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Abstract In this article, we model and study the
spread of COVID-19 in Germany, Japan, India and
highly impacted states in India, i.e., in Delhi, Maha-
rashtra, West Bengal, Kerala and Karnataka. We con-
sider recorded data published in Worldometers and
COVID-19 India websites from April 2020 to July
2021, including periods of interest where these coun-
tries and states were hit severely by the pandemic.
Our methodology is based on the classic susceptible–
infected–removed (SIR) model and can track the evo-
lution of infections in communities, i.e., in countries,
states or groups of individuals, where we (a) allow
for the susceptible and infected populations to be reset
at times where surges, outbreaks or secondary waves
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appear in the recorded data sets, (b) consider the param-
eters in the SIRmodel that represent the effective trans-
mission and recovery rates to be functions of time and
(c) estimate the number of deaths by combining the
model solutions with the recorded data sets to approx-
imate them between consecutive surges, outbreaks or
secondary waves, providing a more accurate estimate.
We report on the status of the current infections in these
countries and states, and the infections and deaths in
India and Japan. Our model can adapt to the recorded
data and can be used to explain them and importantly,
to forecast the number of infected, recovered, removed
and dead individuals, as well as it can estimate the
effective infection and recovery rates as functions of
time, assuming an outbreak occurs at a given time. The
latter information can be used to forecast the future
basic reproduction number and together with the fore-
cast on the number of infected and dead individuals, our
approach can further be used to suggest the implemen-
tation of intervention strategies and mitigation policies
to keep at bay the number of infected and dead indi-
viduals. This, in conjunction with the implementation
of vaccination programs worldwide, can help reduce
significantly the impact of the spread around the world
and improve the wellbeing of people.
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1 Introduction

A novel strand of Coronavirus (SARS-CoV-2) was
identified in Wuhan, Hubei Province in China in
December 2019 that causes a severe and potentially
fatal respiratory syndrome, i.e., COVID-19. Since then,
it has become a pandemic declared by the World
Health Organization (WHO) on 11 March 2020 and
has spread around the globe [21,45,49]. The coron-
avirus disease [49] due to COVID-19 has impacted
heavily on the human health and the socioeconomic
status in affected countries. Governments and local
authorities have no choice other than taking diverse
and adequate countermeasures due to still limited infor-
mation about COVID-19. Until now, various counter-
measures have been proposed and implemented, such
as wearing face masks, sanitization, following social-
distancing, implementing lockdowns and quarantines.
Recently, vaccination programs have started springing
up around theworld [22], and even though there is early
success, there are still challenges remaining [5].

Recently, modeling and experimental studies [7,21,
24,31,41,49,50] on the changes of susceptibility, infec-
tion rates, deaths and recovered cases from COVID-19
can help governments and local authorities implement
countermeasures to reduce the infection rates substan-
tially. For example, in India, various reactive measures
have been taken in various states after the number of
infected cases soared [4,6,11,32,38,40,42,43]. It is
known that early in the pandemic and after the onset of
secondary waves, if measures are not taken to mitigate
the spread, the number of infected cases grows expo-
nentially fast with a certain transmission rate. However,
this can change due to public awareness and coun-
termeasures implemented by governments and local
authorities. Hence, it becomes imperative the neces-
sity to explain and forecast the future trajectory of the
spread of COVID-19 to help governments and author-
ities make decisions to implement timely countermea-
sures, control strategies and allocate wisely financial
and medical resources.

There are many recent research articles available
online that predict the development trend of the pan-
demic in various countries and regions [28,29]. In
our analysis, we use recorded data sets published in
[10,23] for India, Japan and Germany and the Indian
states of Delhi, Maharashtra, West Bengal, Kerala and
Karnataka, from April 2020 to July 2021, including
periods of interest where these countries and states

were hit severely by the pandemic. Our approach is
based on a modification of the classic SIR model [47]
and is motivated by our earlier research on the spread
of COVID-19 in different communities in [8,9] and
[28]. The number of infections over time in Japan
exhibits a wavy pattern, pointing to the onset of sec-
ondary waves or surges and various types of infection
curves have been observed during the spread of the
virus [12,26,36,37]. Monitoring these onsets, surges,
outbreaks or secondary waves and depending on the
infection and transmission rates, governments and local
authorities can decide to impose a range of measures
to mitigate or slow down the spread of the virus.

In the context of the current situation worldwide,
appropriate epidemic models [13,14,28,29,33,34,39,
44,46] for the prediction of the spread of COVID-
19 in different countries and communities are highly
relevant and important. In particular, the SIR model
and its extended modifications [17–19,48], such as
the extended SIR model in various forms, have been
used in previous studies [30,35] to model the spread of
COVID-19 in communities. Hence, forecasting using
infectious disease models is a widely used approach,
including the ongoing pandemic. However, these mod-
els depend on various assumptions and different con-
ditions. Among those models, probably the most used
one is the classic SIRmodel that dates back to the work
by R. Ross, W. Hamer, and others in the early twenti-
eth century [3,47], which consists of a system of three
coupled ordinary differential equations. In our work,
oscillations in the solutions to the modified SIR model
have also been described by suitable choices of model
parameters estimated from the recorded data sets.

The transmission ofCOVID-19 from infected to sus-
ceptible individuals depends upon diverse influences
and factors and thus can be challenging to understand.
However, using our methodology, we show that by
tracking the spread of the virus on a regular (e.g.,
daily) basis, possible future scenarios can be explored.
The main characteristics that describe the spread of
COVID-19 can easily be understood, without making
use of complex assumptions.Comparing themodel pre-
dictions of our approach with the recorded data sets,
one can assess the effectiveness of implemented mea-
sures to control or mitigate the spread of the virus and
forecast the trajectory of the spread in communities.

The model we propose here is based upon individ-
uals within a community grouped into three compart-
ments or populations: the susceptible populationwhose
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individuals can become infected, the infected popula-
tion and the removed populationwho have either recov-
ered or died due to the virus.We begin by estimating the
infection rates using the proposedmodel and then com-
puting the infection and other rates from the recorded
data sets. Our approach is designed to be flexible as it
can be updated in real time as new data are coming in.
As they become available, they are added to a database
and are used to update the input parameters to get man-
ually a best-fit between them and themodel predictions
for the susceptible, infected and recovered populations.
It is this inherent flexibility that renders our approach
an excellent forecaster for the spread of the virus in
communities, either being countries, states or groups of
individuals.Ourwork has the potential to provide infor-
mation that can help understand how the virus spreads
in communities and can offer governments and author-
ities insights into it, when and how to introduce policies
to keep the spread of the virus under control.

It is worth it to mention that the proposed model is
adjusted by estimating the model parameters manually
to best match the population plots between model pre-
dictions and recorded data sets. It would be possible to
automate the fit by some least squares approach; how-
ever, it is not necessary since one is fitting predictions
to possibly poor quality data. Importantly, the model
we propose here does not describe a single wave. It can
track the past reasonably well and one can make pre-
dictions about future waves which can be used to test
a variety of scenarios.

The paper is organized as follows: In Sect. 2, we
introduce our mathematical modeling approach based
on themodification of the classic SIRmodel, discuss its
various aspects and explain the approach in Sect. 3 to
study the recorded data sets in [23] for Germany, Japan,
India and in [10] for some select key-states in India. In
Sect. 3.4, we study the future trajectory of the spread of
the virus in Japan and India and assess the results that
stem from our analysis. Finally, in Sect. 4, we conclude
our work and discuss possible outcomes of our analysis
and its connection to the evidence that has been already
collected on the spread of COVID-19 worldwide.

2 Methodology

The classic SIR model is a simple compartmental
model routinely used as an epidemic model [1,25,47].
It consists of the three coupled ordinary differential
equations given in system (1) that describe the evolu-

tion of the susceptible S, infected, I , and removed, RM ,
populations over time t from a total, constant, popula-
tion N = S+ I + RM . In particular, the total, constant,
population N is divided into the following three popu-
lations (or compartments):

1. Susceptible population, S(t): These are those indi-
vidualswhoare not infected, however, couldbecome
infected. A susceptible individual may become
infected or remain susceptible. As the virus spreads
from its source or new sources spring up, more indi-
viduals become infected, thus the susceptible pop-
ulation will decrease in time.

2. Infected population, I (t): These are those individu-
als who have already been infected by the virus and
can transmit it to the susceptible individuals. An
infected individual may remain infected and can be
removed from the infected population to recover or
die.

3. Removed population, RM (t): These are those indi-
viduals who have either recovered from the virus
and are assumed to be immune, RC (t) or have died,
D(t), thus RM = RC + D.

Furthermore, it is assumed that the time scale of the
SIR model is short enough so that births and deaths,
other than deaths caused by the virus, can be neglected
and that the number of deaths from the virus is small
compared with the living population. The SIRmodel is
given by the system of ordinary differential equations

dS(t)

dt
= −aS(t)I (t),

d I (t)

dt
= aS(t)I (t) − bI (t), (1)

dRM (t)

dt
= bI (t),

where a is the effective transmission rate and indi-
cates that each susceptible individual infects randomly
a individuals every day and b is the recovery rate and
indicates that the infected individuals recover or die
with probability b. In the context of the classic SIR
model (1), a and b are constants and the recovered,
RC , or dead, D, individuals cannot be distinguished,
so they are represented by RM . The population-flux
diagram of the SIR model (1) which shows how S, I
and RM interact can be seen in Fig. 1a. The model is
derived using several assumptions. First, it is assumed
that the members of the susceptible and infected pop-
ulations are homogeneously distributed in space and
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time. Then, an individual removed from the infected
population has lifetime immunity and that the total pop-
ulation N is constant in time. Finally, it is also assumed
that the number of births and deaths from causes other
than the virus is ignored.

Since the equations of the classic SIR model (1)
comprise a system of coupled ordinary differential
equations, finding analytical solutions in closed form
using known mathematical functions is difficult. The
process to find them is complicated and there are limi-
tations in practical applications [16]. Hence, a common
approach is to solve system (1) numerically. Here, we
opted for the classic fourth-order Runge–Kutta numeri-
cal integrator to obtain the approximated solutions to S,
I and RM at discrete time steps dt = 0.1. In our model,
t is expressed in days. A set of numerical solutions to
system (1) is shown in Fig. 1, where initially, the time
evolution of the infected population, I , (in light blue)
is observed to increase until it reaches its peak value,
afterwhich it decreasesmonotonically to zero. The sus-
ceptible population, S, (in black) decreases quickly to
zero as more and more individuals become infected or
removed. At the same time, the removed population,
RM , (in blue) increases steadily converging to the total
population, indicating that all individuals have been
removed because they have either recovered from the
virus and are assumed immune or have died. In this
example, the total population N is 100 and initially (i.e.,
at t= 0), the whole population is considered susceptible
to the virus, hence S(0) = 100 and I (0) = RM (0) = 0.

Undoubtedly,model (1) is simple and useful to study
the spread of viruses in closed communities when there
is only one outbreak of infections. However, it can-
not describe the spread of COVID-19 completely when
there are more than one outbreaks or surges or when
the system is not closed, i.e., when the total population
N is not constant in time. This is indeed the case with
the recorded data sets in [23] for India, Japan and Ger-
many and in [10] for the Indian states that we study
here. Thus, to model the spread of COVID-19 in such
cases, we consider the modified SIR model
dS(t)

dt
= −a(t)S(t)I (t),

d I (t)

dt
= a(t)S(t)I (t) − b(t)I (t), (2)

dRM (t)

dt
= b(t)I (t),

which is solved using scaled values for the initial con-
ditions I (0) and RM (0) and an initial condition S(0) in

[0, 1]. In particular, I = f I us and RM = f Rus
M , where

I us, Rus
M ∈ [0, 1]. The scaling factor f and I us(0),

Rus
M (0) ∈ [0, 1] are estimated manually so that I (t)

and RM (t) match in time closely the variables I d and
Rd of the recorded data sets, that we discuss next. This
makes it easier to reset the values of S(t) and I (t) at a
time t as described by Eq. (3). In this framework, the
removed population, RM , consists of those individu-
als who have recovered, RC , or have died, D, hence
RM (t) = RC (t) + D(t). The population-flux diagram
of model (2) is shown in Fig. 1b, where a and b are no
longer constants, but functions of time t .

The recorded data sets in [23] and [10] are organized
in the form of time series where the rows are recordings
in time from April 2020 to July 2021, and the columns
are the total infections due to the virus, I dtot, number of
infected individuals, I d , and deaths, Dd . Importantly,
they may exhibit spikes in the number of infected indi-
viduals, I d , at specific times ti (i.e., more than one
outbreaks of secondary waves or surges), which result
in the increase of the susceptible population, S when
they occur; thus, the total population cannot be consid-
ered constant in the classic SIRmodel in system (1). To
account for this, every time there is an outbreak in the
number of infected individuals, I d with the recorded
data set in [23] or [10], we reset S and I in system (2) by

S(ti ) = S(ti ) + ΔS(ti ), (3)

I (ti ) = I (ti ) + ΔI (ti ), (4)

where ti are the times where the outbreaks occur
in the recorded data sets and i the index that runs
through the M outbreaks in the recorded data set. Here,
the susceptibility-factor increment, ΔS, and infection
increment, ΔI , are the reset values such that the
(rescaled) solutions to I and RM from system (2),
match closely I d and Rd = I dtot − I d from the recorded
data set, respectively. Resetting S and I accounts for
the mobility of individuals, i.e., when moving around
communities. For example, travelers entering a coun-
try from overseas are often quarantined in hotels and
this adds to the number of active infections in that com-
munity. As it is difficult to isolate the virus carried by
infected individuals within, for example, hotel envi-
ronments, the virus can escape from confined environ-
ments, increasing the number of infected and suscepti-
ble individuals in the wider community.
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Fig. 1 The population-flux diagrams of the SIR models (1) and
(2), and an example of numerical solutions to the classic SIR
model (1). Panels a and b show how the susceptible, S, infected,
I and removed, RM , populations interact. Parameter a is the
effective transmission rate and indicates that each susceptible
individual infects randomly a individuals every day and b the
recovery rate and indicates that the infected individuals recover
or die with probability b. In panel a, a and b are constants. In
panel b and model (2), a and b are functions of time t and are
estimatedmanually so that the rescaled I from the solution to sys-
tem (2) and rescaled I d from the recorded data set match closely.
The arrows show the direction of the flow of the populations S, I

and RM . Panel c: An example of numerical solutions to the clas-
sic SIR model (1) using the fourth-order Runge-Kutta method:
Time evolution of the susceptible, S, (in black), removed, RM ,
(in blue), infected, I , (in light blue) and total, constant, popu-
lation, N , (in magenta). The susceptible population, S, in black
decreases quickly to zero as more and more individuals become
infected, I (in light blue). At the same time, the removed popula-
tion, RM , increases steadily, converging to the total population,
N . Here the total population, N , is 100 and initially (at t=0), the
whole population is considered susceptible to the virus, hence
S(0) = 100 and I (0) = RM (0) = 0

For the same reasons, we also assume that the effec-
tive infection rate, a, and recovery rate, b, in system (2)
are functions of time t , rather than constants as in the
classic SIR model (1). We estimate a(t) and b(t) man-
ually so that the rescaled I from the solution to system
(2) and rescaled I d from the recorded data set match
closely. This approach allows to accommodate the dif-
ferent exponential growths and decays in the number
of active infections, I , when there are multiple sec-
ondary outbreaks or surges in the recorded data sets.
Hence our approach here is different than the classic
SIRmodel (1),which can only describe the initial expo-
nential growth and decay in the spread of a virus.

Two of the most important variables in the spread of
a virus in a community is the number of deaths, D, and
recoveries, RC . As these are not provided directly by
model (2), we can first estimate D from the removals,
RM ofmodel (2) and the recorded data set and then, RC ,
as follows:We define M , consecutive time-windows of
interest ci = [ti , ti+1), constants η(ci ) and k(ci ), where
i = 1, . . . , M − 1. Then, we estimate the deaths, D in
time by

D(ci ) = D(ti )+η(ci+1)
(
1 − e−k(ci )(RM (ci )−RM (ti ))

)
,

(5)
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where M is the number of outbreaks or surges in the
recorded data set. The time-windows of interest ci
correspond to consecutive time-windows that contain
the outbreaks or surges in infections. The idea behind
Eq. (5) is that typically, at the outbreaks of secondary
waves or surges of infections, the rate at which peo-
ple die is quite high at first, then steadily decreases
to zero due to mitigation measures before another out-
break or surge occurs.We can then estimate the number
of recovered individuals due to the virus, RC using the
estimated D(t) by

RC = RM − D.

Finally, the number of total infections due to the virus,
Itot, can be estimated by

Itot = I + RC + D.

Consequently, the total population N is not defined for
the modified SIR model (2) and hence S does not rep-
resent the susceptible population but rather a suscepti-
bility factor.

In the next section, we present the results of the
application of the proposed methodology to data from
Germany, Japan, India, Delhi, Maharashtra, West Ben-
gal, Kerala and Karnataka as well as a forecast of the
spread of COVID-19 in India and Japan.

3 Results

3.1 Germany

We start by studying the data set forGermany published
in [23], which contains recordings between April 2020
and July 2021. Figure 2 shows the evolution of Itot, RC ,
S, a, b, I , D in time (days elapsed) and RM vs I . We
can see in the plot of active infections, I , over time that
there were two major, secondary waves of infections
that started around the beginning of October 2020 and
beginning of March 2021 in Germany, with the second
being as high in the number of infections as almost
the first. The number of total infections, Itot and recov-
eries, RC , seems to stabilize in May and June 2021,
in accordance with the (non-scaled) susceptibility fac-
tor, S which shows a trend to decrease, fluctuating, to
small numbers by August 2021. These results are fur-

ther corroborated by the plot of deaths, D over time,
which again stabilize in June and July 2021.

The plot of removals, RM , versus active infections,
I , in Fig. 2 is useful as the horizontal peak is a marker
of a major outbreak in the country. Indeed, we can see
that there are two horizontal peaks, pointing to the two
outbreaks in Germany that peaked in late December
2020 and late April 2021. We also show in the fig-
ure, the parameters a (in blue) and b (in red) over time
that appear in system (2) used to match closely the
(rescaled) active infections, I , from the solution to sys-
tem (2), with the rescaled I d from the recorded data
set. This allows to accommodate the different expo-
nential growths and decays in the number of active
infections, I , in the two outbreaks. The parameter a
(in blue) is constant throughout the 500 days worth of
data, whereas b shows fluctuations in time with a trend
to converge after about March 2021.

Importantly, our modeling approach can provide
valuable insights into the future trajectory of the spread
of the virus shown in red in the plots in Fig. 2, and in
particular, between July and August 2021, in the case
where nomajor outbreakswill occurwithin that period.

Clearly, our model-based analysis and forecast
shows that the second outbreak inGermany is currently
fading out and unless, another outbreak or something in
favor of increasing the infection rate does not occur, the
situation will improve, owing probably to the ongoing
vaccination program in the country.

3.2 Japan

Japanhas suffered four distinctwaves of infectionswith
small peaks in April and August 2020 and much larger
ones in January and May 2021, as shown in the plot of
active infections, I in time (days elapsed), in Fig. 3. The
peaks occurred because of the significant increases in
the susceptible population (see Fig. 3) as infected indi-
viduals entered and moved about in the country. The
third wave peak in January 2021 resulted in a rapid
increase in the number of deaths since the end of 2020,
can be observed in the plot of deaths, D versus time
(days elapsed) in the figure. The number of total infec-
tions, Itot and recoveries, RC , seems to start stabilizing
in June 2021, in accordance with the (non-scaled) sus-
ceptibility factor, S, which shows a trend to decrease,
fluctuating, to very small numbers by August 2021.
These results are further corroborated by the plot of
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Fig. 2 Results for
Germany: The input
parameters to model (2) are
f = 1.7 × 105, S(0) = 0.5,
I (0) = 0.34324 and
RM (0) = 0.11548. The
letters in the upper axes
stand for the names of the
months in a year, starting
with “A” for “April” and the
red curves are the solutions
from our methodology,
superimposed to the
recorded data shown in
blue. To obtain a good fit
between the model’s
predictions and the recorded
data, we have assumed that
the rate parameter b evolves
with time as shown in the
bottom plot

deaths, D over time, which stabilize in June and July
2021.

The plot of removals, RM , versus active infections,
I , in Fig. 3 shows two big horizontal peakswhich corre-
spond to two major outbreaks that occurred in January
and May 2021. Contrary to the temporal behavior of
the rate parameters a and b for the data from Germany
(see Fig. 2), these parameters for Japan in blue and red
in the bottom plot, respectively, are fluctuating in time
with a trend to stabilize both after May 2021.

Similarly to the data for Germany, our methodol-
ogy for Japan can provide valuable insights into the
future trajectory of the spreadof the virus in the country,
shown in red in Fig. 3. Assuming no major outbreaks
occur between July and August 2021, the situation will
improve in Japan. Our forecast suggests that the second
outbreak of infections in the country is currently fad-
ing out and unless, another outbreak or something in
favor of increasing the infection rate does not occur, the
situation will improve in Japan. In Sect. 3.4, we study
the case where a major outbreak occurs in early August
2021 in India and mid-July 2021 in Japan and forecast
the number of deaths at the end of August 2021.

3.3 India and states

Here, we study the data set for India published in [23]
and the data sets for Delhi, Maharashtra, West Bengal,
Kerala and Karnataka, available in [10], in Sect. 3.3.1.
India and its states were badly hit by the pandemic
and by secondary waves of infections. We start with
India, where we had to reset the susceptibility fac-
tor S applying a relatively small increment (i.e., the
order of 10−5 to 10−4), from mid-January to mid-
February 2021 to match the model-solutions (2) to the
recorded data set.We increased the infected population
between October 2020 and January 2021 at a steady
rate of 384 individuals per day to match the recorded
data with the model predictions (2). However, from
mid-February to mid-May 2021, there was a substan-
tial increase in the number of individuals who became
susceptible in the country. This led to the prominent
second-wave peak in infections that occurred in early
May 2021 as shown in Fig. 4. Consequently, a large
number of deaths occurred within a one-month period.
Compared with the previous 12 months, the number of
deaths increased by more than 2% in only one month.
During April and May 2021, India was suffering a
major second wave of infections with a peak more
than 3.6 times higher than the first peak in Septem-
ber 2020. This can be observed in the plot of the
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Fig. 3 Results for Japan:
The input parameters to
model (2) are
f = 5.2 × 104, S(0) = 0.5,
I (0) = 3.5673 × 10−3 and
RM (0) = 1.0173 × 10−2.
The letters in the upper axes
stand for the names of the
months in a year, starting
with “A” for “April” and the
red curves are the solutions
from our methodology,
superimposed to the
recorded data shown in blue.
To obtain a good fit between
the model’s predictions and
the recorded data, we have
assumed rate parameters a
and b that evolve with time
as shown in the bottom plot
in blue and red, respectively

total infections over time and more clearly, in the plot
of the removals, RM , versus active infections, I , in
Fig. 4, appearing as the two prominent, horizontal,
peaks.

Since April 2021, there has been a dramatic increase
in deaths in India, surpassing anything that occurred
in the country in 2020 due to the virus. In April to
May 2021, the virus was not under control and a pos-
itive feedback loop existed in the country in which
new infected individuals were moving about, caus-
ing other individuals to become susceptible, result-
ing in more individuals becoming infected and dying
as the cycle continued unabated until about mid-
May 2021. Toward the end of May 2021, a recovery
started appearing in the country, shown in the plot
of the susceptibility factor, S, versus time (in days
elapsed) when the positive feedback loop was bro-
ken, since the number of susceptible individuals has
continually decreased (see the plot of S versus days
elapsed) because of lockdowns and the implementa-
tion of vaccination programs. In the case of India, we
have opted for the constant, rate parameters, a = 0.21
and b = 0.082 as we have found that for this set
of values, the model solutions are very close to the
recorded data set. The temporal behavior of a (in blue)
and b (in red) can be observed in the bottom plot in
Fig. 4.

Our methodology applied to the data set for India
can provide valuable insights into the future trajec-
tory of the spread of the virus in the country, shown
in red in the plots in Fig. 4. Assuming no major out-
breaks occur between July and August 2021, the sit-
uation shows a tendency to improve in the country.
Our forecast suggests that the second outbreak of infec-
tions in the country is currently fading out and unless,
another outbreak or something in favor of increasing
the infection rate does not occur, the situation will
improve. In Sect. 3.4, we study the case where a major
outbreak occurs in early August 2021 in India and in
mid-July 2021 in Japan and forecast the number of
deaths in the end of August 2021 in the two coun-
tries.

Next, we model the spread of COVID-19 in a
number of highly impacted states in India using our
approach in Sect. 2.

3.3.1 Highly impacted states in India

Here, we focus on the study of the spread of COVID-19
in the badly hit states of Delhi, Maharashtra,West Ben-
gal, Kerala and Karnataka in India.We are interested in
modeling the trajectory of the virus in these states and
contrasting it to that in India. These states have been
hit hard by the pandemic and anywhere between one to
four outbreaks or surges have been caused during April
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Fig. 4 Results for India:
The input parameters to
model (2) are
f = 1.2 × 107,
S(0) = 0.55,
I (0) = 1.5 × 10−3,
RM (0) = 2 × 10−5. The
letters in the upper axes
stand for the names of the
months in a year, starting
with “A” for “April” and the
red curves are the solutions
from our methodology,
superimposed to the
recorded data shown in
blue. Here, we have
assumed constant rate
parameters a and b to match
the model predictions with
the published data

2020 and July 2021, depending on the state.We present
the results of this analysis in Fig. 5, where we show the
plots of the active infections I and deaths, D over time
(in days elapsed) and the plot of the removals, RM ver-
sus the active infections, I , starting with Delhi in the
upper left corner and ending up to Karnataka in the bot-
tomplot going through the states ofDelhi,Maharashtra,
West Bengal, Kerala and Karnataka. Focusing first on
the plots of infections I and deaths, D in time, we can
see that in all five states, therewas a series of one to four
outbreaks or secondary waves between June 2020 and
February 2021 depending on the state, before the explo-
sion of a big outbreak that occurred around April and
May 2021 in India and consequently, in all five states,
shown in Figs. 4 and 5. These results suggest that the
trajectory of the spread of the virus in the five states
goes hand-in-hand with that in the country as a whole.

The plots of removals, RM , versus active infec-
tions, I , in Fig. 5 (horizontal peaks) show the increase
in infected individuals that ranges from anywhere
between two to six times the number of infected indi-
viduals before the outbreak of infections in May and
April 2021. Such peaks are markers of major outbreaks
in infections in a country and are alarming. This phe-
nomenal increase in the numbers of infected individuals
resulted in a dramatic increase in deaths in India and its
states, shown inFigs. 4 and5 (see plots of D versus days

elapsed), surpassing anything that the country has seen
in 2020. Consequently, the virus was spreading uncon-
trollably in India and its states inApril toMay2021, due
to a positive feedback loop. During that time, infected
individuals were moving about in the country, causing
other individuals to become susceptible, resulting in
more individuals becoming infected and dying as the
cycle continued unabated until about mid-May 2021.
The analysis of the results in Figs. 4 and 5 shows that
it was not until the end of May 2021, when a recovery
started in the country and in its most impacted states,
including those studied herein. That happened as the
positive feedback loop was broken, since the number
of susceptible individuals continually decreased as a
result of lockdowns and ongoing vaccination programs.

3.4 Forecasting the spread of COVID-19 in India and
Japan

Our modeling approach in Sect. 2 allows to test the
future trajectory of the virus in a community by reset-
ting the susceptibility-factor incrementΔS (see Eq. 3),
infection incrementΔI (see Eq. 4) and rate parameters,
a and b to emulate the outbreak of secondary waves or
surges at specific times. We take this approach to fore-
cast the number of deaths in India and Japan by the end
of August 2021, if an outbreak occurs in early August
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Fig. 5 Results for Delhi, Maharashtra, West Bengal, Kerala
and Karnataka: The input parameters to model (2) are: a Delhi:
f = 6 × 104, S(0) = 0.5, I (0) = 2.4 × 10−4, RM (0) =
1.3333 × 10−4. b Maharashtra: f = 6.7 × 104, S(0) = 0.5,
I (0) = 4.1791 × 10−4, RM (0) = 8.209 × 10−4. c West Ben-
gal: f = 6 × 104, S(0) = 0.5, I (0) = 5.1667 × 10−5,
RM (0) = 10−4. d Kerala: f = 3.8 × 104, S(0) = 0.5,
I (0) = 6.2368 × 10−4, RM (0) = 7.3684 × 10−4. e Kar-

nataka: f = 4.1 × 104, S(0) = 0.5, I (0) = 2.3902 × 10−4,
RM (0) = 2.9268× 10−4. The letters in the upper axes stand for
the names of the months in a year, starting with “A” for “April”
and the red curves are the solutions fromourmethodology, super-
imposed to the recorded data shown in blue. To obtain a good
fit between the model’s predictions and the recorded data, we
have assumed rate parameters a and b that evolve with time (not
shown)
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2021 in India and in mid-July 2021 in Japan. In par-
ticular, both in Japan and India, if there are no more
outbreaks or surges in the spread of the virus in July
and August 2021, the total number of infections will
achieve peak by May 2021, as the susceptibility fac-
tors, S, approach zero right after (see Figs. 3 and 4).

However, for the sake of demonstrating the ability
of our proposed methodology to forecast the future tra-
jectory of the virus, wewill assume that the vaccination
programs and other mitigation measures will not work
in India and the Tokyo 2020 Olympics will finally be
held in Tokyo, Japan, in late July and early August
2021, as scheduled initially. These are ideal cases to
model the consequence of major escalations in infec-
tions because of the failure of mitigation measures and
a big sports event by assuming a major outbreak will
occur in early August 2021 in India and in mid-July
2021 in Japan, a couple of weeks before the begin-
ning of the games, that is in mid-July 2021. We can
model these outbreaks in the data sets by resetting the
susceptibility-factor increments ΔS (see Eq. 3), infec-
tion increments ΔI (see Eq. 4) and rate parameters a
and b as shown in panels (a) and (b) in Fig. 6 for India
and Japan, respectively.

If the vaccinationprogramandothermeasures donot
work in India, then a third wave with an even higher
peak in active infections is likely as a result of a new
surge in infections in July 2021 (see panel (a) in Fig. 6).
If this surge occurs, it wouldmean an extra 70 thousand
deaths and a staggering extra 10 million new infections
in the country. If the surge occurred asmodeled in Japan
because of the staging of the Olympics (see panel (b)
in Fig. 6), then an extra 1000 deaths and a staggering
100000 extra infections would result.

A summary of the number of additional deaths and
additional infected individuals by the end of August
2021 is shown in Table 1 for a surge in infections in
India in early-August 2021 because of the failure of
mitigation measures, and a surge in infections in Japan
at the mid-July 2021, because of the staging of the
Olympics.

4 Discussion

COVID-19 impacted deeply on human health, recently
due to its frequently changing nature asmutations, such
as the delta variant [27] that can spreadquickly in differ-
ent countries. Governments and local authorities have
no choice then, other than taking diverse and adequate

Table 1 Predicted numbers of deaths and active infections in
India and Japan by August 2021, if an outbreak in infections
occurs in early August 2021 in India (third row) and in mid-July
2021 in Japan (fifth row)

Country Deaths, D (×103) Infections, Itot (×106)

India 410 30

India early-
August
2021 surge

480 40

Japan 15 0.8

Japan
Olympic
surge

16 0.9

The numbers in the second and fourth rows correspond to the
cases where no outbreaks would occur in July and August in
the two countries and serve as the baselines to compare with the
cases of outbreaks in the third and fifth rows, respectively

countermeasures due to still limited information about
COVID-19. The time dependence of infected individ-
uals in a community can show a multitude of behavior
including wavy patterns such as secondary waves and
insurgences. To formulate different countermeasures
against the spread of the virus, it is desirable to use
mathematical models to produce the predictive results
[28,29,34,44,46]. These models prove to be effective
tools to study, explain and more importantly, forecast
the future trajectory of the spread of the virus and of its
variants, under different scenarios in states, countries
or groups of individuals [2,15,20].

In this paper, we introduce a derived form of an
infectious disease model to calculate the infection
curves and obtain the rate of change of other cases
in certain countries and states. Our approach is based
on a modification of the classic SIR model [47] and
is motivated by our earlier research on the spread of
COVID-19 in different communities in [8,9] and [28].
In particular, we introduced a modified SIR model that
can account for secondary waves, outbreaks and surges
in recorded data sets for communities, either these are
countries, states or groups of individuals by consid-
ering recorded data sets published in Worldometers
and COVID-19 India websites from April 2020 to July
2021. Our modeling approach can provide insights into
the time evolution of the spread of the virus that the data
alone cannot and can be applied to available data sets.
As new data are added to the model, one can adjust
its parameters and provide best-fit curves between the
data and the model predictions. Hence, our modeling

123



I. Cooper et al.

Fig. 6 The predicted trajectory (in red) of the spread of COVID-
19 in India and Japan by the end of August 2021, if an out-
break occurs in early August 2021 in India and in mid-July 2021
in Japan. a India: The input parameters are f = 1.2 × 107,
S(0) = 0.55, I (0) = 1.5 × 10−3, RM (0) = 2 × 10−5. b
Japan: The input parameters are f = 5.2 × 104, S(0) = 0.5,
I (0) = 3.6 × 10−2, RM (0) = 1.02 × 10−2. The letters in the

upper axes stand for the names of the months in a year, starting
with “A” for “April” and the red curves are the solutions from
our methodology, superimposed to the recorded data shown in
blue. To obtain a good fit between the model’s predictions and
the recorded data, we have assumed rate parameters a and b that
evolve with time

approach can provide with estimates of the number of
likely future deaths and of time scales for the num-
ber of infections. Our model-based analysis and fore-
cast shows that the outbreaks in infections in Germany,
Japan, India, Delhi, Maharashtra, West Bengal, Kerala
and Karnataka are currently fading out. Unless, further
outbreaks or surges in infections do not occur, the situ-
ation will improve in these communities, owing proba-

bly to the ongoing vaccination programs andmitigating
policies implemented by their governments and local
authorities.

We also reported on a forecast for the infections and
deaths in India and Japan in the end of August 2021,
assuming amajor outbreak occurs in earlyAugust 2021
in India and in mid-July 2021 in Japan. Our model pre-
dictions show that if the vaccination program and other
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measures do not work in India, a third wave with a very
high peak in active infections is likely as a result of
a new surge in infections in July 2021. If this surge
occurs, it would mean an extra 70 thousand deaths
and a staggering extra 10 million new infections in the
country. Similarly, our model predicts that if an out-
break in infections occurs in Japan in mid-July 2021,
an extra 1000 deaths and an extra 100000 infections
would result as the country will stage the Olympics in
Tokyo between late July and early August 2021.

As far as we know, there are no downloaded data
sets for population values needed, and hence, updates
in the proposed model have to be done manually. Data
are obtained from the web and entered into a MAT-
LAB array. The MATLAB script is then executed with
parameter updates to give the best fit. The graphical
output could then be updated to a webpage. Prediction
for future populations can bemade for setting values for
S(t) and I (t) for t bigger than the time for the last day
of data and then these projected values can be adjusted
accordingly as new data become available. Hence, our
model can adapt to the recorded data sets and can be
used to explain them and importantly, to forecast the
number of infected, recovered, removed and dead indi-
viduals, aswell as to estimate the effective infection and
recovery rates in time, assumingoutbreaks occur at spe-
cific times. This can be used to forecast the future basic
reproduction number and combined with the forecast
of the number of infections and deaths, our method-
ology can assist in the implementation of intervention
strategies and mitigation policies to control the infec-
tions and deaths in a community. This, supported by the
implementation of vaccination programs worldwide,
can help to reduce the impact of the spread and improve
the wellbeing of people around the globe.
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