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ABSTRACT
The ideal brain–computer interface (BCI) adapts to the user’s state to enable optimal BCI perfor
mance. Two methods of BCI adaptation are commonly applied: User-centered design (UCD) 
responds to individual user needs and requirements. Passive BCIs can adapt via online analysis 
of electrophysiological signals. Despite similar goals, these methods are rarely discussed in combi
nation. Hence, we organized a workshop for the 8th International BCI Meeting 2021 to discuss the 
combined application of both methods. Here we expand upon the workshop by discussing UCD in 
more detail regarding its utility for end-users as well as non-end-user-based early-stage BCI 
development. Furthermore, we explore electrophysiology-based online user state adaptation 
concerning consciousness and pain detection. The integration of the numerous BCI user state 
adaptation methods into a unified process remains challenging. Yet, further systematic accumula
tion of specific knowledge about assessment and integration of internal user states bears great 
potential for BCI optimization.
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1. Introduction

In the International Classification of Functioning of the 
World Health Organization1 ‘disability’ is defined as the 
‘results of the interaction between an individual (with 
a health condition) and that individual’s contextual 
factors (personal and environmental factors)’. Over 
one billion people, which is about 15% of the global 
population, live with some form of disability (https:// 
www.who.int/health-topics/disability). Article 9 of the 
Convention on the Rights of Persons with Disabilities 
underlines the right to accessibility: persons with dis
abilities should be enabled (on an equal basis with 
others) ‘to live independently and participate fully in 
all aspects of life’. This includes access to the physical 
environment, transportation, information, and commu
nications, including information and communications 
technologies and systems (https://www.un.org/develop 
ment/desa/disabilities/convention-on-the-rights-of- 
persons-with-disabilities/article-9-accessibility.html).

The term assistive technology (AT) indicates any 
product or technology-based service that enables people 
with activity limitations in their daily life [2]. The provi
sion of AT represents environmental factors that may 
facilitate the functioning and improve accessibility, such 
as controlling a wheelchair or listening to text read out 

loud by a computer. The ATs can be classified according 
to their complexity in low (e.g. a pencil grip), mid (e.g. 
vocal output communication aids) and high-tech ATs 
(e.g. devices such as eye-trackers), and may include 
mainstream technologies (personal computer, tablet), 
software with customized user interfaces, and specific 
input devices (switches, mouse emulators, simplified 
keyboards or voice recognition tools) [2]. AT services 
host the process of designing personalized assistive solu
tions coping with end-user needs. Such a process 
involves multidisciplinary professionals and includes 
the assembly of different components of the AT solu
tion. Furthermore, it considers the user’s motor, cogni
tive and sensory challenges as well as the peculiarities of 
their environment. A brain–computer interface (BCI), 
considered as a high-tech AT component in terms of an 
additional/alternative input device [3], could improve 
the inclusiveness of the personal AT solutions. The 
integration of the user-centered design (UCD; ISO 
9241–210 [4]) principles in the design and evaluation 
processes of usable BCI systems implies 
a comprehensive understanding of the users in terms 
of cognitive and motor characteristics and their relation 
with the abilities to control a BCI [5–8], as well as the 
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interaction with health professionals (also in terms of 
AT experts), medical companies and caregivers [9]. 
UCD was adopted, in the last years, as a paradigm in 
BCI optimization [e.g. 8,10,11]. The UCD focuses on 
a cycle where BCI design and development is based on 
the requirements of users, and the evaluation, against 
the requirements, would be utilized in the device opti
mization [9]. Hence, the evaluation process is consistent 
with the construct of usability, the term representing 
ease of use (ISO 9244–11 [12]). Among the metrics of 
usability, there are three evaluation factors that will be 
focused on in the current paper: effectiveness (how 
accurate and complete a user can accomplish a BCI- 
controlled application), efficiency (relating the costs 
invested by the user, i.e. effort and time, to effective
ness), and satisfaction (perceived comfort and accept
ability while using the BCI).

A complimenting aspect to UCD-based BCI adapta
tion would be BCI adaptation based on monitoring the 
user’s internal state via electrophysiological signals and 
adjusting the BCI accordingly via machine learning. 
Indeed, the internal state of the user may change while 
the BCI is being used and the assessment based on 
psychological measures may not be feasible. In this 
scenario, internal states of the users can be assessed 
using physiological signals underlying attention, con
sciousness, fatigue, decision-making and sensory pro
cessing [13]. In regard to BCIs, the internal state will 
influence the user’s ability to generate the control signal 
for an active BCI or maintain attention on the stimuli 
used to control a reactive BCI [14]. Internal states have 
various effects on BCI performance [15]. In particular, 
effects on BCI feasibility and effectiveness are signifi
cant. This may occur due to fatigue and mental load 
[16], fluctuating consciousness [17,18], and attentional 
processing [5]. The adaptation to the user’s internal 
state based on brain signals decoded with BCI technol
ogy can be implemented by using a passive BCI (to 
distinguish the approach from BCIs designed for voli
tional communication or control) [14,19–21].

This paper will explore the utility of UCD in optimiz
ing BCI development as well as the potential of adapting 
BCIs online by detecting the user’s internal states from 
the electrophysiological signal. In the first part of the 
paper, we will treat metrics to evaluate BCI in terms of 
usability, and their application in studies involving end- 
users as well as in early-stage BCI development studies. 
Within such metrics, those reflecting the user’s internal 
states are self-report metrics. This approach will be 
exemplified based on a study of training effects with 
BCIs that utilized auditory and tactile stimulation 
[based on research published in 22]. Hereafter, we will 
focus on selected electroencephalographic (EEG) 

measures as examples of electrophysiologically moni
toring of the user’s internal states. We will outline stu
dies that used EEG to determine internal states and then 
discuss two feature types, signal diversity [using 
research published in 23] and connectivity [based on 
24], in more detail.

2. Summary of the workshop

This paper builds upon a two-hour workshop held at the 
8th International BCI Meeting 2021 with the title 
‘Optimising BCI performance by integrating informa
tion on the user’s internal state’. The workshop con
sisted of four (10/15-minute) presentations followed by 
5–10 minute question and answer sessions. The four 
presentations covered the topics that are discussed in 
this paper: (1) UCD metrics and motivational aspects 
for basic study design, (2) BCI as AT: UCD in a clinical 
setting, (3) data and metrics for consciousness detection 
and (4) building a classification model with integrative 
EEG features. These presentations were followed by 
discussions in separate groups during which the parti
cipants completed a questionnaire, which is available in 
the supplemental materials of this paper. We incorpo
rated ideas that emerged in the workshop discussion 
throughout this paper and also included the detailed 
answers to the questionnaire in our supplementary 
material for this paper. Further related material such 
as related programming scripts can be found on https:// 
github.com/Han-YY/vBCI-Meeting_Workshop3.

3. Adapting the BCI based on user needs and 
usability assessment

One of the main motivations of BCI research has 
focused on providing optimized AT for end-users to 
reestablish communication and facilitate daily life activ
ities. A step forward for the improvement of AT solu
tion inclusiveness would be a full deployment of BCIs to 
end-users, by fully including them in the AT centers. 
The inclusion of BCIs in ATs [3,25] must include their 
integration with existing (available in the market) assis
tive or mainstream technologies. This would overcome 
the idea of a BCI as a stand-alone device, allowing end- 
users to use standard means of communication by 
switching to the BCI channel when the muscular one 
is fatigued or weak and/or by using them as comple
mentary channels. As a proof of concept, a P300-based 
BCI serving as an input channel to access a commercial 
AT software for communication was developed and 
evaluated in terms of usability with healthy participants 
[26], end-users, and AT-experts [27]. Hereafter, to 
improve its usability, the P300-based BCI was endowed 
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(based on user feedback) with an electromyography 
(EMG) channel, exploiting end-users residual muscular 
activity to delete errors in BCI selections [6]. The impor
tance of the involvement of AT services in the develop
ment of innovative devices and their customization and 
validation resulted in the development of a P300-based 
BCI system interfacing with a commercial AT software 
GRID3 (Smartbox Assistive Technology) [28]. 
A checklist of the UCD process cycle adapted for BCI 
optimization as intended for end-users is illustrated in 
Figure 1 and selected aspects will be described in more 
detail in the following parts of the text.

A key aspect of the integration of the UCD prin
ciples in the design of optimized BCI systems 
implies user understanding. Two studies [5,7] 

showed that amyotrophic lateral sclerosis [ALS) dis
ease could compromise the capability to control 
a P300-based BCI and alter the timing of the alloca
tion of attentional resources in the post-perceptual 
stage of stimulus processing. Furthermore, the pro
cess of temporally filtering a target stimulus within 
a stream of stimuli was related to BCI control. 
Geronimo and colleagues [29] also underlined the 
importance of factors related to cognitive function 
in end-users with ALS in a successful BCI operation 
(in P300 and motor-imagery based BCI control].

Beyond thorough initial user understanding, an 
important specific step of the UCD process, consists 
of the collection of standardized metrics to measure 
the usability aspects effectiveness, efficiency, and 

Figure 1. Checklist of the user-centered design (UCD) step-by-step process cycle adapted for brain-computer interface (BCI) 
optimization intended for end-users with exemplary questions for each step [based on 11,37]. It has been noted that the UCD 
implies a careful definition and selection of the targeted end-users. An algorithm for such selection was recently suggested [38]. On 
a further note, another workshop at the 8th International BCI Meeting 2021 focused on ideas ‘Toward an international consensus on 
user characterization and BCI outcomes in settings of daily living’ with an accompanying database, summarizing user factors and 
outcome measures: https://www.notion.so/6c11535322d04977a14cfaa60ba5494f?v=4c92db74d5854f30bef197b8a9cdd327.
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satisfaction. These standardized metrics are not only 
beneficial for relatively late BCI development stages, 
but could already inform BCI development from 
a relatively early stage on [30]. This will be illu
strated subsequently via a more detailed look at one 
selected early-stage BCI development study with 
healthy non-end-user participants [22]. An overview 
of usability and BCI-relevant aspects with relevant 
examples for standardized metrics and their assess
ment times in the selected study example [22] can 
be found in Table 1. Since the importance of opti
mizing user motivation has been highlighted by 
several recommendations on BCI study protocol 
standardization [31–34], we will also discuss moti
vational study design aspects. An overview of 
selected aspects to potentially optimize BCI user 
motivation and performance as implemented in 
the selected study example [22] is summarized in 
Table 2. In addition to the measures outlined in 
Table 1, visual analog scales (VAS) were used to 
subjectively assess motivation on a global level and 
the Questionnaire for Current Motivation in 
Learning and Performance Situations was used in 
its adapted BCI version (QCM-BCI) to subjectively 
assess motivation on a more specific level regarding 
interest, mastery confidence, incompetence fear, and 
challenge [18,22,35,36].

As brief background information, the study 
example [22] examined two P300-based BCI ver
sions, an auditory and a tactile one. Since the cur
rent workshop paper’s focus is intended to be 
relevant for various BCI types, we will focus on 
selected study results to illustrate the benefits of 
considering the aforementioned usability measures 
and motivational aspects. A first exemplary question 
of interest was, whether the applied BCIs could be 
successfully used and trained. In this regard, the 
two objective measures of effectiveness (online 
accuracy) and efficiency (information transfer rate; 
ITR) could offer complementary information. While 
accuracy remained relatively stable around 80% to 
85% and indicated successful BCI use, it did not 
indicate a training effect. Yet, the addition of the 
time aspect via ITR revealed training effects, since it 
increased significantly during training for the audi
tory as well as the tactile BCI version. This would 
have been unnoticed, if only accuracy would have 
been considered as a performance measure. 
A second exemplary question of interest was, 
whether these training effects could be transferred 
from using the auditory BCI to using the tactile BCI 
and vice versa. With regard to this question, online 

accuracy as well as ITR indicated that the switch 
from the auditory to the tactile BCI version see
mingly occurred more easily than vice versa, but 
only non-significantly by trend. The subjective mea
sures of efficiency, satisfaction and motivation could 
help to form a more complete picture. Considering 
efficiency, the NASA-Task Load Index [NASA-TLX; 
53,54] and VAS could show that a significant 
decrease of subjective workload was experienced 
when the auditory BCI was trained (which was 
absent during tactile BCI training) and that the 
switch from the tactile to the auditory BCI led to 
a significant increase in subjective workload (which 
was absent vice versa). Last but not least, satisfac
tion and motivation were reported to be on a high 
level overall with a stable overall high QCM-BCI 
mastery confidence, accompanied by a low QCM- 
BCI incompetence fear. However, there were signif
icant decreases regarding global motivation when 
training the tactile BCI, accompanied by declines 
by trend regarding VAS satisfaction and QCM-BCI 
feelings of challenge (each absent during auditory 
BCI training). Additionally, the auditory training 
group showed significantly more QCM-BCI interest 
in trying another alternative BCI version (absent in 
the tactile group), which was not the case for the 
tactile training group. In summary, this pattern of 
findings led to the interpretation that even though 
both BCIs were interpreted as successfully usable 
and trainable (based on objective effectiveness/ 
online accuracy and efficiency/ITR), the auditory 
BCI was interpreted as subjectively harder but 
more rewarding to train, while the tactile BCI was 
interpreted as more intuitive but more monotonous 
and therefore less rewarding to train (based on 
subjective efficiency/NASA-TLX/VAS, satisfaction/ 
VAS, and motivation/QCM-BCI/VAS). This was 
furthermore supported by the optional 
‘mini interview’ statements, which all in all para
phrased this interpretation pattern. As a closing 
detail, a look at individual performances indicated 
highly individual BCI version preferences as well as 
the possible prevention of one dropout case, who 
despite having a very bad result at one of the train
ing sessions (with one occasion of an online accu
racy score of < 30% and therefore an utility metric 
of zero), was motivated to successfully complete his 
training. In conclusion, the usability assessment and 
consideration of user motivation could offer a more 
complete picture of BCI performance. This could 
provide a valuable basis for concrete improvement 
ideas, such as increasing the complexity of the 
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specifically used tactile BCI to make it less mono
tonous and its training and use therefore more 
beneficial, while also keeping potential individual 
BCI preferences in mind.

4. Adapting the BCI using physiological 
features

The concept of a passive BCI that uses brain signals to 
monitor the user’s cognitive state was first proposed by 
[14]. A recent review [20] suggested the application of 
passive BCIs to detect workload, stress, emotions, fati
gue, and attention. The data needed to determine these 
states can be extracted from the EEG itself but also 
peripheral measures such as eye-tracking, galvanic skin 
response, and heart rate. This approach is the basis of 
adapting a BCI to the user’s state using physiological 
features.

One of the most intuitive user states to detect 
during BCI usage is the workload. Increased work
load is reflected in power spectral density (PSD) 
features and can also influence event-related poten
tials (ERPs), depending on the BCI used [17]. More 
recent work on predicting workload in a computer 

game-like task achieved over 90% accuracy by 
employing spatial filtering [55]. Potentially, measures 
extracted from the EEG may be augmented with 
peripheral measures such as heart rate and eye- 
movements. The transition from high workload to 
mental fatigue was shown to be reflected in increased 
delta, theta, and alpha power as well as decreased 
heart and increased blink rate [56]. Similarly to 
workload, fatigue detection may be enhanced by 
decomposing the signal into independent compo
nents as shown in a realistic aviation task [57]. 
Deep learning methods have also been applied to 
the problem showing successes in mental workload 
detection [58], which was expanded to emotion 
recognition based on EEG features and peripheral 
measures [59]. Adaptation of the BCI to the atten
tion of the user has also been proposed. For example, 
this may occur before the task is performed via 
increases in power in the alpha band [60] or after 
the task is performed via error-related potentials 
[61]. Asynchronous BCIs can also rely on the detec
tion of attention to allow self-paced control of the 
BCI. For example, the frequency of visual stimuli 
elicits a unique response that can be used to 

Table 1. Overview of usability and BCI-relevant aspects (with examples for relevant standardized metrics) as well as their assessment 
times with potential end-users (with exemplary studies using these measures) and their assessment times in the selected early-stage 
BCI development study example with healthy non-end-users [22], based on earlier work [11,37].

Usability aspects BCI-relevant aspects [with examples for 
relevant standardized metrics]

Assessment times with 
potential end-users [with 
exemplary studies using 
these measures]

Assessment times in the selected early stage 
BCI development study example with 
healthy non-end-users [22]

Effectiveness 
(how accurate and 
complete a user can 
accomplish BCI 
control)

Accuracy [% correct responses] 
[preferably measured online via concrete task 
results vs. offline via estimation from 
previously collected data)

Each session [many studies, 
extensively discussed by 
39]

Over each session

Efficiency 
(relating the costs 
invested by the user, 
i.e. effort and time, to 
effectiveness]

Information transfer rate [ITR) [bits/min] Each session [many studies, 
extensively discussed by 
39]

Over each session

Adjustment of the ITR: Utility metric [bits/ 
min = 0 if effectiveness < 50%]

Each session [40] Applied in one occasion of a temporarily 
demotivated participant (with an online 
accuracy score of < 30%]

Subjective Workload [NASA-TLX] Each session/task [6] End of each session
Satisfaction 

(perceived comfort 
and acceptability 
while using the BCI)

General aspects of assistive technology [QUEST 
2.0, expandable by four additional BCI- 
related items operationalizing reliability, 
learnability, speed, and esthetic design]

End of prototype testing 
[27,40–44]

-(not included due to time constraints)

Overall satisfaction [visual analog scale ranging 
from 0–10]

Each session 
[45,46]

End of each session

Interview [semistructured; free] End of prototype testing 
[47]

“Mini interview” at the end of each session 
(“Could you imagine using a BCI for 
communication? What problems would need 
to be addressed? What would be major 
improvements? Did you notice anything 
else?”)

Notes. NASA-TLX = NASA-Task Load Index [53,54]. QUEST = Quebec User Evaluation of Satisfaction with Assistive Technology [82].
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determine if the user is paying attention to the BCI, 
pausing the system when the user does not, thus 
allowing self-paced control [62].

A measure that has not yet been extensively discussed 
in the passive BCI literature and which was presented at 
our workshop at the 8th International BCI Meeting 
2021 is signal diversity. Signal diversity could for 
instance be measured via Synchrony Coalition Entropy 
[63] or via Lempel-Ziv complexity, which measures the 
compressibility of the data based on the Lempel-Ziv 
compression algorithm [64]. At our workshop, we 
focused on Lempel-Ziv complexity, since it is one of 
the most commonly used quantifications of signal diver
sity that has been established in the field of conscious
ness detection as a reliable feature that can be extracted 
from the time domain. A detailed example of computing 
Lempel-Ziv complexity on data that was recorded dur
ing the so-called Wada test [previously published in 23] 
can be found in our supplemental workshop material 
(h t tps : / /g i thub .com/Han-YY/vBCI-Meet ing_  
Workshop3).

As a further example, the brain response to pain 
is a typical case of a brain state involving multiple 
brain regions, thus our work in pain assessment will 
be used as an example to show the use of integrative 
measurements for assessing internal states. The pro
cessing of pain relies on the dynamic integration of 
cognitive, emotional, and motivational processes in 
different regions of the brain [65,66] and the brain 
network for pain processing was studied using func
tional connectivity [67,68]. Pain processing includes 
delta, theta, alpha, beta, and gamma oscillations 
[66,69]. Cross-frequency coupling (CFC) was used 
to reveal the integration between frequency bands 
in pain processing. A typical example is the role of 
CFC between alpha and beta bands in sensorimotor 
areas in acute pain assessment [69,70].

Nickel et al. demonstrated the potential of functional 
connectivity and CFC in internal state assessment [69]. 
However, to distinguish different states, it is still 
required to quantify these integrations, so they can be 
used as classification features. To analyze the perfor
mance of these integrative features, there are still two 
aspects that should be considered about the features’ 
comparability: a) In signal processing, there are two 
properties to be extracted, power and phase, so it is 
necessary to choose metrics able to show the individual 
effect of power or phase in the assessment. b) Regardless 
of the type of studied integration (i.e. functional con
nectivity or CFC) the measurements always focus on the 

synchrony between two signal series. Hence, it is essen
tial to use consistent metrics to measure different inte
grations, so that we can mix different categories of 
significant integrative features when there are multiple 
significant integrations showing the characteristics of 
the corresponding internal state.

For measuring the synchrony based on the signal 
power, spectral coherence (i.e. square-magnitude coher
ence) is a common choice [71]. On the other hand, there 
were several classical metrics proposed for measuring 
phase synchrony, such as phase lag index [PLI, 72], 
phase locking value [PLV, 73] and intersite phase clus
tering (ISPC), which was adapted from intertrial phase 
clustering [71,74].

Because the only difference between spectral 
coherence and ISPC in the Euler-like format is the 
inclusion of the power information (i.e. magnitudes 
of the series), in our previous work [24], functional 
connectivity and CFC were utilized as features in 
tonic pain prediction. Four conditions (including 
two resting states, one thermal pain condition and 
one non-painful thermal condition) were classified 
with these features. For simplifying the comparison, 
all the functional connectivities were extracted from 
the alpha band, since it is assumed to be the most 
important oscillation in pain processing [75–77], 
and all CFC were extracted with different frequency 
bands from the same channel. From this work, two 
advantages of integrative features were revealed. 
First, the performances of different integrative fea
tures can be analyzed and compared directly with 
the accuracies produced with the corresponding 
classifier. Based on this information, we are able to 
determine which features should be utilized for 
developing an efficient and accurate classification 
model. Second, because of the considerable amount 
of features generated with multiple EEG channels or 
frequency bands, we selected features with neigh
borhood component analysis (NCA) [78]. This way, 
the brain regions or frequency bands with the high
est predictability of pain processing can be deter
mined. Related analysis scripts can be found in our 
supplemental workshop material on https://github. 
com/Han-YY/vBCI-Meeting_Workshop3.

In this section, we focused on the use of integra
tive measurements as features in pain state assess
ment. In other applications, the usefulness of 
selected features will depend on the particular inter
nal state that should be detected. While analyzing the 
brain signals to assess internal states, one approach 
is to compare the activities at specific regions. For 
example, a significant difference was found at 
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parietal and frontal lobes between the responses of 
vegetative and minimally conscious state patients 
[79,80]. Furthermore, neuronal oscillations represent 
various effects, for instance, the change of power in 
theta and alpha bands have strong correlations with 
fatigue [81]. In conclusion, for the assessment of 
internal states with neural signals, both connectivity 
between brain regions and neuronal oscillations 
should be utilized.

5. Discussion and future directions

We summarized and expanded upon the topics dis
cussed in the workshop ‘Optimising BCI performance 
by integrating information on the user’s internal state’, 
which was held at 8th International BCI Meeting 2021. 
Two possible approaches were presented, ‘Adapting the 
BCI based on user needs and usability assessment’ and 
‘Adapting the BCI using physiological features’. These 
two approaches will now be discussed in two separate 
sections that provide specifically selected discussion 
aspects with regard to each approach. In the end, both 
approaches will be presented in a unified way in the 
third discussion section ‘A unified approach of BCI 
adaptation’, which provides a more global outlook and 
closing summary of our key messages.

5.1. Adapting the BCI based on user needs and 
usability assessment

Various selections of standardized measures that differ 
from those selected by the described study [22] might 
prove helpful as well, depending on the specific aim of 
a study. The relatively exhaustive Quebec User 
Evaluation of Satisfaction with Assistive Technology 
could be used in its adapted BCI version as a detailed 
measure to assess the usability criterion satisfaction 
[11,82,83] or the relatively economic System Usability 
Scale could be used as a ‘quick and dirty’ operationaliza
tion for overall usability85–88[. This could, for instance, 
help with designing optimal tactile BCIs from an early 
stage on, where several promising options have recently 
been discussed [22,84,89–92]. Especially the idea of 
training different BCI versions might prove useful. On 
the one hand, this could allow a more varied training, on 
the other hand, it might make sense to look for the 
optimal BCI for each individual user instead of an 
optimal BCI in general.

The applied motivational aspects could also be 
adjusted and merit further research on the optimal 
way of application. Concerning the motivational ideas 
summarized in Table 2, it was originally noted that the 
listed suggestions were only based on theory and would 

be in need of formal validation [32]. Since then, several 
findings have been reported in support of selected the
oretical ideas, underlining the importance of consider
ing BCI user motivation [33,34,93–96]. However, 
further thoroughly conducted studies could shed more 
light on which motivational aspects work best under 
which specific circumstances, such as recent work that 
examined the optimization of biassed vs. unbiased 
motor imagery BCI feedback while also considering 
various user states and traits [97,98].

As a concluding example, which has also been dis
cussed at the 8th International BCI Meeting 2021, the 
design of optimal BCIs for children has recently led to 
the formation of research initiatives, where UCD and 
motivational aspects could again be of key importance 
[99–101]. It should be ensured that the involved mea
sures are child friendly. Simple and short VAS instead of 
exhaustive text heavy questionnaires could ensure child 
user motivation and produce valid results that would 
not be potentially biassed by monotony or boredom. In 
the course of this, various findings from the motiva
tional adult BCI literature could be promising for trans
lation to child BCIs, like the robot learning companion 
PEANUT (Personalized Emotional Agent for 
Neurotechnology User Training) [96] as well as the 
inclusion of gamification principles in general, as imple
mented in various BCI controlled applications 
[102–104].

5.2. Adapting the BCI using physiological features

With regard to the approach using machine learning to 
detect internal states of the user from the EEG, other 
states beyond the two presented in the paper (con
sciousness detected using signal diversity and pain 
detected using connectivity), are also worth exploring. 
Many of these were mentioned and discussed by the 
participants in the workshop. Generally, metrics mea
suring the connectivity between brain regions or cou
pling between frequency bands are powerful tools to 
predict internal states. Rosenberg et al. demonstrated 
that attention can be potentially measured with whole- 
brain functional network strength as a neuromarker 
[105], and Granger causality-based functional connec
tivity has been used to detect selective attention [106]. 
Connectivity patterns have also been shown to be 
related to intensities of fatigue [107] and during cogni
tive workload at various task-difficulties [108]. As to the 
CFC, it has been confirmed that the CFC between delta- 
alpha and delta-beta bands are potential biomarkers to 
detect motivation [109] and Dimitriadis et al. also 
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demonstrated cross-frequency phase interaction is 
a reliable predictor of workload [110]. The advantages 
of such integrative features for the detection of internal 
states are significant: a) Compared with the measure
ments directly extracted from raw neurophysiological 
signals such as PSD, the integration among different 
sources of signals (i.e. brain regions or neuronal oscilla
tions) can generate more abundant information. b) The 
phase-based integrative features have one extra benefit 
as a feature in machine learning. Because of the specific 
range of phase (from -π to π), the measurements based 
on phase synchrony can be produced in a strictly limited 
range of values, e.g. from 0 to 1 in ISPC, PLI and PLV 
[71–73]. Such a limited quantitative range makes the 
levels of integrations comparable in all cases, and within 
the request of normalization as features in machine 
learning, it does help. Hence, such integrative measure
ments can be utilized as a kind of ideal quantified 
references in assessing the internal states.

Signal diversity is also not limited to the detection 
of consciousness. For example, entropy estimated 
from the continuous EEG and classified using 
a neural network was used to detect epileptic seizures 
during which entropy drops sharply [111]. The esti
mation of diversity does not need to be based on the 
continuous EEG. Inouye and colleagues [112] 

demonstrated that the entropy of the power spec
trum increases with mental workload. Entropy mea
sures have also been applied to evoked responses as 
opposed to spontaneous EEG. Sitges and colleagues 
[113] used multiscale entropy to distinguish 
responses of controls and patients with chronic 
pain to non-painful stimuli. Overall, this research 
shows that entropy measures and signal diversity 
measures in general have the potential to be used 
as a feature to develop a BCI that adapts to the 
internal state of the user.

5.3. A unified approach of BCI adaptation

A possible design for a BCI that adapts to the 
internal state of the user is shown in Figure 2. We 
distinguish the adaptation to the user’s state into 
two categories based on the methods used to deter
mine the state. On the one hand, behavioral metrics 
such as questionnaires and interviews may be used 
to assess the user’s state (contributing to BCI 
usability assessment) in regard to workload, satis
faction and motivation. For example, self-reported 
VAS ratings may be used to determine the user’s 
perception of specific BCI aspects and interviews 
may shed light on potentially unknown aspects. 

Table 2. Overview of selected aspects to potentially optimize BCI user motivation and performance as implemented in the selected 
study example [22], based on earlier study design guidelines [31,32] and the idea to use elements inspired by a popular science fiction 
movie franchise (pictures, sounds, etc.), in which characters can use the powers of their mind to positively interact with their 
environment via non-muscular pathways (‘Star Wars’), to create an overarching and motivating theme [48].

Suggested properties of a good instructional design Corresponding design aspects in the study example [22]

Feedback
Non-evaluative and supportive feedback that conducts to 

a feeling of competence
Positive feedback sound after successful BCI use (not given after nonsuccessful BCI use) as well 

as more elaborated non-evaluative and supportive feedback from the experimenter during 
breaks

Engaging feedback and environment Positive ‘Star Wars’ feedback sound (from a popular robot character, based on a mix of harmonic 
electronic and cheerful baby sounds)

Explanatory and specific feedback Adjustable breaks during sessions, allowing time for verbal feedback by the experimenter as 
well as intermediate analysis of potential problems

Instruction
Goals should be clearly defined Careful briefing and debriefing (explanation of paradigm and research purpose, suggesting 

strategies for successful use, concluding analysis of potential problems)
The meaning of the feedback should be explained Illustration and explanation of the study specific BCI signal and ways of subjectively influencing 

it
The skill to be learned should be demonstrated Demonstration of (previously recorded) successful BCI use of a end-user (also to illustrate the 

practical relevance of this line of research)

Task
Motivation and positive emotions promote learning ‘Star Wars’ theme (absolving ‘mission’ that were inspired by movie scenes), creation of a positive 

atmosphere (little refreshment breaks)
Need for autonomy and work at user’s own pace, 

adaptation of training procedure to the user
Adjustable breaks during sessions, allowing time to drink or snack little refreshments, eventually 

chance to try an alternative BCI version (auditory vs. tactile)
Need for variability over tasks and problems, progressive 

and adaptive tasks
Varying ‘missions’ (each one to a new ‘Star Wars’ movie scene), new BCI calibration at the 

beginning of each session (allowing users to reach online accuracies > 70% without 
guaranteeing 100%)

Notes. Originally, these suggestions were not meant for P300-based BCIs as utilized in the selected study example [22], since it seemed that they did not require 
human training [32]. However, this was before the relevance of training effects could be shown for auditory and tactile P300-based BCIs [22,49–52,84].
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This approach could be used to evaluate adaptations 
of the training paradigms to ensure the changes 
made to the training made the task more engaging 
for the user. This in turn should lead to increased 
satisfaction and motivation. On the other hand, 
features such as oscillations reflected in the PSD, 
ERPs, signal diversity and integrative features (such 
as functional connectivity) may be used to assess 
the user’s current state during active use of the BCI. 
For example, if high workload or fatigue are 
detected, the pauses between trials may be increased 
or the BCI could switch to another control modality 
(for instance, from P300 to motor imagery). If mea
sures of consciousness indicate the user is currently 
not conscious, the BCI may be paused, and if an 
episode of acute pain is detected, a caregiver may be 
alerted.

There has been much discussion about the role of 
internal states in BCI designed with UCD toward health 
management, but it is also a vital factor in more general 
BCI systems designed for some non-medical environ
ments, especially in closed-loop BCI. Based on the idea 
that the adaption adapts the measured internal states, the 
utility of internal states is an essential element in the design 
of a closed-loop BCI system. Until now, there have been 
some researchers proving such an important functionality 
of the internal states [114]. For example, Müller et al. 
proposed a closed-loop EEG system that can adapt the 
setting of a driving system according to the driver’s 

workload [115]. Moreover, in a study focusing on the 
closed-loop BCI applied in virtual reality, Luu et al. also 
realized the potential of internal states as a powerful factor 
in improving the system’s performance [116]. Though the 
technical solution to utilize internal states in the develop
ment of closed-loop BCI regarding specific applications 
still involves various challenges, its importance has been 
disclosed significantly both in theory and in application.

6. Conclusion

We discussed the application of UCD to respond to the 
users’ needs while using BCI, both in studies with 
healthy non-end-users and end-users in clinical envir
onments. Furthermore, we highlighted electrophysiolo
gical signal features that can, for example, be extracted 
from EEG, such as Lempel-Ziv complexity and func
tional connectivity, and can be applied for the detection 
of specific internal states.

We conclude that the ‘two sides of the same coin’ of 
internal states credo can help the development of BCIs 
to involve more interactive feedback, by adapting BCIs 
to diverse internal states in different conditions to 
improve BCI performances. This may further inspire 
the development of bi-directional BCIs and may help 
the user to adjust the internal states to the current 
condition [117]. With the help of UCD and novel 
approaches for internal state detectionfor instance, 
with effective EEG features, it will be possible to make 

Figure 2. An example of the brain-computer interface (BCI) control cycle and how adaptation to the internal state of the user could be 
included. The user generates a control signal that is decoded by the BCI and provided as feedback to the user. In this example, the BCI 
is adapted by applying user-centered design (UCD) to determine the preferences and abilities of the user via self-report measures 
(such as the NASA-Task Load Index [NASA-TLX; 53,54], the System Usability Scale [SUS; 85,86], the BCI version of the Questionnaire for 
Current Motivation in Learning and Performance Situations [QCM-BCI; 18,35,36], visual analogue scales (VAS), or using an interview 
approach) and also via the detection of electrophysiological signal features (such as electroencephalographic oscillations, signal 
diversity and connectivity) by applying machine learning to determine the current state of the user.
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BCIs more flexible and will help with optimizing devel
opment of closed-loop neurofeedback systems [118].
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