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Abstract

Great Britain has a modern road network and is well-known with the advanced

technology in road engineering. Although with excellent road infrastructure,

road accidents remain one of the main concerns in road safety literature among

researchers and policymakers. One of the main strategies for improving road

safety is to identify the contributing factors and then to develop countermeasures.

There have been numerous studies that analyse road accident severity including

binary outcome models, ordered discrete outcome models, unordered multinomial

discrete outcome models, and other data mining approaches. The aim of this

thesis is to identify the contributing factors affecting road accident severity in

Great Britain and estimate the accident cost for all types of accident severity. For

accident severity study, three statistical models are selected: multinomial logistic

regression (MNL) model, log-linear graphical model and multinomial logistic with

random effects (MNLRE) model. Markov Chain Monte Carlo (MCMC) simulation

method by applying random walk Metropolis-Hastings (M-H) algorithm is used

for parameter estimation in the MNLRE model. Accident cost study is investigated

by applying three models: Gamma, Weibull and Log-normal distribution.
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Chapter 1

Introduction

1.1 Background of the Study

Motorization has enhanced the quality of life to many individuals and nations as a

whole. One of the considerable burden lies in road transportation is road accident.

Every day around the world, the number of injuries and deaths in road accident

is raising together with the growing number of population and rapid change of

motorization industry. The real fact is, wherever and whenever there are people

and motorized transport, there will be road accidents in that area. Road accident

is deemed as unavoidable risk that we have to endure in maintaining high levels

of mobility.

Social and economic costs involved in road accident are undeniably high and it

creates a development crisis within the nation. Despite of large magnitude of loss,

road accident still receives low attention for higher authorities and other associated

agencies. Hence, it requires concerted effort at the international, national and local

levels for effective and sustainable prevention to reduce road casualties.

Road accident is a global major public health problem, and should be treated

as a shared multidisciplinary responsibility. Worldwide, it is estimated almost

1



2 Introduction

1.35 million deaths in 2016, and relative world’s population showed constant

rate of death[54]. Obviously it forms a large population, this figure suggests

that road safety progress to control the situation from getting worse. Forecast

estimation showed that, between 2000 and 2020 low and middle income countries

will experience 80% increment of total number of road accidents and injuries [57, 58].

Currently, road traffic injuries rank as the eighth leading cause of death across

all age groups, ahead of HIV/AIDS, tuberculosis OR diarrhoeal diseases (See

Table 1.1). The detrimental impact of road accidents is more likely hazardous

than real disease since there is neither medication nor right cure to prevent it [57, 58].

Table 1.1: World’s Leading Causes of Death for Year 2004 and 2016

Rank Leading Cause (2004) Leading Cause (2016)

1 Ischaemic heart disease Ischaemic heart disease

2 Cerebrovascular disease Stroke

3 Lower respiratory infections Chronic obstructive pulmonary disease

4 Chronic obstructive pulmonary disease Lower respiratory infections

5 Diarrhoeal disease Alzheimer’s disease and other dementias

6 HIV/AIDS Trachea, bronchus, lung cancers

7 Tuberculosis Diabetes mellitus

8 Trachea, bronchus, lung cancers Road traffic injurie

9 Road traffic injuries Diarrhoeal disease

10 Premature and low birth weights Tuberculosis

WHO Global Health Estimates [53] [54]

Road accidents affect all age groups, but analysis showed that young generation is

highly exposed to the traffic accident risk. From out of 85% global road deaths,

WHO recorded 96% of all children killed in road crashes worldwide, occur in low

and middle income countries. Table 1.2 shows that road accidents injuries are the

main contributor to world’s fatality of people aged between 15 to 29 years old.
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Table 1.2: Ranking of Road Traffic Injuries as World’s Causes of Death

Age Group (Years) Number of Rank

0-4 14

5-14 2

15-29 1

30-44 3

45-69 8

More than 70 20

Table is extracted from [53]

Road accident resulted in numerous negative effects to all parties involved, in-

cluding the victims, society and the authority. Despite of pain, grief and suffering,

the victim and victim’s family have to swallow several consequences financially,

physically and emotionally. It reveals that road accident tragedies resulting with

catastrophic loss in terms of inconsolable losses of human life as well as destruction

of properties incurred.

In economic and monetary perspective, loss is described as cost that involved

when an accident happened directly and indirectly. Serious concern and double

effort from both authority and society are needed to reduce the occurrence of road

crashes.

1.1.1 Overview of Road Accidents in Great Britain (GB)

GB is a developed country and known as one of the leader of road safety worldwide.

Overall, the total number of road casualties in GB is estimated between 630 to 800

thousand cases annually, including the unreported ones [16]. In 2013, 1,713 people

killed and 21,657 people injured or disabled from road accident [16]. It found that
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138,660 road accident cases reported throughout GB with 252,913 vehicles involved

and 183,670 casualties occurred. It shows reduction compared to year 2012 with

145,571 accident cases, 265,877 vehicles and 194,723 casualties reported. During the

1-year period, 117,428 (84.7%) cases involved slight injury, 19,624 (14.2%) resulted

in serious injury and 1,608 (1.2%) turned out to be fatalities. The distribution of

the accident severity is shown in Figure 1.1.

Figure 1.1. Percentage of Road Accident Severity in GB for Year 2012

Great Britain (GB) has a modern road network and known with the advanced

technology for road engineering. Although with good road infrastructure, road

traffic accidents still remain as one of the main concerns in transportation problem.

GB categorise its road system into two types, motorways and non-motorways.

Around 20% of GB motor traffic used motorways in 2013, but accounted for only

6% of road deaths (100 deaths) and 3% of serious injury (660 serious casualties) [16].

For non-motorway, it is divided into two road types which are rural and urban

roads. Rural roads carried 53% of traffic, but accounted for two thirds of road

fatalities in 2013. Meanwhile, urban roads carried 47% of traffic with 57% seriously

injured casualties occurred [16]. Positive improvement in GB road accident is

observed in year 2013 such as the lowest record of road deaths since 1926, serious

injury accident have decreased consistently with the current record shows it is

43% lower than 2000, and total number of casualties has also decreased by 6%
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compared to 2012 [16].

Figure 1.2. Traffic and reported casualties by severity (2000-2013)

Department for Transport (DfT) of GB has found out that the downward trend

in road fatalities especially among vulnerable road users in 2012 and 2013 due to

the weather patterns [16]. The most common recorded contributory factor in 2013

for all types of accident severity is from the driver/rider negligence. "Driver/rider

failed to look properly" was mostly recorded factor in serious and slight injury

with 36% of serious and 43% of slight cases. Meanwhile, "loss of control" is a

common factor contributed 34% of fatal accident cases [16].

As described by Ogden (1996), road traffic may be considered as a system that

consists of various components. These components, such as the human, the vehicle

and the roads, interact with each other.

Road accident is defined as an occurrence of personal injury on the public highway

(including footways) due to the negligence or omission by any party concerned

resulting in a collision which involved at least one vehicle or vehicle collision with
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a pedestrian and is reported to the police within 30 days. In GB, damage-only

accidents, involves no human casualties or accidents on private roads or car park

are not considered in this category. Casualty involved when a person killed or

injured in an accident. In this context, there are three categories of casualties in

GB, which are fatal, serious injury and minor injury [16].

Types of Severity Definition

Fatal A road accident in which one or more person were

killed less than 30 days after the date of event.

Serious A road accident in which at least one person sustained

serious injury but none killed.

Slight A road accident in which at least one person is injured

but none killed or seriously injured.

While positive improvement has been incline towards the government aims, fur-

ther reductions in casualties are needed. Number of casualties are closely related to

the numbers of traffic injuries. Therefore, any reduction in casualties is associated

with a reduction in injury accidents. In addition, to improve road safety, causes of

road accidents and the relationship between accident severity and relevant factors

need to be investigated and studied.

DfT has declared to spend approximately £14.7 billion in 2013 for accident pre-

vention excluding unreported cases. It showed 3% decrease compared to 2012

estimation. With large gap reduction of road casualties that occurred, it is important

to keep the downward trend continues parallel with the cost involved. Therefore,

it highlight the in-depth study requires for identifying and estimating both the

severity and cost of road crashes by implementing cost-effective countermeasure.



1.2 Problem Statement 7

1.2 Problem Statement

1.2.1 Public Health Perspective

Public health comprises of knowledge from variety disciplines such as medicine,

health services, epidemiology, sociology, engineering, economics, behavioural

science, education, statistics and to name a few. It is a unique approach since it

is science based, and population focus. Public health model for prevention has

been applied to a wide variety of infectious and chronic diseases with remarkable

success [72].

Framing the road crashes problem as a predictable and preventable matter, makes

road crashes injury a salient issue in public health and preventive medicine. WHO

[57, 58] reported total number of road traffic deaths worldwide and injuries forecast

to rise by 65% between 2000 and 2020, and in low and middle income countries

deaths are expected to increase as much as 80%. Hence, there is an urgent need

to observe the worsening situation in road deaths and injuries therefore requires

integrated efforts for effective and sustainable prevention action.

Over the past years, a range of methods have been used for accident prevention.

Nevertheless, there is lack of action or effort has been done by applying public

health knowledge. Public health are the popular tools among the developed

countries to analyse the cause and impact of road crashes. There is many tools of

public health discussed among health practitioners but the foundation of public

health study is derived on pre-crash phases, crash phases, and post-crash phases

[21].
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Numerous benefits offered by public health, but less application in solving road

accident problem. Therefore, this study perhaps be a starting point to discover the

problem in public health perspective, then comes out with the preventive measure

in the context of public health, with the aim of maximizing benefits for the entire

population.

1.2.2 Modelling the Severity and Cost of Road Accidents in GB

The trend of road accident injuries and deaths has become common transport issue

in GB. Gaining a better understanding of the factors that affect the likelihood of a

vehicle crash has been an area of research focus for many decades with the aims

to improve road accident prediction model and to provide direction for policies

and countermeasures aimed at alleviating number of crashes [64]. To address this

issue, there has numerous research conducted to identify unobserved explanatory

variables (random effects) that are significantly affect road crash frequency and

severity and each research has its own recommendation to lessen the impact of

accident frequency and severity. However, the number of studies focusing on

accident severity still limited in GB. Most of the successful study conducted in

United States and the data used is quite old. This study attempts to fill that gap and

extends the related literature by applying appropriate statistical prediction models.

Latest road accident data in GB is used and method exploration is executed to find

which methods are the most fit to the objective. The purpose of this research in the

first part is to present the modeling and analysis results of the relationship between

roadway design, environment factor, and traffic attributes with the severity of road

accidents in GB. Bayesian method by including random effects is applied as a new

approach to model road accident. The findings of this study could also provide

sufficient statistical evidence and good support to the road authority to implement

impactful intervention and improve road safety in GB. Moreover, this study is a
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useful guide to researchers and practitioners on evaluating the methodological

issues attributing to road crashes.

The second part of this study is to model accident cost after the contributory factors

are known. Proper model valuation of accident cost can address the road crashes

problem from actuarial monetary perspective. This model will diverge into three

categories according to type of severity. Economic cost of road accidents can be

evaluated from the cost involved such as property damage, administration costs,

lost output, medical costs, and also pain, grief and suffering cost. As the accident

cost is expressed in monetary term, continuous data will be used in modelling

road crashes cost.

Accident costing is choose to meet research aim as it had been intensively practised

by developed countries such as UK, Canada, United States, Australia, Japan,

France, Germany, etc. Each country has different method to calculate the accident

cost in order to meet certain country’s aim. In Indonesia, the approximate accident

cost ratio between fatal and non-fatal is 11:1 [17], while for UK is 29:1 [17], Jordan

15:1 [3], Bangladesh 7:1 [19], Australia 5:1 [11] and Vietnam 2:1 [6]. Overall, average

accident cost for fatal resulting with higher cost than non-fatal. Since the early

1990s, UK has consistently used willingness to pay (WTP) method to evaluate road

casualty.

Yet there is no study conducted in GB modelling both severity and cost of

road accidents in one research to improve road safety and allocate accident cost

accordingly. By establishing this model, sustainable and effective prevention

action can be implemented to enhance the road safety level in GB. Conclusion can
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be derived in the perspective of public health as overall with the support from

quantitative analysis.

1.3 Research Questions

The research questions of the study are as follows:

i. What are the factors that contribute to road accidents casualty in GB?

ii. How much is the cost involved for fatal, serious and slight road accident?

How much is the ratio difference?

iii. What is the conclusion and recommendation in the perspective of road safety

given the statistical and cost evidence?

1.4 Research Objectives

The objectives to be achieved from this study are:

i. To identify factors that contribute to road accidents in GB by applying

appropriate statistical prediction model.

ii. To study and compare the severity of GB road accident by using accident

cost model as reference.

iii. To advice and derive conclusion from the road safety perspective with the

evidence from statistical and actuarial method.

1.5 Significance of the Study

Road crashes problem is a complicated problem that requires teamwork and

intervention from various directions. The responsibility should not solely handle

by police nor transport department. It requires integrated efforts and knowledge

from many fields, hence this study is done by combining several major disciplines



1.5 Significance of the Study 11

which are statistics, actuarial, economy and public health.

The findings of this study could also provide sufficient statistical evidence and

good support in order to determine the dynamics of the crash, then propose the

road authority to implement impactful intervention and improve road safety in

GB. Since there is small amount of research in statistics and actuarial crossed

with road accidents problem in GB, it is expected to bring the development of

countermeasures in minimizing human and economic cost impact among society.

Moreover, the findings are also useful to guide researchers and practitioners to

further improvise the methods applied.



Chapter 2

Literature Review

2.1 Introduction

The attempt to reduce road crashes have emerged as a vital public health

endeavour for the past decades. In 2014, number of road accidents which involved

casualties are reduced, but the increment percentage of fatalities worldwide is

increased.

2.2 Public Health Perspective

Generally, the responsibility of road crashes problems has been assumed to

bear by the transport sector only. With the growing population and motorization,

this assumption is not applicable anymore since the fast rate of road crashes has

overcome the preventive measure done. It affects not only transportation system,

but also economic systems, health systems, jobs, families and civil society [72].

As C. Everett Koop, former US Surgeon General said about childhood injuries, if

a disease were killing our children in the proportion that accidents are, people

would be outraged and demand this killer be stopped (National SAFE KIDS

Campaign, 2006). From this statement, it is clearly stated that road accident

12
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problem has reached its alarming state worldwide, thus it needs attention from

multi-disciplinary sectors to find the effective preventive measure to ameliorate

the losses.

There are many public health tools that has been used by researchers and health

practitioners to relate traffic safety and science-based population study. The early

public health tool introduced to fight against road crashes problem is the classis

epidemiologic triad, which involved host, agent and environment. Sleet et al.

(2007) [72] explained traffic injury as the results from the interaction between

injury-producing agents (the causative element and the vehicle or vector carrying

it), host factors (the person affected) and the environment (conditions in which the

host and agent find themselves) (Refer Figure 2.1).

Figure 2.1. Classic Epidemiologic Triad on Traffic Safety

Haddon (1968) [21] came out with the scientific idea to prevent road accidents by

adapting public health concept with nine-cell Haddon matrix models. Haddon

described the model into three phases: pre-crash, crash and post-crash (Figure 2.2).
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Figure 2.2. The Nine-cell Haddon Matrix

Centers for Disease Control and Prevention (CDC) (1985) has brought four-step

model to adapt in road safety promotion by applying it as public health framework

with epidemiologic perspective. This model has been improved from the previous

study and the action taken from defining problem to build solution must be in

sequential manner (Figure 2.3).

Figure 2.3. Four-step Model by CDC

2.3 Modelling Road Accident Severity

Hosseinpour et al. (2014) [25] has discussed the roadway geometric design and

traffic characteristics on the frequency and severity of head-on crashes in Malaysia

over the period of 2007-2010. Random-effect generalized ordered probit model
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were used and the results indicated that the severity of head-on crashes were

affected by the horizontal curvature, paved shoulder width, terrain type and side

friction, whereas access points, land use, and the presence of median reduced

the probability of severe crashes. This study also showed that random-effect

generalized ordered probit model outperform the standard ordered probit model

according to goodness of fit measures.

Ma and Kockelman (2006) [39] assessed the effects of roadway characteristics with

a joint model of crash frequency and severity at Washington State highways in

1996. Based on the Bayesian multivariate Poisson regression modelling results,

three variables were found to be significantly associated with fatal crashes: posted

speed limit, degree of curvature and right shoulder width; while five variables

contributed to disabling injury crashes: posted speed limit, number of road lanes,

presence of median, right shoulder width and presence of rolling terrain. Oddly,

some of the significant variables in disabling injury crashes are not contributing

any impact on fatal injury counts.

Anastasopoulos and Mannering (2009) [5] explored negative binomial random-

parameters count models as another methodological alternative to analyse accident

frequency that occurred on rural interstate highways in Indiana for 5-year period

(1995-1999). The analysis results indicated that the roadway segment’s interna-

tional roughness index (IRI), rutting indicator, road segment length, median barrier

indicator, interior shoulder width, horizontal curve’s degree of curvature per mile,

and the average annual daily traffic (AADT) of passenger cars were found to have

significant influence towards number of accident occurrence.
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Lee and Mannering (2002) [36] demonstrated that there was a significant difference

in the factors that determined run-off-roadway accident frequencies in urban and

rural areas. This researcher studied on the impact of roadside features on the

frequency and severity of run-off-roadway accidents at 96.6 km section of highway

in Washington State. This analysis applied two different prediction models which

are zero-inflated count models and nested logit models are applied to identify

the factors that significantly influence the frequency and severity of accidents. In

rural model estimation, 5 factors that contributed to accident frequency which are

speed limit, median width, distance from the outside shoulder edge to light poles,

number of isolated trees in a section, and the presence of cut-slopes in the roadway;

whereas factors that influenced accident severity are speed limit, weather factor,

driver behaviour (driver’s age and alcohol abused), the presence of roadway indi-

cator such as asphalt shoulder, narrow shoulder indicator, instrumented guardrail,

miscellaneous fixed object, sign support, tree group and utility pole.

Using data in Texas, Schneider et al. (2009) [65] studied about the impacts of

factors associated on the degree of driver injury severity resulting from single-

vehicle crashes along horizontal curves on rural two-lane highways by applying

multinomial logit model. Horizontal curvature was found to affect driver injury

severity and were more likely to occur at moderate radius and lower-speed curves.

Run-off-the-road crashes that involve collisions with roadside objects, found to

give the most significant impact to injury severity. The results also showed that

severe injuries were more likely to affect female and older drivers. Other than

that, accident severity is significantly determined by driver actions and behaviors

such as seat belt application, drug or alcohol abuse and driver’s lethargy. Many of

the previous study has suggested that the presence of median traffic barrier has
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significantly affected crash severity.

Therefore, Miaou et al. (2005) [45] engaged a study to estimate the effect of installing

median traffic barrier installation particularly related with crash frequencies and

severities that occurred in Texas highways. Ordered multinomial logit model

were employed to model for various type of median crashes with and without

barrier. No factor was found to be statistically significant in the severity model for

cross-median crashes (most likely due to small sample size); while median width,

AADT, number of lanes and posted speed limit were found to be significantly

associated with accident severity.

Khorashadi et al. (2005) [30] conducted a research to investigate the causes of

injury severity that focus on large trucks in rural and urban roadways in California

from year 1997 to 2002. Multinomial logit approach was used for analysis and it

was found that severe/fatal accidents involving single-unit trucks is more likely

to happen in urban areas compared to rural areas. Alcohol and drug factor

also showed it was highly influenced the severity among drivers in urban areas,

compared to rural areas. Most of the significant factors that associated with injury

severity were similarly observed in both urban and rural location. However, there

were some variables that significantly contributed in rural but not urban areas,

and vice versa. As summary, below are the several methods used by previous

researchers to analyse road crash frequency data:
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Model Type Previous Research

Artificial Neural Networks Delen et al. (2006) [14]

Bayesian Hierarchical Bino-

mial Logit

Helai et al. (2008) [26]

Bayesian Ordered Probit Xie et al. (2009) [80]

Binary Logit and Binary

Probit

Rifaat and Tay (2009) [62]; Haleem and Abdel-Aty

(2010) [22]; Peek-Asa et al. (2010) [59]; Kononen et

al. (2011) [33]; Moudon et al. (2011) [48]

Bivariate Binary Probit Lee and Abdel-Aty (2008)

Poisson Jones et al. (1991) [29]; Miao and Lum (1993) [46];

Miao (1994) [44]

Negative binomial/

Poisson-gamma

Maher and Summersgill (1996) [40]; Lee et al. (2002)

[36]; Lord et al. (2009) [37]

Poisson-lognormal Miao et al. (2005) [45]; Lord and Miranda-Moreno

(2008) [38]

Zero-inflated Poisson and

zero-inflated negative bino-

mial

Lee and Mannering (2002) [36]; Shankar et al. (2003)

[69]

Gamma Oh et al. (2006) [51]; Noorizam and Kamaruzzaman

(2005)

Random-effects model Hausman et al. (1984) [24]

Random-parameters model Anastasopoulos and Mannering (2009) [5]; Hossein-

pour et al. (2014) [25]

Bivariate/multivariate

model

Ma and Kockelman (2006) [39]; Ye et al. (2009); Park

et al. (2010) [56]

Finite mixture/Markov

switching

Malyshkina et al. (2009)[43]; Park and Lord

(2009)[55]

Hurdle Poisson/ Hurdle

negative binomial

Hosseinpour et al. (2014) [25]
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2.4 Accident Costing

Countries such as United Kingdom, Australia and United States had implemented

the accident costing in the past few decades. Official estimate of road accident

costs have been prepared in most of the highly motorized countries all over the

world for a number of years [19]. UK has superior infrastructure quality for roads

and highways in order to support more than 500,000 vehicles daily. Assumption

made, since motorization rate in UK is quite high, this will lead to the increasing

accident rate also.

The cost of traffic accidents was estimated without sufficient detailed information

or it was estimated based on the unit accident costs derived for other developed

countries [3]. Hence, it is believed that every country has different accident costing

evaluation approach and estimation result according to their economic conditions,

population growth and developmental factor.

Costing road accidents has numerous advantages. According to Silcock (2003) [70],

accident costing can be used for resource allocation at a national level to ensure

road safety is ranked equitably, in terms of investment in the improvement of road

safety. Accident costing also can be utilized to ensure the best use is made of any

investment, through economic appraisal and cost benefit analysis.

Downing (1997) [17] also mentioned that costing approach allows for all negative

consequences to be valued and comparisons made with other national problems.

Other than that, cost benefit analysis of alternative road improvement schemes

enables the expenditure on road safety to be optimized. Accident costing highlights

the socioeconomic burden of road accidents. Furthermore, knowledge on accident
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costs allows safety impacts to be economically justified (Road Safety Guidelines

for the Asian and Pacific Region, 2010).

In the study of ’How Much Do Road Accidents Cost the National Economy?’ done

by Elvik (2000) [20], it found that all economies would recommend to include an

economic evaluation of lost quality of life in the road accident costs. Al-Masaeid

et al. (1999) [3] in the research of accident costing in Jordan suggest that the 1996

traffic accident in Jordan cost the country about JD 103 million ($US 146.3) and

this cost would be double if appropriate willingness to pay was used.

Downing (1997) [17] had made comparison between accident costs in Indonesia

and United Kingdom, the study revealed that UK accident costs are much higher

per accident than for the same severity in Indonesia which are 68:1 for fatal

accidents, 27:1 for non-fatal accidents, 14:1 for slight injury and 12.5:1 for damage

only cases. In the research of official economic valuations of accident fatalities in

20 motorized countries studied by Elvik (1995) [19], it conclude that, when the

economic evaluation of lost quality of life is included, the economic valuation

of a traffic accident fatality is more than twice as high as in countries where lost

quality of life is excluded. Furthermore, Trawen et al. (2002) [73] had studied the

international comparison of accident cost of a fatal casualty of road accidents in

1990 and 1999 said that, each countries used different method in calculating their

accident cost that suits the government and society objective.

Silcock (2003) [70] declared that if decision makers are genuinely concerned about

the quality of life and social well-being of their citizens, then the willingness to

pay method should be used. The choice of accident costing method depends on

the purpose, objective, capacity and data available of each country [6]. However,
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this method is extremely difficult to apply in developing countries, based as it is

on the completion of complex questionnaires which relate to perceived risk and

payment by individuals to avoid a given level of risk [70].

2.5 Accident Cost Methods

According to Silcock (2003) [70], there two common methods to use in evaluating

accident cost which are:

i. Lost-output/human capital method

ii. Value of risk change/willingness to pay method

2.5.1 Lost-output/human capital method

Lost output/human capital method is classified into two cost components, which

is direct and indirect cost. Direct cost is the cost of vehicle damage, medical

treatment, police and administration [17]. Generally, this cost is the major financial

burden to the accident victim in short and long term. Vehicle damage is the largest

portion of this cost component, followed by medical treatment cost while police

and administration cost is the lowest. Indirect part of this cost is costs that are due

to a loss of future output. It refers to the loss to the economy of the productive

capacity from those affected by road accident tragedies [70]. Loss of a key person

in an institution will affect many activities in the long run. It will lead to a great

loss impact to the family, organization and society.

Therefore, the evaluation of accident cost using this method only concentrate on

the actual accident cost involved. In other aspect, this method does not include the

evaluation of psychology cost to portray the pain, grief and suffering experienced

by the accident victim.
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2.5.2 Value of risk change/willingness to pay method

The human capital method is well suited to the objective of maximizing the wealth

of the country but is not so appropriate for cost benefit analysis [17]. Around

1970 the human capital approach was criticised by several economists as being

inconsistent with the theoretical principle of cost benefit analysis [19]. In a recent

research, sum to reflect ’pain, grief and suffering’ is added to the human capital

method to capture some of the human considerations of the willingness to pay

method [17]. However, the willingness to pay method is not applicable to be

applied in all cases since every individual has their own perspective in deciding

the cost that they willing to pay for a reduced risk in preventing road accident

tragedy.



Chapter 3

Methodology

3.1 Introduction

This chapter describes and justifies the research methodology and framework that

was adopted to develop statistical analysis in this study. There are three statistical

analysis employed for accident severity models, and another three models for

accident cost. To understand the basis of research methodology applied, firstly

the scope of study is explained, data sources is described, then followed with the

discussion of chosen models. Arguments from literature reviews are presented

justifying the choice of specific research methods selected. The methodology

employed is considered to be the most appropriate strategy in the context of this

study objective and the data fittings.

3.2 Scope of Study

Great Britain (GB) has a modern road network and known with the advanced

technology for road engineering. Although with modern road infrastructure, road

traffic accidents still remain as one of the main concerns in transportation and

public health concern. Therefore, in-depth research is worth to carry out in GB.

23
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Furthermore, GB is chosen because of the ease to acquire an official data. When

this study commenced, year 2013 is selected as it was the latest year that the official

data has published and available that time. Due to time constraints, only one-year

data is used for accident severity and accident cost model research. However, this

study can be extended to other countries data with wider time horizon.

3.3 Accident Severity Data

Road accident statistics in the Great Britain are officially collected by the police in

STATS19 form, then maintained by the Department for Transport (DfT). The source

of the road accident data used in this research is the national STATS19 database for

2013 was extracted from the archive dataset using Microsoft Excel. The data were

provided by the UK Data Archive at the University of Essex and can be obtained for

replication after authorisation from the Data Archive. STATS19 provides detailed

data about each accident including date and time, location, accident severity levels,

local conditions at the time of the accident such as weather and visibility, personal

details about the driver and type of vehicle involved. Accident severity is classified

using the following definitions:

• slight, an accident in which at least one person is slightly injured but no-one

is killed;

• serious, in which at least one person is seriously injured but no-one is killed;

• fatal, in which at least one person is killed in the accident.

During 2013, there were 138,660 road accidents reported to the police in Great

Britain involving 252,913 vehicles and 183,670 casualties ([16]). STATS19 record

is divided into three sets of database which called as ’Accident’, ’Vehicle’ and

’Casualty’. ’Accident’ database compiled the information of each accident regarding

the location, date, time, weather and light conditions, etc. ’Vehicle’ database
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focused on the all vehicles that involved in the accident, such as vehicle type,

vehicle manoeuvre, vehicle location, junction location from vehicle, etc. ’Casualty’

database explained in details about the casualties reported in the accident such

as casualty class, sex and age of casualty, pedestrian location, etc. All accidents

have their own ’Accident Index Number’ in the record. For example, accident

with index number 201301BS70 has one record in ’Accident’ database, two records

in ’Vehicle’ database (because of two vehicles involved in that accident), and four

records in ’Casualty’ database (because there were four accident victims in the

scene). Some of the database has incomplete information. Hence, accident index

number is useful to double check and match case between database. In this study,

only ’Accident’ and ’Vehicle’ database will be used for further analysis.

3.3.1 Accident Data

The study of accident severity frequency model commenced by explaining ’Ac-

cident’ data that used in this study. From the total accidents reported, 117,428

(84.7%) were slight injuries, 19,624 (14.2%) were serious injuries and 1,608 (1.2%)

were fatalities ([16]). The missing value cases were discarded from the original

data in order to achieve a better prediction model. Thus, the trimmed sample

contains 82,570 road accidents, 71,574 slight injuries, 10,421 serious injuries and

575 fatal cases. Table 3.1 and 3.2 shows the summary statistics in the ’Accident’

data.

Table 3.1: Summary Statistics for Accident Data

Variable
Fatal Serious Slight

Total
n % n % n %

1st Road Class Motorway 9 1.57 63 0.60 698 0.98 770
A(M) 1 0.17 5 0.05 93 0.13 99
A 331 57.57 5062 48.57 35628 49.78 41021
B 88 15.30 1438 13.80 9109 12.73 10635
C 37 6.43 845 8.11 6209 8.67 7091
Unclassified 109 18.96 3008 28.86 19837 27.72 22954

Road Type Roundabout 24 0.01 934 8.96 8362 11.68 9320
One way street (from 2005) 8 0.01 218 2.09 1494 2.09 1720
Dual carriageway 63 0.01 988 9.48 7388 10.32 8439
Single carriageway 471 0.01 8177 78.47 53214 74.35 61862
Slip road (from 2005) 8 0.01 79 0.76 916 1.28 1003
Unknown 1 0.01 25 0.24 200 0.28 226
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Table 3.2: Summary Statistics for Accident Data (Continued)

Variable
Fatal Serious Slight

Total
n % n % n %

Speed Limit (permanent) 1 4 0.70 233 2.24 1365 1.91 1602
2 308 53.57 7419 71.19 54256 75.80 61983
3 53 9.22 888 8.52 6042 8.44 6983
4 38 6.61 362 3.47 2119 2.96 2519
5 139 24.17 1227 11.77 5718 7.99 7084
6 33 5.74 292 2.80 2074 2.90 2399

Junction Detail Not at junction or within 20 metres 0 0.00 0 0.00 1 0.00 1
Roundabout 37 6.43 1181 11.33 11177 15.62 12395
Mini-roundabout 8 1.39 189 1.81 1589 2.22 1786
T or staggered junction 363 63.13 6012 57.69 37801 52.81 44176
Slip road 19 3.30 217 2.08 1729 2.42 1965
Crossroads 86 14.96 1657 15.90 11920 16.65 13663
More than 4 arms (not roundabout) 5 0.87 136 1.31 1082 1.51 1223
Private drive or entrance 32 5.57 663 6.36 4019 5.62 4714
Other junction 25 4.35 366 3.51 2256 3.15 2647

Junction Control Authorised person 0 0.00 21 0.20 161 0.22 182
Auto traffic signal 77 13.39 1574 15.10 12745 17.81 14396
Stop sign 5 0.87 71 0.68 594 0.83 670
Give way or uncontrolled 493 85.74 8755 84.01 58074 81.14 67322

2nd Road Class Motorway 6 1.04 79 0.76 818 1.14 903
A(M) 3 0.52 8 0.08 76 0.11 87
A 71 12.35 1405 13.48 12380 17.30 13856
B 36 6.26 659 6.32 4864 6.80 5559
C 62 10.78 786 7.54 5736 8.01 6584
Unclassified 397 69.04 7484 71.82 47700 66.64 55581

Light Conditions Daylight 361 62.78 7445 71.44 53290 74.45 61096
Darkness - lights lit 163 28.35 2502 24.01 15691 21.92 18356
Darkness - lights unlit 3 0.52 57 0.55 348 0.49 408
Darkness - no lighting 41 7.13 273 2.62 1235 1.73 1549
Darkness - lighting unknown 7 1.22 144 1.38 1010 1.41 1161

Weather Conditions Fine no high winds 488 84.87 8745 83.92 58561 81.82 67794
Raining no high winds 50 8.70 944 9.06 7597 10.61 8591
Snowing no high winds 1 0.17 79 0.76 760 1.06 840
Fine + high winds 14 2.43 137 1.31 929 1.30 1080
Raining + high winds 7 1.22 135 1.30 1002 1.40 1144
Snowing + high winds 1 0.17 14 0.13 152 0.21 167
Fog or mist 0 0.00 41 0.39 229 0.32 270
Other 6 1.04 162 1.55 1129 1.58 1297
Unknown 8 1.39 164 1.57 1215 1.70 1387

Road Surface Conditions Dry 416 72.35 7673 73.63 51910 72.53 59999
Wet or damp 151 26.26 2587 24.82 18167 25.38 20905
Snow 2 0.35 64 0.61 731 1.02 797
Frost or ice 5 0.87 94 0.90 729 1.02 828
Flood over 3cm. deep 1 0.17 3 0.03 37 0.05 41

Special Conditions at Site None 567 98.61 10231 98.18 70343 98.28 81141
Auto traffic signal - out 2 0.35 14 0.13 160 0.22 176
Auto signal part defective 0 0.00 4 0.04 37 0.05 41
Road sign or marking defective 0 0.00 14 0.13 127 0.18 141
Roadworks 4 0.70 79 0.76 568 0.79 651
Road surface defective 0 0.00 27 0.26 113 0.16 140
Oil or diesel (from 2005) 1 0.17 32 0.31 146 0.20 179
Mud (from 2005) 1 0.17 20 0.19 80 0.11 101

Carriageway Hazards None 569 98.96 10317 99.00 70932 99.10 81818
Vehicle load on road 1 0.17 9 0.09 35 0.05 45
Other object on road 3 0.52 42 0.40 250 0.35 295
Previous accident 1 0.17 7 0.07 41 0.06 49
Pedestrian in carriageway - not injured 1 0.17 23 0.22 199 0.28 223
Any animal in carriageway (except ridden horse) 0 0.00 23 0.22 117 0.16 140
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3.3.2 Vehicle Data

Vehicle data is the second database used in accident severity analysis that provide

details of all vehicles involved in GB road accident . The purpose of using another

type of data and repeating the analysis is to acquire the overall measure from

different angle of perspective given the same event. To clarify, the ’Vehicle’ data

does not have the information of accident severity. Therefore, ’Accident’ and

’Vehicle’ database is matched using accident index number to get a complete

information. The vehicle database contains 252,836 vehicles that involved in road

accidents, resulting with 216,824 slight injuries, 33,167 serious injuries and 2,845

fatal accident. Table 3.3, and 3.4 shows the summary statistics in ’Vehicle’ data.

Table 3.3: Summary Statistics for Vehicle Data

Variable
Fatal Serious Slight

Total
n % n % n %

Type of Vehicle Agricultural vehicle 24 0.84 123 0.37 411 0.19 558
Bus/coach (17 or more seats) 69 2.43 698 2.10 5129 2.37 5896
Car (from 2005) 1760 61.86 20249 61.04 158104 72.91 180113
Electric m/cycle (from 2011) 0 0.00 2 0.01 5 0.00 7
Goods 7.5 tonnes > 225 7.91 760 2.29 3761 1.73 4746
Goods >3.5t. and <7.5t 45 1.58 247 0.74 1486 0.69 1778
Goods vehicle - unknown weight (self rep only) 1 0.04 11 0.03 94 0.04 106
M/cycle over 50 and up to 125cc (from 1999) 55 1.93 1594 4.81 5944 2.74 7593
Minibus (8 - 16 seats) 12 0.42 98 0.30 485 0.22 595
Mobility scooter (from 2011) 5 0.18 26 0.08 125 0.06 156
M/cycle - unknown cc (from 2011) 0 0.00 17 0.05 38 0.02 55
M/cycle 50cc and under 3 0.11 468 1.41 2061 0.95 2532
M/cycle over 125cc and up to 500cc (from 2005) 33 1.16 605 1.82 1578 0.73 2216
M/cycle over 500cc (from 2005) 265 9.31 2443 7.36 4427 2.04 7135
Other vehicle 34 1.20 254 0.77 1168 0.54 1456
Pedal cycle 121 4.25 3350 10.10 16578 7.64 20049
Ridden horse (from 1999) 2 0.07 30 0.09 83 0.04 115
Taxi / Private hire car (from 2005) 38 1.34 645 1.94 4378 2.02 5061
Tram (from 1999) 0 0.00 2 0.01 18 0.01 20
Van / Goods 3.5 tonnes mgw or under 153 5.38 1551 4.68 10982 5.06 12686

Towing and Articulation Articulated vehicle 129 0.95 410 1.24 1954 0.90 2493
Caravan 8 0.35 29 0.09 104 0.05 141
Double or multiple trailer 0 0.56 6 0.02 36 0.02 42
No tow/articulation 2679 9.59 32530 98.06 213988 98.67 249197
Other tow 3 9.28 34 0.10 154 0.07 191
Single trailer 27 1.19 165 0.50 642 0.30 834

Vehicle Manoeuvre Changing lane to left 10 0.35 225 0.68 2035 0.94 2270
Changing lane to right 16 0.56 264 0.80 2307 1.06 2587
Going ahead left-hand bend 273 9.60 1650 4.97 6805 3.14 8728
Going ahead other 1645 57.82 17178 51.78 99809 46.03 118632
Going ahead right-hand bend 264 9.28 1942 5.85 7969 3.67 10175
Moving off 34 1.20 1016 3.06 9317 4.30 10367
Overtaking - nearside 13 0.46 228 0.69 1437 0.66 1678
Overtaking moving vehicle - offside 103 3.62 998 3.01 3979 1.83 5080
Overtaking static vehicle - offside 26 0.91 532 1.60 2685 1.24 3243
Parked 162 5.69 1396 4.21 8124 3.75 9682
Reversing 15 0.53 397 1.20 3206 1.48 3618
Slowing or stopping 38 1.34 1291 3.89 18339 8.46 19668
Turning left 21 0.74 938 2.83 7796 3.60 8755
Turning right 150 5.27 3615 10.90 21857 10.08 25622
U-turn 10 0.35 286 0.86 1609 0.74 1905
Waiting to go - held up 47 1.65 809 2.44 15055 6.94 15911
Waiting to turn left 1 0.04 58 0.17 1179 0.54 1238
Waiting to turn right 17 0.60 349 1.05 3345 1.54 3711
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Table 3.4: Summary Statistics for Vehicle Data (Continued)

Variable
Fatal Serious Slight

Total
n % n % n %

Vehicle Location at Restricted Lane Bus lane (from 1999) 5 0.18 121 0.36 795 0.37 921
Busway (including guided busway) (from 1999) 0 0.00 7 0.02 75 0.03 82
Cycle lane (on main carriageway) (from 1999) 3 0.11 88 0.27 616 0.28 707
Cycleway or shared use footway 8 0.28 43 0.13 230 0.11 281
Entering lay-by or hard shoulder 5 0.18 18 0.05 113 0.05 136
Footway (pavement) (from 1999) 32 1.12 360 1.09 1908 0.88 2300
Leaving lay-by or hard shoulder 2 0.07 43 0.13 267 0.12 312
On lay-by or hard shoulder 23 0.81 82 0.25 472 0.22 577
On main c’way - not in restricted lane (from 1999) 2767 97.22 32405 97.68 212384 97.92 247556
Tram/Light rail track (from 1999) 1 0.04 7 0.02 31 0.01 39

Junction Location Approaching junct or waiting/parked at junct apprch 390 13.70 6056 18.26 50927 23.48 57373
Cleared junction or waiting/parked at junction exit 154 5.41 1891 5.70 11706 5.40 13751
Entering from slip road 6 0.21 83 0.25 864 0.40 953
Entering main road 77 2.71 1378 4.15 9309 4.29 10764
Entering roundabout 11 0.39 613 1.85 5944 2.74 6568
Leaving main road 44 1.55 983 2.96 5316 2.45 6343
Leaving roundabout 12 0.42 395 1.19 3075 1.42 3482
Mid Junction - on roundabout or on main road 335 11.77 7043 21.23 49966 23.04 57344
Not at, or within 20 metres of, junction 1817 63.84 14727 44.40 79752 36.78 96296

Skidding_and_Overturning Jackknifed 2 0.07 23 0.07 72 0.03 97
Jackknifed and overturned 8 0.28 12 0.04 47 0.02 67
None 2224 78.14 28061 84.59 194373 89.62 224658
Overturned 102 3.58 763 2.30 2900 1.34 3765
Skidded 409 14.37 3412 10.29 15902 7.33 19723
Skidded and overturned 101 3.55 903 2.72 3592 1.66 4596

Hit Object in Carriageway Any animal (except ridden horse) (from 2005) 7 0.25 76 0.23 250 0.12 333
Bollard or refuge 14 0.49 159 0.48 913 0.42 1086
Bridge (roof) 0 0.00 4 0.01 17 0.01 21
Bridge (side) 4 0.14 25 0.08 115 0.05 144
Central island of roundabout 4 0.14 50 0.15 209 0.10 263
Kerb 94 3.30 671 2.02 2989 1.38 3754
None 2650 93.11 31600 95.26 208637 96.19 242887
Open door of vehicle 1 0.04 62 0.19 428 0.20 491
Other object 13 0.46 77 0.23 456 0.21 546
Parked vehicle 53 1.86 408 1.23 2746 1.27 3207
Previous accident 4 0.14 24 0.07 70 0.03 98
Road works 2 0.07 18 0.05 62 0.03 82

Vehicle Leaving Carriageway Did not leave carriageway 1991 69.96 27836 83.91 195340 90.06 225167
Nearside 452 15.88 2768 8.34 11343 5.23 14563
Nearside and rebounded 39 1.37 364 1.10 1458 0.67 1861
Offside 254 8.92 1505 4.54 5501 2.54 7260
Offside - crossed central reservation 13 0.46 48 0.14 154 0.07 215

Vehicle Leaving Carriageway Offside and rebounded 32 1.12 216 0.65 742 0.34 990
Offside on to central reservation 23 0.81 146 0.44 973 0.45 1142
Offside on to centrl res + rebounded 16 0.56 99 0.30 711 0.33 826
Straight ahead at junction 26 0.91 192 0.58 668 0.31 886

Hit Object off C/way Bus stop or bus shelter 1 0.04 19 0.06 117 0.05 137
Central crash barrier 31 1.09 229 0.69 1581 0.73 1841
Entered ditch 49 1.72 373 1.12 1596 0.74 2018
Lamp post 33 1.16 266 0.80 1327 0.61 1626
Near/Offside crash barrier 52 1.83 241 0.73 1414 0.65 1707
None 2234 78.50 29364 88.52 200720 92.54 232318
Other permanent object 148 5.20 1060 3.20 4179 1.93 5387
Road sign or traffic signal 49 1.72 317 0.96 1549 0.71 1915
Submerged in water 6 0.21 4 0.01 14 0.01 24
Telegraph or electricity pole 20 0.70 117 0.35 515 0.24 652
Tree 170 5.97 788 2.38 2224 1.03 3182
Wall or fence (from 2011) 53 1.86 396 1.19 1655 0.76 2104

First Point of Impact Back 229 8.05 3293 9.93 40752 18.79 44274
Did not impact 235 8.26 2710 8.17 13403 6.18 16348
Front 1663 58.43 17341 52.29 103485 47.72 122489
Nearside 307 10.79 4637 13.98 28505 13.15 33449
Offside 412 14.48 5180 15.62 30696 14.16 36288

Sex of Driver Female 508 17.85 7618 22.96 64221 29.61 72347
Male 2245 78.88 23689 71.41 139049 64.11 164983
Not known 93 3.27 1867 5.63 13623 6.28 15583

Hit and Run Hit and run 58 2.04 1488 4.49 14279 6.58 15825
Non-stop vehicle not hit 24 0.84 428 1.29 2879 1.33 3331
Other 2764 97.12 31258 94.22 199730 92.09 233752

Was Vehicle Left Hand Drive No 2828 99.37 33026 99.56 215831 99.51 251685
Yes 18 0.63 147 0.44 1054 0.49 1219

Journey Purpose Commuting to/from work 246 8.64 3390 10.22 21263 9.80 24899
Journey as part of work 585 20.56 5348 16.12 36406 16.79 42339
Not known (from 2011) 1983 69.68 23920 72.11 155018 71.47 180921
Other (from 2011) 19 0.67 175 0.53 1068 0.49 1262
Pupil riding to/from school 2 0.07 87 0.26 803 0.37 892
Taking pupil to/from school 11 0.39 251 0.76 2334 1.08 2596
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3.4 Accident Cost Data

The second part of this thesis will discuss in depth about the accident cost data and

the methodology used to model accident cost. Willingness-to-Pay (WTP) approach

is used by GB since 1993 for the accident cost valuation [15]. The WTP method basi-

cally estimates the economic value of lost quality of life (VOSL), known as human

cost, resulting from an accident event. The method simply valuate the amount of

money an individual or the society willing to pay for accident risk reduction [66].

The components in WTP encompasses casualty-related cost, (lost output, medical

& ambulance and human cost) and accident-related cost (police, property dam-

age, insurance and administration cost). All types of cost is briefly discuss as below:

Cost of Road Accident

Casualty-related cost Accident-related cost

Lost of output

Human

Medical & ambulance

Police

Property damage

Insurance & admin

i. Lost of output cost

Lost output refers to the production loss as a result from road accident. It

means that expected loss of capacities due to fatality, disability or sick leave

that inhibits an accident victim to contribute to the economy with its future

earnings. Lost output cost calculation is studied in detail by [52] in 1993

and final valuation done by a group of researcher [10] in 1997. Since then,

that value has been used as a benchmark then updating it over time based

on inflation rate for that corresponding year. This cost is measured by the
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average earnings multiplied by the number of working years lost, activity

rates and life expectancy, and then weighted according to current GDP per

head ([52], [7]).

ii. Medical and ambulance cost

Medical costs is the costs incurred for medical treatment resulting from road

casualties. Below are list down of cost items ([78]):

(a) First aid at the accident location and the transportation to hospital

(b) Medical treatment at the emergency department of hospital

(c) In-patient hospital treatment

(d) Out-patient hospital treatment

(e) Other treatment such as rehabilitation, physiotherapy, home care and

carer service.

(f) Aids and appliances such as wheelchair, crutches, hearing aid, etc.

iii. Human cost

This cost constitutes the biggest portion in accident cost component. This

intangible cost reflects the pain, grief, suffering and loss quality of life. Human

cost cannot be estimated based on market price nor market transaction ([66]).

Therefore, there are many ways to calculate human cost, but the most

recommended method is Willingness To Pay approach ([78], [4]). Basically,

WTP is a method to estimate the economic value that an individual (individual

WTP) or the society (social WTP) is willing to pay to avoid certain accident

risk. WTP method reflect the economic welfare theory, which means welfare

is determined by individual preferences based on their consumption, and

including factors that affect their loss quality of life. Value of a statistical life
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(VOSL) also can be derived from WTP calculation. Human cost is describes

as below ([78]):

(a) Human costs of fatalities (lost life years - this cost also known as VOSL)

(b) Human costs of injuries (loss of quality of life)

(c) Human costs for relatives and friend

iv. Police cost

Police costs are usually low when compared to other cost components. Police

costs relate to the cost of time spent attending and reporting accidents by po-

lice officers. 51 police forces in England, Wales and Scotland are interviewed

to estimate this cost in 2009. Since then, the national police cost is updated

annually according to the market price. The cost estimation takes account

the number and rank of police officer involved and time spent during the

accident event. The estimated value will then convert into monetary unit to

find the cost for each police force region for each type of accident severity in

year 2009 ([16]).

v. Property damage cost

Damage to property includes both damages to vehicles and other third

party property. The largest proportion of property damage comes from

vehicle damage. Other property damage related cost is rather small, like

infrastructure, fixed roadside objects and buildings, freight carried by lorries

and personal property ([78]). In GB, property damage costs is estimated

based on accident location and severity level from a survey of insurance

claims in the early 1990s ([71]). Similar like other cost above, the national

cost value is adjusted annually depends on the current market price.
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vi. Insurance and admin cost

Insurance cost is the administrative costs of insurance company for the

vehicle insurance. This cost is estimated by calculating the average handling

cost per claim. It consists of the cost of personnel processing claims, overhead

costs and allowance for expenses. The calculation of insurance cost was done

in 1995 using insurance data, and it is adjusted annually till today. ([16]).

Figure 3.1. Comparison of Cost Components by Accident Severity [16]

Figure 3.2. Percentage of Cost Components by Accident Severity [16]
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There are many methods of accident cost valuation discussed by scholars around

the world. Each method is chosen based on country’s objective. In GB, there are

three valuation methods used by DfT for accident costing ([77]):

i. The Restitution Costs (RC) approach

This method estimates the amount of cost needed in order to restore the

accident victim and their family back to the prior situation if they had not

been involved in a road crash. It comprises of direct cost related with

road accidents such as medical treatment, property damage, police cost and

administrative cost. Direct cost is usually common in RC method because

this cost is crucial in restoring the consequences of road accident. Market

price is used to value these costs.

ii. Human capital (HC) approach

This approach is suitable for estimation of loss of output cost. There are two

types of lost of output cost, actual and potential loss. Actual loss indicates

current productive capacity loss of a worker, while potential loss refers to the

future productive capacity loss of unemployed to the person and their fam-

ily due to road accident. Future loss is evaluated by using social discount rate.

iii. Willingness to pay (WTP) approach

This method is the most recommended to calculate human cost ([4]) since

there is no market price can represent human cost. WTP is an approach to

estimate amount of cost of individual or society willing to pay for accident

risk reduction. WTP has two methods, which are Stated Preference (SP) and

Revealed Preference (RP) method. SP method uses questionnaires to ask

people how much they are willing to pay for accident risk reduction. RP
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method calculate risk based on actual behaviour, such as buying airbags and

car seat.

Below is the summary of the cost components and the method used to value it:

Table 3.5: Summary of Accident Cost Method

Cost Component Method

Lost output Human Capital
Medical & ambulance Restitution Cost
Human Willingness-To-Pay
Police Restitution Cost
Property damage Restitution Cost
Insurance & admin Restitution Cost

Below is the summary of literature review for each cost component:

Cost Component Literature Review

Lost of output O’Reilly (1992) [52]; Carthy et al. (1998) [10]
Medical & ambulance Department for Transport (2013) [16]
Human Alfaro et al. (1994) [4]; Carthy et al. (1998) [10]
Police Department for Transport (2013) [16]
Property damage Simpson & O’Reilly (1994) [71]; Department for Transport (2013) [16]
Insurance & admin Department for Transport (2013) [16]; Simpson & O’Reilly (1994) [71]

Accident cost data in GB is officially compiled in the DfT records in the WebTAG

databook which can be assessed online. According to DfT personnel, the survey

data that has been collected in 1990s by accident researcher is used until today and

the value is adjusted from time to time based on current market price ([10], [15]).

Raw survey data is not available for public use although formal request has

been applied to Dft supported by university approval. The other alternative is by

acquiring insurance claim data and use it as a proxy as accident cost. Unfortunately,

all of the insurance companies did not give cooperation at all cost as all of their

data were private and confidential. Questionnaire survey will involve variety of

ethical issues as this topic is consider as sensitive issue among citizens.
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Therefore, accident cost data from DfT record is considered to use in this study

after much efforts for data request has failed. The accident cost records contain the

values of accident cost occurred for the year 2013. However , the data obtained is

in average form, hence the alternative way is to simulate data for accident cost by

applying some assumptions to the data obtained. The database will be used as

proxy to represent the actual cost involved. Below is the summary of accident cost

data obtained from DfT as a main reference:

Table 3.6: Reported Accident Cases by Severity for Year 2012 [16]

Types of severity Number of reported cases

Fatal 1,608

Serious 19,624

Slight 117,428

Total 138,660

Table 3.7: Accident Cost Data

Accident severity
Casualty related costs Accident related cost

Total
Lost output Human Medical & ambulance Police cost Damage to property Insurance & admin

Fatal 628,215 1,232,773 5,342 18,436 11,302 310 1,896,377
Serious 24,867 169,544 14,935 2,149 5,103 193 216,791
Slight 3,061 14,586 1,299 556 3,029 117 22,648
All injury 14,903 57,161 3,715 1,063 3,495 133 80,469
Damage only - - - 36 1,930 56 2,022

For the above data, a simulation is done using R-software to find accident cost

data. Each type of accident cost data is simulate based on number of accident

occurrence. For example, fatal accident has 1,608 (refer Table 3.6) cases and the

total output cost for each fatal accident is £628,215 (Table 3.7). For example, The

simulation of lost output cost of fatal accident is set based on the boundary value.

Assumption made that minimum value for lost of output cost for fatal accident

will be equal to lost of output cost for serious injury accident which is £24,867

(refer Table 3.7). Therefore, a simulation between £24,867 to £628,215 is done for

1,608 data. The simulated data is checked by using scatter plot to ensure that it
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followed the three distributions.

Each cost component in fatal accident is simulate by applying the same method for

three distribution - Gamma, Weibull and Log-normal. Then, a simulated database

is prepared for three set of data for each distribution. It comprises 1,608 cases with

six cost components each which generated a 1608×6 table. Accident cost for each

case will be sum up to find the total cost will then be used further in modeling

accident cost. The same process is repeated for other accident severity - serious

and slight. Simulated accident cost data for serious injury has 19,624 cases with

6 cost components (19,624×6) while slight accident has 117,428 cases with 6 cost

components (117,428×6).

3.5 Road Accidents Severity Model

Over the years, researchers have used a various range of methodological technique

that have modelled the crash frequency and severity either independently or

simultaneously. It is noteworthy to know that different countermeasures require

to reduce crash frequency and crash severity [64]. The methods that selected in

this study relied on the nature of the dependent variable, which is the severity

of traffic accident. Injury severity data are classified by discrete categories such

fatal, serious and slight injury. The responses data are in categorical form, ranging

from less severe to more severe. Hence, discrete choice models (e.g., multinomial,

ordinal or probit models) are selected. Models such as multinomial, nested and

mixed logit models applied nominal response probability method. Furthermore,

these models offer more flexible functional form and provide better parameter

estimates [41].
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As discussed previously in the literature review part, numerous research have

been conducted to model the accident frequency and severity either independently

or simultaneously. These are the statistical models that will be considered to apply

in modelling road crashes severity:

i. Multinomial logistic regression

ii. Hierarchical log-linear graphical models

iii. Multinomial logistic random parameters model

iv. Bayesian inference - consensus Metropolis-Hastings algorithm

3.6 Multinomial Logistic Regression (MNL)

The methodological framework in this study aimed at identifying variables which

may contribute to explaining accident severity and any variables that explain the

unobserved random effects. Several researchers applied ordered discrete model to

reflect the increasing level of injury severity like the study done by [32], [1], [2],

[50], [18], [60], [61] and [22]. However, the degree of injury severity is not a major

concern as less restriction model is required to obtain better prediction results.

Therefore, MNL model is preferred over ordered models. This model is adopted

to assess accident severity given that an accident has occurred. MNL is categorical

outcome models with three or more nominal outcomes and will be developed to

investigate the significance of chosen covariates towards each severity. This model

has been utilized by many researchers previously to model accident severity ([79];

[31]; [81]; [30]; [28]; [65]; [41]; [63]; [42]; [64]; [68]; [2]; [9]). Essentially, in the MNL

model formulation, a linear function of polytomous covariates that determine

accident n’s severity outcome i is given by,

Si j = αi+βiX j, (3.1)
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where i is a set of all discrete outcomes (accident severity). Si j stands for linear

function determining the probability of severity outcome i for accident j, X j denotes

the exogenous measurable characteristics, e.g., road class, road type and speed

limit for accident j with accident severity i, αi is the intercept of accident severity

i, βi represents the vector of estimable parameters for accident severity i. The

parameters in the model are estimated by using standard maximum likelihood

approach. Data preparation and data analysis were performed using R software.

3.7 Log-linear Graphical Model

Graphical model is the second step of explorative study since it provides the

conditional restrictions among variables and improves the high correlations issue

arises in MNL model. It has become one of important tools in statistical modelling

as an exploratory multivariate method. It is used for identifying direct and indirect

association among random variables and able to break a large complex model

into a simplified one. Furthermore, it provides illustrative presentation with some

terminology for interpreting models. The result can be observed straightforward

from the graph.

Graphical models are commonly used to explain conditional independence, where

all variables are treated as response variables. UK road accident database contains

large number of variables that may associate with road crashes. An important

problem is then to identify the association, or in a complementary way, the condi-

tional independence relationships between the variables under study [74]. The

conditional independence is discussed as below:

Let X, Y be random variable. X and Y are independent if

fX,Y(x, y) = fX(x) fY(y)
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or equivalently, if

fY|X(y|x) = fY(y)

Let X, Y, Z be random variables, X and Y are conditionally independent given Z if

for each value of z of Z, X and Y are independent in the conditional distribution

given Z = z. That is if

fX,Y|Z(x, y|z) = fX|Z(x|z) fY|Z(y|z)

or equivalently

fY|X,Z(y|x,z) = fY|Z(y|z)

It also can be written in this form:

X ⊥⊥ Y|Z

Graphical models have been developed for categorical variable as a subclass of

hierarchical log-linear models ([12],[35],[34]). In this study, all log-linear models are

assumed to be hierarchical. For example, considering only three variables, x, y and

z for simplicity, the saturated hierarchical log-linear model can be parameterised

as:

logpxyz = u+u1(x)+u2(y)+u3(z)+u12(xy)+u13(xz)+u23(yz)+u123(xyz) (3.2)

The mutual independence model, that is the model which specifies that all variables

are independent is,

logpxyz = u+u1(x)+u2(y)+u3(z) (3.3)

And the all two-way interaction model is

logpxyz = u+u1(x)+u2(y)+u3(z)+u12(xy)+u13(yz)+u23(xz) (3.4)

The interaction graph of a graphical model for categorical variables is equivalent to

the conditional independence graph, which is the main tool of graphical modelling

[76]. The conditional independence graph is an undirected graph G = (V, E) where
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it is a structure consisting of finite set V of vertices V = {1, 2, ... , d} is corresponding

to the set of variables in this study; and a finite set of E of edges between these

vertices. It is called undirected graph since all the edges are undirected.

Figure 3.3. Example of Undirected Graph

Referring to Figure 3.1 above, it is an example of undirected graph, G = (V, E),

where V = {a, b, c, d, e} and E = {ab, bcd, e}

3.8 Multinomial Logistic with Random Effects model

(MNLRE)

In road accident, data commonly in clusters form and the suitable method to model

this kind of data is by including random parameters in the MNL model [23]. One

of the limitations of the traditional MNL models is its inability to accommodate

any random effects and assumed that each observation is independent. Moreover,

correlation is not well considered in the model.

Fixed effects is a parameter term used to explain factor’s effect in a generalized

linear model (GLM). It applies to all categories of interest, such as road type, light

and weather conditions, type of first road class, etc. To overcome these limitations,

in our model extension, we include random effects in the MNL model specification.
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Random effects usually apply to a sample; however, in this case, the road accident

model is observed to have spatial random effects on the accident-prone location for

each severity outcome i. Generalized linear mixed model (GLMM) is an updated

regression model that allows both random and fixed effects on the same scale in

the linear estimation.

Location cluster j has T j categorical observations. Let XXX jk denote a column vector

of independent variables for the kth observation in location j. For cluster j, u j

denote the location random effects. The linear part of the generalized linear mixed

model (GLMM), for severity type i is:

Si jk = αi+βiX jk+u j , j = 1,2, . . . , J (3.5)

where u j are assumed to follow a multivariate normal distribution with N(0,Σ),

where Σ is an arbitrary covariance matrix, which allow more flexibility to the

behaviour of the random effects.

3.9 Bayesian Inference

Bayesian inference is a method to find unknown parameters by using probability

model conditionally on known data. The probability model is denote by p(θ|y),

conditional probability density function where y is the known data and parameter

θ is assume to be random and unknown. In Bayesian analysis, the likelihood

function L(θ|y) = p(y|θ), represent as the information carried by the observed

data, combined with the prior distribution p(θ), are summarized in the posterior

distribution:
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p(θ | y) =
p(θ)p(y | θ)

p(y)
(3.6)

where p(y) is the normalising constant
∫
θ

p(θ)p(y | θ)dθ. The posterior distribution

can be represented as

p(θ | y) ∝ p(θ)p(y | θ) (3.7)

which equal to posterior ∝ prior× likelihood. The posterior p(θ | y) is the probability

distribution that holds the key solution to an inference problem of unknown

parameters. The prior distribution is the early subjective assumption for unknown

parameters. The prior distribution assumption can be made up by referring to

previous analysis, theoritical reasoning or subjective judgement.

Many multivariate probability distributions are complex and difficult to sample.

Markov Chain Monte Carlo (MCMC) is a method of simulating from such a distribu-

tion to generate a Markov chain sequence. MCMC algorithm constructs a sequence

of random dependent variables θi from a normalised density f (θ) = g(θ)/
∫

g(θ)dθ,

initiating from θ0, where the next state θi+1 depends only on the current state θi

and not on the previous sequence θi−1.

The Markov chain sequence of θi converges to the stationary distribution if the

specified conditions are met, and i reach a certain level to allow the chain converge.

3.9.1 Metropolis Hastings Algorithm

When direct sampling is complicated, Metropolis-Hastings (M-H) algorithm is

used to estimate the MNLRE model’s unknown parameters. M-H is a Markov
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Chain Monte Carlo (MCMC) method where an arbitrary proposal probability

distribution is used as a sample to generate a stationary distributed random

samples after it has converged. Suppose that the likelihood function is

L(θ | X,Y,u) =
J∏

j=1

T j∏
k=1

I−1∏
i=1

 exp
(
αi+βT

i X jk+u j
)

1+
∑I−1

i=1 exp(αi+βT
i X jk+u j)


I[Y jk=i]

(3.8)

where ui ∼N(0,Σu). The unknown parameters are θi = (αi,βi). The chosen prior

for αi and βi is assumed independent and normally distributed. These priors are

designed to be fairly uninformative, described as below:

αi ∼N(0,1) , βi ∼N(µβi ,Σβi), (3.9)

for some known hyper-parameters µβi and Σβi . Define µβ = (µβ1 ,µβ2 , . . . ,µβI−1)′ ,

Σβi =


Σβ1 0 · · · 0
0 Σβ2 · · · 0
...

...
. . .

...
0 0 · · · ΣβI−1

 then the posterior density kernel can simply written as

posterior ∝ prior× likelihood which equal to:

π(θ | Y,X,u) ∝ π0(θ)L(θ | X,Y,u)

∝

 I−1∏
i=1

N(αi;0,1)

N(β;µβ,Σβ)L(θ | X,Y,u)

Let the proposal density for q(αi|α
′

i) to be a normal distribution with mean, µαi and

standard deviation, σαi , where µαi is drawn from the perturbation chain generated

in the previous chain step, while σαi is obtained from the previous chain iteration.

A proposal value α∗i is then generated from q(αi|α
′

i). The chain moves from αi to α∗i

with probability:

φ
(
αi,α

∗

i | X jk,Yi jk,βi,u j
)
=min

{
π(α∗i ,βi | Yi jk,X jk,u j)

π(αi,βi | Yi jk,X jk,u j)
,1

}
, (3.10)
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where φ represents an M-H acceptance probability. If Eq. 3.10 is greater than U

(where U is uniformly distributed on [0,1]), the proposal value α∗i is accepted;

otherwise, the current value αi is kept as the new draws for the respective Markov

chain.

Similar like the above case, the sample βi is drawn from the posterior distribution

π(θi | Yi jk,X jk,u j) and the proposal value, β∗i is obtained from the proposal distri-

bution q(βi|β
′

i), that follows a normal distribution with mean, µβi generated from

the chain value in the previous chain step, and standard deviation, σβi is obtained

from the previous iteration. The chain moves from βi to β∗i with probability:

φ
(
βi,β

∗

i | X jk,Yi jk,αi,u j
)
=min

{
π(β∗i ,αi | Yi jk,X jk,u j)

π(βi,αi | Yi jk,X jk,u j)
,1

}
, (3.11)

where φ represents an M-H acceptance probability. If Eq. 3.11 is greater than

U (where U is uniformly distributed on [0,1]), the proposal value β∗i is accepted;

otherwise, the current value βi will be applied for the next chain.

3.9.2 Consensus MCMC

The main constraint in performing the M-H simulation procedure for this dataset

is the computational time and complexity in application. When the data is too

large to process on a single machine, the solution is to divide the task among

multiple machines by running a separate M-H algorithm on each machine, and

then averaging individual draws across machines. This method is called the

consensus MCMC introduced by [67].

In this method, the data are split among multiple databases into groups called

shards. Each shard is assigned to a particular machine which run separate simula-
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tion on each machine from a posterior distribution given its own data without any

inter-machine communication, i.e., each shard is independent of other database

shards. The posterior simulations from each machine are then aggregated to

produce a set of global average parameters representing the consensus of all the

machines.

Let y denote the full data, ys represent shard s for s = 1, . . . ,S and θ be the global

parameters. Assuming y to be exchangeable, the posterior distribution can be

written as

p(θ | y) =
S∏

s=1

p(ys | θ)p(θ)
1
S (3.12)

Note that the prior distribution p(θ) =
∏

s p(θ)
1
S in Eq. 3.12 is divided into S

components to preserve the total amount of prior information. This consensus

system assumes each shard is conditionally independent between other shards.

Several methods have been proposed to aggregate the estimation results such as

density estimation [49, 75], geometric median [47], and weighted averaging [67]

that is used in this paper. The estimation results of each parameter θs1, . . . ,θsg from

all shards are combined and aggregated. Each shard is assigned a weight, which

is a matrix Ws. Thus, the consensus posterior for g is

θg =

∑
s

Ws

−1 ∑
s

Wsθsg (3.13)

Note that since the posterior p(θ | ys) is assumed to be Gaussian, then the joint

posterior p(θ | y) is also Gaussian.
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There are three different weighting schemes to combine consensus MCMC which

are matrix, scalar, and equal schemes. According to [67], matrix and scalar

weighting methods perform better when combining the estimation results from

consensus MCMC algorithm in the application of logistic regression analysis. In

this paper, the matrix weighting scheme is selected for the implementation of

our model. Therefore, the appropriate weighted averages selected for Ws will

be Ws = Σ
−1, where Σs = CoVar

(
θ | ys

)
. The Σs is sample covariance of θs1, · · · ,θsg

generated from consensus M-H simulation. Thus, referring to Eq. 3.13, the

weighted average equation can be written as:

θg =

 S∑
s=1

Σs


−1 S∑

s=1

Σ−1
s θsg (3.14)

3.10 Road Accidents Cost Model

Accident cost is the continuation study of road accidents severity model. After the

contributing factors of each accident severity are known, it is worth to study in

depth regarding how the accident cost influence each accident severity. Previous

accident cost study showed all of the cost study used basic calculation with the

application of cost economic model. Hence, a new approach of accident costing

by using statistical model is proposed. As discussed previously, simulated data

is used to model accident cost. Three statistical models are used to find the cost

difference for each accident severity then compared with accident severity model

result. There are three suitable distributions to estimate accident cost which are

[27]:

i. Gamma distributions

ii. Weibull distributions
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iii. Lognormal distributions

3.10.1 Gamma Distribution

Study of fitting accident cost ratio into Gamma distribution between fatal and

non-fatal accident has been done to declare the marginal Gamma distribution

and assumption made [27]. The model is described as by assuming that the

accident cost for fatal accident C1 and while accident cost for non-fatal accident

C2 are following Gamma distributions with parameters C1~Gamma(γ1, η1) and

C2 ~Gamma(γ2, η2). Letting Z = C1
C2

to represent the cost ratio between fatal and

non-fatal accident. Considering C1 and C2 are two independent random variables,

thus, the marginal Gamma distribution obtained by applying transformation

technique could be written as:

fR(z) =
Γ(γ1+γ2)ηγ1ηγ2zγ1−1

Γ(γ1)Γ(γ2)[zη1+η2]γ1+γ2
, z > 0 (3.15)

Since there are three types of accident severity to estimate the cost, the above

Equation 3.15 is not fit to apply in this study. Therefore, a normal Gamma model

is used to find the estimated cost for each accident severity then comparison will

be made.

The propose model is by assuming that the accident cost for fatal accident C1,

accident cost for serious injury accident C2 and accident cost for slight injury

accident C3 are following Gamma distributions with parameters C1~Gamma(γ1,

η1), C2 ~Gamma(γ2, η2) and C3 ~Gamma(γ3, η3). Considering C1, C2 and C3 are
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three independent random variables, thus, the probability distribution function of

Gamma distribution for three accident cost could be written as:

fC1(x) =
xγ1−1e− x

η1

Γ(γ1)ηγ1
1

, x > 0; γ1,η1 > 0 (3.16)

fC2(x) =
xγ2−1e− x

η2

Γ(γ2)ηγ2
2

, x > 0; γ2,η2 > 0 (3.17)

fC3(x) =
xγ3−1e− x

η3

Γ(γ3)ηγ3
3

, x > 0; γ3,η3 > 0

Similar like in the previous part, the parameter estimation is done by using

Bayesian inference, which is consensus MCMC with random walk M-H algorithm

method. In this model, the unknown parameters are γi and ηi. The chosen prior

for γi and ηi is assumed independent and normally distributed. The proposal

density for q(γi|γ
′

i) and q(ηi|η
′

i) followed normal distribution with mean, µγi and

µηi is drawn from the perturbation chain generated in the previous chain step,

meanwhile, standard deviation, σγi and σηi is obtained from the previous chain

iteration. The estimated parameter value from the simulation work will be used

further in finding the accident cost for each level of severity.

3.10.2 Weibull Distribution

Weibull distribution is a very popular distribution and widely applied in modelling

data in science field. Up to this day, this model has never been applied in road

accident cost analysis before. Assuming that the cost for fatal accident (C1) while

cost for non-fatal accident (C2) are following Weibull distributions with parameters

C1 ~Weibull (λ1, k1) and C2 ~Weibull (λ2, k2). Considering new random variable

with, Z= C1
C2

, to represent the cost ratio between fatal and non-fatal accident. C1 and
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C2 are two independent random variables, thus, probability distribution function

of the ratio of two Weibull random variables is given by [8]:

fR(z) =
θγ(1−ρ)(1+γz

θ
a )z

θ
a−1

c[1−2γ(2ρ−1)z
θ
a +γ2z

2θ
a ]

3
2

, z > 0 (3.18)

Where Z = C1
C2

, θ = k1
k2

, γ = λ1
λ2
> 0

The formula 3.19 above further simplify by letting a = 1 and ρ = 0 since C1 and C2

are two independent random variables.

fR(z) =
θγ(1+γzθ)zθ−1

[1+2γzθ+γ2z2θ]
3
2

, z > 0 (3.19)

The above Equation 3.20 is only applicable for two levels of severity. Therefore,

the original Weibull model is referred to find the accident cost for fatal, serious

and slight accident. Assuming that the cost for fatal accident (C1), cost for serious

accident (C2) and cost for slight accident (C3) are following Weibull distributions

with parameters C1 ~Weibull (λ1, k1), C2 ~Weibull (λ2, k2) and C3 ~Weibull (λ3, k3).

Considering C1, C2 and C3 are all independent random variables, the probability

distribution function of three Weibull models are given by:

fC1(x) =
k1

λ1

(
x
λ1

)k1−1

e
−

(
x
λ1

)k1

, x ≥ 0 (3.20)

fC2(x) =
k2

λ2

( x
λ2

)k2−1
e
−

(
x
λ2

)k2

, x ≥ 0 (3.21)

fC3(x) =
k3

λ3

( x
λ3

)k3−1
e
−

(
x
λ3

)k3

, x ≥ 0 (3.22)

The unknown parameters for this models are λi and ki. The parameter estimation

is done by applying Bayesian technique using consensus MCMC random walk
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M-H algorithm. The prior for λi and ki are assumed independent and normally

distributed. The proposal density for q(λi|λ
′

i) and q(ki|k
′

i) followed normal distribu-

tion with mean, µλi and µki is drawn from the perturbation chain generated in the

previous chain step, meanwhile, standard deviation, σλi and σki is obtained from

the previous chain iteration. The estimated parameter value from the simulation

work will be used further in finding the accident cost for each level of severity.

3.10.3 Log-Normal Distribution

Log-normal distribution is another suitable distribution to model accident cost

[13]. There is no research nor literature found to discuss regarding the probability

density function of the ratio of two Log-normal random variables. Therefore, the

basic Log-normal model is used in this study.

Letting the fatal accident cost as C1, serious accident cost as C2) and slight accident

cost as C3). All these three cost variables are following Log-normal distributions

with parameters C1 ~Log-normal(µ1, σ1), C2 ~Log-normal(µ2, σ2) and C3 ~Log-

normal(µ3, σ3). The probability distribution function of Log-normal distribution

for C1, C2 and C3 are given by:

fC1(x) =
1

xσ1
√

2Π
exp

− (lnx−µ1)2

2σ2
1

 (3.23)

fC2(x) =
1

xσ2
√

2Π
exp

− (lnx−µ2)2

2σ2
2

 (3.24)

fC3(x) =
1

xσ3
√

2Π
exp

− (lnx−µ3)2

2σ2
3

 (3.25)

Where C1, C2 and C3 are three independent random variables.
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The unknown parameters for this models are µi and σi. Same like in the previous

two models, parameter estimation is done by applying Bayesian technique using

consensus MCMC random walk M-H algorithm. The prior for µi and σi are

assumed to be independent and normally distributed. The proposal density for

q(µi|µ
′

i) and q(σi|σ
′

i) followed normal distribution with mean, µµi and µσi is drawn

from the perturbation chain generated in the previous chain step, meanwhile,

standard deviation, σµi and σσi is obtained from the previous chain iteration. The

estimated parameter value from the simulation work will be used further in finding

the accident cost for each level of severity.



Chapter 4

Accident Severity Model

4.1 Introduction

There are two different approaches to model road accident severity which are by

analysing through statistical frequency and also accident cost model. Separate

models were used because this research aims to determine the contributing factors

that associated with accident occurrence and the cost involved for each type of

severity. This chapter focuses on finding the contributing accident factor to three

types of accident severity - fatal, serious and slight.

In this study, the discussion is based on the result of three statistical models

produced, which are multinomial logistic regression (MNL), log-linear graphical

model and multinomial logistic regression with random effect (MNLRE). MNL and

MNLRE are the same models with different approach and parameter estimation.

MNL used all variables in the data source and the parameter estimation used is

maximum likelihood estimation. Meanwhile, MNLRE is also used all variables,

plus random effects location, and using Bayesian method as its parameter estima-

tion. These three models will be explored and present in the next section. Accident

cost model will be discussed in the next chapter.

52
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4.2 Multinomial Logistic Regression

A multinomial logistic regression analysis was conducted to predict factors that

contribute to the probability of accident severity given fatal, serious and slight.

Two datasets are used to perform this analysis which is Accident and Vehicle,

both for year 2013. Each dataset has different types of predictors and explanatory

variables, hence all of the variables are treated as factors.

4.2.1 Accident Data

Results of the multinomial logit regression analysis was fitted using R software

package and presented in Table 4.1. The R packages that used for this analysis

are mlogit, foreign, nnet and stargazer from Comprehensive R Archive Network

(CRAN) site. For this analysis, a total of 70 predictors are used and the nominal

response outcomes are the severity of road crashes - fatal, serious and slight. For

the response variable, fatal accident is selected as the reference group and set as

zero, thus the interpretation results for other outcomes are depended on this base

case (see Table 4.1). Significant variables with Wald statistics test greater than 1.96

corresponding to the level of significance 0.05 are discussed as below.

Using the previously described data, a MNL model that included all crashes with

a wide variety of variables was developed. The calculated likelihood ratio (LR)

value is less than level of significance 0.05, indicating that the model is statistically

significant.
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Table 4.1: Multinomial Logit Model Results for Accident Data

Variable Factor Estimated coefficient Standard error Wald-Statistic p-value

Constant [1] 10.674 7.340 1.454 0.146
Constant [2] 12.736 7.318 1.740 0.082
First Road Class [1] C [1] 0.426 0.180 2.359 0.018

Unclassified [1] 0.417 0.121 3.436 0.001
First Road Class [2] C [2] 0.515 0.177 2.910 0.004

Unclassified [2] 0.357 0.119 2.994 0.003
Speed limit (mph) [1] 30 [1] -1.195 0.515 -2.321 0.020

40 [1] -1.758 0.525 -3.347 0.001
50 [1] -1.804 0.504 -3.580 <0.001
60 [1] -2.124 0.563 -3.769 <0.001

Speed limit (mph) [2] 30 [2] -1.209 0.51 -2.370 0.018
40 [2] -1.954 0.519 -3.762 <0.001
50 [2] -2.128 0.499 -4.261 <0.001
60 [2] -2.451 0.556 -4.407 <0.001

Road Type [2] Single carriageway [2] -0.407 0.173 -2.351 0.019
Junction detail [2] Roundabout [2] 0.934 0.267 3.495 <0.001
Weather condition [1] Fog or mist [1] 12.738 0.097 130.981 <0.001

Raining + no high winds [1] 0.661 0.324 2.043 0.041
Other 1.098 0.514 2.139 0.032

Weather condition [2] Fog or mist [2] 12.662 0.097 130.204 <0.001
Raining + no high winds [2] 0.842 0.313 2.692 0.007
Snowing + no high winds [2] 2.661 1.34 1.986 0.047
Raining + high winds [2] 0.929 0.468 .881 0.047
Other [2] 1.124 0.503 2.236 0.025

Special conditions [1] Road sign/marking defective [1] 7.079 0.319 22.158 <0.001
Road surface defective [1] 10.185 0.285 35.683 <0.001

Special conditions [2] Road sign/marking defective [2] 7.239 0.326 22.184 <0.001
Road surface defective [2] 9.571 0.286 33.439 <0.001

Log likelihood with constants only -34655
Log likelihood at final -34141.883
Number of observations 82570
p-value (from likelihood ratio test) <0.0001

* [1] serious injury, [2] slight injury. The fatal injury is the reference category and set to zero.

The result of significant variables for accident data is presented in Table 4.1. In terms

of contributing factor identification, a wide variety of variables is found to signifi-

cantly influence driver injury severity levels with a total of 20 coefficients estimated.

i. First Road Class

Among the six ’first road class’ groups, road crash is significant to occur at

’first road class type C’ and ’unclassified first road class’. The relative risk

(fatal accident as base case) for serious and slight injury would be expected

to increase by a factor of 1.53 and 1.67 for ’first road class type C’, while 1.52

and 1.43 for ’unclassified first road class’, given the other variables in the

model held constant. Lower class of first road class increase the probability

of serious and slight injury may be because of the poor road condition and

less street light, road sign/markings. From, the analysis, fatal accident has
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lower likelihood in these road class compare to serious and slight injury.

ii. Speed Limit

Somewhat surprisingly, traffic crashes occurring on roads with lower speed

limits led to increases in the road crash frequency and severity. Busy area

commonly address with lower speed limit for safety precaution since it has

high population of vulnerable road users such as kids, cyclists, older people,

etc. This indicates that the posted speed limit is not adhere by the driver,

hence more accidents occurred. MNL model results show similar risk relative

value both for serious and slight injury, albeit the value is decreasing against

the increasing speed limit. The risk relative for serious injury (fatal accident

as reference case) is 0.303, 0.172, 0.165 and 0.120 for speed limit 30, 40, 50 and

60 mph respectively; while risk relative for slight injury is 0.298, 0.142, 0.119

and 0.086 for speed limit 30, 40, 50 and 60 mph.

iii. Weather Conditions

Weather conditions affected each severity in different way, notice that three

variables are significant for serious injury while five variables for slight injury.

’Fog or mist’ is substantially most likely to increase the relative risk of serious

injury (fatal accident as reference group) by a factor of 340,441.982 and slight

injury by a factor of 315,527.12. Under adverse weather, the limited visible

distance and foggy windscreen make it more difficult to manoeuvre the

vehicle. ’Raining with no high winds’ affected serious and slight injury

with the relative risk 1.937 and 2.321 if compare with fatal accident. ’Other’

weather conditions also significant in both serious and slight injury with

a relative risk of 2.998 and 3.077 respectively. Two other variables are not

significant in serious injury but contributed for slight injury: ’snowing with
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no high winds’ affected by relative risk of 14.311 and ’raining with high winds’

with 2.532. This finding is likely because bad weather conditions reflect the

reduced reaction times upon upcoming road hazards, hence causing more

accidents occurrence.

iv. Special Conditions at Site

From MNL model results, ’road sign/marking’ and ’road surface’ conditions

play an important role to explain accident severity. This can be observed

by high relative risk result for both injury severity. For ’defective road

sign/marking’ , it would be expected to increase by a factor of 1,186.781 for

serious injury and 1,392.70 for slight injury if compare with fatal group as

reference, given the other variables in the model held constant. ’Defective

road surface’ also shows high value of relative risk (fatal accident as base

group) with 26,502.65 for serious and 14,342.75 for slight accident. Road

sign/marking worked as early indicator to the driver and other road user

to be more alert on the surroundings. Defective road surface led to many

accident since it affect vehicle movement.

v. Junction Detail

The relative risk for slight injury accident vs. fatal accident to occur, would

be expected to increase by a factor of 2.545 for ’roundabout’; if moving from

’crossroads’ to the mentioned category, given the other variables in the model

held constant. It also means that slight injury accident more likely to happen

at ’roundabout’ compare to fatal accident.
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4.2.2 Vehicle Data

Results of the MNL regression analysis is presented in Table 4.2, 4.3 and 4.4. For

this analysis, a total of 122 predictors are used and the dependent variable is the

severity of road crashes - fatal, serious and slight where fatal accident is selected

as the reference group. Level of significance 0.05 is also used to find the significant

variables that contribute to each accident severity. The likelihood ratio from this

model is less than 0.05, indicating that this model is significant.

Table 4.2: Multinomial Logit Model Results for Vehicle Data

Variable Factor Estimated coefficient Standard error p-value

Constant [1] 7.318 0.330 <0.0001
Constant [2] 10.822 0.330 <0.0001
Age [1] -0.005 0.001 0.001
Age [2] -0.012 0.001 <0.0001
Vehicle Type [1] Pedal cycle [1] 1.806 0.162 <0.0001

M/cycle over 50 and up to 125 cc (from 1999) [1] 1.828 0.191 <0.0001
Mobility scooter (from 2011) [1] 5.943 0.135 <0.0001
M/cycle - unknown cc (from 2011) [1] 1.220 0.203 <0.0001
M/cycle - 50 cc and under [1] 29.725 0.065 <0.0001
M/cycle - over 125cc and up to 500 cc (from 2005) [1] 1.573 0.238 <0.0001
M/cycle - over 500 cc (from 2005) [1] 0.691 0.138 <0.0001
Taxi/private hire car (from 2005) [1] 1.026 0.226 <0.0001
Car [1] 1.070 0.124 <0.0001
Goods over 3.5 t and under 7.5 t (from1999) [1] -0.500 0.187 0.007
Goods vehicle - unknown weight [1] -0.535 0.250 0.032
Mini bus (8-16 passenger seats) (from 1999) [1] 1.918 0.178 <0.0001
Bus or coach [1] 0.638 0.191 0.001
Van/Goods 3.5 t mgw or under [1] 0.504 0.146 0.001
Other vehicle [1] 0.624 0.261

Vehicle Type [2] Pedal cycle [2] 1.962 0.160 <0.0001
M/cycle over 50 and up to 125 cc (from 1999) [2] 1.692 0.189 <0.0001
Mobility scooter (from 2011) [2] 5.943 0.135 <0.0001
M/cycle - 50 cc and under [2] 29.602 0.065 <0.0001
M/cycle - over 125cc and up to 500 cc (from 2005) [2] 1.206 0.235 <0.0001
Taxi/private hire car (from 2005) [2] 1.586 0.221 <0.0001
Car [2] 1.705 0.121 <0.0001
Mini bus (8-16 passenger seats) (from 1999) [2] 2.449 0.180 <0.0001
Bus or coach [2] 1.350 0.186 <0.0001
Van/Goods 3.5 t mgw or under [2] 1.103 0.142 <0.0001
Other vehicle [2] 1.001 0.254 <0.0001

Towing and articulation [1] Double or multiple trailer [1] 1.586 0.298 <0.0001
Other tow [1] 1.636 0.111 <0.0001

Towing and articulation [2] Double or multiple trailer [2] 2.409 0.304 <0.0001
Caravan [2] -1.188 0.467 0.011
Other tow [2] 1.552 0.113 <0.0001

Vehicle Manoeuvre [1] Reversing [1] 2.414 1.846 <0.0001
Parked [1] -1.939 0.159 <0.0001
Waiting to go - held up [1] 10.793 0.045 <0.0001
Slowing or stopping [1] 8.727 0.043 <0.0001
Turning left [1] 1.514 0.047 <0.0001
Waiting to turn left [1] 4.060 0.088 <0.0001
Turning right [1] -0.798 0.186 <0.0001
Waiting to turn right [1] -1.071 0.418 0.010
Changing lane to right [1] -0.941 0.329 0.004
Overtaking moving vehicle - offside [1] -2.458 0.133 <0.0001
Overtaking static vehicle - offside [1] -1.429 0.248 <0.0001
Overtaking - nearside [1] -2.018 0.275 <0.0001
Going ahead left-hand bend [1] -2.357 0.114 <0.0001
Going ahead right-hand bend [1] -2.137 0.114 <0.0001
Going ahead other [1] -2.108 0.093 <0.0001

* [1] serious injury, [2] slight injury. The fatal injury is the reference category and set to zero.
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Table 4.3: Multinomial Logit Model Results for Vehicle Data (Continued)

Variable Factor Estimated coefficient Standard error p-value

Vehicle Manoeuvre [2] Reversing [2] 1.846 0.051 <0.0001
Parked [2] -2.309 0.155 <0.0001
Waiting to go - held up [2] 11.171 0.045 <0.0001
Slowing or stopping [2] 8.946 0.043 <0.0001
U-turn [2] -1.136 0.451 0.012
Waiting to turn left [2] 4.747 0.088 <0.0001
Turning right [2] -1.389 0.185 <0.0001
Waiting to turn right [2] -1.388 0.415 0.001
Changing lane to right [2] -1.061 0.324 0.001
Overtaking moving vehicle - offside [2] -3.024 0.130 <0.0001
Overtaking static vehicle - offside [2] -1.815 0.245 <0.0001
Overtaking - nearside [2] -2.401 0.271 <0.0001
Going ahead left-hand bend [2] -2.855 0.112 <0.0001
Going ahead right-hand bend [2] -2.674 0.112 <0.0001
Going ahead other [2] -2.523 0.092 <0.0001

Vehicle Location - Restricted Lane/Away from Main Carriageway [1] Tram/Light rail track (from 1999) [1] -0.956 0.313 0.002
Cycle lane (on main carriageway) (from 1999) [1] 3.570 0.079 <0.0001
Cycleway or shared use footway [1] -1.884 0.374 <0.0001
On lay-by or hard shoulder [1] -1.079 0.302 <0.0001
Leaving lay-by or hard shoulder [1] -0.300 0.137 0.028

Vehicle Location - Restricted Lane/Away from Main Carriageway [2] Tram/Light rail track (from 1999) [2] -1.458 0.276 <0.0001
Cycle lane (on main carriageway) (from 1999) [2] 3.399 0.079 <0.0001
Cycleway or shared use footway [2] -2.006 0.351 <0.0001
On lay-by or hard shoulder [2] -1.030 0.277 <0.0001
Entering lay-by or hard shoulder [2] -1.050 0.408 0.100
Leaving lay-by or hard shoulder [2] -0.550 0.137 <0.0001

Junction Location of Vehicle (from 2005) [1] Not at, or within 20 metres of, junction [1] -0.597 0.073 <0.0001
Leaving roundabout [1] 1.804 0.039 <0.0001
Entering roundabout [1] 5.925 0.025 <0.0001
Mid Junction - on roundabout or on main road [1] 0.679 0.109 <0.0001

Junction Location of Vehicle (from 2005) [2] Not at, or within 20 metres of, junction [2] -0.904 0.071 <0.0001
Leaving roundabout [2] 2.236 0.039 <0.0001
Entering roundabout [2] 6.091 0.025 <0.0001
Entering main road [2] -0.393 0.195 0.044
Mid Junction - on roundabout or on main road [2] 0.791 0.107 <0.0001

Skidding / Overturning [1] None [1] -1.502 0.168 <0.0001
Skidded [1] -1.374 0.172 <0.0001
Skidded and overturned [1] -1.405 0.186 <0.0001
Jackknifed and overturned [1] -2.704 0.493 <0.0001
Overturned [1] -1.749 0.184 <0.0001

Skidding / Overturning [2] None [2] -1.540 0.168 <0.0001
Skidded [2] -1.424 0.172 <0.0001
Skidded and overturned [2] -1.438 0.185 <0.0001
Jackknifed and overturned [2] -1.976 0.395 <0.0001
Overturned [2] -1.979 0.182 <0.0001

Hit Object In Carriageway [1] Bridge (roof) [1] 1.809 0.286 <0.0001
Bollard or refuge [1] 4.163 0.082 <0.0001
Open door of vehicle [1] 2.072 0.097 <0.0001
Central island of roundabout [1] -1.682 0.492 0.001

Hit Object In Carriageway [2] Previous accident [2] -1.126 0.473 0.017
Road works [2] -0.702 0.178 <0.0001
Bridge (roof) [2] 1.623 0.291 <0.0001
Bollard or refuge [2] 4.010 0.082 <0.0001
Open door of vehicle [2] 2.321 0.098 <0.0001
Central island of roundabout [2] -1.589 0.478 0.001

Vehicle Leaving Carriageway [1] Nearside [1] -0.908 0.080 <0.0001
Straight ahead at junction [1] -1.263 0.260 <0.0001
Offside on to central reservation [1] -0.811 0.267 <0.0001
Offside on to centrl res + rebounded [1] -0.835 0.372 0.025
Offside - crossed central reservation [1] -1.287 0.380 <0.0001
Offside [1] -0.639 0.101 <0.0001

Vehicle Leaving Carriageway [2] Nearside [2] -1.316 0.077 <0.0001
Nearside and rebounded [2] -0.446 0.207 0.031
Straight ahead at junction [2] -2.158 0.253 <0.0001
Offside on to central reservation [2] -1.004 0.255 <0.0001
Offside on to centrl res + rebounded [2] -0.728 0.353 0.039
Offside - crossed central reservation [2] -1.748 0.355 <0.0001
Offside [2] -1.098 0.098 <0.0001
Offside and rebounded [2] -0.680 0.242 0.005

Hit Object Off Carriageway [1] Lamp post [1] 0.849 0.265 0.001
Submerged in water [1] -1.619 0.628 <0.0001
Entered ditch [1] 0.802 0.214 <0.0001
Other permanent object [1] 0.451 0.172 0.009
Wall or fence (from 2011) [1] 0.475 0.208 0.022

Hit Object Off Carriageway [2] Lamp post [2] 0.671 0.264 0.011
Tree [2] -0.640 0.168 <0.0001
Submerged in water [2] -2.109 0.538 <0.0001
Entered ditch [2] 0.838 0.213 <0.0001

* [1] serious injury, [2] slight injury. The fatal injury is the reference category and set to zero.
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Table 4.4: Multinomial Logit Model Results for Vehicle Data (Continued)

Variable Factor Estimated coefficient Standard error p-value

First Point of Impact [1] Front [1] -0.521 0.119 <0.0001
First Point of Impact [2] Did not impact [2] -0.891 0.145 <0.0001

Front [2] -0.947 0.117 <0.0001
Offside [2] -0.620 0.128 <0.0001
Nearside -0.463 0.134 <0.0001

Sex of Driver [1] Male [1] -0.618 0.070 <0.0001
Sex of Driver [2] Male [2] -0.790 0.069 <0.0001
Hit and Run [1] Other [1] -0.679 0.274 0.013

Non-stop vehicle not hit [1] 4.579 0.057 <0.0001
Hit and Run [2] Other [2] -1.062 0.270 <0.0001

Non-stop vehicle not hit [2] 4.335 0.057 <0.0001
Log likelihood with constants only -103312
Log likelihood at final -98916
Number of observations 82570
p-value (from likelihood ratio test) <0.0001

* [1] serious injury, [2] slight injury. The fatal injury is the reference category and set to zero.

i. Age

Age of driver is significant in explaining serious and slight injury accident.

Higher age reduce the relative risk by a factor of 0.995 for serious and 0.988

for slight injury. This indicates that driver’s age is significant, but slightly

contribute to the accident severity.

ii. Vehicle Type

Almost all types of vehicles are statistically significant and shows positive

increase relative risk in explaining accident severity both for serious and

slight injury. The highest relative risk for both accident severity is belong

to motorcycle with 50 cc and below. Motorcycle with low cc commonly

designed with lack of safety features such as no Air Braking System (ABS),

poor handling and suspension. Despite from that, relative risk of ’goods

vehicle’ for serious injury is expected to decrease by a factor of 0.61 and

0.59, while ’Goods vehicle’ variable is not significant factor in slight injury,

given the other variables in the model held constant. This situation probably

because ’goods vehicle’ is usually drive by professional experienced driver

who expert in driving heavy vehicle.
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iii. Vehicle Manoeuvre

From the result presented above (Refer Table 4.2), both accident severity

have reduce relative risk when it involves ’overtaking’, ’going ahead’ and

’right lane movement’. The highest relative risk is belongs to ’waiting to

go-held up’ with a factor of 48,678 for serious and 71,040 for slight injury

accident. Most of UK drivers drive manual transmission vehicle. When the

engine is in idle mode, there is high probability that the driver is careless

while shifting the gear that cause the accident.

iv. Vehicle Location

All accident factor in the location of junction shows reduce relative risk

except for ’cycle lane’. The relative risk increase by 35.52 and 29.93 both for

serious and slight accident. Cycle lane commonly use by vulnerable road

user resulting with more severe accident.

v. Junction Location and Skidding/Overturning

The contributing factor that increase the probability of accident is ’round-

about’ both for serious and slight injury. Roundabout has busy road flow that

cause higher accident risk. However, no evidence for ’Skidding/Overturning’

can increase the risk of accident.

vi. Hit Object in Carriageway

The relative risk of serious and slight accident is increase when a vehicle hit

’bridge’, ’bollard’ and ’open door of vehicle’ in carriageway. Among these

three objects, hitting ’bollard’ in carriageway has increase accident risk the

most, with a factor of 64.26 for serious and 55.15 for slight injury accident. Bol-

lard is a short and sturdy post used as a divider or barrier in road traffic. It is
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made from steel and concrete. Therefore, the consequences of hitting a bollard

is expected to be severe and catastrophic because of the high impact involved.

vii. First Object Hit Off Carriageway

From MNL model results at Table 4.3, ’lamp post’ plays an important role

to explain the increase relative risk of accident severity with a factor of 2.34

for serious and 1.96 for slight injury accident. Comparing these values to

the above case, it is found that hitting an object off carriageway is not as

severe as happened in carriageway. More variables are significant in serious

accident (’entered ditch’, ’other permanent object’, ’wall or fence’), but not

significant in slight accident.

xi. Sex of Driver

The relative risk for male driver is reduced by a factor of 0.54 and 0.45 for

serious and slight injury accident, given the other variables in the model

held constant.

4.3 Log-linear Graphical Models

4.3.1 Accident Data

From the result generated from multinomial logistic regression, it is found

that all the variables are highly correlated and it is might be the one of the

failing cause to obtain the parsimonious model. Therefore, it may be useful

to find the graphical model fitting to the variables of the data and then try to

refine the analysis.
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Accident data for this analysis used is the same data discussed previously.

11 variables taken into account which are:

(a) Accident severity (fatal, serious, slight)

(b) First road class

(c) Road type

(d) Junction detail

(e) Junction control

(f) Second road class

(g) Light conditions

(h) Weather conditions

(i) Road surface conditions

(j) Special conditions at site

(k) Carriageway hazards

Details for each variable used can be found in Appendix. The choice of

variables does not affect the principle of graphical modelling and all vari-

ables considered as response variables. Hierarchical log linear model is

applied, with the aim of finding which graph consists of variables linked in

cliques, that correspond to the severity of road crashes. This analysis is done

using R software package Rgraphviz, RBGL, grid, gRbase, lcd, ggm, rgl, sna,

and gRim. All of this package is retrieved from Bioconductors and CRAN site.

The analysis is proceed by selecting parsimonious model using backward

selection, initiating from the saturated model. Since the table is very sparse,

asymptotic chi-square distribution may be questionable. The graph generated

is presented in Figure 4.1.
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Figure 4.1. The Step-wise Log-linear Graphical Model for GB Accident Data with 11
Variables

Directly on the independence graph (Figure 4.1) it can be observed that, a

clique of Speed limit - Light Conditions - Accident Severity was formed.

Accident severity is independent of other variables in the model. It does not

mean that the other variables are not associate with accident severity, but

conditioning on the fact that an accident has occurred, the information pro-

vided by these three variables are important. Thus, this analysis highlighted

that only two variables are crucial to explain accident severity, which are

Speed Limit and Light Conditions.

The graphical model presented above suggests that there is a four-way

interaction between accident severity, types of first road class, junction

control and light condition. This result is also parallel with the previous

regression output and validate this findings. Thus, studying those three

variables can be further continued to understand their association in depth.
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4.3.2 Vehicle Data

Vehicle data consisted of 252, 836 observations with 150 factor variables.

After several attempts, log-linear graphical result for this data could not

be obtained because of the size issue of the data. Numerous trials of data

manipulation and sampling has been done to find the solution but failed.

The R-software graphical model package cannot handle big data. Vehicle

data is then proceed with MNLRE applying Bayesian analysis for further

examination.

4.4 Multinomial Logistic Random Effects Model

4.4.1 Accident Data

Study is proceed with MNLRE by applying consensus M-H algorithm to

accident data. All data is recoded into binary form, 1 and 0. Numerous M-H

simulation technique is done repeatedly to find the most appropriate value

for unknown parameters and proposal. The proposal density both for q(α
′

i |αi)

and q(β
′

i |βi) to be a normal distribution with mean value equal to the chain

value generated in previous step, while standard deviation value is equal to

the value obtained from previous iteration. The following variables were

incorporated in this analysis:

• yi jk is a matrix of k× 3 represent by Accident Severity (with 3 levels:

fatal, serious, slight. Reference group is fatal)

• x jk is a matrix of k×75 represent by all parameters in Accident dataset,

details in Appendix
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• u j is a matrix of k×1 represent by Police Force location (with 51 levels:

details in Appendix)

The analysis begin with assumption value of αi and βi. Since there are three

categories of response variables, hence, two values of αi should be selected

to start this analysis. As for the beginning, α1 and α2 value are equal to 1

to denote the intercept value for serious and slight injury. α1 and α2 are in

matrix form of k× 1. The starting values used were adjusted accordingly

after every simulations until the convergence is achieved.

Meanwhile, β1 (serious injury accident) and β2 (slight injury accident) are

denoted as parameter value for xi j variables. Therefore, there are 75 different

assumption values to start with. β1 is set in matrix form of 75×1 with all

row values equal to 2, while β2 is in matrix form of 75×1 with all row values

equal to 3. Same like the above case, starting values were updated after every

simulations until it converge well. The above explanation can be summarised

as below:


yi j;1,1
...

yi j;k,1


k×1

= αi


1
...
1


k×1

+


x j;1,1 · · · x j;1,75
...
. . .

...
x j;k,1 · · · x j;k,75


k×75


βi;1,1
...

βi;75,1


75×1

+


u j;1,1
...

u j;k,1


k×1

Prior simulations, data are divided to 20 shards and each shard is run with

M-H algorithm simulation independently to generate samples from posterior

distribution as discussed in Chapter 3. Several simulations are done to find the

most optimum starting and proposal value for each shard. 10,000 iterations

is ran and the first 5,000 as burn-in stage for trials. Generated simulation
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samples are then plotted into chain graph to check for the stationarity feature.

After the stationary distribution chain is achieved for each parameter, final

value for each chain is used to run longer iteration for each parameter of

every shard. Then final concensus simulation is performed by applying

matrix weighting scheme to combine all the 20 shards. The final combined

results are illustrated as below:

Figure 4.2. Plots for α1 and α2 chains

Both α1 and α2 are the intercept value for serious and slight injury MNLRE

prediction. Chain plot in Figure 4.2 are stationary indicated that the chains

are successfully converged. Summarized statistical value for α1 and α2 are

as below:

Table 4.5: Summary Value of α1 and α2

Variable definition Mean Standard deviation
95% sample-based credible sets

2.5% 97.5%

α1 -0.3336 0.1660 -0.6067 -0.0605
α2 -0.3422 0.1664 -0.6160 -0.0684

Parameter β1, j is used to explain all variables in serious accident estimation,

while β2, j represented slight injury parameters. The M-H results of βi, j is

presented below:
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Table 4.6: Summary Value of β1 and β2

β1 β2

95% sample-based credible sets 95% sample-based credible sets
Variable definition

Mean Standard deviation 2.5% 97.5% Mean Standard deviation 2.5% 97.5%

First road class
Motorway -0.1102 0.7223 -1.2983 1.0780 -1.3605 0.3898 -2.0018 -0.7192
A (M) -0.8461 0.8507 -2.2456 0.5533 -0.8007 0.6398 -1.8532 0.2518
A -0.0387 0.3146 -0.5562 0.4788 -1.2366 0.1496 -1.4827 -0.9905
B -0.0294 0.3891 -0.6695 0.6107 -1.1684 0.1563 -1.4256 -0.9112
C -0.4712 0.4606 -1.2289 0.2865 -1.3577 0.1721 -1.6408 -1.0747
Unclassified -0.4201 0.3783 -1.0424 0.2022 -1.1618 0.1504 -1.4091 -0.9145
Road type
Roundabout -0.4413 0.5562 -1.3563 0.4737 0.1391 0.1862 -0.1671 0.4454
One way street (from 2005) -0.4521 0.7146 -1.6277 0.7234 -0.0619 0.2419 -0.4598 0.3359
Dual carriageway -0.1622 0.4021 -0.8237 0.4993 0.1192 0.1692 -0.1591 0.3975
Single carriageway -0.3666 0.3335 -0.9152 0.1820 0.1057 0.1472 -0.1364 0.3479
Slip road -0.7671 0.6542 -1.8433 0.3090 -0.6942 0.3285 -1.2345 -0.1538
Unknown -0.4070 0.8238 -1.7622 0.9482 -0.4672 0.5094 -1.3053 0.3708
One way street/slip road (1974-2004) -0.1706 0.9303 -1.7010 1.3597 0.0263 0.9486 -1.5340 1.5867
Speed limit (mph)
20 -0.8816 0.6862 -2.0105 0.2472 0.2864 0.2338 -0.0981 0.6709
30 -1.0775 0.3101 -1.5876 -0.5674 0.2026 0.1345 -0.0186 0.4238
40 -0.9675 0.4452 -1.6998 -0.2351 0.1883 0.1614 -0.0773 0.4538
50 -0.3041 0.4604 -1.0613 0.4532 0.4285 0.1990 0.1012 0.7559
60 -0.2452 0.3323 -0.7917 0.3014 0.6563 0.1584 0.3957 0.9169
70 -0.0780 0.5218 -0.9364 0.7803 0.4602 0.2222 0.0947 0.8256
Junction detail
Not at junction -0.6957 0.8931 -2.1648 0.7735 0.1193 0.8961 -1.3548 1.5933
Roundabout -0.7546 0.4485 -1.4924 -0.0167 -0.3702 0.1575 -0.6293 -0.1111
Mini-roundabout -0.6249 0.6986 -1.7741 0.5244 -0.2047 0.2370 -0.5945 0.1852
T or staggered junction -0.0415 0.2803 -0.5025 0.4196 -0.0264 0.1117 -0.2102 0.1574
Slip road -0.2233 0.5805 -1.1781 0.7316 -0.0866 0.2265 -0.4592 0.2860
Crossroads -0.2048 0.3585 -0.7946 0.3850 -0.0829 0.1252 -0.2889 0.1231
More than 4 arms -0.5113 0.6974 -1.6584 0.6359 0.0480 0.2416 -0.3494 0.4454
Private drive or entrance -0.6142 0.4836 -1.4096 0.1813 -0.0215 0.1530 -0.2732 0.2301
Other junction -0.3262 0.4909 -1.1336 0.4813 -0.1070 0.1678 -0.3830 0.1690
Junction control
Unathorised person 0.0342 0.8710 -1.3985 1.4670 -1.1275 0.5066 -1.9607 -0.2942
Auto traffic signal -1.2079 0.4345 -1.9226 -0.4931 -1.2380 0.1313 -1.4539 -1.0220
Stop sign -0.9905 0.7323 -2.1952 0.2142 -1.1826 0.2936 -1.6656 -0.6996
Give way or uncontrolled -0.7131 0.3704 -1.3225 -0.1038 -1.2839 0.1118 -1.4678 -1.1000
Second road class
Motorway -0.9902 0.7316 -2.1936 0.2133 0.2718 0.3217 -0.2574 0.8011
A(M) 0.3681 0.8240 -0.9873 1.7235 -0.0767 0.6569 -1.1573 1.0039
A -0.6010 0.4476 -1.3373 0.1354 0.3505 0.1414 0.1178 0.5832
B -0.5350 0.4521 -1.2788 0.2088 0.4022 0.1581 0.1422 0.6623
C -0.4293 0.4411 -1.1549 0.2963 0.4254 0.1621 0.1588 0.6919
Unclassified -0.5780 0.3278 -1.1171 -0.0388 0.4745 0.1256 0.2678 0.6811
Light conditions
Daylight -0.5570 0.3229 -1.0882 -0.0259 0.6797 0.0987 0.5173 0.8422
Darkness - lights lit -0.1437 0.3537 -0.7254 0.4381 0.9421 0.1111 0.7594 1.1248
Darkness - lights unlit -0.5827 0.7390 -1.7983 0.6329 0.4414 0.3851 -0.1921 1.0749
Darkness - no lighting -0.0609 0.4869 -0.8619 0.7400 0.4324 0.1975 0.1076 0.7573
Darkness - lighting unknown -0.8728 0.7336 -2.0795 0.3339 0.6938 0.2585 0.2686 1.1189
Weather conditions
Fine no high winds -0.1300 0.3514 -0.7081 0.4481 -0.0459 0.0988 -0.2084 0.1165
Raining no high winds -0.1460 0.4597 -0.9022 0.6102 -0.2945 0.1344 -0.5157 -0.0733
Snowing no high winds -0.4691 0.8081 -1.7985 0.8603 -0.6623 0.3785 -1.2849 -0.0397
Fine + high winds -0.2521 0.6292 -1.2871 0.7829 -0.3214 0.2522 -0.7362 0.0935
Raining + high winds -0.8997 0.6785 -2.0158 0.2164 -0.2491 0.2567 -0.6714 0.1731
Snowing + high winds -0.6902 0.8264 -2.0496 0.6692 -0.4265 0.5562 -1.3415 0.4884
Fog or mist -0.7096 0.7926 -2.0133 0.5942 0.2156 0.4310 -0.4933 0.9245
Other junction -0.3421 0.6800 -1.4606 0.7765 -0.0474 0.2426 -0.4465 0.3518
Unknown -0.7152 0.6355 -1.7605 0.3301 -0.1351 0.2300 -0.5135 0.2433
Road surface
Dry -0.7788 0.3401 -1.3383 -0.2193 -0.6445 0.0977 -0.8052 -0.4837
Wet /damp -0.9205 0.3795 -1.5448 -0.2962 -0.5602 0.1117 -0.7438 -0.3765
Snow -1.4623 0.7859 -2.7550 -0.1695 -0.6527 0.4073 -1.3227 0.0172
Frost/ice -0.8139 0.7274 -2.0105 0.3826 -0.3061 0.2806 -0.7678 0.1555
Flood 0.1301 0.8302 -1.2356 1.4958 -0.4946 0.7718 -1.7642 0.7750
Oil/diesel 0.0328 0.9053 -1.4565 1.5220 -0.3581 0.8994 -1.8376 1.1214
Mud -0.1999 0.9063 -1.6907 1.2910 0.3261 0.9557 -1.2460 1.8983
Special conditions at site
None -0.4266 0.3520 -1.0057 0.1524 -0.6534 0.0817 -0.7878 -0.5190
Auto traffic signal - out -0.7885 0.8537 -2.1929 0.6159 -0.5648 0.5241 -1.4269 0.2973
Auto signal part defective -0.1108 0.8962 -1.5851 1.3635 -0.2329 0.7998 -1.5485 1.0827
Road sign or marking defective -0.2701 0.8815 -1.7201 1.1800 -0.7758 0.5842 -1.7368 0.1852
Roadworks -0.2128 0.7113 -1.3829 0.9573 -0.5061 0.3006 -1.0005 -0.0116
Road surface defective -0.7756 0.8071 -2.1032 0.5520 -0.1837 0.5830 -1.1428 0.7754
Oil or diesel -0.4995 0.8668 -1.9253 0.9263 -0.2769 0.4972 -1.0948 0.5410
Mud -0.4149 0.8668 -1.8408 1.0109 -0.3057 0.5651 -1.2352 0.6238
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Table 4.7: Summary Value of β1 and β2 (Continued)

β1 β2

95% sample-based credible sets 95% sample-based credible sets
Variable definition

Mean Standard deviation 2.5% 97.5% Mean Standard deviation 2.5% 97.5%

Carriageway hazards
None 0.4880 0.3343 -0.0619 1.0379 0.1831 0.0732 0.0628 0.3034
Vehicle load on road -0.1967 0.9005 -1.6780 1.2847 0.4792 0.7068 -0.6835 1.6419
Other object on road -0.4538 0.8008 -1.7711 0.8634 0.3209 0.3660 -0.2810 0.9229
Previous accident -0.0638 0.8326 -1.4334 1.3057 0.1379 0.6864 -0.9913 1.2671
Dog on road -0.6045 0.9027 -2.0895 0.8806 -0.0241 0.8529 -1.4271 1.3789
Other animal on road -0.6151 0.8738 -2.0525 0.8223 -0.1383 0.8894 -1.6014 1.3248
Pedestrian in carriageway -0.4174 0.8671 -1.8438 1.0089 0.0046 0.4605 -0.7530 0.7622
Any animal in carriageway -0.5524 0.8188 -1.8993 0.7944 -0.0806 0.5526 -0.9897 0.8285

The highlighted rows represent the statistically significant parameters, based

on the 95% (2.5-97.5%) sample-based credible sets. The parameter estimates

in Table 4.6 and 4.7 show that more variables are significant for slight injury

than for serious injury accidents given fatal accident as the reference group.

From the results, clearly, road class is an important contributory factor in

slight injury accidents for both first and second road classes. Another vari-

able, road type of slip road is also a significant factor associated with slight

injury accidents. Junction detail of roundabout increases the likelihood of

road accidents involving both slight and serious injuries.

The MNLRE model results are consistent with the earlier MNL results that

majority of serious injury accidents occurred on roads with low speed limits,

i.e., 30 and 40 mph; while road accidents happen at higher speed limits areas,

i.e., 50, 60 and 70 mph could lead to less severe accidents and injuries for

drivers.

The variable, junction control is not significant in the MNL models, but the

MNLRE results show that two variables, auto traffic signal and uncontrolled,
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i.e., no stop light or sign with only give way sign are significant in explaining

serious injury accidents. However, all variables are significant in the occur-

rence of road accidents involving slight injuries.

Interestingly, the results indicate that light conditions are significant factors

determining slight injuries accidents in both daylight and darkness (roads

with and without road lighting), but it is not a significant cause of serious

injuries accidents.

As discussed earlier, the effects of weather conditions could lead both to

serious and slight injuries with three and five variables are significant, re-

spectively. The results, as shown in Table 4.6 show that the likelihood of

road accidents increases during raining and snowing with no high winds

conditions. These challenging conditions could lead to slight injuries. In

the adverse weather conditions, for example, high winds, a road weather

warning not to travel unless necessary can be issued to drivers living in areas

affected by poor weather conditions. Furthermore, drivers may theoretically

acknowledge the need to reduce their speed in high winds weather condi-

tions, hence, reduce road accidents.

The slipperiness of the road surface related to wetness, e.g., wet/damp

and snow influence driving conditions to a much greater extent than other

conditions like frost/ice, flood, oil/diesel or mud. Water on the road surface

can lead to hydroplaning and skidding which may result in slight and

serious injuries accidents. Slippery roads due to snow during the winter

is only significant in serious injuries accident, but not for slight accidents.
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In addition, surprisingly, the analysis shows that the dry road surface

significantly contributed to road accidents for both slight and serious injuries

accidents. A plausible explanation is that drivers are more likely to drive

faster on a dry road surface when they think it is safe, thus increasing the

likelihood of road accidents.

4.4.2 Vehicle Data

Similar like ’Accident’ data, ’Vehicle’ data also is in categorical form, all data

is again recoded into binary form, 1 and 0. The same method applied as

in the previous analysis, noting that ’Vehicle’ data has more variables and

bigger in size. ’Age of Driver’ variable is excluded from the analysis as the

measure does not conform to other variables which have been recoded into

binary form. Therefore, it left 121 variables to be analysed in MNLRE for

’Vehicle’ data.

Simulated Study

Unknown parameters and proposal value is estimated by applying M-H

simulation repeatedly until the appropriate converged value is obtained.

The same assumption in ’Vehicle’ data also applied for the proposal density,

q(α
′

i |αi) and q(β
′

i |βi) to be a normal distribution with mean value equal to the

value generated in previous chain step, while standard deviation is equal to

the value obtained from previous iteration. Below are the summary details

of variables involved:

• yi jk is a matrix of k× 3 represent by Accident Severity (with 3 levels:

fatal, serious, slight. Reference group is fatal)
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• x jk is a matrix of k×121 represent by all parameters in Accident dataset,

details in Appendix

• u j is a matrix of k×1 represent by Police Force location (with 51 levels:

details in Appendix)

The simulation commenced with setting α1 and α2 equal to 1 as the intercept

value for serious and slight injury. β1 initial value is set equal to 2, while β2

equal to 3. This can be summarised as below:


yi j;1,1
...

yi j;k,1


k×1

= αi


1
...
1


k×1

+


x j;1,1 · · · x j;1,121
...
. . .

...
x j;k,1 · · · x j;k,121


k×121


βi;1,1
...

βi;121,1


121×1

+


u j;1,1
...

u j;k,1


k×1

Data are divided to 20 shards and each shard is run with M-H algorithm

simulation independently to generate samples from posterior distribution.

Several simulations are done to find the most optimum starting and proposal

value for each shard. The final combined results are presented as below:

Table 4.8: Summary Value of α1 and α2

Variable definition Mean Standard deviation
95% sample-based credible sets

2.5% 97.5%

α1 0.6865 0.0599 0.5881 0.7850
α2 0.6871 0.0600 0.58845 0.7858

Table 4.9: Summary Value of β1 and β2

β1 β2

95% sample-based credible sets 95% sample-based credible sets
Variable definition

Mean Standard deviation 2.5% 97.5% Mean Standard deviation 2.5% 97.5%
Vehicle type
Pedal cycle -1.2992 0.2366 -1.68843035 -0.90991765 -0.8309 0.0769 -0.95733805 -0.70436995
Motorcycle 50cc and under (from 1999) -1.2287 0.5307 -2.10164025 -0.35580175 -0.6908 0.1370 -0.9162338 -0.4653722
M/cycle over 50 to 125cc (from 2005) -1.1217 0.3156 -1.6408432 -0.6026508 -0.4277 0.0929 -0.5804917 -0.2749823
M/cycle over 125cc and up to 500cc (from 2005) -0.3770 0.4225 -1.07202895 0.31802895 -0.2263 0.1339 -0.4465804 -0.0059836
M/cycle over 500cc (from 2005) 0.0906 0.2066 -0.24919875 0.43035075 -0.0333 0.0870 -0.1763012 0.1097972
Electric m/cycle (from 2011) -0.6453 0.7484 -1.87641955 0.58578355 -0.4911 0.7624 -1.7452092 0.7629552
M/cycle - unknown cc (from 2011) -0.3351 0.8052 -1.65958855 0.98948655 0.0896 0.6661 -1.0060827 1.1852547
M/cycle - scooter (1979-1998) -0.8396 0.8287 -2.2028403 0.5237143 -0.2520 0.7276 -1.4489709 0.9448989
M/cycle (1979-1998) -0.3960 0.7954 -1.70448635 0.91247835 -0.2210 0.7653 -1.4799453 1.0380233
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Table 4.10: Summary Value of β1 and β2 (Continued)

β1 β2

95% sample-based credible sets 95% sample-based credible sets
Variable definition

Mean Standard deviation 2.5% 97.5% Mean Standard deviation 2.5% 97.5%
M/cycle - Combination (1979-1998) -0.4334 0.7888 -1.73094665 0.86410665 -0.9354 0.7833 -2.2239087 0.3530167
M/cycle over 125cc (1999-2004) -0.1308 0.8081 -1.4601873 1.1985933 -0.6250 0.8087 -1.9553045 0.7053185
Taxi / Private hire car (from 2005) -0.9340 0.3583 -1.52331925 -0.34467675 -1.0647 0.1186 -1.2598278 -0.8695022
Taxi (excl private hire cars) (1979-2004) -0.4859 0.7747 -1.76024915 0.78841515 0.1445 0.7587 -1.1035993 1.3926553
Car (from 2005) -1.3743 0.1447 -1.6122915 -1.1362285 -1.4133 0.0644 -1.519197 -1.307321
Car (incl private hire cars) (1979-2004) -0.3317 0.7906 -1.632228 0.968846 -0.0600 0.7545 -1.30109805 1.18117405
Minibus (from 1999) -0.6704 0.5438 -1.56493445 0.22420045 -1.0120 0.2663 -1.45012585 -0.57390015
Minibus/Motor caravan (1979-1998) -0.3845 0.7821 -1.6710526 0.9019906 -0.2788 0.7936 -1.58428245 1.02669445
Bus or coach (17 or more pass seats) -0.7478 0.2932 -1.23015945 -0.26549855 -1.4894 0.1152 -1.67887755 -1.29990245
Van / Goods 3.5 tonnes mgw or < -1.0474 0.2254 -1.4182098 -0.6765122 -1.4198 0.0927 -1.5722665 -1.2672835
Goods >3.5t. and <7.5t. (from 1999) -0.5840 0.3675 -1.1884647 0.0204787 -1.0704 0.1758 -1.3596468 -0.7811332
Goods 7.5 tonnes >(from 1999) 0.1531 0.2447 -0.24945295 0.55564295 -0.9321 0.1391 -1.16085315 -0.70331285
Goods vehicle - unknown weight -0.6651 0.6865 -1.7943186 0.4642006 -0.8298 0.6216 -1.85234635 0.19281635
Goods >3.5 tonnes (1979-1998) -0.6750 0.7627 -1.9295976 0.5796196 0.2354 0.7906 -1.065171 1.535903
Ridden horse (from 1999) -0.9618 0.7120 -2.13306745 0.20944545 -0.6901 0.4606 -1.44777645 0.06763045
Agricultural vehicle (from 1999) 0.1979 0.4797 -0.5913133 0.9870313 -0.9324 0.2660 -1.36985375 -0.49487825
Tram (from 1999) -0.4387 0.7772 -1.7171732 0.8396832 -0.4222 0.7305 -1.62386815 0.77937815
Mobility scooter (from 2011) -0.4025 0.6329 -1.44362105 0.63858705 -0.6394 0.4181 -1.3271337 0.0482837
Other vehicle -0.5029 0.4364 -1.2207911 0.2148991 -0.8726 0.1815 -1.17118205 -0.57407995
Towing and Articulation
No tow/articulation -0.4352 0.1509 -0.6833666 -0.1869714 0.5354 0.0566 0.44223265 0.62854535
Articulated vehicle -0.3360 0.3117 -0.84874615 0.17664815 0.4843 0.1792 0.1895659 0.7790681
Double/multiple trailer -0.9799 0.7253 -2.1729357 0.2131697 -0.2522 0.6697 -1.35387605 0.84940405
Caravan 0.1669 0.6308 -0.8707322 1.2044682 0.4839 0.4319 -0.2265884 1.1944284
Single trailer -0.3906 0.4412 -1.1164648 0.3352148 0.5600 0.2068 0.2197911 0.9002289
Other tow -0.4057 0.6569 -1.48623415 0.67486815 -0.0876 0.4202 -0.77874065 0.60361865
Vehicle Manoeuvre
Reversing -0.4388 0.4581 -1.19237585 0.31487185 -0.2283 0.1440 -0.46518435 0.00867435
Parked 0.0471 0.2622 -0.3841681 0.4784041 -0.4139 0.1051 -0.58676595 -0.24095405
Waiting to go - held up -0.5517 0.3308 -1.09585545 -0.00749055 -1.0569 0.1060 -1.23121265 -0.88257135
Slowing or stopping -0.9462 0.3347 -1.49675305 -0.39562295 -1.1076 0.0904 -1.2563119 -0.9588301
Moving off -1.1544 0.4163 -1.8392055 -0.4695785 -0.5587 0.0977 -0.7193965 -0.3979635
U-turn -0.5950 0.5765 -1.54337785 0.35340585 -0.2696 0.1671 -0.54442125 0.00517325
Turning left -0.8618 0.4481 -1.5989654 -0.1246506 -0.5758 0.1036 -0.74611175 -0.40543225
Waiting to turn left -0.6530 0.7196 -1.8368398 0.5307758 -1.2812 0.3138 -1.79742945 -0.76499455
Turning right 0.0077 0.2437 -0.3930907 0.4085507 -0.2752 0.0775 -0.40268305 -0.14774095
Waiting to turn right -0.3003 0.5139 -1.14566705 0.54503105 -0.6899 0.1479 -0.93325995 -0.44663605
Changing lane to left -0.6779 0.4986 -1.49812055 0.14224055 -0.9547 0.1933 -1.27269585 -0.63664015
Changing lane to right -0.6787 0.4490 -1.4172471 0.0598971 -0.5498 0.1790 -0.8442651 -0.2554209
Overtaking moving veh - offside 0.4462 0.2584 0.021106 0.871242 -0.3619 0.1094 -0.5419118 -0.1818542
Overtaking static veh - offside -0.8282 0.4834 -1.6233191 -0.0329989 -0.5510 0.1279 -0.7613677 -0.3407083
Overtaking - nearside -0.3611 0.5272 -1.2284219 0.5061319 -0.6797 0.1858 -0.9854508 -0.3740372
Going ahead left-hand bend 0.7201 0.1928 0.4029262 1.0373698 -0.3295 0.0851 -0.46951705 -0.18957095
Going ahead right-hand bend 0.3642 0.1808 0.0668469 0.6616131 -0.3578 0.0803 -0.48994185 -0.22565615
Going ahead other 0.5647 0.1331 0.34578695 0.78365305 -0.4680 0.0600 -0.5667458 -0.3692142
Vehicle Location
On main c’way - not in res lane (from 1999) 0.2932 0.1577 0.03387785 0.55261215 0.7997 0.0495 0.71827295 0.88109505
Tram/Light rail track (from 1999) -0.6453 0.7859 -1.9380386 0.6475066 -0.0311 0.6846 -1.157315 1.095019
Bus lane (from 1999) -0.8209 0.6660 -1.9164601 0.2746141 0.5819 0.2266 0.2091431 0.9547229
Busway (from 1999) -0.3349 0.7698 -1.60128635 0.93145435 -0.2472 0.5739 -1.19120925 0.69675725
Cycle lane (on main cway) (from 1999) -0.3803 0.6633 -1.4714325 0.7108245 0.2526 0.2738 -0.1978219 0.7030459
Cycleway or shared use footway 0.0841 0.6784 -1.0318392 1.1999652 0.1179 0.3861 -0.5172784 0.7530564
On lay-by or hard shoulder 0.2040 0.5004 -0.6190522 1.0271322 0.1491 0.2951 -0.33636405 0.63448205
Entering lay-by or hard shoulder -0.0094 0.6652 -1.1037448 1.0848948 0.3037 0.4667 -0.4640983 1.0714763
Leaving lay-by or hard shoulder -0.7352 0.6972 -1.88199965 0.41168965 0.2504 0.3755 -0.36738085 0.86811285
Footway (pavement) (from 1999) -0.1809 0.4517 -0.92392195 0.56220395 0.5812 0.1591 0.3194157 0.8429863
Not on carriageway (1979-1998) -0.5123 0.8197 -1.86064305 0.83613705 -0.7474 0.7632 -2.002911 0.508017
Junction Location of Vehicle
Not at junction 0.4099 0.1747 0.1226003 0.6972317 -0.1913 0.0525 -0.27766115 -0.10503485
Approachg junct -0.5858 0.2023 -0.91848925 -0.25308675 -0.4602 0.0594 -0.5579039 -0.3624121
Cleared junction -0.0939 0.2727 -0.54246015 0.35462415 -0.0804 0.0789 -0.2102195 0.0493615
Leaving roundabout -0.7118 0.4640 -1.4751079 0.0515179 -0.5745 0.1438 -0.8110042 -0.3380338
Entering roundabout -1.0902 0.4620 -1.85015465 -0.33027335 -0.5250 0.1126 -0.71012375 -0.33983425
Leaving main road -0.2380 0.3974 -0.89171045 0.41576845 -0.3498 0.1046 -0.5219818 -0.1777162
Entering main road -0.0931 0.3117 -0.6058344 0.4197244 -0.4319 0.0889 -0.57806715 -0.28568485
Entering from slip road -0.3612 0.5713 -1.30095325 0.57845925 -0.6763 0.2681 -1.1173604 -0.2352456
Mid Junction -0.4710 0.2104 -0.81704775 -0.12499625 -0.4694 0.0580 -0.5648489 -0.3739631
Skidding / Overturning
None 0.4289 0.1659 0.15600805 0.70185195 0.2466 0.0486 0.1665422 0.3265678
Skidded 0.0946 0.1968 -0.229096 0.418376 0.1695 0.0646 0.0631722 0.2758378
Skidded and overturned -0.1376 0.2638 -0.57142975 0.29630775 0.0045 0.0995 -0.15916705 0.16815505
Jackknifed -0.6675 0.6431 -1.72543095 0.39040095 -0.1096 0.4494 -0.84876465 0.62966265
Jackknifed and overturned 0.2690 0.6186 -0.7485951 1.2865331 -0.1502 0.4956 -0.96544045 0.66511645
Overturned 0.2590 0.2722 -0.1888139 0.7067899 0.2784 0.0993 0.1150107 0.4418393
Hit Object In Carriageway
None 0.1098 0.1611 -0.15524485 0.37487285 -0.7343 0.0445 -0.80746025 -0.66121975
Previous accident -0.1065 0.6622 -1.19585235 0.98288435 0.0533 0.4413 -0.67269285 0.77928285
Road works -0.0627 0.6937 -1.20386785 1.07850385 -0.6835 0.5090 -1.52078745 0.15385545
Parked vehicle -0.4360 0.8101 -1.7685507 0.8965467 -0.3062 0.7918 -1.6086282 0.9962622
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Table 4.11: Summary Value of β1 and β2 (Continued)

β1 β2

95% sample-based credible sets 95% sample-based credible sets
Variable definition

Mean Standard deviation 2.5% 97.5% Mean Standard deviation 2.5% 97.5%
Bridge (roof) 0.4412 0.3089 -0.0669286 0.9492866 -0.6872 0.1387 -0.91539395 -0.45903805
Bridge (side) -0.0663 0.7513 -1.30220295 1.16960695 -0.7115 0.7139 -1.8857847 0.4628147
Bollard or refuge -0.3960 0.6059 -1.3927026 0.6006426 0.5959 0.4109 -0.08004805 1.27178005
Open door of vehicle -0.4044 0.5047 -1.2346844 0.4258444 -0.7105 0.2203 -1.0729304 -0.3480776
Central island of roundabout -0.5209 0.6867 -1.6505743 0.6088003 0.7524 0.3238 0.2196821 1.2850499
Kerb -0.5841 0.6579 -1.66628515 0.49810715 -0.3439 0.3652 -0.94466655 0.25680855
Other object 0.3183 0.2896 -0.15805565 0.79462965 -0.7296 0.1123 -0.91437495 -0.54487505
Any animal (x ridden horse) (from 2005) -0.4215 -0.4215 0.271843635 -1.114769635 -1.0641 0.2853 -1.5334226 -0.5948514
Vehicle Leaving Carriageway
Did not leave cway -0.7413 0.5690 -1.67740135 0.19470735 -1.0358 0.2958 -1.52236565 -0.54928235
Nearside -1.2571 0.1416 -1.4900619 -1.0241321 -0.9012 0.0453 -0.9757086 -0.8267374
Nearside and rebounded -0.4288 0.1684 -0.70588935 -0.15175465 -0.5739 0.0684 -0.68647135 -0.46133665
Straight ahead at junction -1.3040 0.4032 -1.9673198 -0.6406602 -0.7479 0.1461 -0.9881905 -0.5075215
Offside on to central reservation -0.0125 0.4834 -0.8077061 0.7826141 -0.2932 0.2118 -0.6417128 0.0552408
Offside on to centrl res + rebounded -0.6148 0.4930 -1.4257212 0.1961172 -0.8650 0.2314 -1.24563045 -0.48429155
Offside - crossd cntrl res -0.6978 0.4996 -1.51954965 0.12403565 -0.7323 0.2788 -1.1909519 -0.2736341
Offside -0.1233 0.5957 -1.10324185 0.85670985 -0.3590 0.3949 -1.00854505 0.29064305
Offside and rebounded -0.5045 0.2007 -0.8346277 -0.1744563 -0.5636 0.0843 -0.70235885 -0.42491315
First Object Hit Off Cway
None -0.4855 0.3752 -1.10265475 0.13158875 -0.5274 0.1996 -0.8558548 -0.1990392
Road sign or traffic signal -0.9269 0.1658 -1.1995641 -0.6541479 -0.9636 0.0467 -1.0404493 -0.8866747
Lamp post 0.7248 0.3612 0.13059555 1.31897645 -0.9917 0.1554 -1.2472462 -0.7361118
Telegraph or electricity pole -0.8341 0.3757 -1.45209595 -0.21601005 -0.9721 0.1714 -1.25408045 -0.69014155
Tree -0.7998 0.4714 -1.575301 -0.024395 -1.0522 0.2532 -1.4687528 -0.6355932
Bus stop or bus shelter -0.1564 0.2323 -0.53851405 0.22572005 -0.7817 0.1117 -0.96550295 -0.59797705
Central crash barrier -0.7984 0.6660 -1.8939211 0.2971531 -1.0004 0.4897 -1.8059414 -0.1947626
Near/Offside crash barrier -0.9115 0.4301 -1.61894015 -0.20400985 -1.0310 0.2037 -1.36610585 -0.69583415
Submerged in water -0.5544 0.3714 -1.1654108 0.0566268 -1.0942 0.1815 -1.39281985 -0.79558615
Entered ditch 0.3339 0.7083 -0.8312616 1.4989796 -0.7385 0.6718 -1.84363545 0.36661945
Other permanent object -1.3641 0.3519 -1.9429964 -0.7851796 -1.1708 0.1459 -1.4107885 -0.9307775
Wall or fence (from 2011) -0.7699 0.2342 -1.15517945 -0.38462855 -0.8838 0.1027 -1.0527713 -0.7147567
First Point of Impact
Did not impact -0.9603 0.3141 -1.47698395 -0.44356205 -0.9116 0.1309 -1.1268857 -0.6963563
Front -0.7508 0.2199 -1.1124537 -0.3891143 -0.0029 0.0720 -0.12125875 0.11545675
Back -0.8529 0.1566 -1.11047445 -0.59522755 -0.2050 0.0458 -0.2802642 -0.1297138
Offside -1.2142 0.2182 -1.5731541 -0.8553419 -0.6902 0.0616 -0.7915859 -0.5888561
Nearside -0.8033 0.1878 -1.11213565 -0.49437235 -0.2685 0.0551 -0.3590967 -0.1779493
Sex
Male -0.9626 0.1963 -1.28554395 -0.63968405 -0.3529 0.0557 -0.44456585 -0.26121415
Female -0.9969 0.1498 -1.24334745 -0.75047255 -0.3654 0.0383 -0.4282997 -0.3024243
Not known -1.3773 0.1752 -1.66541765 -1.08910835 -0.5729 0.0451 -0.64711485 -0.49863715
Hit and Run
Other -0.6564 0.4642 -1.4199871 0.1071651 -0.3698 0.2064 -0.7092862 -0.0303618
Hit and run -0.0840 0.1369 -0.3092084 0.1412584 0.9064 0.0449 0.8325784 0.9802336
Non-stop vehicle not hit -0.3602 0.3598 -0.9520102 0.2316002 0.4820 0.1219 0.2814056 0.6825224

The highlighted rows represent the statistically significant parameters, based

on the 95% (2.5-97.5%) sample-based credible sets. Similar like previous

result, parameter estimate in Table 4.9, 4.10 and 4.11 show that more variables

are significant for slight injury than for serious injury accidents given fatal

accident as the reference group.

The MNLRE model results are consistent with the earlier MNL results, it

is clearly showed that pedal cycle and motorcycle are significant in both

accident severity. Vulnerable road user is belong to this category as the
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accident risk is greater for two-wheels vehicle. Pedal cycle and motorcycle

lack of safety features, the rider has high tendency to get injured because of

the direct contact between vehicle and the surroundings. Apart from that,

public transport such as taxi/private hire car, and bus/coach increase the like-

lihood of road accidents involving both slight and serious injuries. Reckless

driver and poor vehicle maintenance may one of the reason contribute to

this problem. Another unexpected variable that is significant in both serious

and slight injury accident is involving car vehicle that was produced from

year 2005 onwards. Although the car is still consider as new condition (not

more 8 years old) and equipped with better safety features, driver factor may

be one of the factor for this cause. Meanwhile, goods vehicle is significant in

slight accident case, but not in serious accident.

Contradict from MNL results in Table 4.2, serious and slight injury accident

has increase probability when there is no towing/articulation involved. Anal-

ysis showed that articulated vehicle and single trailer is significant in slight

injury accident only.

For vehicle maneuver variable, almost all of the variables are significant in

slight injury accident. Meanwhile, for serious injury accident, lesser signifi-

cant variables spotted which are, ’waiting-to go held up’, ’slowing/stopping’,

’moving off’, ’turning left’, ’overtaking’ and ’going ahead’. As mentioned

before, most of GB drivers drive manual transmission vehicle. Experience

driving skill is required to balance between clutch, brake and gas pedal

to drive. Shifting gear transmission can be very tricky for inexperienced

driver. There is high probability that the driver is careless while shifting the
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gear during above mentioned condition that cause the accident. This result

validate the MNL findings previously.

Result above showed that both accident severity is significant to occur at the

main carriageway. This factor is a common accident risk since carriageway

has busy road network and most of the drivers tend to drive fast resulting

with more severe accident.

Slight injury accident showed many significant outcomes in junction location

variable. The contributing factors that increase the probability of slight injury

accident are ’roundabout’, ’junction’, ’main road’ and ’slip road’. Drivers

and pedestrians should alert more when passing these mentioned area for

accident prevention. More road signs/warnings should be displayed for

extra precaution. Improving traffic light system at the risky area can benefit

the road users as a whole.

Analysis proved that hitting object in carriageway is not significant in serious

accident, but it influence slight injury accident greatly. This findings is contra

from the MNL analysis (Table 4.3).

Another notable variables that associate with both accident severity are

’First Object Hit Off Carriageway’ and ’First Point of Impact’. Both accident

severity found the same risk factor that cause the accident. Driver’s gender

reported has significant effect in explaining both accident severity.



Chapter 5

Accident Severity Cost Model

5.1 Introduction

This chapter discusses in depth about the road accident cost model applied

in this study. Contrary from the previous statistical models, this chapter

focuses on the actuarial method to analyse accident severity in terms of

monetary unit. There are three actuarial models employed in analysing

accident cost which are Gamma, Weibull and Log-normal distribution model.

The elaboration is begin with the source of data and assumptions made

for data simulation, parameter estimation method used for each model,

explanation of the selected models and lastly the analysis of results. There

are limited source of literature reviews discussing accident cost model using

actuarial approach. Hence, this study is considered as pioneer in road

accident analysis application.

5.2 Source of Data

Below is the scatterplot of simulated cost data obtained for all types accident

severity.

76
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Figure 5.1. Fatal Accident Cost Data

Figure 5.2. Serious Accident Cost Data

Figure 5.3. Slight Accident Cost Data
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5.3 Gamma Distribution
The first accident cost model is Gamma distribution. This model is chosen as

there are three suitable distributions to estimate insurance claim cost which

are Gamma, Weibull and Lognormal distributions [27], [13]. Due to lack of

insurance claim cost data, simulated accident cost data that followed Gamma

distribution will be used instead as explained previously.

With limited data information, random walk M-H algorithm is chosen to

estimate parameter ofα and β in Gamma distribution. It is the same parameter

estimation method that used previously in MNLRE but Gamma likelihood

is applied. Normal distribution is used for prior to obtain the respected

posterior value for α and β. Then, proposal value is compared with the

posterior value using M-H algorithm. 50,000 iterations is ran and the first

10,000 is discarded as ’burn-in’. All these parameter values will be used to

find the cost ratio between different type of accident severity. The MCMC

results is presented as below:

Table 5.1: Summary Value of α and β

Accident severity α β

Fatal 0.6985 0.6885
Serious 0.7999 0.7780
Slight 0.7854 0.7786

Figure 5.4. Plots of α and β for Fatal Accident
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Figure 5.5. Histogram Plots of α and β for Fatal Accident

Figure 5.6. Plots of α and β for Serious Accident

Figure 5.7. Histogram Plots of α and β for Serious Accident

Figure 5.8. Plots of α and β for Slight Accident
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Figure 5.9. Histogram Plots of α and β for Slight Accident

From the parameter value estimated above, the value is not differed much

for each type of accident severity. The M-H simulations is done numerous

time by adjusting with different prior and proposal distribution. However,

this is the best result achieved using the simulated data. The MCMC chain

generated is later assess for its convergence fitness.

Table 5.2: MCMC Diagnostic Test of Gamma Distribution Chain

Root Mean Square Error Mean of the Sum of the Modulus of the Bias Monte Carlo Standard Error

Fatal 0.002741 0.000011 0.005013
Serious 0.001934 0.000012 0.004398
Slight 0.001934 0.000011 0.004289

Table 5.3: MCMC Diagnostic Test of Gamma Distribution Chain (Continued)

Acceptance Rate Effective Sample Size Integrated Autocorrelation Time

Fatal α 0.4789 14008.32 2.7813
β 0.5010 13668.79 3.0256

Serious α 0.4876 11332.34 3.0014
β 0.4888 13172.41 3.1186

Slight α 0.4876 11332.34 3.0014
β 0.4888 13172.41 3.1186

Referring to Table 5.1, the parameter values of α and β are almost equal

between each type of accident severity. The diagnostic test as above (Table 5.2

and 5.3) also generated the same results. The chain showed a good fit with

low value of Root Mean Square Error (RMSE) and Monte Carlo Standard

Error (MCSE). Acceptance rate of α and β showed that it converged well
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with high value of Effective Sample Size (ESS) and low value of Integrated

Autocorrelation Time (IAT).

By using the parameter value above, accident cost for each accident severity

is estimated (refer Table 5.4. The cost value is obtained by finding the highest

probability in Gamma distribution. Again, the results showed not much

difference. The cost estimated for fatal accident is slightly higher than serious

and slight accident. Therefore, cost ratio of all accident severity can be

summarised equal to 1.01:1:1 for Gamma distribution model.

Table 5.4: Summary of Accident Cost: Gamma Distribution

Accident severity Cost (GBP)

Fatal 9,300
Serious 9,120
Slight 9,120

5.4 Weibull Distribution

The second accident cost model chosen is Weibull distribution. The data set

for Weibull distribution is used to find the parameter estimate by applying

M-H algorithm in Weibull distribution. After numerous trial, the estimation

is failed to obtain. This part will further discuss in Chapter 6.

5.5 Log-normal Distribution

The third accident cost model is Log-normal distribution. The accident cost

data for Log-normal is used for estimating parameter of µ and σ in Log-

normal distribution via M-H algorithm. For this model, normal distribution

is used for prior and proposal. M-H algorithm is ran for 50,000 iterations and

the first 10,000 iterations is eliminated because it is considered as unstable.
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The simulation is ran various times until the chain generated is converged.

The chain result is presented as below:

Table 5.5: Summary Value of µ and σ

Accident severity µ σ

Fatal 0.7026 0.7043
Serious 0.7026 0.7043
Slight 0.7026 0.7043

Figure 5.10. Plots of µ and σ for Fatal Accident

Figure 5.11. Histogram Plots of µ and σ for Fatal Accident

Figure 5.12. Plots of µ and σ for Serious Accident
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Figure 5.13. Histogram Plots of µ and σ for Serious Accident

Figure 5.14. Plots of µ and σ for Slight Accident

Figure 5.15. Histogram Plots of µ and σ for Slight Accident

From the parameter value estimated above, the value is equal across all

accident severity. The simulations is done multiple time applying different

prior and proposal distribution. Unfortunately, this is the best result obtained.

The chain is later check using different type of diagnostic test to ensure its

reliability. The result is shown below:
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Table 5.6: MCMC Diagnostic Test of Log-Normal Distribution Chain

Root Mean Square Error Mean of the Sum of the Modulus of the bBias Monte Carlo Standard Error

Fatal 0.000627 0.000004 0.002164
Serious 0.000627 0.000004 0.002164
Slight 0.000627 0.000004 0.002164

Table 5.7: MCMC Diagnostic Test of Log-Normal Distribution Chain (Continued)

Acceptance Rate Effective Sample Size Integrated Autocorrelation Time

Fatal
µ 0.819421 26581.95 1.4741
σ 0.820046 27848.37 1.4212

Serious
µ 0.819421 26581.95 1.4741
σ 0.820046 27848.37 1.4212

Slight
µ 0.819421 26581.95 1.4741
σ 0.820046 27848.37 1.4212

The diagnostic check in Table 5.6 and 5.7 suggested a good fit of result. The

generated chain has low value of RMSE and MCSE, high value of acceptance

rate and ESS, and also low IAT value.

Table 5.8: Summary of Accident Cost: Log-normal Distribution

Accident severity Cost (GBP)

Fatal 44,212
Serious 44,212
Slight 44,212

Based on the parameter estimate, accident cost is calculated by finding the

highest probability in log-normal model (refer Table 5.8). The cost for fatal,

serious and slight injury accident is equal to £44,212 and the cost ratio of

all accident severity is 1:1:1 for log-normal distribution model. Comparing

these two models, log-normal gave higher cost value compared to Gamma.



Chapter 6

Conclusion & Future Research

Recommendation

6.1 Introduction

The two primary objective of this current research has been to investigate the

factors that were associated with the road accident severity and the accident

cost in GB. This chapter presents a summary of the main results and con-

clusions obtained from the research. Furthermore, some recommendations

based on the findings of this thesis for future research in the field of road

safety are discussed.

6.2 Conclusion

6.2.1 Summary for Accident Data

The results in MNL, graphical model and MNLRE model suggested sub-

stantial differences in the statistically significant variables when random

effects is included. In MNL model, there are 24 significant variables that

85
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are associated with serious accident while 27 significant variables accounted

for slight injury accident. The correlation check found that the variables are

highly correlated and this may affect the performance of the model. Hence,

log-linear graphical model is applied to find the cluster information that

is important to accident severity. The results showed that ’Speed Limit’

and ’Light Conditions’ are crucial in explaining severity conditioning that

an accident has occurred. This results is not conclusive enough, therefore,

MNLRE is introduced to investigate deeper by including random effects

factor, which is accident location (Police Force).

Referring to MNL and MNLRE results, the contributing factors that are

significant in both models. Slight accident is statistically significant and more

likely to happen at First Road Class Type C and Unclassified First Road Class.

It indicates that outskirts and abandoned road needs consistent improvement

for long-term accident prevention.

Low Speed Limit (30 and 40 mph) is significant in serious accident while

higher Speed Limit (50, 60 and 70 mph) is significant in slight accident. As

mentioned before, low Speed Limit area is designated for the busy road,

therefore more serious accident happen involving vulnerable road users.

Slight accident is prone to happen in higher Speed Limit road because driver

tend to be careless when they are driving fast. More warning signs should

be placed to capture the vulnerable road users attention to be more alert on

the surroundings.

MNL and MNLRE findings proved that roundabout is another factor that

contribute to road accident occurrence. Drivers has potential to be less
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cautious when driving at the roundabout. The safety of roundabout with

four or more junctions can be improved by installing traffic light at every

junction to control the traffic effectively.

Two categories of Weather Conditions affected slight accident greatly, which

is raining and snowing without high winds. Prior journey, drivers should be

more cautious when driving in bad weather. Hence, there is an urgent need

to implement a system to assist drivers regarding traffic flow and weather

condition. It can be a mobile application that combine Global Positioning

System (GPS) navigator and weather forecast feature. Rather than to open

these two apps in two applications separately, this system will plan the

driver’s journey efficiently with the aim to avoid traffic congestion and road

accident.

6.2.2 Summary for Vehicle Data

Vehicle data used two models for the analysis, which are MNL and MNLRE.

Graphical model is excluded in vehicle data because R-package for this

model has limited data size, thus cannot accommodate the analysis. To recall,

the vehicle data has 252,836 observations with 121 variables. Since graphical

model is not a major concern in this study, the analysis is proceeded with

MNLRE.

When random effects (police force location) is included in the analysis, similar

like accident data, both models showed big differences in the results. In

MNL model, there are 67 significant variables that are associated with serious

accident while 70 significant variables accounted for slight injury accident.
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The contributing factors that are significant in both models are discussed

by referring MNL (Table 4.2 and 4.3) and MNLRE (Table 4.9, 4.10 and 4.11)

output. Serious and slight accident are statistically significant and more

likely to happen when it involved pedal cycle, motorcycle with 125 cc and

below, car and bus/coach. This can be summarised that types of vehicle is

not a major concern as all vehicles has equally likely risk of road accident.

For the Vehicle Maneuver variable, ’waiting to go - held up’, ’slowing or

stopping’, ’overtaking’ and ’going ahead’ are significant in serious and slight

injury both in MNL and MNLRE. This results provided solid statistical proof

that accident is likely to occur during gear transmission. Driver tend to be

careless when shifting gear especially during overtaking other vehicle.

MNL and MNLRE gave different result for Vehicle Location, Junction Lo-

cation, Skidding/Overturning and First Point of Impact’ variables. But, a

notable point to highlight is, accident risk is higher and more severe when a

vehicle ’entering roundabout’ or ’hitting a lamp post’. Other than that, both

models also suggest that skidding/overturning is not a contributing factor

that lead to accident event.

Three categories of Vehicle Leaving Carriageway affected both accident

severity greatly, which are ’nearside’, ’nearside and rebounded’ and ’straight

ahead at junction’. Results from MNL and MNLRE showed that there is no

gender difference because both genders are associated in road accident.
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The accident location showed great impact to analysis peformed and it would

be of interest for future studies to further examine the spatial effect of each

category of accident severity.

6.2.3 Summary for Accident Cost

Three accident cost models are used in this study which are Gamma, Weibull

and Log-normal. However, only two models can be studied. As discussed

previously, this study is lack of accident cost data. Therefore, simulated data

is used to proceed for cost modelling.

Gamma model showed that accident cost for fatal is only £9,251 while serious

and slight accident cost has same cost, which is £9,149. This results is not as

expected as it is very low to represent the actual event.

Log-normal model gave higher cost value, which is £44,212 for all accident

severity. This findings also deviated from expectation because each accident

severity has different cost value involved.

The analysis of cost accident is not successful due to the data. The simulated

data does not represent the actual accident cost. This resulting with inaccurate

parameter estimation and cost analysis. The parameter estimation using

M-H algorithm in Gamma and Log-normal distribution showed a good fit

which means it is applicable to be used with different cost database.

6.3 Future Research Recommendation

6.3.1 Accident Severity Model

The scope of this current research was limited to the analyses of available

data from DfT. Due to fund and time costraints, it is impossible to extend
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this current research by analysing data from other datasets. The data used

also for year 2012 only. Therefore, the following issues are recommended for

future research:

• Further research for specific type of road accident severity

• Refining this study by focusing on the order of accident severity (e.g:

ordinal logit with random effects)

• Improving model specification by extending period of study and adding

more variables.

• Exploring spatial effects of accident severity in GB

• Applying different parameter estimation by applying frequentist and

other Bayesian method

This present research was limited to road accident data for year 2012, which

were not true relative risks and may not be generalisable to the entire

spectrum of road accident injuries in GB.

6.3.2 Accident Severity Cost Model

The only source of data for accident cost is the average cost data from DfT.

Due to the restrictions on funding and time, it is impossible to obtain actual

accident cost data by conducting a study survey. There is also ethical issue

to deal with as accident cost is sensitive and confidential topic. Below are

the several recommendations for future study:

• Obtaining an actual data for accident cost

• Applying different parameter estimation in Bayesian method

• Improving the predictability of the existing models

Accident cost study will be accurate if the actual data is used. However, this

cost study is worth to investigate further in order to compare and validate

the results with a real case study.
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