares (WS1
and WS2), and the retrieved identity is displayed in Figure 9b.

Another example is provided in Figure 10 for explaining the functionality and reliabil-
ity of the embedding and extraction processes of the proposed algorithm.
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Figure 10. Identity insertion and retrieval for patient mdb006. (a) Original mammogram. (b) Patient’s
ID (I). (c) Secret shares S1 and S2 of I and revealing I after overlapping. (d) Embedded secret shares
1 (WS1). (e) Embedded secret shares 2 (WS2). (f) Retrieved secret share 1 (rS1). (g) Retrieved secret
share 2 (rS2). (h) Retrieved identity rI after overlapping of rS1 and rS2. (i) Retrieved identity wI using
step 4 of extraction process.
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Figures 9 and 10 strengthen the fact that the identity could not be revealed once
inserted using the proposed algorithm. In Figure 10, the embedded shares WS1 and WS2
could not reveal the identity without retrieving the shares rS1 and rS2, and then their
overlapping would disclose the identity rI.

The identities of all patients in the mini-MIAS dataset were embedded using the same
setting (offsets and initial conditions), and the computed performance measures are shown
in Figure 11.
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Figure 11. Performance measures MSE and PSNR when embedded shares are compared with the
original shares for all mammograms of mini-MIAS.

Evidently, Figure 11 displays that the embedded shares were significantly different
from the original shares for all patients. The MSE and PSNR exhibited the same behaviour
for the CBIS-DDMIS dataset, with very high values for the MSE and low values for the
PSNR.

The only method for disclosing I is to follow the extraction process of the proposed
algorithm. Each health care staff member receives one of the secret keys, host mammogram,
initial conditions and offsets. Using this transmitted information, each member can extract
one of the secret shares rS1 and rS2. They will be absolutely the same as the original
secret shares S1 and S2. Therefore, the MSE will be zero for the corresponding original
and retrieved secret shares. Consequently, the identity of the patient will be revealed
successfully. Now, whether the proposed algorithm will affect the mammogram during the
embedding and extraction processes will be observed.

4.2. Imperceptibility

One of the positive aspects of the proposed algorithm is keeping the host image in
its original state. The algorithm does not introduce any change due to the insertion of a
watermark because the patient’s identity I is embedded into a secret key instead of the
mammogram. Therefore, imperceptibility is naturally achieved, as no clue exists for the
presence of a watermark in the host image.

Imperceptibility is one of the important phenomena in the evaluation of a watermark
algorithm. In medical applications, this phenomenon becomes critical, as the degradation
of a medical image may lead to false diagnosis. The privacy of patients is a prime concern
but not at the cost of an accurate diagnosis.

Due to the use of the zero-watermarking approach in the proposed algorithm, the
MSE values of the host mammograms before and after inserting I were zero. Ultimately, the
achieved PSNR was large (i.e., infinity). All these measures—MSE, PSNR and SSIM—were
optimal and concluded that the proposed algorithm did not affect the accuracy of the
breast detection system. Hence, the proposed algorithm achieved the goal of protecting the
patients’ privacy without leading to a false diagnosis.

In the following section, we show the reliability of the proposed algorithm to make
sure that identities cannot be disclosed using nonrelevant secret keys.
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4.3. Detection Reliability of the Watermark

An authorised health care staff must possess the relevant transmitted secret keys
to retrieve patient identities. However, what will happen if an unauthorised individual
tries to reveal one identity with a nonrelevant secret key? The proposed algorithm was
investigated to determine whether the identity of a patient could be retrieved using any
nonrelevant secret key.

For this purpose, we first determined what would be a reasonable change in an initial
condition such that the proposed algorithm should not disclose any identity using the
condition of other. An attempt was made to retrieve an identity by altering the initial value
from µ = 3.6 to 3.6005. The obtained the values of the MSE, PSNR and SSIM were 0.38, 4.24
and 0.06, respectively. The retrieved identity is depicted in Figure 12.
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The computed measures indicate that the retrieved identity with the false initial
condition was significantly different from the original identity. It concluded that the
identity had no chance to be disclosed even with such a small variation in the initial
condition. The difference between the corresponding values of sequences using µ = 3.6
and µ = 3.6005 was more than 75%. Moreover, the sequence generated with µ = 3.6 was
compared with 200 other sequences (produced using different values of µ). The difference
was always greater than 75%, as illustrated in Figure 13. That is tosay, the randomness
using the logistic map was intractable when the initial conditions were unknown.
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Figure 13. Comparison of 200 sequences generated using different values of µ with the sequence
generated with µ = 3.6. For all sequences, L0 was the same; that is, it was 0.1.

In addition, another illicit attempt was made to reveal the identity of patient mdb014
using the initial conditions (L0, µ) of patient mdb045, as depicted in Figure 14. Two things
were concluded. First, the identity of patient mdb014 was not disclosed, because the
relevant information of the patient was not used. Secondly, the identity of any other patient
was also not revealed as each patient had unique initial conditions, and it was impossible
to retrieve the identity without them.
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Figure 14. Extraction of identity with relevant and nonrelevant information. (a) Original mammo-
gram of patient mdb014. (b) Identity retrieved by using information of mdb014. (c) Identity retrieved
by using information of patient mdb045.

The next point was if an unauthorised person attempted different combinations of
µ and L0 to guess the relevant secret keys and how many combinations of µ and L0 were
possible in the range from [3.6, 4] to [3.8284, 3.8510] and (0, 1), respectively. With the
increment of 0.0005, the possible combinations of µ were 755, and those of L0 were 1999.
Hence, the total number of options would be more than 1.5 × 106. Furthermore, the offsets
were random integers between 0 and 1000. As both offsets could be distinct, the overall
number of significantly different random sequences would exceed 1.5 × 1012. In addition,
the number of nonuniform LBP codes was 198. That is to say, an unauthorised person
attempted 198 × 1.5 × 1012 options to determine the relevant secret key. The experimental
results show that the proposed algorithm was reliable for inserting and recovering patients’
identities. Its robustness to authenticate data originality will be explored in the following
section.

4.4. Data Authentication

For reliable detection of breast cancer using a CAD system, transmitted or stored
mammograms must be authenticated. In the case of a malicious attack, a normal mammo-
gram exhibits an irregular pattern and may behave similar to a malignant mammogram,
as shown in Figure 15. The mammogram was attacked with Gaussian white noise. When
such a mammogram was tested for breast cancer using the CNN-based detection system,
the diagnosis was false. Therefore, the system accuracy decreased to 52% for both datasets.
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Due to the fragile nature of the proposed zero-watermarking algorithm, it had the
ability to authenticate the contents of a mammogram. In the case of Gaussian white noise,
the retrieved identity was distorted even when using relevant information. The malicious
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attack changed the characteristics of the mammogram, and as a result, the locations of the
nonuniform LBP codes would be affected. Therefore, chaotic sequences Y and Z could not
locate the required blocks of the nonuniform LBP codes. Hence, the retrieved identity was
distorted, indicating that the mammogram was not genuine and was tampered with or
attacked.

Although the proposed algorithm could detect the attack in the case of Gaussian noise,
tampering in the mammogram was visible with the naked eye. Therefore, the question is
if the attack is not visible, how will the proposed algorithm detect it? To answer such a
question, the mammogram was attacked by altering some pixels in region 2. This region
was approximately one fourth of the whole mammogram.

To avoid visibility, the pixels were altered in such a way that they should be replaced
by a number having the same number of 1-to-0 and 0-to-1 transitions with a one-bit differ-
ence. For example, 148 was replaced by 150. Then, when the recipient would determine
nonuniform codes after the attack, some uniform codes would become nonuniform, and
vice versa. Therefore, the indices of the nonuniform LBP codes in NUP would be changed.
In addition, if the type of the code was not changed, it might have been replaced by another
code of the same type. Then, the intermediate patterns P1 and P2 would be distorted during
the extraction process. Consequently, the disturbance in NUP, P1 and P2 would lead to
retrieving the distorted identity, indicating that the mammogram is not in the original form
and may lead to a false diagnosis.

It can be observed from Figure 16 that when a mammogram was attacked by altering
0.01% and 0.02% of its pixels, the tampering was not visible. However, the retrieved
identities (rI and wI) in both cases were significantly distorted, which was also highlighted
by the performance measures (high MSE and very low PSNR and SSIM). Moreover, the
increase in the values of the MSE and decrease in the PSNR and SSIM for the increasing
number of attacked pixels shows that the retrieved identity became more distorted.
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Figure 16. Malicious attack and retrieved identities. (a) Attack by altering 25 pixels (0.01%) of the
mammogram. (b) Corresonging retrieved identity rI and wI (MSE = 0.33, PSNR = 4.81 and SSIM = 0.17).
(c) Attack by altering 50 pixels (0.02%) of the mammogram. (d) Corresponding retrieved identity rI and wI
(MSE = 0.34, PSNR = 4.75 and SSIM = 0.16). (e) Attack by altering 250 pixels (0.1%) of the mammogram.
(f) Corresponding retrieved identity rI and wI (MSE = 0.36, PSNR = 4.40 and SSIM = 0.09). (g) Attack by
altering 2524 pixels (1%) of the mammogram. (h) Corresponding retrieved identity rI and wI (MSE = 0.37,
PSNR = 4.26 and SSIM = 0.07).

The accuracy of the CAD system should also be observed with the increasing number
of attacked pixels. The baseline results of the CAD system did not change when 0.01%
and 0.02% of the pixels of the mammograms were attacked. For 0.1% and 1% attacked
pixels, the mammograms should not be used for diagnosis by the healthcare staff as
tampering becomes visible. However, to observe the effect of tampering on the diagnosis,
the experimental result for the mini-MIAS dataset is listed in Table 1.

Table 1. Classification of benign and malignant mammograms after malicious attack for mini-MIAS.

Attacked Pixels Sensitivity Specificity Accuracy

VGG16 0.01%, 0.02% 76.5% 68.2% 73.6%
0.1% 58.8% 68.2% 62.0%
1% 47.1% 68.2% 54.3%

ResNet50 0.01%, 0.02% 74.1% 61.4% 69.8%
0.1% 56.5% 61.4% 58.1%
1% 45.9% 61.4% 51.2%

The sensitivity decreased when the number of attacked pixels increased because the
benign mammograms exhibited unusual changes which made them similar to malignant
mammograms. Ultimately, the accuracy significantly dropped and was equal to 54.3%
for 1% tampered pixels. A similar trend was found for the CBIS-DDMIS dataset, and the
accuracy decreased to 52.5%.
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Furthermore, another criterion was implemented to authenticate the mammogram,
which is given by Equation (17). According to this criterion, a mammogram was in its
original form if there was no difference in the frequency of the LBP codes in the histograms
computed during the insertion and extraction processes:

original =
{

yes if check = 0
no if check > 0

where

check =
255
∑

i=0
|HM(i)− HX(i)|

(17)

In Equation (17), HM and HX represent the histograms of the embedding and extract-
ing processes, respectively, and i indicates the bin number. In case of a malicious attack, the
change in pixels with respect to its neighbours will produce a new LBP code of the same
type or a different type. In either case, the frequency of LBP codes will be changed in the
histogram. The values of check for 0.01%, 0.02%, 0.1% and 1% attacked pixels were nonzero
and equal to 112, 228, 520 and 5276, respectively.

This criterion, along with the retrieved identities, makes the proposed algorithm robust
in the authentication of mammograms so that they can be used reliably for the detection of
breast cancer. To highlight the performance and positive aspects of the proposed algorithm,
it is compared with existing works.

4.5. Comparisons

The proposed algorithm was compared with existing fragile zero-watermarking
methods. To the best of our knowledge, only the following four kinds of fragile zero-
watermarking schemes are available in the literature. In [38], fragile zero watermarking for
images was proposed with all the important steps, including image encryption, watermark
embedding, watermark extraction and image decryption. However, the algorithm neither
discusses the randomness nor investigates the chances to extract the watermark with non-
relevant secret keys. In another study [39], a fragile zero-watermarking scheme is presented
to detect malicious modifications in database relationships, but this scheme cannot be
used for images. Moreover, watermark encryption and decryption are not performed
in this scheme. Similarly, in [40], lightweight elliptic curve cryptography using fragile
zero watermarking is implemented to authenticate the users of the Internet of Things.
This approach is also not viable for images. Likewise, a semi-fragile zero-watermarking
approach is proposed in [41] for audio. In comparison with these schemes, the proposed
algorithm encrypts patients’ identities and embeds their encrypted shares by using fragile
zero watermarking reliably, because chaotic randomness prevents unauthorised access to
patients’ identities. Furthermore, identity extraction and decryption only need the initial
conditions of the chaotic system to regenerate the random sequence. Transmitting the
complete random sequence to the staff is no longer necessary, which is another positive
aspect of the proposed algorithm.

5. Conclusions

The proposed fragile zero-watermarking algorithm offers a reliable solution for the
protection of patients’ data privacy and integrity. The algorithm provides dual protection,
as it uses visual cryptography (for identity encryption and decryption) and watermarking
(for the insertion and extraction of encrypted identities). Due to the implementation of
the chaotic system in the algorithm, the deterministic randomness in the generation of
watermark keys eliminated any chance of revealing identities by an unauthorised person.
Using this algorithm, patients’ information can be transmitted reliably from a remote health
facility to a specialised health centre via wireless communication. The fragile watermarking
will alert the recipient health care staff in case of tampering or a malicious attack, as the
integrity of medical images is of immense importance for accurate diagnoses of diseases.
The CNN-based breast cancer detection system confirms that an image affected by Gaussian
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noise attack leads to a false diagnosis. The proposed algorithm avoids such situations. In
addition, the results of the detection system are unchanged before and after watermark
insertion, as the proposed algorithm does not change the characteristics of the host medical
image. Furthermore, the proposed algorithm resolved the problem of capacity. It uses
only 2% of the space (LBP codes) for watermark insertion, which means that the size of
the watermark is not an issue, and patients’ other particulars can also be protected when
needed. In future works, the proposed solution will be extended to localise the tampered
regions of medical images in case of an attack.

Author Contributions: Conceptualisation, Z.A., F.-e.-A. and M.H.; methodology, Z.A.; formal analy-
sis, Z.A., F.-e.-A. and M.H.; writing—original draft preparation, Z.A.; project administration, F.-e.-A.
and M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the National Plan for Science, Technology and Innovation
(MAARIFAH) of King Abdulaziz City for Science and Technology in the Kingdom of Saudi Arabia,
Grant No. 5-18-03-001-0007.

Data Availability Statement: Two publicly available datasets were used in this study. CBIS-DDSM
is available at https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM (accessed on
15 September 2021), and mini-MIAS can be downloaded from https://www.repository.cam.ac.uk/
handle/1810/250394 (accessed on 25 September 2021). To obtain the baseline results in this study for
the classification of mammograms, the implementation of a CNN in [2] was used and obtained from
https://github.com/lishen/end2end-all-conv (accessed on 10 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liaqat, S.; Raja, G. Computer-Aided Detection of COVID-19 Using Chest Imaging. In Proceedings of the 11th International

Conference of Pattern Recognition Systems (ICPRS 2021), Online, 17–19 March 2021.
2. Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on

Screening Mammography. Sci. Rep. 2019, 9, 1–12. [CrossRef] [PubMed]
3. Luo, Z.; Li, J.; Zhu, Y. A Deep Feature Fusion Network Based on Multiple Attention Mechanisms for Joint Iris-Periocular Biometric

Recognition. IEEE Signal Process. Lett. 2021, 28, 1060–1064. [CrossRef]
4. Moolla, Y.; De Kock, A.; Mabuza-Hocquet, G.; Ntshangase, C.S.; Nelufule, N.; Khanyile, P. Biometric Recognition of Infants using

Fingerprint, Iris, and Ear Biometrics. IEEE Access 2021, 9, 38269–38286. [CrossRef]
5. Ali, Z.; Imran, M.; Alsulaiman, M.; Shoaib, M.; Ullah, S. Chaos-based robust method of zero-watermarking for medical signals.

Futur. Gener. Comput. Syst. 2018, 88, 400–412. [CrossRef]
6. Ali, Z.; Imran, M.; McClean, S.; Khan, N.; Shoaib, M. Protection of records and data authentication based on secret shares and

watermarking. Futur. Gener. Comput. Syst. 2019, 98, 331–341. [CrossRef]
7. Ali, Z.; Hossain, M.S.; Muhammad, G.; Aslam, M. New Zero-Watermarking Algorithm Using Hurst Exponent for Protection of

Privacy in Telemedicine. IEEE Access 2018, 6, 7930–7940. [CrossRef]
8. Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrag, M.A.; Choudhury, N.; Kumar, V. Security and Privacy in Fog Computing:

Challenges. IEEE Access 2017, 5, 19293–19304. [CrossRef]
9. Hsu, C.-L.; Lee, M.-R.; Su, C.-H. The Role of Privacy Protection in Healthcare Information Systems Adoption. J. Med. Syst. 2013,

37, 1–12. [CrossRef]
10. Gong, T.; Huang, H.; Li, P.; Zhang, K.; Jiang, H. A Medical Healthcare System for Privacy Protection Based on IoT. In Proceedings

of the 2015 Seventh International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Nanjing, China,
12–14 December 2015.

11. Hayajneh, T.; Mohd, B.J.; Imran, M.; Almashaqbeh, G.; Vasilakos, A.V. Secure Authentication for Remote Patient Monitoring with
Wireless Medical Sensor Networks. Sensors 2016, 16, 424. [CrossRef]

12. Eswaraiah, R.; Reddy, E.S. Robust medical image watermarking technique for accurate detection of tampers inside region of
interest and recovering original region of interest. IET Image Process. 2015, 9, 615–625. [CrossRef]

13. Singh, A.; Dutta, M.K.; Prinosil, J.; Riha, K. Wavelet based robust watermarking scheme for copyright enforcement and integrity
control in tele-ophthalmology. In Proceedings of the 2016 8th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT), Lisbon, Portugal, 18–20 October 2016.

14. Walia, E.; Suneja, A. Fragile and blind watermarking technique based on Weber’s law for medical image authentication. IET
Comput. Vis. 2013, 7, 9–19. [CrossRef]

15. Viswanathan, P.; Krishna, P.V. A Joint FED Watermarking System Using Spatial Fusion for Verifying the Security Issues of
Teleradiology. IEEE J. Biomed. Health Inform. 2014, 18, 753–764. [CrossRef] [PubMed]

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://www.repository.cam.ac.uk/handle/1810/250394
https://www.repository.cam.ac.uk/handle/1810/250394
https://github.com/lishen/end2end-all-conv
http://doi.org/10.1038/s41598-019-48995-4
http://www.ncbi.nlm.nih.gov/pubmed/31467326
http://doi.org/10.1109/LSP.2021.3079850
http://doi.org/10.1109/ACCESS.2021.3062282
http://doi.org/10.1016/j.future.2018.05.058
http://doi.org/10.1016/j.future.2019.01.050
http://doi.org/10.1109/ACCESS.2018.2799604
http://doi.org/10.1109/ACCESS.2017.2749422
http://doi.org/10.1007/s10916-013-9966-z
http://doi.org/10.3390/s16040424
http://doi.org/10.1049/iet-ipr.2014.0986
http://doi.org/10.1049/iet-cvi.2012.0109
http://doi.org/10.1109/JBHI.2013.2281322
http://www.ncbi.nlm.nih.gov/pubmed/24043410


Electronics 2022, 11, 710 20 of 20

16. Dutta, M.K.; Singh, A.; Singh, A.; Burget, R.; Prinosil, J. Digital identification tags for medical fundus images for tele-
ophthalmology applications. In Proceedings of the 2015 38th International Conference on Telecommunications and Signal
Processing (TSP), Prague, Czech Republic, 9–11 July 2015; pp. 781–784. [CrossRef]

17. Hadar, O.; Gonen, E.; Kaminsky, E. Rate distortion optimization for efficient watermarking in the DCT domain. In Proceedings of
the 2008 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Las Vegas, NV, USA, 31 March–2
April 2008.

18. Siau-Chuin, L.; Zain, J.M. Reversible medical image watermarking for tamper detection and recovery. In Proceedings of the 2010
3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010.

19. Dragoi, I.-C.; Coltuc, D. Adaptive Pairing Reversible Watermarking. IEEE Trans. Image Process. 2016, 25, 2420–2422. [CrossRef]
[PubMed]

20. Abhilasha, S.; Malay Kishore, D. A Reversible Data Hiding Scheme for Efficient Management of Tele-Ophthalmological Data. Int.
J. E-Health Med. Commun. IJEHMC 2017, 8, 38–54.

21. Pakdaman, Z.; Saryazdi, S.; Nezamabadi-Pour, H. A prediction based reversible image watermarking in Hadamard domain.
Multimed. Tools Appl. 2016, 76, 8517–8545. [CrossRef]

22. Zhang, L.; Cai, P.; Tian, X.; Xia, S. A novel zero-watermarking algorithm based on DWT and edge detection. In Proceedings of the
2011 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011. [CrossRef]

23. Bilal, M.; Imtiaz, S.; Abdul, W.; Ghouzali, S.; Asif, S. Chaos based Zero-steganography algorithm. Multimed. Tools Appl. 2013, 72,
1073–1092. [CrossRef]

24. Rani, A.; Bhullar, A.K.; Dangwal, D.; Kumar, S. A Zero-Watermarking Scheme using Discrete Wavelet Transform. Procedia Comput.
Sci. 2015, 70, 603–609. [CrossRef]

25. Abdul, W.; Ali, Z.; Ghouzali, S.; Alsulaiman, M. Security and Privacy for Medical Images Using Chaotic Visual Cryptography. J.
Med. Imaging Health Inform. 2017, 7, 1296–1301. [CrossRef]

26. Ali, Z.; Imran, M.; Alsulaiman, M.; Zia, T.; Shoaib, M. A zero-watermarking algorithm for privacy protection in biomedical
signals. Future Gener. Comput. Syst. 2018, 82, 290–303. [CrossRef]

27. Arnold, M.; Schmucker, M.; Wolthusen, S.D. Techniques and Applications of Digital Watermarking and Content Protection; Artech
House: Houston, TX, USA, 2003; p. 21.

28. Yang, B.; Guo, H.; Cao, E. Chapter Two—Design of cyber-physical-social systems with forensic-awareness based on deep learning.
In Advances in Computers; Hurson, A.R., Wu, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 39–79.

29. Fragoso-Navarro, E.; Cedillo-Hernandez, M.; Nakano-Miyatake, M.; Cedillo-Hernandez, A.; Perez-Meana, H.M. Visible Water-
marking Assessment Metrics Based on Just Noticeable Distortion. IEEE Access 2018, 6, 75767–75788. [CrossRef]

30. Ulutas, G.; Ustubioglu, A.; Ustubioglu, B.; Nabiyev, V.V.; Ulutas, M. Medical Image Tamper Detection Based on Passive Image
Authentication. J. Digit. Imaging 2017, 30, 695–709. [CrossRef] [PubMed]

31. Heath, M.; Bowyer, K.; Kopans, D.; Moore, R. The Digital Database for Screening Mammography. In Proceedings of the Fifth
International Workshop on Digital Mammography, Toronto, ON, Canada, 11–14 June 2000; Medical Physics Publishing: Madison, WI,
USA, 2001.

32. Suckling, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, I.; Stamatakis, E.; Cerneaz, N.; Kok, S.; Taylor, P.; et al. Mammographic
Image Analysis Society (MIAS) Database v1.21; University of Cambridge: Cambridge, UK, 2015.

33. Nixon, M.S.; Aguado, A.S. Chapter 4—Low-level feature extraction (including edge detection). In Feature Extraction & Image
Processing for Computer Vision, 3rd ed.; Nixon, M.S., Aguado, A.S., Eds.; Academic Press: Oxford, UK, 2012; pp. 137–216.

34. Misra, S.; Wu, Y. Chapter 10—Machine learning assisted segmentation of scanning electron microscopy images of organic-rich
shales with feature extraction and feature ranking. In Machine Learning for Subsurface Characterization; Misra, S., Li, H., He, J., Eds.;
Gulf Professional Publishing: Houston, TX, USA, 2020; pp. 289–314.

35. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

36. Mayoral, E.; Robledo, A. A Recent Appreciation of the Singular Dynamics at the Edge of Chaos. In The Logistic Map and the Route
to Chaos; Springer: Berlin/Heidelberg, Germany, 2006; pp. 339–354. [CrossRef]

37. Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D. A curated mammography data set for use in computer-
aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [CrossRef] [PubMed]

38. Li, M.; Xiao, D.; Zhu, Y.; Zhang, Y.; Sun, L. Commutative fragile zero-watermarking and encryption for image integrity protection.
Multimed. Tools Appl. 2019, 78, 22727–22742. [CrossRef]

39. Khan, A.; Husain, S.A. A Fragile Zero Watermarking Scheme to Detect and Characterize Malicious Modifications in Database
Relations. Sci. World J. 2013, 2013, 1–16. [CrossRef]

40. Sarwar, K.; Yongchareon, S.; Yu, J. Lightweight ECC with Fragile Zero-Watermarking for Internet of Things Security. In Proceed-
ings of the 2018 17th IEEE International Conference On Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018.

41. Tang, X.; Ma, Z.; Niu, X.; Yang, Y. Compressive Sensing-Based Audio Semi-fragile Zero-Watermarking Algorithm. Chin. J. Electron.
2015, 24, 492–497. [CrossRef]

http://doi.org/10.1109/tsp.2015.7296372
http://doi.org/10.1109/TIP.2016.2549458
http://www.ncbi.nlm.nih.gov/pubmed/27046899
http://doi.org/10.1007/s11042-016-3490-3
http://doi.org/10.1109/cisp.2011.6100325
http://doi.org/10.1007/s11042-013-1415-y
http://doi.org/10.1016/j.procs.2015.10.046
http://doi.org/10.1166/jmihi.2017.2109
http://doi.org/10.1016/j.future.2017.12.007
http://doi.org/10.1109/ACCESS.2018.2883322
http://doi.org/10.1007/s10278-017-9961-x
http://www.ncbi.nlm.nih.gov/pubmed/28484919
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1007/3-540-32023-7_19
http://doi.org/10.1038/sdata.2017.177
http://www.ncbi.nlm.nih.gov/pubmed/29257132
http://doi.org/10.1007/s11042-019-7560-1
http://doi.org/10.1155/2013/796726
http://doi.org/10.1049/cje.2015.07.009

	Introduction 
	Components of the Proposed Algorithm 
	Removal of Background from Mammograms 
	Feature Extraction for the Insertion Process 
	Generation of Secrete Shares of Patients’ Identities 
	Deterministic Randomness 

	Proposed Fragile Zero-Watermarking Algorithm 
	Embedding Process 
	Extraction Process 

	Experimental Results of the Proposed Algorithm and Discussion 
	Insertion and Extraction Reliability of the Proposed Algorithm 
	Imperceptibility 
	Detection Reliability of the Watermark 
	Data Authentication 
	Comparisons 

	Conclusions 
	References

